
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A SCALABLE TRANSFORMER-BASED FRAMEWORK
FOR FAULT DETECTION IN MISSION-CRITICAL SYS-
TEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Detecting underlying faults is crucial in the development of mission-critical plan-
ning systems, such as UAV trajectory planning in Unmanned aircraft Traffic Man-
agement (UTM), which is vital to airspace safety. Inevitably, there exists a small
set of rare, unpredictable conditions where the UTM could suffer from catas-
trophic failures. Most traditional fault detection approaches focus on achieving
high coverage by random input exploitation. However, random methods are strug-
gling to detect long-tail vulnerabilities with unacceptable time consumption. To
tackle this challenge, we propose a scenario-oriented framework to search the
long-tail conditions, accelerating the fault detection process. Inspired by in-
context learning approaches, we leverage a Transformer-based policy model to
capture the dynamics of the subject UTM system from the offline dataset for ex-
ploitation acceleration. We evaluate our approach over 700 hours in a massive-
scale, industry-level simulation environment. Empirical results demonstrate that
our approach achieves over 8 times more vulnerability discovery efficiency com-
pared with traditional expert-guided random-walk exploitation, which showcases
the potential of machine learning for fortifying mission-critical systems. Further-
more, we scale the model size to 2 billion parameters, achieving substantial per-
formance gains over smaller models in offline and online evaluations, highlighting
the scalability of our approach.

1 INTRODUCTION

Unmanned aircraft system Traffic Management (UTM) (Kopardekar, 2014; Kopardekar et al., 2016)
is a mission-critical system to ensure safety and coordination in low-altitude aircraft operations. As
Unmanned Aerial Vehicles (UAVs) are increasingly applied in civilian and commercial tasks, such
as logistics (Yang Su et al., 2023; Chen et al., 2024), disaster relief (Kshitij Aggarwal & Aayush
Goyal, 2021; Murat Bakirci & Muhammed Mirac Ozer, 2023), and environmental monitoring (Biruk
E. Tegicho et al., 2023; Manilo Monaco et al., 2022), the vulnerability discovery of UTM systems is
crucial to prevent accidents in complex, real-world scenarios (G. Raja et al., 2021; Wedad Alawad
et al., 2023), which brings about the need for rigorous testing in the verification phase.

Testing in UTM is particularly challenging due to the long-tail effect of potential failure scenarios
(Wang et al., 2022; Feng et al., 2023). In UTM, the majority of operational scenarios are safely
managed by the system’s self-healing design, while a small subset of rare and unpredictable sit-
uations can lead to severe safety risks and system-wide failures. These low-probability, high-risk
scenarios are difficult to identify due to infrequent occurrence and obscurity within a vast space of
relatively safe scenarios. However, traditional testing methods, such as random scenario injections
(Zhong et al., 2021; Nicholas B. N. Nyakundi et al., 2023) and coverage-based techniques (Flood &
Korenko, 2013; Nalic et al., 2020), struggle to detect rare critical edge cases efficiently. The random
nature of these approaches leads to excessive exploration of low-risk situations, resulting in wasted
resources and a low likelihood of exposing the most dangerous vulnerabilities in a timely manner.

To address this issue, we propose a novel search-oriented testing framework that treats fault detec-
tion as a search problem across the long-tail of operational scenarios. The framework consists of two
main components: a Policy Model (PM) and an Action Sampler (AS). Drawing inspiration from in-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Overview of the operational environment in Unmanned aircraft system Traffic Man-
agement (UTM) of System-Under-Test (SUT). The UTM system operates in a variety of environ-
ments, including urban, suburban, and rural areas. Each setting poses distinct challenges, such as
high-density air traffic in urban regions and limited infrastructure in rural areas, requiring strong
management and coordination strategies. Rapid fault detection across these diverse scenarios is
essential for maintaining safety and preventing catastrophic failures in real-world deployments.

context learning methods (Laskin et al., 2022; Fu et al., 2024; Benjamins et al., 2022), the PM uses a
Transformer-based reinforcement learning approach to generate fault injections. It takes both histor-
ical data and real-time System-Under-Test (SUT) states as input, capturing temporal dependencies
and operational dynamics. This design allows the model to identify patterns in similar operational
dynamics and generalize to unseen environments. The PM can manipulate environmental factors
(e.g., placing obstacles) and modify the internal states of drones (e.g., simulating poor network con-
nectivity). Before being injected into the SUT, the testing scenarios generated by the PM are refined
by the rule-based AS. The AS incorporates human preference alignment using logit bias (Tang et al.,
2024; Brown, 2020) and prevents invalid actions through rejection sampling (Dubey et al., 2024).
This ensures strict adherence to safety constraints and narrows the search space. We validated our
approach in an industry-level UTM simulation environment over the course of 700 hours. The Sys-
tem Under Test (SUT) was a UTM scheduling platform that managed over 400 drones performing
food delivery tasks across 30+ distinct environments, as shown in Fig. 1.

The results demonstrate that our framework accelerates vulnerability discovery by more than eight
times compared to traditional methods, while also identifying critical scenarios that conventional
techniques failed to detect. Additionally, we examined the effect of model scaling and found that
increasing the parameter size to 2 billion significantly improved performance. This highlights the
scalability and robustness of our approach in enhancing safety for mission-critical systems.

In summary, the key contributions of this paper are as follows:

• We introduce a novel testing framework that combines a Transformer-based policy model
for scenario generation with a rule-based action sampler for targeted scenario testing in
UTM systems. This integration significantly improves the efficiency of fault detection.

• We propose a Transformer-based offline reinforcement learning architecture that effectively
captures multi-agent system dynamics and enables efficient exploration of long-tail scenar-
ios.

• The effectiveness of our approach is thoroughly validated through extensive online sim-
ulations, spanning 700 hours across diverse real-world environments. The results show
significantly better performance compared to traditional methods and human experts.

2 RELATED WORKS

Multi-Agent System Testing Multi-Agent Systems (MAS), such as autonomous vehicles (Li
et al., 2023; Feng et al., 2023; Daniele et al., 2024; Ashwin & Naveen Raj, 2023) and robotic
swarms (Xia et al., 2022; Mai et al., 2022; Lv et al., 2023), process continuous temporal information
from both inter-agent interactions and agent-environment dynamics. As MAS complexity and im-
portance grow, testing to identify potential vulnerabilities has gained increasing attention (Daniele
et al., 2024). For instance, Kim et al. (2022) introduced an end-to-end mutational fuzzing method for

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Autonomous Driving Systems (ADS), employing four parameter mutation strategies to explore the
problem space from initial scenarios. Additionally, Yao et al. (2023) used graph centrality analysis
to detect GPS spoofing vulnerabilities, while Li et al. (2023) applied the TD3 reinforcement learn-
ing algorithm to reduce randomness and inefficiency in fuzzing methods. Despite these advances,
fuzzing methods often fail to balance coverage and efficiency, as much of the explored problem
space offers limited value (Daniele et al., 2024). Traditional testing techniques, such as fuzzing (in-
jecting random or semi-random inputs) (Miller et al., 1990; Zhang et al., 2021) and mutation testing
(introducing controlled changes to the system) (Jia & Harman, 2011), have been adapted for MAS.
Mutation testing may fail to capture the emergent behaviors arising from complex agent interactions,
limiting quality and diversity (Daniele et al., 2024).

Sequential Trajectory Modeling Early efforts primarily utilized transformers with self-attention
mechanisms (Vaswani et al., 2017) as encoders to process complex information embedded within
agent trajectories. These trajectories, modeled as sequences of tokens (Chen et al., 2021; Chebotar
et al., 2023b; Wu et al., 2023), contain observations, interactions between agents, and feedback from
the environment at different time steps. The pioneering work by Zambaldi et al. (2018) introduced
the concept of using multi-head dot-product attention to capture relational reasoning over structured
observations. This approach was later successfully implemented in AlphaStar (Vinyals et al., 2019)
to manage multi-entity observations in the complex multi-agent game StarCraft II (Samvelyan et al.,
2019). Trajectory Transformer (Janner et al., 2021) adopted sequence modeling techniques, such as
beam search, for reinforcement learning tasks, aiming to mitigate the correlation and bias involved
in jointly modeling states and actions. In complex and dynamic environments, agents’ behaviors are
heavily influenced by each other and their surroundings. AgentFormer (Yuan et al., 2021) addressed
this by incorporating agent identifiers into the attention mechanism to model the influence of each
agent’s trajectory on others. Scene-LSTM (Manh & Alaghband, 2018) divided environments into
grid cells, while Scene Transformer (Ngiam et al., 2022) aggregated environmental object context
and agent interactions through attention layers to produce unified future state predictions.

Scenario-Based Testing Scenario-based testing offers a more structured approach to evaluating
MAS by analyzing the system’s behavior under specific conditions. Tian et al. (2022) demonstrated
the effectiveness of motif-driven paths in identifying distinct safety violations. However, manually
crafting realistic and comprehensive scenarios is both time-consuming and challenging. To address
this, learning-based methods have gained traction. Feng et al. (2023) formulated accidents in au-
tonomous vehicles as a sequential Markov Decision Process (MDP), using a reinforcement learning
framework, D2RL, to manipulate trajectories and simulate accidents by controlling nearby vehicles.
Similarly, Tian et al. (2024) explored the use of Large Language Models (LLMs) in the LEADE
technique to automate scenario generation. Additionally, Fu et al. (2024) introduced models that
adapt to new tasks by leveraging current contextual information. Through in-context learning, mod-
els can use relevant examples or instructions to guide the generation of test scenarios or identify
potential vulnerabilities in more targeted and adaptive ways (Wei et al., 2022).

3 FAULT DETECTION PROBLEM IN TESTING PHASE

In this section, we provide an overview of fault detection problem in testing phase of the UTM
system. We first introduce the UTM system, specifying the importance of testing phase in the devel-
opment of UTM system. After that, we analyze the testing framework for UTM system, including its
role within development of UTM system, interactions with SUT, and targets of testing framework.

3.1 UTM SYSTEMS

Targets of UTM Systems The UTM systems are designed for real-time or near-real-time organi-
zation, coordination, and management upon UAV swarms. UTMs generate control and command
signals to UAV swarms for geo-fencing, route optimization, de-confliction, etc. (ICAO, 2023). The
UTM system is usually developed as a complex system, integrating several modules. Since failures
in UTM usually result in substantial economic losses or even human injury and death, UTM systems
are considered as mission critical systems (Kopardekar, 2014) Therefore, UTM systems are required
be of high fault-tolerance. This raises demands on rigorous fault detection in testing phase before
real-world deployment. Detailed characteristics of UTM are available in Appendix A.1.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Fault Detection in UTM Systems Fault detection refers to the process of identifying potential
failures (or faults) before deploying UTM in real-world services. This process is of significant im-
portance to rule out possible failures in advance. Typically, testing phase contains several steps, with
the complexity of testing scenarios increasing progressively. As reported by the Federal Aviation
Administration (FAA), despite extensive testing, long-tail faults still threaten the safety of UTM
systems (Rios et al., 2017; FAA, 2023). These long-tail faults are particularly challenging to de-
tect because the complex scenarios in which they occur are difficult to generate. This difficulty is
compounded by the self-healing capabilities of UTM systems, which prevent the testing framework
from accessing or inducing these fault conditions. Motivated by this challenge, we propose a novel
testing framework designed to accelerate fault detection and enable the discovery of new faults.

3.2 FUNCTIONALITY OF PROPOSED UTM TESTING FRAMEWORK

The proposed testing framework operates as a testing module that runs alongside the UTM system,
monitoring its behavior and injecting controlled disturbances to SUT.

Input Stream The testing framework continuously receives three types of real-time data from
simulator: (1) UAV Runtime Data: Including position, velocity, and acceleration information for
all active UAVs (2) Mission Status: Flight plans, current objectives, and completion status for each
UAV Data streams fed to either testing framework or the UTM system are strictly identical, which
are available for RL modeling as states in 4.1.

Targets of Testing Framework The testing framework for UTM systems is designed to gener-
ate adversarial scenarios that evaluate system-wide behavior rather than individual on-device drone
states. While traditional approaches to UTM testing focus on component-level verification, our
framework aims to uncover vulnerabilities that emerge from complex system-wide interactions and
temporal dependencies. Given the vast state space of UTM systems, we adopt a more focused ap-
proach: generating a carefully curated set of high-risk test scenarios that are most likely to reveal
critical system vulnerabilities. This strategic reduction in test cases allows for more efficient and
targeted testing while maintaining comprehensive coverage of potential fault modes.

Challenges of Testing Framework In developing this targeted testing approach, we identified
three fundamental challenges: (1) Complex Temporal and Inter-agent Dependencies: UTM sys-
tems involve intricate temporal dependencies and agent interactions. Testing must consider both
long-term effects and multi-agent behaviors, as vulnerabilities often emerge from their combined
impact rather than immediate or single-agent issues. (2) Long-tail Effect in Fault Distribution:
Trivial errors are often corrected by self-healing mechanisms of UTM. Critical faults typically oc-
cur in rare edge cases (e.g. multiple simultaneous errors), making them difficult to detect through
conventional testing. (3) Environmental Consistency: Generated test scenarios must balance be-
tween discovering edge cases and maintaining physical plausibility in realistic operational settings.
Our framework addresses these challenges through a novel combination of reinforcement learning
techniques and domain-specific constraints, as detailed in the following sections.

4 TESTING PROBLEM ANALYSIS AND MODELING

In this section, we first transform the complexities of testing into a manageable RL problem, with
the objective of learning to identify and trigger the aforementioned faults. Additionally, we employ
an offline RL strategy combined with contextual information to effectively address the dynamic and
high-dimensional nature of UTM systems.

4.1 TOWARDS REINFORCEMENT LEARNING

To address the challenge of scenario quality, we adopt an RL framework to formulate generation.
The RL formulation allows us to model the complex temporal dependencies inherent in UTM sys-
tems and to learn effective strategies for exploring the state-action space.

Formally, let O denotes the space of observable individual UAV information, S represents the state
space of testing framework with the UTM system managing N UAVs, A the set of possible actions

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

or injections, and R : S ×A → R a reward function that quantifies the impact of actions on system
safety and performance. The objective is to identify T , a set of sequences of states and actions
τ : {(s1, a1), ..., (sT , aT)} that maximize the cumulative reward Rτ =

∑T
i=1 r(si, ai), where high

rewards correspond to the discovery of critical failure modes. In following paragraphs, we define
state, action, and reward in UTM testing separately.

State The state space of testing framework is a concatenate of UAV information in UAV numbers
and time-steps. For information of individual UAV, the state contains both temporal, spatial infor-
mation and runtime mission status. We define oti ∈ O ⊂ Rd as a vector of d relevant features,
which encapsulates the observable information for i-th UAV at t-th time-step, including: kinetic in-
formation (position, velocity, and acceleration of all UAVs), environmental data (obstacles, weather
conditions, and airspace restrictions) and mission-specific details (battery levels, payload capacity,
and route destinations). To capture both cross-UAV dependencies and temporal dependencies, we
represent the state s ∈ S for testing framework as a sequence of observations of all N UAVs over a
fixed time window T , namely, s = {(o11, ..., o1N), . . . , (oT1 , . . . , o

T
N)}.

Action The action space A comprises a discrete set of all possible injection operations, each tar-
geting a specific component or aspect of the SUT. We define A as the Cartesian product of two sets
A = D × F where D represents the set of targetable UAV, and F is the set of m applicable dis-
turbance injections. For each injection, all the possible types are listed in Table 7 in Appendix A.7.
Each action a ∈ A is a tuple (d, f), where d ∈ D and f ∈ F . This formulation allows for a com-
binatorial exploration of fault scenarios while maintaining a structured action space of cardinality
|A| = |D| × |F|.

Reward The reward function R is designed to capture the system’s safety and operational ef-
ficiency as r(st, at) =

∑K
i=1 αiri(st, at) denoting reward at timestep t where ri are individual

reward components (e.g., collision avoidance, mission completion, system stability) and αi are their
respective weights.

4.2 OFFLINE REINFORCEMENT LEARNING

Considering sample inefficiency of traditional RL in complex environments, we raise a novel offline
RL approach to improve. This methodology leverages a large, pre-collected dataset of UTM system
trajectories, denoted as T = {(s,R, a, r) | s ∈ S, a ∈ A, r, R ∈ R}, where s is the current state, a
is the action taken, r is the immediate reward received at current timestep and R is the return-to-go
indicating potential reward in future steps. Thus the objective of problem is formulated as searching
πθ = argmaxπ E(s,R,a,r)∼T [Σr

π(s, a)] where θ are the parameters of the policy network.

Transformer In order to tackle long-range dependencies in the trajectory data, as challenges de-
scribed in Section 3.2, we employ a Transformer-based architecture motivated by the Transformer’s
ability (Radford et al., 2019) to model complex temporal relationships. Self-attention mechanism
also provides interleaving data utilization among different head in favor of modeling agent-wise in-
teraction. Our strategy of Transformer usage resides in (1) modeling complex system mechanism
through learning reward/return, (2) generating targeted and valuable actions based on knowledge
of world. Formally, given a sequence of state-return pairs (s1, R1), ..., (sT , RT), the decoder-only
Transformer processed this information end-to-end into a set of predictions {(R̂1, â1), ..., (R̂T , âT)}
with R̂ as regressive modeling of world and â decision of actions, where R̂t = fθ(s1, R1, ..., st)
and ât = fθ(s1, R1, ..., st, Rt) with fθ denoting the Transformer decoding function with parameters
θ. This architecture enables the model to learn subtle patterns across extended time horizons, po-
tentially uncovering intricate failure modes that might be overlooked by methods with more limited
temporal reasoning capabilities.

Context-Aware We incorporate context-aware scenario generation to enhance the generalization
capabilities of our model. Our approach draws inspiration from recent advancements in in-context
learning (Brown & Mann, 2020). Let C denote a context set comprising a small number of rele-
vant historical trajectories. We augment our state representation to include this context s̃ = [C; s]
where [·; ·] denotes concatenation. This context-aware formulation allows the Transformer model to

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 2: Architecture overview of the proposed scenario-oriented testing framework. The
framework consists of two primary modules: (1) a Transformer-based Policy Model (PM) for gener-
ating fault scenarios based on real-time and historical SUT data, and (2) an Action Sampler (AS) that
enforces predefined safety rules and filters out undesirable actions. The validated scenarios are then
injected into the System-Under-Test (SUT) for evaluation. This architecture effectively narrows the
search space to high-risk scenarios, improving fault detection efficiency and reducing unnecessary
exploration of low-risk cases.

utilize longer-ranged data and adapt its behavior based on relevant historical examples, potentially
improving its decision performance in novel or underrepresented scenarios due to self-healing UTM
functionality to automatically resolve disturbances.

Action Sampling with Domain Constraints To ensure the physical plausibility of generated sce-
narios, we introduce a constrained action sampling mechanism. Let Φ(s) represent a set of domain-
specific constraints that define the feasible action space given the current state s. We modify the
action selection process as a ∼ π(a|s) · 1[a ∈ Φ(s)] where π(a|s) is the learned policy, and 1[·] is
the indicator function. This indicator only functions during inference to allow for the incorporation
of expert knowledge and system-specific constraints without compromising neither learning effi-
ciency nor the learned policy’s flexibility. In training, we added a stage of prediction for available
action mask which serves to aid regression in system modeling. Action predictions are used directly
in training or through sampler in inference.

5 METHODOLOGY

In this section, we introduce an automatic framework with generative capability for complicated
scenarios and interface for prior preference alignment and knowledge accumulation. As shown in
Fig. 2, in this framework, we utilize a Transformer-based model as policy model (PM), initiating
the process by producing a set of actions based on the system state. According to action space
defined in Section 4.1, generated actions can be interpreted as potential fault injections to be applied
to typical victim drones in UTM. Subsequently, these actions are passed through a domain-specific
action sampler (AS). AS serves for two purposes: (1) ensure the PM-generated actions available
within the specific UTM context; (2) leverage human expert knowledge to re-sample actions with
balanced preference bias in chosen actions and agents. Only actions sampled are injected into the
system-under-test (SUT). On SUT finishing execution, a new system state would be generated and
fed back to the PM, along with the evaluation of the actions (reward). Thus PM continuously refine
scenarios to uncover potential vulnerabilities.

5.1 POLICY MODEL

In this subsection, we describe the design of PM, according to RL formulation defined in 4.1. The
Policy Model serves as the generative engine of our framework, leveraging the power of Transformer
architectures to capture complex temporal dependencies and system dynamics. During training, PM
serves to model trajectory sequence from UTM and learn internal natures in offline dataset. In

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 3: Architecture of the Policy Model (PM). The PM utilizes a Transformer-based reinforce-
ment learning framework, taking both historical and real-time SUT states as input tokens to capture
temporal dependencies and system dynamics. The model generates action sequences that include
both environmental manipulations (e.g., placing obstacles) and internal state changes (e.g., network
degradation).

performing inference, PM processes real-time UTM context and generates proposed fault injection
actions to AS.

Time sequence and action modeling Expanding on previous work that utilized Transformers for
decision-making (Chen et al., 2021), we design a unified time sequence format where observations
o, actions a, returns R and rewards r of each agent are embedded to a homogeneous space after
linear projections. Original rewards r serve to construct summary tokens by aggregating increments
in last T timesteps, similar to the construction of return-to-go token R (summarizing T incoming
timesteps). Input sequence thus carries data of in-total 3 × T timesteps while focusing on central
T current timesteps. Tokens would then be arranged as array of ⟨O,R,A⟩ tuples with length
of T timesteps. Considering temporal dependency in decision making, we masked out R and A
tokens except that in last time step. Thus model utilize T × N observation tokens to predict the
current return-to-go token R̂ to fit ground-truth return R, as learning of implicit system nature. An
intermediate mask token is introduce to mask out invalid action choices, in favor of modeling system
capability according to current state.

Embedding and Causality To enhance the modeling of causal dependencies within the policy
model, we employ a multi-faceted approach. We augment the sequentially sampled multi-agent
drone observation data with positional embedding. Additionally, as shown in Fig. 3, input sequence
is augmented with different classification (CLS) tokens as powerful discriminators in order to reduce
the ambiguity of prediction targets. Inspired by insights from Shaw et al. (2018), we prioritize the
most recent observations by placing them closest to the CLS token, ensuring that the model pays
particular attention to the latest information when making decisions. This aligns with the principle
that recent events often carry more causal relevance than distant ones.

To capture long-range dependencies, we employed self-attention mechanism among tokens together
with a semi-lower-triangular agent-wise causal mask in attention calculation to preserve decision
causality. Observation tokens o at identical timestep are visible to each other homogeneously. How-
ever the R̂ tokens could be predicted with only observation tokens visible before being fed with
ground-truth return-to-go token. And only older ⟨O,R,A⟩ tuples are visible to newer ones. We
aim to guide the model to construct a more comprehensive and nuanced understanding of the causal
dynamics. Formally, we can sequentially express the prediction task as ât = fθ(S−t:1, o1:t, Rt,Mt)
where S denotes the summary token aggregating previous T time steps and fθ represents the Trans-
former model with parameters θ.

5.2 ACTION SAMPLER

Inductive bias and generality are key drawbacks of traditional offline RL methods. We design a set
of sampling strategies as a workaround. In this subsection, We first introduce preference bias as a
notation of human feedback. And we describe action sampler functions between PM and SUT.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 4: Pipeline of the Action Sampler (AS). The AS enforces safety constraints and domain-
specific rules, filtering out irrelevant actions generated by the Policy Model (PM) before injecting
them into the System-Under-Test (SUT), ensuring the integrity of the testing process.

Preference Bias During the training process of decision-making models using auto-regressive
models such as offline reinforcement learning, there is usually an uneven distribution of the output
due to the collected training data, with little chance of sampling low-frequency choices. Meanwhile,
the more complex the system is tested, the more insidious the vulnerability and the more significant
the long-tail effect. In this work, training dataset is collected through traditional stress testing, where
unpredictable inductive bias is common in production systems.

We introduce Preference Bias, improved from popularity bias (Klimashevskaia et al., 2024) with
additional domain expert knowledge, to unify imbalance in model prediction and gap in prior human
preference. Preference bias carries a expected distribution of ⟨UAV,Action⟩ tuples. The output
of the offline-trained PM is augmented with compensation dynamically calculated from distance
between recent historical trajectories and given distribution.

Action Candidate Sampling As shown in Fig. 4, action logits predicted by PM are compensated
according to preference distribution. To address long-tail effect and improve fairness (Menon et al.,
2020), Top-K sampling is introduced after augmentation in order to maintain variance. Considering
realistic capability of system status, immediate action mask is applied in order to filter intolera-
ble action candidates. The final action is sampled through a uniform sampling after masking. By
combining the generative power of the Transformer-based Policy Model with the refined selection
process of the Action Sampler, our framework achieves a balance between exploration of complex
failure scenarios and adherence to real-world constraints. This approach enables more efficient
and effective testing of UTM systems, potentially uncovering critical vulnerabilities that traditional
methods might miss. In below sections, we illustrate our advantages through experiment results.

6 RESULTS

We train the proposed framework with a large-scale offline dataset of around 17B tokens collected
from stress testing data and evaluate on an industry-level simulator. As is summarised in Table. 8
in Appendix A.9, the training set consists of seven distinct regions and online testing includes two
regions. The training dataset covering diverse geographical and operational characteristics, includ-
ing a mix of rural (12.2%), suburban (39.0%), and urban areas (48.8%), each with varying numbers
of UAVs, airports, and flight lines. The dataset is balanced to represent the typical distribution of
scenarios encountered in real-world UTM systems. For testing, two regions (TR1 and TR2) are
excluded from the training set to provide evaluations of the generalization capabilities.

We design two model of different size, with 1.2 billion and 2 billion parameters (referred as PM-
1.2B and PM-2B respectively). We train each model on 16 NVIDIA A100 GPUs, each equipped
with 80GB of memory. The training utilized PyTorch’s Distributed Data Parallel (DDP) to efficiently
distribute the workload across multiple GPUs, ensuring high computational efficiency and resource
utilization. During training, the dataset is divided into smaller slices of 3B tokens for sequential
loading during training.

We evaluate the performance of the proposed model through both offline and online evaluations
to provide a comprehensive analysis. In Section 6.1, we focus on the offline evaluation of the
PM’s behavior during training, where we analyze the evolution of action accuracy and return-to-go
loss. In Section 6.2, the online evaluation measures the model’s performance in a deployed real-
world environment, where we collect and analyze a range of key metrics. This dual evaluation
framework offers a holistic view of the model’s efficacy, ensuring robustness both during training
and in practical applications.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Action accuracy of PM; (b) Top 2/3 action accuracy; (c) Return-to-go loss of PM;
Figure 5: Offline evaluation results on validation sets during training. The action accuracy and
return-to-go of the models (PM-10M, PM-100M, and PM-2B) measured over increasing training
tokens on validation sets. All models show an initial increase in accuracy, followed by a decline,
indicating overfitting phenomenon. Similarly, all models eventually increase in return-to-go loss,
signaling overfitting. Larger models demonstrate a clear advantage, achieving significantly higher
accuracy lower return-to-go loss compared to the smaller models. The peak action accuracy for each
curve is highlighted with a star.

Category Purpose Metric

Action Probability Measure the preference of framework. Action Probability per Observation (APO)
Action Probability Distribution (APD)

Action Quality Evaluate the quality of generated actions. Hazard Action Ratio (HAR)
Constant-Pressure Action Ratio (CAR)

Testing Efficiency Evaluate the effectiveness of framework. High Risk Scenarios per Million Flights (SPM)
Faults per Million Flights (FPM)

Table 1: Metrics for online evaluation of testing performance. The metrics are categorized into
three groups for a comprehensive evaluation of the proposed testing framework’s capabilities, in-
cluding the preference and quality of proposed framework, as well as the final results. The detail
definition of metrics can be found in Appendix A.6.

6.1 OFFLINE EVALUATION

For offline evaluation, we focus on the impact of model size on action accuracy and return-to-go
loss during training. Especially, we apply the top K action accuracy in that in our framework,
actions are sampled based on the top-k predictions rather than solely the top-1. The results in Fig.
5 illustrate that larger models consistently perform better across both action accuracy (highest) and
return-to-go loss (lowest) metrics. This indicates that larger models have a better capacity to capture
the underlying structure in the offline data, achieving more accurate action selections with fewer
training tokens. Fig. 5 also reveals that the PM-2B model begins to overfit much later compared
to the smaller PM-10M and PM-100M models. This suggests that larger models not only perform
better in terms of action accuracy but also exhibit better generalization properties, allowing them to
continue learning effectively with more data before encountering overfitting issues. This behavior
is a hallmark of the scaling effect, where larger models benefit from increased capacity and more
robust training dynamics, making them more resistant to overfitting compared to smaller models.

6.2 ONLINE EVALUATION

To evaluate the effectiveness of proposed framework in unseen environments, we evaluate our We
selected several key metrics to evaluate the preference and effectiveness of PM, as well as the quality
of actions, as is shown in Table. 1. For detailed explanation of each metric, we refer to the Appendix
A.6.

From the results shown in Table. 2, we can conclude that the proposed PM-2B model signifi-
cantly outperformed both expert-guided testing and smoke test baselines across all key metrics.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Metrics PM-2B PM-1.2B Expert-Guided Exploitation Smoke Test∗
TR1 TR2 TR1 TR2 TR1 TR2 TR1 TR2

APO(%) 20.0 31.5 55.3 38.3 72.0 83.3 100 100
APD(%) 26/34/21/19 46/32/11/11 28/27/22/23 30/29/20/21 25/25/25/25 25/25/25/25 N/A N/A

HAR(%) 10.8 4.9 6.7 4.2 3.6 1.7 N/A N/A
CAR(%) 29.7 64.1 4.0 4.5 4.1 3.9 N/A N/A

SPM 50.5 17.6 5.8 N/A
FPM 7.6 2.2 <1.0∗∗ <1.0∗∗

Table 2: Performance metrics of the propose framework in online environments of unseen
regions. This table shows the online results in out-of-distribution region TR1 and TR2. Results
of PM models are reported on over 700 hours testing in total, with around 100M records for each
model in each region. The detailed definition of metrics can be found in Table. 1 and Appendix A.6.
∗: The smoke testing refers to the basic functionality testing of UTM system. This is conducted as the initial
testing after a new build or version of the UTM system.
∗∗: The FPMs are below 1.0 because the two baseline tests have already been thoroughly used to identify
existing bugs and improve UTM in advance, while our method is focused on discovering new bugs in the
updated version of the UTM system after the baselines have reached their detection limits.

Specifically, PM-2B generates high-risk scenarios weight times faster than smoke testing, and is
able to discover bugs while expert-guided testing method fails to. This indicates that the proposed
framework is more effective in identifying critical scenarios and potential failures. Furthermore,
comparing with smaller PM-1.2B model, PM-2B performs significantly better in action quality and
efficiency. This suggests the existence of scaling effect between model size and online performance
in discovering critical cases and efficiently covering high-risk regions. Interestingly, the PM-2B
model detected failure modes (SPM and FPM) that the smoke test completely missed. This emer-
gent capability shows that the PM framework can find faults beyond traditional rule-based methods,
demonstrating its utility for uncovering rare bugs. Considering both the scaling effect and emergent
abilities, our framework shows significant promise for scaling up model sizes, and has the potential
to become a breakthrough (akin to a ”ChatGPT-moment”) in the testing field in the future. However,
PM models fail to balance the distribution of different action types, which could lead to potential
under-exploration in less frequent action spaces. This suggests a need for better action sampling
strategies.
Why does proposed framework exceed the performance of human experts? Although trained
with expert-guided exploitation data, PM model ultimately surpass the performance of human ex-
perts. This is attributed to that PM model applies offline RL, which can be viewed as an implicit
filter of low-quality actions (Prudencio et al., 2023), making it less susceptible to distraction during
the search for long-tail scenarios.

We can illustrate this by analyzing the hazard action ratio per observation, which is obtained by
multiplying HAR and APO, and the constant-pressure action ratio per observation, calculated by
multiplying CAR and APO. For both PM-2B, PM-1.2B, and human experts, the hazard action ratio
per observation is consistently around 2%. This shows that all methods are similarly effective in
identifying high-risk actions. However, the key difference is that the PM models demonstrate a sig-
nificantly higher constant-pressure action ratio per observation, indicating that they maintain a more
sustained level of high-risk actions over time. This ability to constantly pose challenges and main-
tain pressure highlights the advantage of the PM models in exploring complex, high-risk scenarios
more thoroughly, thereby leading to superior fault detection and scenario coverage.

7 CONCLUSION

We propose a novel scenario-oriented testing framework for identifying vulnerabilities in mission-
critical systems, specifically applied to UTM. Our approach leverages a Transformer-based policy
model to tackle long-tail effect and efficiency challenge in fault detection. Context utilization in
policy model improves generality in unseen regions. Our results highlight the potential of learning
and expert hybrid approaches in fortifying mission-critical systems. The end-to-end auto-regressive
learning methodologies are worth studying. Future work could explore the application of this frame-
work to other mission-critical domains beyond UTM, such as autonomous vehicles or industrial
control systems.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

S. H. Ashwin and Rashmi Naveen Raj. Deep reinforcement learning for autonomous vehicles:
Lane keep and overtaking scenarios with collision avoidance. International Journal of In-
formation Technology, 15(7):3541–3553, October 2023. ISSN 2511-2112. doi: 10.1007/
s41870-023-01412-6.

Carolin Benjamins, Theresa Eimer, Frederik Schubert, Aditya Mohan, Sebastian Döhler, André
Biedenkapp, Bodo Rosenhahn, Frank Hutter, and Marius Lindauer. Contextualize me–the case
for context in reinforcement learning. arXiv preprint arXiv:2202.04500, 2022.

Prajjwal Bhargava, Rohan Chitnis, Alborz Geramifard, Shagun Sodhani, and Amy Zhang. When
should we prefer decision transformers for offline reinforcement learning? In The Twelfth Inter-
national Conference on Learning Representations, October 2023.

Biruk E. Tegicho, T. E. Bogale, A. Eroglu, Zhi-Hua Xie, and W. Edmonson. Intra-UAV Swarm
Connectivity in Unstable Environment. IEEE Transactions on Vehicular Technology, 72:13929–
13939, 2023. doi: 10.1109/TVT.2023.3284424.

Tom Brown and Benjamin Mann. Language Models are Few-Shot Learners. In Ad-
vances in Neural Information Processing Systems, volume 33, pp. 1877–1901. Cur-
ran Associates, Inc., 2020. URL https://papers.nips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Yevgen Chebotar, Quan Vuong, Karol Hausman, Fei Xia, Yao Lu, Alex Irpan, Aviral Kumar, Tianhe
Yu, Alexander Herzog, Karl Pertsch, et al. Q-transformer: Scalable offline reinforcement learning
via autoregressive q-functions. In Conference on Robot Learning, pp. 3909–3928. PMLR, 2023a.

Yevgen Chebotar, Quan Vuong, Alex Irpan, Karol Hausman, Fei Xia, Yao Lu, Aviral Kumar, Tianhe
Yu, Alexander Herzog, Karl Pertsch, Keerthana Gopalakrishnan, Julian Ibarz, Ofir Nachum,
Sumedh Sontakke, Grecia Salazar, Huong T Tran, Jodilyn Peralta, Clayton Tan, Deeksha Manju-
nath, Jaspiar Singht, Brianna Zitkovich, Tomas Jackson, Kanishka Rao, Chelsea Finn, and Sergey
Levine. Q-transformer: Scalable offline reinforcement learning via autoregressive q-functions. In
7th Annual Conference on Robot Learning, 2023b.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. arXiv preprint arXiv:2106.01345, 2021.

Xuecheng Chen, Haoyang Wang, Yuhan Cheng, Haohao Fu, Yuxuan Liu, Fan Dang, Yunhao Liu,
Jinqiang Cui, and Xinlei Chen. DDL: Empowering delivery drones with large-scale urban sensing
capability. IEEE Journal of Selected Topics in Signal Processing, 18(3):502–515, 2024. doi:
10.1109/JSTSP.2024.3427371.

Cristian Daniele, Seyed Behnam Andarzian, and Erik Poll. Fuzzers for stateful systems: Survey and
research directions. ACM Comput. Surv., 56(9):222:1–222:23, April 2024. ISSN 0360-0300. doi:
10.1145/3648468.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

Abhimanyu Dubey, Abhinav Jauhri, and et.al Pandey. The Llama 3 herd of models, August 2024.

FAA. UTM field test (UFT) final report, November 2023. URL https://www.faa.gov/uas/
advanced_operations/traffic_management/UFT-Final-Report.pdf.

Shuo Feng, Haowei Sun, Xintao Yan, Haojie Zhu, Zhengxia Zou, Shengyin Shen, and Henry X. Liu.
Dense reinforcement learning for safety validation of autonomous vehicles. Nature, 615(7953):
620–627, March 2023. ISSN 1476-4687. doi: 10.1038/s41586-023-05732-2.

M. Flood and George G. Korenko. Systematic scenario selection: stress testing and the nature of
uncertainty. Quantitative Finance, 15:43 – 59, 2013. doi: 10.1080/14697688.2014.926018.

11

https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://www.faa.gov/uas/advanced_operations/traffic_management/UFT-Final-Report.pdf
https://www.faa.gov/uas/advanced_operations/traffic_management/UFT-Final-Report.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Letian Fu, Huang Huang, Gaurav Datta, Lawrence Yunliang Chen, William Chung-Ho Panitch,
Fangchen Liu, Hui Li, and Ken Goldberg. In-context imitation learning via next-token prediction,
August 2024.

G. Raja, S. Anbalagan, Aishwarya Ganapathisubramaniyan, M. Selvakumar, A. Bashir, and S.
Mumtaz. Efficient and Secured Swarm Pattern Multi-UAV Communication. IEEE Transactions
on Vehicular Technology, 70:7050–7058, 2021. doi: 10.1109/TVT.2021.3082308.

Asma Hamissi and Amine Dhraief. A survey on the unmanned aircraft system traffic management.
ACM Computing Surveys, 56(3):1–37, 2023.

ICAO. UTM guidance, May 2023. URL https://www.icao.int/safety/UA/Pages/
UTM-Guidance.aspx.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. In Advances in Neural Information Processing Systems, 2021.

Yue Jia and Mark Harman. An analysis and survey of the development of mutation testing. IEEE
Transactions on Software Engineering, 37(5):649–678, September 2011. ISSN 1939-3520. doi:
10.1109/TSE.2010.62.

Seulbae Kim, Major Liu, Junghwan ”John” Rhee, Yuseok Jeon, Yonghwi Kwon, and Chung Hwan
Kim. Drivefuzz: Discovering autonomous driving bugs through driving quality-guided fuzzing. In
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’22, pp. 1753–1767, New York, NY, USA, November 2022. Association for Computing
Machinery. ISBN 978-1-4503-9450-5. doi: 10.1145/3548606.3560558.

Anastasiia Klimashevskaia, Dietmar Jannach, Mehdi Elahi, and Christoph Trattner. A survey on
popularity bias in recommender systems. User Modeling and User-Adapted Interaction, July
2024. ISSN 1573-1391. doi: 10.1007/s11257-024-09406-0. URL http://dx.doi.org/
10.1007/s11257-024-09406-0.

Parimal Kopardekar, Joseph Rios, Thomas Prevot, Marcus Johnson, Jaewoo Jung, and John E Robin-
son. Unmanned aircraft system traffic management (UTM) concept of operations. In AIAA AVI-
ATION Forum and Exposition, 2016.

Parimal H Kopardekar. Unmanned aerial system (UAS) traffic management (UTM): Enabling low-
altitude airspace and UAS operations. Technical report, National Aeronautics and Space Admin-
istration, 2014.

Kshitij Aggarwal and Aayush Goyal. Particle Swarm Optimization based UAV for Disaster man-
agement. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control
Conference (IAEAC), 5:1235–1238, 2021. doi: 10.1109/IAEAC50856.2021.9390770.

Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steigerwald,
DJ Strouse, Steven Hansen, Angelos Filos, Ethan Brooks, et al. In-context reinforcement learning
with algorithm distillation. arXiv preprint arXiv:2210.14215, 2022.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Menglin Li, Haoran Zhu, Haochen Zhang, and Jingtian Liu. Afl-rl: A reinforcement learning based
mutation scheduling optimization method for fuzzing. In Proceedings of the 2023 7th Interna-
tional Conference on High Performance Compilation, Computing and Communications, HP3C
’23, pp. 46–55, New York, NY, USA, November 2023. Association for Computing Machinery.
ISBN 978-1-4503-9988-3. doi: 10.1145/3606043.3606050.

Zefang Lv, Liang Xiao, Yousong Du, Guohang Niu, Chengwen Xing, and Wenyuan Xu. Multi-agent
reinforcement learning based uav swarm communications against jamming. IEEE Transactions
on Wireless Communications, pp. 1–1, 2023. ISSN 1536-1276, 1558-2248. doi: 10.1109/TWC.
2023.3268082.

12

https://www.icao.int/safety/UA/Pages/UTM-Guidance.aspx
https://www.icao.int/safety/UA/Pages/UTM-Guidance.aspx
http://dx.doi.org/10.1007/s11257-024-09406-0
http://dx.doi.org/10.1007/s11257-024-09406-0

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sebastian Mai, Nele Traichel, and Sanaz Mostaghim. Driving swarm: A swarm robotics framework
for intelligent navigation in a self-organized world. In 2022 International Conference on Robotics
and Automation (ICRA), pp. 01–07, Philadelphia, PA, USA, May 2022. IEEE. ISBN 978-1-
72819-681-7. doi: 10.1109/ICRA46639.2022.9811852.

Huynh Manh and Gita Alaghband. Scene-lstm: A model for human trajectory prediction.
https://arxiv.org/abs/1808.04018v2, August 2018.

Manilo Monaco, Giada Simionato, M. Cimino, G. Vaglini, S. Senatore, and G. Caricato. Using
Artificial Immune System to Prioritize Swarm Strategies for Environmental Monitoring. 2022
IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA),
pp. 104–110, 2022. doi: 10.1109/cogsima54611.2022.9830665.

Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit, and
Sanjiv Kumar. Long-tail learning via logit adjustment. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=37nvvqkCo5.

Barton P. Miller, Lars Fredriksen, and Bryan So. An empirical study of the reliability of unix utilities.
Commun. ACM, 33(12):32–44, December 1990. ISSN 0001-0782. doi: 10.1145/96267.96279.

Murat Bakirci and Muhammed Mirac Ozer. Post-Disaster Area Monitoring with Swarm UAV Sys-
tems for Effective Search and Rescue. 2023 10th International Conference on Recent Advances in
Air and Space Technologies (RAST), pp. 1–6, 2023. doi: 10.1109/RAST57548.2023.10198022.

Demin Nalic, Hexuan Li, A. Eichberger, Christoph Wellershaus, Aleksa Pandurevic, and Branko
Rogic. Stress testing method for scenario-based testing of automated driving systems. IEEE
Access, 8:224974–224984, 2020. doi: 10.1109/ACCESS.2020.3044024.

Jiquan Ngiam, Benjamin Caine, Vijay Vasudevan, Zhengdong Zhang, Hao-Tien Lewis Chiang, Jef-
frey Ling, Rebecca Roelofs, Alex Bewley, Chenxi Liu, Ashish Venugopal, David Weiss, Ben
Sapp, Zhifeng Chen, and Jonathon Shlens. Scene transformer: A unified architecture for predict-
ing multiple agent trajectories, March 2022.

Nicholas B. N. Nyakundi, Shawn M. Reynolds, and H. Reza. Scenario-Based Approach to Systemat-
ically Derive Test Cases for Systems. 2023 IEEE International Conference on Electro Information
Technology (eIT), pp. 51–58, 2023. doi: 10.1109/eIT57321.2023.10187246.

Zizheng Pan, Bohan Zhuang, Jing Liu, Haoyu He, and Jianfei Cai. Scalable vision transformers
with hierarchical pooling. In Proceedings of the IEEE/cvf international conference on computer
vision, pp. 377–386, 2021.

Rafael Figueiredo Prudencio, Marcos ROA Maximo, and Esther Luna Colombini. A survey on
offline reinforcement learning: Taxonomy, review, and open problems. IEEE Transactions on
Neural Networks and Learning Systems, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

J Rios, DG Mulfinger, IS Smith, P Venkatesan, DR Smith, V Baskaran, and L Wang. UTM data
working group demonstration 1 final report. Moffett Field, CA, 2017.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas
Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philiph H. S. Torr, Jakob Foerster, and Shimon
Whiteson. The StarCraft Multi-Agent Challenge. CoRR, abs/1902.04043, 2019.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-Attention with Relative Position Represen-
tations. In Marilyn Walker, Heng Ji, and Amanda Stent (eds.), Proceedings of the 2018 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers), pp. 464–468. Association for Computational
Linguistics, 2018. doi: 10.18653/v1/N18-2074.

Konstantinos Spalas. Towards the unmanned aerial vehicle traffic management systems (utms):
Security risks and challenges. arXiv preprint arXiv:2408.11125, 2024.

13

https://openreview.net/forum?id=37nvvqkCo5

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yuwei Tang, Zhenyi Lin, Qilong Wang, Pengfei Zhu, and Qinghua Hu. AMU-Tuning: Effective
logit bias for CLIP-based few-shot learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 23323–23333, June 2024.

Haoxiang Tian, Yan Jiang, Guoquan Wu, Jiren Yan, Jun Wei, Wei Chen, Shuo Li, and Dan Ye.
Mosat: Finding safety violations of autonomous driving systems using multi-objective genetic
algorithm. In Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE 2022, pp. 94–106, New
York, NY, USA, November 2022. Association for Computing Machinery. ISBN 978-1-4503-
9413-0. doi: 10.1145/3540250.3549100.

Haoxiang Tian, Xingshuo Han, Guoquan Wu, Yuan Zhou, Shuo Li, Jun Wei, Dan Ye, Wei Wang,
and Tianwei Zhang. An llm-enhanced multi-objective evolutionary search for autonomous driving
test scenario generation. https://arxiv.org/abs/2406.10857v1, June 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, volume 30. Curran Associates, Inc., 2017.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan
Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Agapiou,
Max Jaderberg, Alexander S. Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David
Budden, Yury Sulsky, James Molloy, Tom L. Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff,
Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith, Tom
Schaul, Timothy Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David Silver.
Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):
350–354, November 2019. ISSN 1476-4687. doi: 10.1038/s41586-019-1724-z.

Jiangong Wang, Xiao Wang, Tianyu Shen, Yutong Wang, Li Li, Yonglin Tian, Hui Yu, Long Chen,
J. Xin, Xiangbin Wu, N. Zheng, and Feiyue Wang. Parallel vision for long-tail regularization:
Initial results from ivfc autonomous driving testing. IEEE Transactions on Intelligent Vehicles, 7:
286–299, 2022. doi: 10.1109/tiv.2022.3145035.

Wedad Alawad, Nadhir Ben Halima, and Layla Aziz. An Unmanned Aerial Vehicle (UAV) Sys-
tem for Disaster and Crisis Management in Smart Cities. Electronics, 2023. doi: 10.3390/
electronics12041051.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
https://arxiv.org/abs/2201.11903v6, January 2022.

Yueh-Hua Wu, Xiaolong Wang, and Masashi Hamaya. Elastic Decision Transformer. In Thirty-
Seventh Conference on Neural Information Processing Systems, 2023.

Zhaoyue Xia, Jun Du, Jingjing Wang, Chunxiao Jiang, Yong Ren, Gang Li, and Zhu Han. Multi-
agent reinforcement learning aided intelligent uav swarm for target tracking. IEEE Transactions
on Vehicular Technology, 71(1):931–945, January 2022. ISSN 0018-9545, 1939-9359. doi: 10.
1109/TVT.2021.3129504.

Yang Su, Hui Zhou, Yansha Deng, and M. Dohler. Energy-Efficient Cellular-Connected UAV
Swarm Control Optimization. ArXiv, abs/2303.10398, 2023. doi: 10.48550/arXiv.2303.10398.

Yingao Elaine Yao, Pritam Dash, and Karthik Pattabiraman. Swarmfuzz: Discovering gps spoofing
attacks in drone swarms. In 2023 53rd Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks (DSN), pp. 366–375, June 2023. doi: 10.1109/DSN58367.2023.
00043.

Ye Yuan, Xinshuo Weng, Yanglan Ou, and Kris Kitani. Agentformer: Agent-aware transformers for
socio-temporal multi-agent forecasting. In 2021 IEEE/CVF International Conference on Com-
puter Vision (ICCV), pp. 9793–9803, October 2021. doi: 10.1109/ICCV48922.2021.00967.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor Babuschkin,
Karl Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart, Murray Shanahan, Victoria
Langston, Razvan Pascanu, Matthew Botvinick, Oriol Vinyals, and Peter Battaglia. Relational
deep reinforcement learning. https://arxiv.org/abs/1806.01830v2, June 2018.

Zheng Zhang, Baojiang Cui, and Chen Chen. Reinforcement learning-based fuzzing technology. In
Leonard Barolli, Aneta Poniszewska-Maranda, and Hyunhee Park (eds.), Innovative Mobile and
Internet Services in Ubiquitous Computing, pp. 244–253, Cham, 2021. Springer International
Publishing. ISBN 978-3-030-50399-4. doi: 10.1007/978-3-030-50399-4 24.

Ziyuan Zhong, Yun Tang, Yuan Zhou, Vania de Oliveira Neves, Yang Liu, and Baishakhi Ray.
A survey on scenario-based testing for automated driving systems in high-fidelity simulation,
December 2021.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 UTM SYSTEM ARCHITECTURE AND TESTING PIPELINE

What is Unmanned aircraft Traffic Management (UTM) system? The Unmanned aircraft Traf-
fic Management (UTM) system, as introduced by the National Aeronautics and Space Administra-
tion (NASA) (Kopardekar, 2014; Kopardekar et al., 2016), is designed to ensure safe and efficient
operation of multiple unmanned Unmanned Aerial Vehicles (UAVs) in shared airspace. The UTM
concept is developed to support the integration of UAVs into airspace without requiring human air
traffic controllers to manage every UAV directly. Instead, UTM emphasizes the use of automated
systems to coordinate UAV operations. This includes services like geofencing, route optimization,
and deconfliction, ensuring that UAVs can safely and autonomously operate in both sparsely popu-
lated rural and densely populated urban areas or alongside manned aircraft.

UTM is typically developed as a complex system. This is because the UTM systems should in-
tegrate a wide range of functionalities and address diverse challenges associated with managing
UAV operations in dynamic and unpredictable environments. UTM systems need to handle real-
time communication between UAVs, ground stations, and other stakeholders, while simultaneously
ensuring safety, efficiency, and fairness in airspace usage.

As show in Figure 6, UTM serves as the central coordinator, processing dynamic information re-
ceived from all UAVs and managing overall traffic flow through sophisticated decision-making al-
gorithms simultaneously. UTM maintains continuous communication, flight route allocation and
trajectory assignment with multiple UAVs, each equipped with various sensors and control systems,
while simultaneously monitoring environmental conditions and potential conflicts.

What is fault detection in development of UTM and why it is important? We define the term
fault detection as the process identifying possible faults in the UTM system during testing phase,
which is before the UTM system is deployed in real-world environments. It is typically divided into
several steps, including module testing, integration testing, smoke testing (functional testing), stress
testing, etc. After each testing step, the confidence (e.g., reliability, fault tolerance, and compliance
with regulatory standards) of UTM system increases as potential faults are identified and addressed,
ensuring that the system becomes progressively more robust and reliable.

Fault detection is a critical aspect of UTM development because it directly impacts the safety, relia-
bility, and efficiency of development pipeline. As a mission critical system, the UTM system should
be designed to eliminate all the faults it may occur, which are usually costly or even deadly (e.g.,
UAV crushes, collisions with buildings or even collisions with human injuries) (Kopardekar, 2014;
Kopardekar et al., 2016). By identifying and addressing potential faults during the testing phase,
fault detection ensures that the UTM system operates as intended, mitigating risks before deploy-
ment in real-world environments. This proactive approach prevents costly failures, enhances system
robustness, and builds trust among stakeholders.

Why fault detection is challenging? Fault detection in UTM systems is inherently challenging,
particularly as testing progresses through advanced stages. While early testing steps may uncover
obvious issues, the long-tail of rare and hard-to-detect faults often remains persistent and elusive.
This difficulty is compounded by the self-healing capabilities of modern UTM systems, which can
mask subtle issues that may only emerge under specific conditions. As is listed in the Table 3,
although several testing steps have been conducted, there still remains faults to threat the safety of
the UTM system (e.g. shakedown effects found by Federal Aviation Administration in field testing)
(Rios et al., 2017; FAA, 2023). Based on the stepwise testing and field testing results, we estimate
the faults found in different steps of testing, as listed in Table 3. From data in the table, we can see
that as several testing steps are conducted, there still exists faults to be detected, which is fatal in
mission critical systems.

A.2 PROPOSED TESTING FRAMEWORK

Testing Framework Testing framework introduced in this work serves as a copilot with UTM,
rather than deploying on individual UAV. It monitors identical data streams along with UTM, in-
cluding UAV telemetry (position, velocity, mission status) and system state information. The UTM

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Fault Types Module Testing Integration Testing Smoke Testing Stress Testing Fault Remaining
Module Level ∼ 20% ∼ 10% ∼ 30% ∼ 40% ∼ 0.1%
Interface Level ∼ 10% ∼ 20% ∼ 30% ∼ 40% ∼ 0.1%
Running time ∼ 10% ∼ 10% ∼ 40% ∼ 40% ∼ 0.1%

Scenario Complexity Simple Simple Medium Medium High

Table 3: Fault Types Detection during Different Steps of Testing. The module testing verifies
individual components of UTM to ensure they function correctly in isolation. The integration testing
checks interactions between combined modules to detect interface issues. The smoke testing ensures
basic functionality works correctly after a new build or update, acting as a preliminary check. The
stress testing evaluates system stability and performance under extreme or peak load conditions. The
tested scenarios for moduel testing and integration testing are relatively simple, while smoke testing
and stress testing will generate more complex testing scenarios. As the testing steps conducted one
by one, the software maturity of UTM increases gradually. However, there still exists rare faults
happening in complex scenarios.

system provides trajectory schedule in favor of system robustness, while testing system generating
adversarial disturbance actions to increase systematic vulnerability.

Figure 6: UTM System and Testing Framework Architecture. The testing framework works as
copilot of UTM and operates on the server-side. As a mission critical system, UTM under test is
designed as centralized architecture at once to insure the safety and remove potential conflicts in
advance (Spalas, 2024; Hamissi & Dhraief, 2023). To align with the design of UTM, our proposed
testing framework is also designed centrally. The testing framework mimics the natural disturbance
to generate different scenarios.
Testing system is designed to manipulate external disturbances to UAVs like wind, obstacle and
network jitter as shown in Table 7. Internal functionality and and robustness of on-device system of
individual UAV is out of the scope of this research.

Sim vs Real The framework’s methodology emphasizes systematic exploration of edge cases and
rare failure modes that might otherwise remain undiscovered in conventional testing approaches.
Environmental disturbances suffer from randomness and difficulty in interpreting. In this work,
we make use of simulators which enables configurable environmental disturbances and concrete
mapping between them and consequential operating status, in favor of typical analysis and diagnosis.
Visibility and capability of UTMs are strictly aligned in whether simulated or realistic context.

Besides, precise timing selection of disturbance injections is within consideration as well. Traffic
pressure of UTM for complicated UAV MASs varies with time. Testing system learns to inject
actions when UTM is handling the most vulnerable cases in favor of significance of tesing scenarios
generated.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.3 CHALLENGES OF TESTING UTM

Critical Fault Distribution Imbalance While UTM’s fault-tolerant design successfully handles
most anomalies through automated recovery mechanisms and redundant control strategies, this ar-
chitectural resilience paradoxically increases the complexity of identifying severe failure scenarios,
as intermediate failure states are often automatically corrected before they can develop into ob-
servable system failures. Critical failures, those capable of overwhelming the system’s self-healing
mechanisms, occupy an extremely small portion of the state-action space, which often reside in nar-
rowly defined regions of the state-action space, requiring precise combinations of multiple adverse
factors to overcome the system’s multi-layer safety functionality. These regions are characterized by
specific configurations of multiple elements: particular spatial arrangements of UAVs, precise tim-
ing of control actions, specific environmental conditions. Furthermore, these failure scenarios often
represent emergent behaviors arising from subtle interactions between multiple system components
and their recovery attempts, rather than simple violations of individual safety constraints.

Types Number of
Influenced UAVs

Disturbance Times
within 60s Case Example Real-World

Ratio Complexity

Safe Flight 0 0 N/A ∼ 94% Low

Disturbances

1 1 Winds with exceeding magnitude ∼ 5% Medium
≥ 2 1 (each) Winds hit multiple UAVs ∼ 1% Medium

1 ≥ 2 Winds hit twice with 60s interval ∼ 0.1% High
1 ≥ 2 (simultaneously) Signal Loss when Winds hit ∼ 0.01% High

Table 4: Real-World UTM failure distribution. In real-world UAV fleets, advanced UTM provides
fundamental guarantee for safe flight, where faults with increasing risk still exist at a relatively low
ratio and are increasingly hard to locate and tackle.

High-Dimensional State-Action Temporal Dependency Testing of UTM systems confronts a
fundamental challenge in navigating its inherent high-dimensional state-action coupling relation-
ships. The state space encompasses multiple critical dimensions: spatial coordinates and velocity
vectors of each UAV, environmental conditions, and communication network states. Each additional
UAV exponentially expands this state space, creating a combinatorial explosion in the dimensions
that must be considered during testing. Unlike traditional control systems where failures often man-
ifest through immediate state violations, UTM system failures additionally emerge from specific
combinations of historical state sequences and multi-agent coupling, as shown in Table 4. The
behavioral trajectory of each UAV is intrinsically influenced by both its historical states and the
temporal evolution of other agents’ states in the shared airspace. For instance, a seemingly safe
trajectory adjustment by one UAV could create cascading effects leading to system-wide conflicts
minutes later through complex agent interactions. Furthermore, subtle perturbations in early states
can propagate through the system’s temporal dynamics to trigger critical failures in significantly
later stages. The challenge is particularly pronounced in scenarios involving dense multi-UAV op-
erations, where system behavior emerges from the intricate interplay of multiple agents’ temporal
trajectories rather than simple state-transition patterns.

A.4 MOTIVATION FOR TRANSFORMER AND COMPARISON WITH OTHER MODELS

The main motivation of applying Transformer as backbone model lies in that the Transformer models
are proved to be scalable in multi tasks (e.g., natural language processing (Brown, 2020), computa-
tional vision (Pan et al., 2021), robotics (Chebotar et al., 2023a), etc.). The scalability is of essential
importance in the development of testing framework in that (1) complex temporal and inter-agent
dependencies with scalable sizes of UAV swarm and temporal context window, and (2) long-tail ef-
fect in fault distribution requiring sufficiently large dataset to identify faults and to feed in backbone
models. Leveraging the Transformer’s inherent scalability in modeling extended context lengths and
processing large-scale data inputs, it can effectively model complex temporal sequences and inter-
agent interactions within UAV swarms of varying sizes. This capability allows the testing framework
to accommodate extensive datasets necessary for identifying rare faults due to the long-tail effect in
fault distribution. Furthermore, the Transformer’s ability to handle large-scale data inputs ensures
that the model remains robust and accurate as the system under test evolves (e.g. different region
settings, as demonstrated in Table 5). Consequently, integrating the Transformer as the backbone

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

model enhances the framework’s capacity to detect, analyze, and predict system behaviors across
diverse operational scenarios.

However, alternative backbone models such as Graph Neural Networks (GNNs), Recurrent Neural
Networks (RNNs), Long Short-Term Memory networks (LSTMs), and online reinforcement learn-
ing algorithms like Deep Q-Networks (DQNs) or Proximal Policy Optimization (PPO) often struggle
to address aforementioned challenges effectively. These models may lack the inherent ability to cap-
ture long-range dependencies or scale efficiently with increasing sequence lengths and swarm sizes.
Specifically,

• RNN/LSTM: RNNs and LSTMs encounter difficulties when modeling long temporal con-
texts due to issues like vanishing gradients, which add to the training difficulty. What’s
more, RNNs and LSTMs are hard to parallelized, which adds to the training time, espe-
cially when deal with large datasets (Devlin, 2018). Base on our primely experiments, we
find that for models below 10 million parameters, RNNs are 10 times slower than Trans-
formers, which constrains the scalability of RNNs.

• GNN: GNNs may not scale well with large and dynamic swarm networks, especially when
temporal dynamics are involved.

• DQN/PPO: DQN and PPO require extensive online exploration and interactions (Levine
et al., 2020), making them less practical for fault detection in complex systems with long-
tail fault distributions.

A.5 ONLINE EVALUATION OF OUT-OF-DISTRIBUTION AND IN-DISTRIBUTION DATASET

Test Region APO (%) APD (%) HAR (%) CAR (%)

TR1 (OOD) 20.0 26/34/21/19 10.8 29.7
TR2 (OOD) 31.5 46/32/11/11 4.9 64.1

R4 (ID) 27.3 16/29/29/26 6.5 48.7

Table 5: Performance metrics of PM-2B . The metrics include Action Probability per Observa-
tion (APO), Action Probability Distribution (APD), High-Value Action Ratio (HAR), and Constant-
Pressure Action Ratio (CAR). Testing was conducted in three distinct regions: TR1 (rural, out-of-
distribution), TR2 (urban, out-of-distribution), and R4 (suburban, in-distribution), to evaluate the
model’s generalization capability across diverse environments.

As is illustrated in Table. 5, the PM-2B model demonstrates strong generalization across differ-
ent environments, maintaining high performance in both in-distribution (ID) and out-of-distribution
(OOD) regions. In the OOD rural region (TR1 & TR2), the model achieves the comparable perfor-
mance with ID region (in the context of comparing APO, HAR, and CAR). In contrast, the model’s
performance in the ID region (R4) shows more balanced APD values (16/29/29/26) than in OOD
region, which could be a signal of overfitting.

A.6 ONLINE EVALUATION METRIC DETAILS

In this section, we provide a detailed explanation to selected metrics.

Action Probability per Observation (APO) The definition of APO is

APO =
#{action generated as injected, testing method is called}

#{testing method is called}
× 100%,

where #{·} denotes the number of occurrences of the specified event. APO aims to measure the
percentage of times a testing method generates actions that are injected into the system, indicating
how often the framework effectively targets the desired action space during testing. However, high
APO may result in redundant action injections, as not all injected actions contribute to uncovering
valuable information. Only critical actions that can reveal faults or vulnerabilities are truly signif-
icant for effective testing. Therefore, additional metrics about action quality and testing efficiency
are necessary to evaluate the true effectiveness of the testing framework.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Action Probability Distribution (APD) APD measures the proportion of different types of ac-
tions generated by the testing framework. It is represented as a vector indicating the percentage
of each action type. A balanced APD ensures that the framework explores a diverse set of actions,
while an unbalanced distribution may indicate bias toward specific types, potentially missing critical
scenarios. Evaluating APD helps assess whether the testing method maintains comprehensive action
coverage or if certain action types are underrepresented.

Hazard Action Ratio (HAR) HAR is defined as

HAR =
#{actions result in return-to-go significantly raise comparing with summary}

#{injected actions}
× 100%,

where #{·} denotes the number of occurrences of the specified event. In practice, we consider an
action to be hazardous if the difference between return-to-go and the summary is greater than 0.4.
his threshold indicates that the injected action has a substantial impact on the system, potentially
leading to risky or unexpected outcomes. A high HAR reflects the framework’s ability to generate
high-risk scenarios, which is crucial for identifying critical vulnerabilities during testing.

Constant-Pressure Action Ratio (CAR) CAR is defined as

CAR =
#{actions result in high return-to-go when summary is also high}

#{injected actions}
× 100%,

where #{·} denotes the number of occurrences of the specified event. In practice, an action is
categorized as constant-pressure if both the return-to-go and the summary exceed a threshold of 0.4.
This indicates that the action consistently maintains a high level of risk or pressure in an already
high-risk scenario. A high CAR shows that the testing framework is able to sustain pressure over
a prolonged period, making it more effective at evaluating the resilience and stability of the system
under stress.

High Risk Scenarios per Million Flights (SPM) SPM measures the frequency of high-risk sce-
narios detected by the testing framework for every million simulated flights. A high SPM value
indicates that the testing framework is effective in uncovering critical situations that pose potential
threats to system safety. It helps quantify the robustness of the testing methodology in identifying
rare but impactful scenarios.

Faults per Million Flights (FPM) FPM represents the number of unique bugs identified for every
million flights, where system may encounter severe failures. It reflects the framework’s capability
to discover actual system faults during testing. A higher FPM suggests that the testing strategy is
not only triggering risky scenarios but also exposing underlying system vulnerabilities that need to
be addressed before deployment.

A.7 ARCHITECTURE AND TRAINING DETAILS

Architectures of Policy Model The scenario-oriented testing framework for UTM systems con-
sists of two main phases: training and inference (testing), as illustrated in Algorithms 1 and 2. Al-
gorithm 1 details the training phase, where the Policy Model (PM) learns from an offline dataset of
UTM scenarios. This phase involves iterating through epochs and batches, processing state-action-
reward tuples, and updating the model parameters to minimize the prediction error for both actions
and rewards. The training process incorporates context augmentation to enhance the model’s ability
to capture temporal dependencies. Algorithm 2 outlines the inference (testing) phase, where the
trained PM is used to generate and evaluate potentially vulnerable scenarios in the System-Under-
Test (SUT). This phase operates in a loop, continuously generating candidate actions, filtering them
through an Action Sampler (AS), injecting selected actions into the SUT, and evaluating the out-
comes. The process accumulates detected vulnerabilities while dynamically updating the context
based on observed states, actions, and rewards. Together, these algorithms form a comprehensive
approach to identifying potential faults and vulnerabilities in UTM systems, leveraging both histor-
ical data and adaptive, context-aware scenario generation.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Algorithm 1 Training Phase of UTM Testing Framework

Input: Offline dataset D, Model architecture M
Output: Trained Policy Model PM

1: Initialize PM with architecture M
2: Initialize optimizer
3: for each epoch do
4: for each batch B in D do
5: s, a, r ← GetBatchData(B)
6: s̃← AugmentWithContext(s)
7: â, r̂ ← PM.Forward(s̃)
8: L← ComputeLoss(â, a, r̂, r)
9: BackpropagateAndUpdate(PM, L)

10: end for
11: end for

return PM

Algorithm 2 Inference (Testing) Phase of UTM Testing Framework

Input: Trained Policy Model PM, System-Under-Test SUT, Action Sampler AS
Output: Detected vulnerabilities V

1: Initialize vulnerability set V ← ∅
2: Initialize context set C ← ∅
3: while testing budget not exhausted do
4: s← GetCurrentState(SUT)
5: s̃← [C; s] ▷ Augment state with context
6: Rpredicted ← PM.PredictRTG(s̃)
7: acandidates,← PM.GenerateActions(s̃, Rpredicted)
8: afiltered ← AS.FilterActions(acandidates)
9: a← AS.SampleAction(afiltered)

10: InjectAction(SUT, a)
11: Ractual ← EvaluateAction(SUT, a)
12: if IsVulnerability(ractual) then
13: V ← V ∪ {(s, a, ractual)}
14: end if
15: UpdateContext(C, s, a, ractual)
16: end whilereturn V

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

PM-1.2B PM-2B

Layers 64 64
Model Dimension 1280 1600
Attention Heads 20 25

Activation Functions GELU
Positional Embeddings Sinusoidal

Optimizer AdamW
Peak Learning Rate 8× 10−4 3× 10−4

Learning Rate Schedule 1000 steps warmup & cosine decay

Batch Size 512 256
GPUs 16

Table 6: Overview of the key hyperparameters of policy model. We display settings for 1.2B and
2B models.

Action Space Considering feasibility in implementation, we defined the action space of PM with
2 types of actions: (1) One-time physical actions and (2) short-Duration digital actions. As shown
in Table 7, PM is also enabled to generate scenario configurations with different parameter settings.

NAME TYPE DESCRIPTION PARAMETERS
Wind O Winds with the exceeding magnitude Speed, Direction

Obstacle O Obstacles appearing in UAVs’ routes Size, Location
Network Jitter D Temporary network disconnection Time Duration

Table 7: Action types of policy model. We consider three types of action for each agent. The O
stands for One-time physical actions and D stands for short-Duration digital actions.

Loss function We made use of model with decision transformer style which had out-standing in
sparse reward tasks (Bhargava et al., 2023). In favor of regression of PM, a multi-objective loss
function is introduced in training consisting of following aspects with configurable weights: return-
to-go to model observation and causality, action mask to model world background knowledge and
action to model decision.

A.8 INDUSTRY LEVEL UAV SWARM SIMULATOR

The industry level UAV swarm simulator we applied is designed to create a digital twin of drone
swarms for accurate analysis of both UTM system and UAVs’ behaviors in real-world environments
and interactions between natural environment and the whole system. Powered by a physics en-
gine, the simulator closely replicates real-world physics. Additionally, the simulator incorporates
hardware-in-the-loop by integrating actual UAV flight control systems, which adds to the accuracy.
The simulator supports a variety of environmental configurations, including buildings, moving ob-
jects like balloons and birds, lighting conditions, and wind effects, etc. Backed by a dedicated
support team, the system’s reliability can be continuously improved.

A.9 ENVIRONMENT DETAILS

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(a) Physical failures; (b) Task failures;

Figure 7: Two main types of failures in UTM. Physical failures: Failures that result from physical
damage or malfunction in system components, such as structural damage, hardware breakdowns,
or external impact. These failures typically require immediate attention as they compromise the
safety and integrity of the UAV or surrounding environment. Task Failures: Failures related to
mission objectives, such as incorrect task execution, navigation errors, etc. Task failures impact the
operational success and can disrupt planned missions or lead to unexpected behavior.

Type Index Area # of Airport # of UAV # of Flight Line # of Alternate Airport Fraction

Offline Training R1 Rural 6 16 12 2 12.2%
Offline Training R2 Suburb 12 24 24 7 18.3%
Offline Training R3 Urban 6 36 18 6 27.5%
Offline Training R4 Suburb 10 15 10 2 11.5%
Offline Training R5 Suburb 10 15 10 2 9.2%
Offline Training R6 Urban 8 16 16 2 12.2%
Offline Training R7 Urban 4 12 8 3 9.1%

Online Testing TR1 Rural 9 29 16 2 N/A
Online Testing TR2 Urban 6 16 16 6 N/A

Table 8: Overview of training and testing regions used in the scenario-based testing framework.
Each region is categorized by type (rural, suburban, or urban) and is characterized by attributes such
as the number of airports, UAVs, flight lines, and alternate airports. For training dataset, the fraction
of each region is provided to reflect the distribution of different operational environments. Each
region is specifically designed to provide a representative mix of operational challenges: regions
R1 and R4 emphasize low-density rural and suburban operations, respectively, whereas regions R3
and R6 represent high-density urban areas with increased air traffic complexity. This distribution
ensures the model learns to generalize across different environment types while prioritizing scenar-
ios with a higher likelihood of critical interactions. Testing regions are designed to evaluate model
performance on both trained dataset and unseen scenarios, ensuring robustness and generalizability.

23

	Introduction
	Related Works
	Fault Detection Problem in Testing Phase
	UTM Systems
	Functionality of Proposed UTM Testing Framework

	Testing Problem Analysis and Modeling
	Towards Reinforcement Learning
	Offline Reinforcement Learning

	Methodology
	Policy Model
	Action Sampler

	Results
	Offline Evaluation
	Online Evaluation

	Conclusion
	Appendix
	UTM System Architecture and Testing Pipeline
	Proposed Testing Framework
	Challenges of testing UTM
	Motivation for Transformer and Comparison with Other Models
	Online Evaluation of Out-of-distribution and In-distribution Dataset
	Online Evaluation Metric Details
	Architecture and Training Details
	Industry Level UAV Swarm Simulator
	Environment Details

