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ABSTRACT

Training Large Language Models (LLMs) relies heavily on distributed implemen-
tations, employing multiple GPUs to compute stochastic gradients on model repli-
cas in parallel. However, synchronizing gradients in data parallel settings induces
a communication overhead increasing with the number of distributed workers,
impeding the efficiency gains of parallelization. To address this challenge, lo-
cal optimization algorithms such as the ones used in Federated Learning have
emerged. While effective in minimizing communication overhead, they incur
significant memory costs, hindering scalability: in addition to extra momentum
variables, optimizer’s states cannot be partitioned among workers as communi-
cations are only allowed between rounds of local optimization steps. To conceal
communication costs, we propose instead to synchronize delayed gradients while
computing new ones between each model’s update and introduce ACcumulate
while COmmunicate (ACCO), a memory-efficient optimization algorithm tailored
for distributed training of LLMs. Accumulating local gradients on the workers un-
til the communication finishes naturally reduces the idle time of GPUs and even
allows the use of heterogeneous hardware. However, we show that the one-step
delay inherent in parallel execution of gradient computations and communications
has drastic impacts on Transformers’ convergence. To compensate this delay we
introduce a novel technique which leads to training dynamics aligned with stan-
dard distributed optimization. Compared to ZeRO, our implementation and ex-
periments on several LLMs pre-training and fine-tuning tasks demonstrates that
ACCO reduces the learning time up to 87% and successfully allows both sharding
optimizer states across workers and the use of heterogeneous hardware.

1 INTRODUCTION

Training Large Language Models (LLMs) with billions of parameters requires thousands of GPUs
running in parallel (Touvron et al., 2023). This relies on a distributed version of the backpropagation
algorithm (Li et al., 2020) with a gradient-based optimizer such as Adam (Kingma & Ba, 2015) or
AdamW (Loshchilov & Hutter, 2019). However at this scale, the communication overhead neces-
sary to synchronize gradients between workers in the data parallel setting can dominate the time to
compute the model updates (Ortiz et al., 2021), and it has been estimated that this will remain the
case even if models and hardware evolve (Pati et al., 2023), hindering the benefits of parallelization.
Moreover, as all workers are synchronized through gradient communication, the training only pro-
ceeds at the speed of the slowest machine (straggler) (Dutta et al., 2021; Mishchenko et al., 2022a).

To alleviate this issue, distributed optimization algorithms reducing the amount of communication
between workers have been developed, such as local optimization methods (Stich, 2019; Wang et al.,
2020b) which are especially used in Federated Learning (McMahan et al., 2017; Konecný et al.,
2016). These methods authorize performing multiple optimization steps locally before communi-
cating and synchronizing the distributed workers, reducing the communication overhead. As com-
munication rounds can last longer than a local gradient computation (see Fig. 3), they also naturally
allow to hide the cost of communications in the training time by running them in parallel to several
consecutive local computation steps (Wang et al., 2020a; Shen et al., 2019; Zhang et al., 2015; Sun
et al., 2024). Moreover, on heterogeneous hardware, the number of computation steps can be tuned
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locally to the worker’s speed so that slow ones compute less than fast ones, maxing out workers’
usage (Diskin et al., 2021; Maranjyan et al., 2022).

However, this comes at a drastic memory cost. Indeed, in the standard data parallel setting, most of
the memory consumption of model states comes from storing the optimizer’s parameters, especially
when training with mixed precision. To avoid the replication of redundant optimizer states across
the workers, methods such as ZeRO (Rajbhandari et al., 2020a) shard them. Due to limited GPU
memory and large models’ size, all frameworks used in practice nowadays to train LLMs at scale use
a form of partitioning method (Rasley et al., 2020; Andonian et al., 2023). However these sharding
methods rely heavily on the fact that each mini-batch gradient is averaged over all the workers
during the backward step. This is no longer the case with local optimization algorithms: if it were,
then an averaging would happen at each step, defeating the purpose of the local method. This forces
each worker to host a full copy of the optimizer’s parameters, drastically increasing the memory
requirements. Moreover, to prevent local steps from reducing the accuracy of the resulting model,
local methods often introduce an outer optimizer step at each communication, which comes with
additional momentum terms (Wang et al., 2020b; Sun et al., 2024). Hence, to store these variables,
the latest state-of-the-art method CO2 (Sun et al., 2024) needs a memory overhead of 4 model copies
compared to a standard distributed Adam, which itself uses an order of magnitude more memory
than its sharded version (Rajbhandari et al., 2020a). This raises the following question:

Is it possible to design a memory-efficient optimization algorithm that hides the communication
cost of distributed training of LLMs and accommodates heterogeneous hardware?

To hide the communication cost while being memory-efficient, making sharded optimizers compat-
ible with the idea of overlapping gradient computations and communications seems natural. The
concept of running two parallel processes is already present in the sharded optimization literature,
but for a different purpose. ZeRO-Offload (Ren et al., 2021) introduces the ”Delayed Parameter
Update” (DPU) which allows running the optimizer on the CPU while computing and averaging
gradients on the GPU. By running these processes in parallel, the gradients computed during one
step are on a version of the model parameters that are no longer up to date, as they have been up-
dated by the optimizer concurrently. In practice, this one-step staleness hurts convergence, and the
method can only be used after sufficiently many warmup steps of non-delayed optimization (Ren
et al., 2021).

Contributions. We introduce ACcumulate while COmmunicate (ACCO), a memory-efficient op-
timization algorithm that (1) allows to shard the optimizer parameters across workers, (2) over-
laps gradients computations and communications, hiding the communication overhead while (3)
maximizing GPU usage, even with heterogeneous hardware. (4) We introduce a novel method to
compensate for the one-step delay induced by parallel execution of the gradient computations and
communications, removing the need for warmup steps and (5) perfectly matching the training dy-
namics of standard distributed optimization. Our experiments across multiple LLMs training and
fine-tuning tasks consistently show that ACCO allows for significant time gains. (6) We will release
an open-source parallel implementation of ACCO with the final version of the paper.
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Figure 1: ACCO with a slow and a fast worker running in parallel, showing no idle time on both
and hiding communications. The delayed update is compensated by splitting the mini-batch in two,
leading to two steps in our timeline. The first uses half of the mini-batch to estimate ”next step”
parameters, and the second uses the full mini-batch to update them.
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2 RELATED WORK

Local optimization methods. Local optimization methods perform several local model updates
between periodic averaging. With the SGD optimizer, these algorithms predate the deep learning
era (Zinkevich et al., 2010; McDonald et al., 2010), and their convergence properties are still in-
vestigated nowadays (Zhou & Cong, 2018; Stich, 2019; Woodworth et al., 2020; Mishchenko et al.,
2022b). Due to their practical and efficient communication scheme, they have since been used for the
Distributed Training of Deep Neural Networks (DNNs) with methods such as EASGD (Zhang et al.,
2015), SlowMo (Wang et al., 2020b) or Post-local SGD (Lin et al., 2020; Ortiz et al., 2021), and
are ubiquitous in Federated Learning (McMahan et al., 2017; Konecný et al., 2016; Li et al., 2019),
broadening the choice of optimizers beyond SGD (Reddi et al., 2021; Karimireddy et al., 2020; Chen
et al., 2020). By overlapping communications over consecutive steps of local computations, they al-
low to hide communication bottlenecks, resulting in algorithms such as Overlap local-SGD (Wang
et al., 2020a), COCO-SGD (Shen et al., 2019) or CO2 (Sun et al., 2024). Moreover, with heteroge-
neous hardware, they can adapt their local computation rate to their hardware capacity (Diskin et al.,
2021; Maranjyan et al., 2022). However this comes at the price of additional memory requirements:
due to their local nature, not only do these methods prevent the use of sharded optimizers such as
ZeRO (Rajbhandari et al., 2020a), but they also introduce additional control variables (Wang et al.,
2020b; Mishchenko et al., 2022b; Sun et al., 2024), hindering their scalability as shown in Tab. 1.
Moreover, catering for heterogeneous hardware is not straightforward, as using different numbers of
local updates leads to models shifting at different speeds, requiring extra care to counter this effect
(Maranjyan et al., 2022). On the contrary, ACCO does not lead to such disparities: it just affects how
the required batch size is reached.

Overlap decentralized optimization. The communication complexity being a core concern in
decentralized optimization (Yuan et al., 2016; Gorbunov et al., 2022), strategies have been devised to
reduce communication overheads. For synchronous methods, works focus on designing algorithms
with accelerated communication rates, leveraging Chebyshev polynomials (Scaman et al., 2017;
Kovalev et al., 2020; Song et al., 2023). For the asynchronous ones, they rely on the properties of
the graph resistance (Even et al., 2021; Nabli & Oyallon, 2023; Nabli et al., 2023). Alternatively,
some approaches overlap gradient and communication steps, either explicitly (Assran et al., 2019),
or by modeling them with independent stochastic processes (Nabli & Oyallon, 2023; Nabli et al.,
2023). However, none of these works focus on memory efficiency. Thus, they introduce additional
variables and do not consider sharding the optimizer states. Moreover, they do not study optimizers
other than SGD, and extending their beneficial properties to adaptive methods commonly used for
DNN training such as Adam is still an ongoing research topic (Assran et al., 2020).

Memory-efficient distributed training of LLMs. The activation memory overhead required for
training Transformers (Vaswani et al., 2017) can be mitigated for an extra computational cost by
reconstructing the input with reversible architectures (Jacobsen et al., 2018; Mangalam et al., 2022),
or recomputing the activations via checkpointing (Chen et al., 2016). Efficient LLM training also
combines parallelism methods. Classical data parallelism (DP) (Dean et al., 2012) suffers both from
a high communication volume and a linear increase in memory due to the model replicas. ZeRO-
DP (Rajbhandari et al., 2020b) and Fully-Sharded DP (Zhao et al., 2023b) avoid this issue by shard-
ing the model states (i.e., the optimizer states, gradients, and parameters) between workers. This
comes at the cost of further increasing the synchronization between workers and the communication
volume, which can be mitigated by compression (Wang et al., 2023), memory trade-offs (Zhang
et al., 2022), or delayed gradients (Fournier & Oyallon, 2024). The memory can be even more re-
duced using expensive CPU-GPU communications to unload states on the CPU (Ren et al., 2021;
Rajbhandari et al., 2021). On the other hand, model parallelism partitions the DNN components for
parallelization, either with tensor parallelism (Shoeybi et al., 2019) by slicing a layer’s computation
on several workers, or with pipeline parallelism, which divides a model into sets of layers trained in
parallel on mini-batch slices. Popularized by Huang et al. (2019), this method leaves some workers
idling and an inefficient memory overhead (Fan et al., 2021). Allowing delay in the gradients avoids
worker idleness (Narayanan et al., 2019; Zhuang et al., 2020) but exacerbates the memory overhead,
which can be partially mitigated with gradient accumulation (Narayanan et al., 2021; Zhuang et al.,
2021) and activation checkpointing (Kim et al., 2020; Liu et al., 2023). Combining these frameworks
results in the effective 3D parallelism (Smith et al., 2022).
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Delayed updates. Delays being intrinsic to distributed asynchronous optimization, there is a rich
literature studying them. In the case of distributed SGD in a parameter server setting, while early
analysis showed convergence rates depending on the maximal delay (Agarwal & Duchi, 2011; Stich
& Karimireddy, 2020b), recent lines of work improved these dependencies (Koloskova et al., 2024;
Wu et al., 2022; Feyzmahdavian & Johansson, 2023), proving that asynchronous SGD beats standard
mini-batch SGD even with unbounded delays (Mishchenko et al., 2022a). However, they only study
plain SGD, which is hardly used for DNN training. In this context, some work focused on the
interplay between SGD with momentum and delays (Mitliagkas et al., 2016; Zhang & Mitliagkas,
2019), while delay compensation schemes such as re-scaling updates (Zheng et al., 2017; Xie et al.,
2020) or buffering them (Nguyen et al., 2022) were proposed for Federated Learning. But still, they
only study versions of SGD and not adaptive methods commonly used for LLMs training such as
Adam (Kingma & Ba, 2015) or AdamW (Loshchilov & Hutter, 2019). Closer to our work, DPU
was introduced as a memory-efficient way to train LLMs by running the optimizer on the CPU
while gradients are computed on the GPU (Ren et al., 2021), inducing a one-step delay between
the gradients computed and the corresponding optimizer step. To mitigate it, they advise starting
training by warming up for several steps with a standard method with no delay. Perhaps surprisingly,
we find in our experiments that this one-step delay has a noticeable influence on the convergence
of LLMs training, even when using warmup steps. Contrary to DPU, we remove the need for
them, with no impact on the convergence of our training. Moreover, as it is not its purpose, DPU
still runs communications in the gradient computation stream, and is thus impacted both by the
communication overhead of scaling and hardware heterogeneity. Finally, in pipeline parallelism,
gradient delays also affect computation, and simple weight prediction methods have been proposed
to mitigate their effect (Chen et al., 2019; Yang et al., 2021). More elaborate predictions have been
proposed for SGD to further reduce the impact of the delay (Kosson et al., 2021; Yang et al., 2020).

Table 1: Characteristics and memory consumption of several methods. Ψ: number of parameters in
the model. N : number of workers. K: memory multiplier of the optimizer (Adam or AdamW). For
SlowMo (Wang et al., 2020b) and CO2 (Sun et al., 2024), no mention of mixed precision training is
made. We assume they use it and that their additional terms are stored in half precision. While no
additional momentum is required for our method, we still need a communication buffer.

Method No comm. Handle hetero. Sharded No add. Memory consumed K = 12, N = 64,
overhead hardware Opt. momentum per worker Ψ = 7.5B

Baseline DDP (Li et al., 2020) ✗ ✗ ✗ ✓ (2+2+K)×Ψ 120 GB
ZeRO-1 (Rajbhandari et al., 2020a) ✗ ✗ ✓ ✓ (2+2+K

N )×Ψ 31 GB
SlowMo (Wang et al., 2020b) ∼ ✗ ✗ ✗ (2+2+2×2+K)×Ψ 150 GB
CO2 (Sun et al., 2024) ✓ ✗ ✗ ✗ (2+2+4×2+K)×Ψ 180 GB
ACCO (Ours) ✓ ✓ ✓ ✓ (2+2+2+K

N )×Ψ 46 GB

3 METHOD

In this section, we describe our method, including the approach to compensate for the delayed
update. The algorithm will be described from the point of view of each worker i ∈ {1, ..., N}.

Delayed Parameter Update. First, we explain the presence of a delay by re-purposing the ”De-
layed Parameter Update” (DPU) (Ren et al., 2021) to fit in our framework. Contrary to the original
DPU, we run gradient communications in the same stream as the optimizer step, in parallel to the
gradient computations. To prevent GPU i from being idle at step t, gradients are accumulated over
as many mini-batches N (t)

i ≥ 1 as necessary until the communication process finishes, which varies
depending on the speed of the worker as shown in Fig. 1. Each worker i starts from the same neural
network parameters θ(0) ∈ Rd. F : Rd → R is the differentiable loss computed by our work-
ers. A random mini-batch (modeled through the random variable ξ ∈ Ξ following some law P) is
drawn from the local data shard Di to initialize the stochastic gradient gi(−1) = ∇F (θ(0), ξ

(0)
i ) and

N
(−1)
i = 1. Then, for t ∈ [[0, T ]] we repeat the following, the left and right sides running in parallel:

g
(t)
i =

N
(t)
i∑

k=1

∇F (θ(t), ξ
(t)
i,k) , θ(t+1) = Opt

(
θ(t),

∑
i g

(t−1)
i∑

i Ni
(t−1)

)
, (DPU)
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where Opt is the optimizer of our choice (e.g. Adam or AdamW for LLM training). Note that the
right side combines both the gradient averaging (communications) and the optimizer step, which
runs in parallel to the gradient computations to the left. Remark that, except at the first step t = 0,
the gradients used by Opt are computed on parameters θ(t−1) which differ from θ(t), the ones we
apply them to. This is inherently due to the parallel nature of our execution, and what we denote by
”delayed update”. We show in Sec. 5.2 that this has drastic impacts on the convergence in practice.

Toward ACCO. To counter this, we estimate what would be the parameters θ(t+2) in addition to
computing θ(t+1). This allows the gradients at the next round to be computed on these estimates
rather than the parameters of the last step. We denote this rule by ”Weight Prediction” (WP). We
initialize a common θ(0), g̃i(0) = ∇F (θ(0), ξ

(0)
i ), N (0)

i = 1 and θ̃(1) = Est(•), where Est is our
estimation function that could take any argument at this point. This leads to the following:

g̃
(t+1)
i =

N
(t+1)
i∑
k=1

∇F (θ̃(t+1), ξ
(t+1)
i,k ) , θ(t+1) = Opt

(
θ(t),

∑
i g̃

(t)
i∑

i Ni
(t)

)
, θ̃(t+2) = Est(•) . (WP)

Thanks to Est, the optimizer now applies to the parameters θ(t) the gradients that were computed
on an estimated version θ̃(t), compensating the one-step delay. Akin to the idea of Chen et al.
(2019) to counter delays in pipelining, a simple estimation function could be to re-use the gradients

just received and apply a second optimizer step, i.e. using θ̃(t+2) = Opt

(
θ(t+1),

∑
i g̃

(t)
i∑

i Ni
(t)

)
. We

investigate this method (denoted by ACCO-wp) in Sec. 5.2, but found that its training dynamic
differs from the baseline, whereas ACCO, the algorithm we present next, perfectly matches it. The

G
PU

comm./opt.
stream

 acc.
stream

Init. Step 1 Step 2 Step 3 Step 4

Figure 2: ACCO’s two-stage mechanism 1-2 to compensate the delayed updates.

crux of ACCO is to split the computation of the mini-batch gradients into two successive stages,
where the first half of the mini-batch is used to estimate θ̃(t+1) while θ(t+1) is computed using
the full mini-batch. This is motivated by the fact that gradient accumulation is often used to reach
the extremely large batch sizes required to train LLMs (Zhao et al., 2023a), and if gradients are
computed sequentially on a worker, we can leverage this to produce our estimate. Thus, starting
with an initialized θ(0), g̃i(0) = ∇F (θ(0), ξ

(0)
i ) and N

(0)
i = 1, the two stages illustrated in Fig. 2

are (left and right side running in parallel):

g
(t)
i =

N
(t)
i∑

k=1

∇F (θ(t), ξ
(t)
i,k) , θ̃(t+1) = Opt

(
θ(t),

∑
i g̃

(t)
i∑

i Ñi
(t)

)
, (1)

g̃i
(t+1)=

Ñi
(t)∑

k=1

∇F (θ̃(t+1), ξ̃
(t+1)
i,k ) , θ(t+1) = Opt

(
θ(t),

∑
i g

(t)
i + g̃

(t)
i∑

i N
(t)
i + Ñi

(t)

)
. (2)

We describe the different components of our two-stage mechanism as follows:

1 The gradient computation stream uses the second half of the mini-batch to compute the
gradients g

(t)
i with respect to parameters θ(t) while the communication stream estimates

what would be the next steps parameters θ̃(t+1) using the estimated gradients g̃(t)i .
2 The computation stream uses the first half of the mini-batch to estimate what would be the

gradients g̃(t+1)
i of the next parameters θ(t+1) using estimated parameters θ̃(t+1) while the

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

communication stream computes θ(t+1) using the full mini-batch. Note that it starts from
the same version of the parameters θ(t) as in step 1. The first half g̃(t)i was estimated at step
2 of the last round, while the second half g(t)i was just computed in 1.

Theoretical discussion. We can view DPU (with SGD as the optimizer Opt) as a parallel imple-
mentation of a Delayed-SGD (D-SGD) with a one-step delay. This algorithm with a delay of one has
been studied in the convex setting, and is shown to converge at the same rate as SGD for quadratics
(Arjevani et al., 2020) as well as for strongly and quasi convex functions (Stich & Karimireddy,
2020a). Thus, one could hope that it would generalize to adaptive optimizers and non-convex func-
tions such as the ones met when training DNNs. However in practice, when training LLMs with
AdamW, our experiments in Sec. 5.2 reveal that this one-step delay drastically hurts performances.
To remove the impact of staleness, ACCO avoids using delayed gradients. Indeed, with SGD as
optimizer and learning rate γ > 0, the parameter update of equation 2 reads

θ(t+1) = θ(t) − γ

N∑
i=1

∑N
(t)
i

k=1 ∇F (θ(t), ξ
(t)
i,k) +

∑Ñ
(t)
i

k=1 ∇F (θ̃(t), ξ̃
(t)
i,k)

N
(t)
i + Ñi

(t)
.

This can be interpreted as a form of plain SGD with no delay, and a potentially variable batch-size
(modeled through the N

(t)
i , Ñ

(t)
i ) split in two parts. While ACCO uses a mix of stochastic gradients

∇F (θ(t)), ∇F (θ̃(t)), they are not delayed compared to the parameters updated θ(t) (see Fig. 2 for
details). We verify experimentally this interpretation in Sec. 5 by showing that training LLMs with
ACCO and standard distributed AdamW with the same batch-size leads to the same losses.

4 EMPIRICAL MOTIVATION AND CLUSTER SETTING

8 16 32 64 12824
# workers
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t (
s)  comp./comm.

 computation
All-Reduce 

Figure 3: Time (per worker) spent comput-
ing and averaging gradients of a Llama-2 7B
model for different numbers of GPUs.

We empirically motivate the need for methods miti-
gating communication overhead in Distributed Data
Parallel (DDP) (Li et al., 2020). Our goal is to illus-
trate that the time spent communicating gradients
can quickly trump the one used for computing them
when using DDP to train LLMs. For that, we mea-
sure the time necessary to perform a forward and
backward pass on a Llama-2 model (Touvron et al.,
2023) with 7B parameters hosted on a single GPU,
using a batch size maxing out its memory. We com-
pare this to the time necessary to compute an All-
Reduce on those gradients with the NCCL backend,
varying the number of distributed workers. On all
the following, we experiment on our local cluster of
NVIDIA A100-80GB GPUs with 8 GPUs per node
and an Omni-PAth interconnection network at 100
Gb/s for inter-node connections, intra-node connections being done with NVLink 300 GB/s. Each
distributed worker is hosted on a single GPU. We observe in Fig. 3 that when we communicate out-
side of a GPU node in our cluster, the time needed to average the gradients across workers can take
more than four times the one spent on the whole forward and backward step. As DDP only partially
hides communications during the backward (Li et al., 2020), this means that our GPUs remain idle
the majority of the time when we use more than 24 distributed workers, motivating the need for
methods leveraging this time to compute instead.

5 EXPERIMENTS

In this section, we lay down our experiments. First in Sec. 5.1, we detail the common setup for all
our experiments. Second, in Sec. 5.2, we illustrate the failings of DPU and ACCO-wp that we hinted
at in Sec. 3, which led us to crafting ACCO. For this first exploration, we focus on small language
models and datasets, using TinyStories (Eldan & Li, 2023) as our test-bed. Then in Sec. 5.3,
we verify that ACCO allows to efficiently train LLMs at scale by considering a 125M parameters
GPT-Neo architecture (Black et al., 2021) and the OpenWebText dataset (Gokaslan et al., 2019).
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Figure 4: Memory requirements of ACCO vs DDP
and ZeRO-1, see Tab.1 for quantitative details.

Finally in Sec. 5.4, we consider even larger
models by using ACCO for an instruction fine-
tuning task with a 2.7B parameters GPT-Neo,
which accentuates the effects of the inter-node
communication bottlenecks and highlights all
the more the benefits of our method. They
are further displayed in Sec. 5.5 where we
compare between ACCO and DDP on hetero-
geneous hardware. Our method allows faster
GPUs to accumulate while they wait for the
slowest worker instead of remaining idle as in
DDP, thus allowing us to compute gradients for
large batch sizes faster than the baseline, result-
ing in quicker convergence in wall-clock time.

5.1 EXPERIMENTAL SETUP

All of our experiments are performed on the GPU cluster described in Sec. 4. A detailed pseudo-
code for ACCO can be found in Appendix B.2. Our code is in Pytorch (Paszke et al., 2019), and
we verified that our implementation produces two different CUDA streams running in parallel for
the computations and communications using NVIDIA’s Nsight System to profile it, as shown in Fig.
13. We trained all our models with AdamW (Loshchilov & Hutter, 2019), using mixed precision:
our model parameters, gradient accumulation buffer, and communication buffers are in bfloat16
(Kalamkar et al., 2019) while our sharded optimizer states are in single precision, as shown in Fig.
4. As nowadays all distributed frameworks training LLMs at scale use a form of partitioning due to
GPU memory constraints (Rasley et al., 2020; Andonian et al., 2023), our main baseline is Pytorch’s
Distributed Data Parallel (DDP) (Li et al., 2020) with ZeRO-1 (Rajbhandari et al., 2020a) to shard
the optimizer’s state. As justified in Tab. 1, local optimization methods cannot be realistically
considered for memory reasons. To compare in good faith DPU to ACCO in terms of wall-clock
time, we also implemented our own version of DPU, as the available implementation (Ren et al.,
2022) solves a different problem than ours. The original algorithm does not run parallel computation
and communications as it is designed to host the optimizer on the CPU, and is slower than ZeRO
due to recurrent memory transfers between CPU and GPU (Ren et al., 2021).

5.2 CRAFTING ACCO ON TINYSTORIES

Here, we experiment with small language models on the TinyStories dataset (Eldan & Li, 2023),
following the configuration and training hyper-parameters of their paper (Eldan & Li, 2023) to the
best of our abilities. Hence, we use a 36M parameters GPT-Neo based (Black et al., 2021) decoder-
only transformer architecture. To match the 10k vocabulary they used, we trained our own BPE
tokenizer on the TinyStories dataset. For our experiments, we used 8 workers on a single node.
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(a) Training with the specified amount in (Eldan &
Li, 2023).
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(b) Training for twice the specified amount.

Figure 5: Impact of the delayed update and the amount of warmup steps on the training
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Impact of delayed updates. First, we investigate the impact of using delayed updates, re-
purposing DPU (Ren et al., 2021) as described in Sec. 3. We run three variants of this algorithm:
(1) with no warmup, (2) with 40 warmup steps of non-delayed optimization step before switching
to DPU (recommended recipe in (Ren et al., 2021)), and (3) with 500 steps of warmup. We report
in Fig. 5 our training losses on 8 distributed workers averaged over 3 runs. We remark that using
delayed updates greatly hurts convergence, especially when no or too few warmup steps are per-
formed. Surprisingly, the number of warmup steps given in (Ren et al., 2021) does not work here,
hinting that it is a sensitive hyper-parameter to tune for each use-case. If we train for twice as long
than specified in Eldan & Li (2023), then the DPU training curve approaches the baseline one, with-
out totally catching it. Contrary to this, the training curve of our algorithm ACCO perfectly matches
DDP’s one from the beginning.
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Figure 6: Comparison of ACCO with its
Weight Prediction version on TinyStories.

A simple approach to compensate delays. To
mitigate the detrimental impact of using delayed
updates, we test a first approach to mitigate it:
ACCO-wp, the Weight Prediction method described
in Sec. 3. This method applies two consecutive
optimizer steps, re-using the same mini-batch of
gradients twice. The first step produces the usual
updated parameters, while the second predicts the
parameters of the next step so that gradients can be
computed on this estimate rather than on a stale ver-
sion of the model. In Fig. 6 we compare the training
curves of this delay-compensation method to ours.
We remark that, while ACCO perfectly matches the
DDP baseline at all times, ACCO-wp displays worse
behavior, especially at the beginning of the training.
Thus, we dismiss this method and keep ours for the remaining of the experiments.

5.3 PASSING THE SCALING TEST: TRAINING GPT-NEO ON OPENWEBTEXT

Table 2: Perplexity of our trained LLMs
Method LAMBADA (ppl ↓) OpenWebText (ppl ↓)
ACCO 1x8 47.1 24.2
DDP 1x8 47.5 24.3

ACCO 4x8 45.5 22.5
DDP 4x8 44.1 21.7

To assess how ACCO scales with larger mod-
els and more data, we pre-trained a model
equivalent to GPT-2 (Radford et al., 2019) with
both ACCO and DDP with a ZeRO optimizer.
Specifically, we used the GPT-Neo architecture
(Black et al., 2021) with 125 million parameters
and the OpenWebText dataset (Gokaslan et al.,
2019), which contains 40 GB of text. We used the GPT-Neo tokenizer, pre-trained on the Pile
dataset (Gao et al., 2020). The models were trained on sequences of 1024 tokens, with documents
concatenated using end-of-sequence tokens. To assess the impact of using different hardware, the
experiment was repeated on 2 different clusters. The first was conducted on 8 H100-PCIe 80GB on
a single node. The second was on 32 A100-80G GPU distributed on 4 nodes. We maxed out the
memory of our GPUs with a local mini-batch size of 24. To reach a sufficiently large overall batch
size, we used 1 step of gradient accumulation for DDP, and none for ACCO as our method naturally
accumulates over 1 step, resulting for the first and second experiments in respectively 400K and
1.5M tokens per effective batch for both ACCO and DDP. In Tab. 3, we report additional experimen-
tal details, and notice that training with ACCO allows for a 25% speedup on this pre-training task,
which is additionally illustrated in Fig. 7. We also report that our implementation of ACCO adap-
tively scheduled 315 supplementary accumulation steps over the whole training to prevent GPUs
from idling while waiting for communications. Further details and results for the H100 experiment
can be found in Appendix A. Tab. 2 reports the perplexity of trained language models with both
methods. We evaluate the perplexity of language models on LAMBADA (Paperno et al., 2016) and
a test split of OpenWebText, and report similar results for both methods.
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Figure 7: Training curves for ACCO and DDP with 32 workers trained for 50B tokens.

5.4 ADVANTAGES OF USING ACCO FOR INSTRUCTION FINE-TUNING

In previous sections, we compared ACCO against DDP with ZeRO in the pre-training stage. To
further validate our algorithm, we consider the GPT-Neo 2.7B model (Black et al., 2021) pre-trained
on the Pile dataset (Gao et al., 2020) and finetuned it on the Alpaca dataset (Taori et al., 2023)
containing 52k pairs of instruction/answer. We fine-tuned the model using two configurations: 8
A100-80G on a single node, and 8 A100-80G distributed equally across 2 nodes. Samples are
padded to match the longest sequence in the mini-batch. We fixed the mini-batch size at 4, leading
to a total batch size of 128 for all methods. For DDP and DPU, we used a gradient accumulation of
4, while for ACCO , a gradient accumulation of 2 to account for the ACCO accumulation described
in Sec. 1. The learning rate was set to 2×10−5 for all methods with a warmup of 50 steps, for DPU.
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Figure 8: Validation curve with 8 workers on 1 node (left), and 4 workers/node on 2 nodes (right).

In this setting, padding to the longest sequence in the mini-batch induces more variability in the
number of tokens per mini-batch. This results in more variability in the computational load for each
worker, leading to increased wait times for synchronization. We observe in Fig. 8 that ACCO hits
a low validation loss faster than DDP on both settings. Note that the difference between ACCO and
DDP is accentuated when workers are distributed on multiple nodes, leading to a 87% speedup for
ACCO (see Tab. 3) and highlighting the impact of communication bottlenecks on standard methods.

Table 3: Pre-training and finetuning time speedup with ACCO against DDP on various setups.
Stage Model GPUs #tokens DDP w/ ZeRO-1 ACCO (∆T )

Pre-training GPT-Neo-125M 1x8 6B 4h41min 4h25min (−5.69%)
4x8 50B 14h41min 10h55min (−25.65%)

Finetuning GPT-Neo-2.7B 1x8 80M 43min 25min (−41.86%)
2x4 80M 3h46min 29min (−87.17%)
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5.5 EXPERIMENT USING HETEROGENEOUS DEVICES

To witness the impact of using heterogeneous devices, we run ACCO and compare it to DDP in a four
workers setting, with one of the GPU four times slower than the other three. The training setting is
the same as in Sec. 5.2. As we experiment on a A100 GPUs cluster, we simulate the heterogeneity
of the hardware using the time.sleep() python command. First, we measure the time that
a standard forward-backward step takes, and make one of the four GPUs idle for three times this
amount after each forward-backward pass. In this context, DDP is only as fast as the slowest worker:
3 out of the 4 workers are idle 3/4 of the time. With ACCO, the other workers accumulate during
the time they are waiting for the slow one to finish. Thus, ACCO allows to compute gradients for
large batch sizes faster than standard baselines, resulting in faster convergence in terms of wall-clock
time, as displayed in Fig. 9.
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Figure 9: Training curves with 3 normal workers and 1 slow worker (4× slower).

6 LIMITATIONS

Experiments mainly on one cluster environment. Due to the lack of variety in the compute
environments we have access to, the majority of our experiments were performed on a single cluster,
described in Sec. 4. This is a communication-constrained setting, as our hardware is not the most
cutting-edge in that regard as discussed in Sec. 4. However, to mitigate this one-sidedness, we also
run a small pre-training study on one of the fastest hardware available today, and report in Tab. 3
that even in that case, ACCO leads to a 5% time gain.

Communication cost only hidden, not reduced. While local optimization methods tackle the
communication overhead problem with scarce communications, here we only hide them. Thus, our
method does not lead to energy savings, nor question the cost of highly synchronized infrastructure.
However, ACCO naturally maximizes the hardware throughput, allowing to reduce their use time.

Further memory savings avenue not explored. Due to the parallel nature of ACCO, removing the
reliance on communication and gradient buffers seems hardly possible, questioning the feasibility
of further memory savings if all executions are kept on the GPU. But, akin to ZeRO-Offload (Ren
et al., 2021), the communication and optimizer stream could entirely be run on CPU, which would
allow significant memory gains. We did not experiment with this idea, and let it for future work.

CONCLUSION

We propose ACCO, a novel algorithm that jointly addresses the memory and communication chal-
lenges inherent in training LLMs on distributed systems. By allowing for parallel computation and
communication of gradients while partitioning the optimizer states, ACCO effectively reduces com-
munication overhead in a memory-efficient fashion. We introduce a novel two-stage mechanism to
compensate for the delayed update inherent to this parallel setting, which ensures consistent conver-
gence dynamics with the standard optimization algorithm for large-scale distributed LLM training
without the need for warmup steps. We empirically confirm the benefits of our methods over sev-
eral pre-training and finetuning tasks, reporting drastically reduced training times compared to our
baseline, especially in multi-node settings or with heterogeneous devices.
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local gradient steps provably lead to communication acceleration! finally! arXiv preprint
arXiv:2202.09357, 2022b.

Ioannis Mitliagkas, Ce Zhang, Stefan Hadjis, and Christopher Ré. Asynchrony begets momen-
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A EXPERIMENTAL DETAILS AND FURTHER RESULTS

A.1 PRE-TRAINING ON TINYSTORIES

For experiments in Sec. 5.2, we used the configuration available on the Huggingface Hub 1. We
trained our own 10k vocabulary tokenizer on the dataset. We also report in Fig. 10 the results of our
study on the impact of halving the batch size for DPU by not performing any gradient accumulation
(i.e., performing an optimizer’s step at each communication).
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Figure 10: Comparison between running DPU on 8 GPUs with 2 steps of gradient accumulation on
each (to match the standard batch-size) and DPU with only 1 gradient accumulation step. Doing so
allows to double the number of optimizer’s step per minibatch, but divides the effective batch size
by 2. This leads to faster convergence early in the training, but worse training loss in the end.

A.2 PRE-TRAINING ON OPENWEBTEXT

For all pre-training experiments on OpenWebText, the configuration used to instantiate the GPTNeo
125M is available on the Huggingface Hub2. We only changed the ”max position embeddings”
parameter from 2048 to 1024. More details are displayed in Tab. 4. We used the OpenWebText
dataset available on Huggingface3. We also report in Fig. 11 further results for the pre-training on
H100 GPUs.
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Figure 11: Training loss during training on OpenWebText with 8 H100 GPUs and 6B tokens.

1Tiny Stories Available at: https://huggingface.co/datasets/roneneldan/
TinyStories

2GPT-neo 125M Configuration Available at: https://huggingface.co/EleutherAI/
gpt-neo-125m/blob/main/config.json

3OpenWebText Dataset Available at: https://huggingface.co/datasets/Skylion007/
openwebtext
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Table 4: Training hyperparameters for ACCO and DDP configurations.
Hyperparameter 8 H100 32 A100
mini-batch size 24 24
n grad accumulation ACCO: -DDP: 1 ACCO: -DDP: 1
sequence len 1024 1024
#tokens batch 400K 1.5M
optimizer AdamW AdamW
learning rate 6e-4 6e-4
weight decay 0.1 0.1
adam beta1 0.9 0.9
adam beta2 0.95 0.95
nb steps tot 50000 50000
scheduler cosine cosine
n warmup steps 0 0

A.3 INSTRUCTION FINE-TUNING

For all fine-tuning experiments, we used the pre-trained GPT-neo 2.7B available on the Huggingface
Hub4 and the associated tokenizer. We used the Alpaca dataset available on Huggingface5. More
details are displayed in Tab. 5.We also report in Fig. 12 further results on the experiment described
in Sec. 5.4.
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Figure 12: Validation curve with 8 workers on a single node.

Table 5: Finetuning hyperparameters for ACCO, DDP and DPU configurations.
Hyperparameter ACCO DDP DPU
mini-batch size 4 4 4
n grad accumulation 2 4 4
total batch size 128 128 128
optimizer AdamW AdamW AdamW
learning rate 2e-5 2e-5 2e-5
weight decay 0.0 0.0 0.0
adam beta1 0.9 0.9 0.9
adam beta2 0.95 0.95 0.95
nb steps tot 50000 50000 50000
scheduler cosine cosine cosine
n warmup steps 0 0 50

4GPT-neo 2.7B Available at: https://huggingface.co/EleutherAI/gpt-neo-2.7B
5Alpaca Dataset Available at: https://huggingface.co/datasets/tatsu-lab/alpaca
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B IMPLEMENTATION DETAILS

B.1 PROFILING RESULTS

 accumulation stream∇

Cuda kernels on  
accumulation stream

∇

Communication 
streams

 accumulation stream∇

Cuda kernels on  
accumulation stream

∇

Communication 
streams

Clone optimizer 
state to  buffer

Load the grads from the 
buffer to optimizer

All reduce the 
grad counter

Reduce scatter the 
accumulated gradients 
on the buffer

Divide the gradients by 
the number of gradient 
steps

All gather the 
params on the 
buffer

Clone buffer to 
optimizer state

Copy the params to 
buffer

Figure 13: Nsight system profile of our implementation of ACCO: our two steams do run in parallel.
In this Figure, the computation take more time than the communication because we only profiled
small scale experiments with 8 workers, and small number of parameters (36M as we profiled on our
TinyStories Eldan & Li (2023) setting). This changes when using larger models and more workers,
as seen in 4.

B.2 ALGORITHM PSEUDO-CODE
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Algorithm 1 Training with ACCO in parallel for a worker i

1: Input: Model with differentiable loss F , number of models N , initial parameters θ(0), training
steps T , dataset shards Di.

2: Initialize: gradients gi(−1) = ∇F (θ(0), ξ
(0)
i ) and number of gradients N (−1)

i = 1
3: # Computation CUDA stream
4: while t < T do
5: Stage 1.
6: while not Ready for Stage 2 do
7: ξ

(t)
i ← Di

8: g
(t)
i ← g

(t)
i +∇F (θ(t), ξ

(t)
i )

9: N
(t)
i ← N

(t)
i + 1

10: θ̃(t+1) ← Bufferi
11: Bufferi ← (N

(t)
i , g

(t)
i )

12: Stage 2.
13: while not Ready for Stage 1 do
14: ξ

(t)
i ← Di

15: g̃
(t)
i ← g̃

(t)
i +∇F (θ̃(t+1), ξ

(t)
i )

16: Ñ
(t)
i ← Ñ

(t)
i + 1

17: t← t+ 1
18: θ(t+1) ← Bufferi
19: Bufferi ← (Ñ

(t)
i , g̃

(t)
i )

20:
21: # Communication CUDA stream
22: while True do
23: Stage 1.
24: (Ñ

(t)
i , g̃

(t)
i )← Bufferi

25:
∑

i Ñ
(t)
i ← All Reduce(Ñ (t)

i )

26: Shardi

(∑
i g

(t)
i

)
← Reduce Scatter(g̃(t)i )

27: Shardi

(
θ̃(t+1)

)
← ShardedOpt

(
Shardi

(
θ(t)
)
,Shardi

( ∑
i g̃

(t)
i∑

i Ñi
(t)

))
28: Bufferi ← All Gather(Shardi

(
θ̃(t+1)

)
)

29: N
(t)
i ← 0

30: Ready for Stage 2← True
31: Ready for Stage 1← False
32: Stage 2.
33: (N

(t)
i , g

(t)
i )← Bufferi

34:
∑

i N
(t)
i + Ñ

(t)
i ← All Reduce(N (t)

i +
∑

i Ñ
(t)
i )

35: Shardi

(∑
i g

(t)
i + g̃

(t)
i

)
← Reduce Scatter(g(t)i +

∑
i g̃

(t)
i )

36: Shardi

(
θ(t+1)

)
← ShardedOpt

(
Shardi

(
θ(t)
)
,Shardi

( ∑
i g

(t)
i +g̃

(t)
i∑

i N
(t)
i +Ñi

(t)

))
37: Bufferi ← All Gather(Shardi

(
θ(t+1)

)
)

38: Ñ
(t)
i ← 0

39: Ready for Stage 1← True
40: Ready for Stage 2← False
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