
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ACCO: ACCUMULATE WHILE YOU COMMUNICATE,
HIDING COMMUNICATIONS IN DISTRIBUTED LLM
TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Training Large Language Models (LLMs) relies heavily on distributed implemen-
tations, employing multiple GPUs to compute stochastic gradients on model repli-
cas in parallel. However, synchronizing gradients in data parallel settings induces
a communication overhead increasing with the number of distributed workers,
impeding the efficiency gains of parallelization. To address this challenge, lo-
cal optimization algorithms such as the ones used in Federated Learning have
emerged. While effective in minimizing communication overhead, they incur
significant memory costs, hindering scalability: in addition to extra momentum
variables, optimizer’s states cannot be partitioned among workers as communi-
cations are only allowed between rounds of local optimization steps. To conceal
communication costs, we propose instead to synchronize delayed gradients while
computing new ones between each model’s update and introduce ACcumulate
while COmmunicate (ACCO), a memory-efficient optimization algorithm tailored
for distributed training of LLMs. Accumulating local gradients on the workers un-
til the communication finishes naturally reduces the idle time of GPUs and even
allows the use of heterogeneous hardware. However, we show that the one-step
delay inherent in parallel execution of gradient computations and communications
has drastic impacts on Transformers’ convergence. To compensate this delay we
introduce a novel technique which leads to training dynamics aligned with stan-
dard distributed optimization. Compared to ZeRO, our implementation and ex-
periments on several LLMs pre-training and fine-tuning tasks demonstrates that
ACCO reduces the learning time up to 87% and successfully allows both sharding
optimizer states across workers and the use of heterogeneous hardware.

1 INTRODUCTION

Training Large Language Models (LLMs) with billions of parameters requires thousands of GPUs
running in parallel (Touvron et al., 2023). This relies on a distributed version of the backpropagation
algorithm (Li et al., 2020) with a gradient-based optimizer such as Adam (Kingma & Ba, 2015) or
AdamW (Loshchilov & Hutter, 2019). However at this scale, the communication overhead neces-
sary to synchronize gradients between workers in the data parallel setting can dominate the time to
compute the model updates (Ortiz et al., 2021), and it has been estimated that this will remain the
case even if models and hardware evolve (Pati et al., 2023), hindering the benefits of parallelization.
Moreover, as all workers are synchronized through gradient communication, the training only pro-
ceeds at the speed of the slowest machine (straggler) (Dutta et al., 2021; Mishchenko et al., 2022a).

To alleviate this issue, distributed optimization algorithms reducing the amount of communication
between workers have been developed, such as local optimization methods (Stich, 2019; Wang et al.,
2020b) which are especially used in Federated Learning (McMahan et al., 2017; Konecný et al.,
2016). These methods authorize performing multiple optimization steps locally before communi-
cating and synchronizing the distributed workers, reducing the communication overhead. As com-
munication rounds can last longer than a local gradient computation (see Fig. 3), they also naturally
allow to hide the cost of communications in the training time by running them in parallel to several
consecutive local computation steps (Wang et al., 2020a; Shen et al., 2019; Zhang et al., 2015; Sun
et al., 2024). Moreover, on heterogeneous hardware, the number of computation steps can be tuned

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

locally to the worker’s speed so that slow ones compute less than fast ones, maxing out workers’
usage (Diskin et al., 2021; Maranjyan et al., 2022).

However, this comes at a drastic memory cost. Indeed, in the standard data parallel setting, most of
the memory consumption of model states comes from storing the optimizer’s parameters, especially
when training with mixed precision. To avoid the replication of redundant optimizer states across
the workers, methods such as ZeRO (Rajbhandari et al., 2020a) shard them. Due to limited GPU
memory and large models’ size, all frameworks used in practice nowadays to train LLMs at scale use
a form of partitioning method (Rasley et al., 2020; Andonian et al., 2023). However these sharding
methods rely heavily on the fact that each mini-batch gradient is averaged over all the workers
during the backward step. This is no longer the case with local optimization algorithms: if it were,
then an averaging would happen at each step, defeating the purpose of the local method. This forces
each worker to host a full copy of the optimizer’s parameters, drastically increasing the memory
requirements. Moreover, to prevent local steps from reducing the accuracy of the resulting model,
local methods often introduce an outer optimizer step at each communication, which comes with
additional momentum terms (Wang et al., 2020b; Sun et al., 2024). Hence, to store these variables,
the latest state-of-the-art method CO2 (Sun et al., 2024) needs a memory overhead of 4 model copies
compared to a standard distributed Adam, which itself uses an order of magnitude more memory
than its sharded version (Rajbhandari et al., 2020a). This raises the following question:

Is it possible to design a memory-efficient optimization algorithm that hides the communication
cost of distributed training of LLMs and accommodates heterogeneous hardware?

To hide the communication cost while being memory-efficient, making sharded optimizers compat-
ible with the idea of overlapping gradient computations and communications seems natural. The
concept of running two parallel processes is already present in the sharded optimization literature,
but for a different purpose. ZeRO-Offload (Ren et al., 2021) introduces the ”Delayed Parameter
Update” (DPU) which allows running the optimizer on the CPU while computing and averaging
gradients on the GPU. By running these processes in parallel, the gradients computed during one
step are on a version of the model parameters that are no longer up to date, as they have been up-
dated by the optimizer concurrently. In practice, this one-step staleness hurts convergence, and the
method can only be used after sufficiently many warmup steps of non-delayed optimization (Ren
et al., 2021).

Contributions. We introduce ACcumulate while COmmunicate (ACCO), a memory-efficient op-
timization algorithm that (1) allows to shard the optimizer parameters across workers, (2) over-
laps gradients computations and communications, hiding the communication overhead while (3)
maximizing GPU usage, even with heterogeneous hardware. (4) We introduce a novel method to
compensate for the one-step delay induced by parallel execution of the gradient computations and
communications, removing the need for warmup steps and (5) perfectly matching the training dy-
namics of standard distributed optimization. Our experiments across multiple LLMs training and
fine-tuning tasks consistently show that ACCO allows for significant time gains. (6) We will release
an open-source parallel implementation of ACCO with the final version of the paper.

↑

Reduce-
Scatter

Time

G
PU

 s
lo

w
G

PU
 fa

st

All-Gather

↓

↑↓
 acc.

stream

comm.
stream

comm.
stream

 acc.
stream

Compute estimates Compute

Sharded
Opt. step

Reduce-
Scatter

Reduce-
Scatter

Sharded
Opt. step

All-Gather Reduce-
Scatter

Sharded
Opt. step

Sharded
Opt. step

All-Gather

All-Gather

↑↓

↑↓ . . .

↑ ↓Comm. buffer → params buffer → comm. buffer

Figure 1: ACCO with a slow and a fast worker running in parallel, showing no idle time on both
and hiding communications. The delayed update is compensated by splitting the mini-batch in two,
leading to two steps in our timeline. The first uses half of the mini-batch to estimate ”next step”
parameters, and the second uses the full mini-batch to update them.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Local optimization methods. Local optimization methods perform several local model updates
between periodic averaging. With the SGD optimizer, these algorithms predate the deep learning
era (Zinkevich et al., 2010; McDonald et al., 2010), and their convergence properties are still in-
vestigated nowadays (Zhou & Cong, 2018; Stich, 2019; Woodworth et al., 2020; Mishchenko et al.,
2022b). Due to their practical and efficient communication scheme, they have since been used for the
Distributed Training of Deep Neural Networks (DNNs) with methods such as EASGD (Zhang et al.,
2015), SlowMo (Wang et al., 2020b) or Post-local SGD (Lin et al., 2020; Ortiz et al., 2021), and
are ubiquitous in Federated Learning (McMahan et al., 2017; Konecný et al., 2016; Li et al., 2019),
broadening the choice of optimizers beyond SGD (Reddi et al., 2021; Karimireddy et al., 2020; Chen
et al., 2020). By overlapping communications over consecutive steps of local computations, they al-
low to hide communication bottlenecks, resulting in algorithms such as Overlap local-SGD (Wang
et al., 2020a), COCO-SGD (Shen et al., 2019) or CO2 (Sun et al., 2024). Moreover, with heteroge-
neous hardware, they can adapt their local computation rate to their hardware capacity (Diskin et al.,
2021; Maranjyan et al., 2022). However this comes at the price of additional memory requirements:
due to their local nature, not only do these methods prevent the use of sharded optimizers such as
ZeRO (Rajbhandari et al., 2020a), but they also introduce additional control variables (Wang et al.,
2020b; Mishchenko et al., 2022b; Sun et al., 2024), hindering their scalability as shown in Tab. 1.
Moreover, catering for heterogeneous hardware is not straightforward, as using different numbers of
local updates leads to models shifting at different speeds, requiring extra care to counter this effect
(Maranjyan et al., 2022). On the contrary, ACCO does not lead to such disparities: it just affects how
the required batch size is reached.

Overlap decentralized optimization. The communication complexity being a core concern in
decentralized optimization (Yuan et al., 2016; Gorbunov et al., 2022), strategies have been devised to
reduce communication overheads. For synchronous methods, works focus on designing algorithms
with accelerated communication rates, leveraging Chebyshev polynomials (Scaman et al., 2017;
Kovalev et al., 2020; Song et al., 2023). For the asynchronous ones, they rely on the properties of
the graph resistance (Even et al., 2021; Nabli & Oyallon, 2023; Nabli et al., 2023). Alternatively,
some approaches overlap gradient and communication steps, either explicitly (Assran et al., 2019),
or by modeling them with independent stochastic processes (Nabli & Oyallon, 2023; Nabli et al.,
2023). However, none of these works focus on memory efficiency. Thus, they introduce additional
variables and do not consider sharding the optimizer states. Moreover, they do not study optimizers
other than SGD, and extending their beneficial properties to adaptive methods commonly used for
DNN training such as Adam is still an ongoing research topic (Assran et al., 2020).

Memory-efficient distributed training of LLMs. The activation memory overhead required for
training Transformers (Vaswani et al., 2017) can be mitigated for an extra computational cost by
reconstructing the input with reversible architectures (Jacobsen et al., 2018; Mangalam et al., 2022),
or recomputing the activations via checkpointing (Chen et al., 2016). Efficient LLM training also
combines parallelism methods. Classical data parallelism (DP) (Dean et al., 2012) suffers both from
a high communication volume and a linear increase in memory due to the model replicas. ZeRO-
DP (Rajbhandari et al., 2020b) and Fully-Sharded DP (Zhao et al., 2023b) avoid this issue by shard-
ing the model states (i.e., the optimizer states, gradients, and parameters) between workers. This
comes at the cost of further increasing the synchronization between workers and the communication
volume, which can be mitigated by compression (Wang et al., 2023), memory trade-offs (Zhang
et al., 2022), or delayed gradients (Fournier & Oyallon, 2024). The memory can be even more re-
duced using expensive CPU-GPU communications to unload states on the CPU (Ren et al., 2021;
Rajbhandari et al., 2021). On the other hand, model parallelism partitions the DNN components for
parallelization, either with tensor parallelism (Shoeybi et al., 2019) by slicing a layer’s computation
on several workers, or with pipeline parallelism, which divides a model into sets of layers trained in
parallel on mini-batch slices. Popularized by Huang et al. (2019), this method leaves some workers
idling and an inefficient memory overhead (Fan et al., 2021). Allowing delay in the gradients avoids
worker idleness (Narayanan et al., 2019; Zhuang et al., 2020) but exacerbates the memory overhead,
which can be partially mitigated with gradient accumulation (Narayanan et al., 2021; Zhuang et al.,
2021) and activation checkpointing (Kim et al., 2020; Liu et al., 2023). Combining these frameworks
results in the effective 3D parallelism (Smith et al., 2022).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Delayed updates. Delays being intrinsic to distributed asynchronous optimization, there is a rich
literature studying them. In the case of distributed SGD in a parameter server setting, while early
analysis showed convergence rates depending on the maximal delay (Agarwal & Duchi, 2011; Stich
& Karimireddy, 2020b), recent lines of work improved these dependencies (Koloskova et al., 2024;
Wu et al., 2022; Feyzmahdavian & Johansson, 2023), proving that asynchronous SGD beats standard
mini-batch SGD even with unbounded delays (Mishchenko et al., 2022a). However, they only study
plain SGD, which is hardly used for DNN training. In this context, some work focused on the
interplay between SGD with momentum and delays (Mitliagkas et al., 2016; Zhang & Mitliagkas,
2019), while delay compensation schemes such as re-scaling updates (Zheng et al., 2017; Xie et al.,
2020) or buffering them (Nguyen et al., 2022) were proposed for Federated Learning. But still, they
only study versions of SGD and not adaptive methods commonly used for LLMs training such as
Adam (Kingma & Ba, 2015) or AdamW (Loshchilov & Hutter, 2019). Closer to our work, DPU
was introduced as a memory-efficient way to train LLMs by running the optimizer on the CPU
while gradients are computed on the GPU (Ren et al., 2021), inducing a one-step delay between
the gradients computed and the corresponding optimizer step. To mitigate it, they advise starting
training by warming up for several steps with a standard method with no delay. Perhaps surprisingly,
we find in our experiments that this one-step delay has a noticeable influence on the convergence
of LLMs training, even when using warmup steps. Contrary to DPU, we remove the need for
them, with no impact on the convergence of our training. Moreover, as it is not its purpose, DPU
still runs communications in the gradient computation stream, and is thus impacted both by the
communication overhead of scaling and hardware heterogeneity. Finally, in pipeline parallelism,
gradient delays also affect computation, and simple weight prediction methods have been proposed
to mitigate their effect (Chen et al., 2019; Yang et al., 2021). More elaborate predictions have been
proposed for SGD to further reduce the impact of the delay (Kosson et al., 2021; Yang et al., 2020).

Table 1: Characteristics and memory consumption of several methods. Ψ: number of parameters in
the model. N : number of workers. K: memory multiplier of the optimizer (Adam or AdamW). For
SlowMo (Wang et al., 2020b) and CO2 (Sun et al., 2024), no mention of mixed precision training is
made. We assume they use it and that their additional terms are stored in half precision. While no
additional momentum is required for our method, we still need a communication buffer.

Method No comm. Handle hetero. Sharded No add. Memory consumed K = 12, N = 64,
overhead hardware Opt. momentum per worker Ψ = 7.5B

Baseline DDP (Li et al., 2020) ✗ ✗ ✗ ✓ (2+2+K)×Ψ 120 GB
ZeRO-1 (Rajbhandari et al., 2020a) ✗ ✗ ✓ ✓ (2+2+K

N)×Ψ 31 GB
SlowMo (Wang et al., 2020b) ∼ ✗ ✗ ✗ (2+2+2×2+K)×Ψ 150 GB
CO2 (Sun et al., 2024) ✓ ✗ ✗ ✗ (2+2+4×2+K)×Ψ 180 GB
ACCO (Ours) ✓ ✓ ✓ ✓ (2+2+2+K

N)×Ψ 46 GB

3 METHOD

In this section, we describe our method, including the approach to compensate for the delayed
update. The algorithm will be described from the point of view of each worker i ∈ {1, ..., N}.

Delayed Parameter Update. First, we explain the presence of a delay by re-purposing the ”De-
layed Parameter Update” (DPU) (Ren et al., 2021) to fit in our framework. Contrary to the original
DPU, we run gradient communications in the same stream as the optimizer step, in parallel to the
gradient computations. To prevent GPU i from being idle at step t, gradients are accumulated over
as many mini-batches N (t)

i ≥ 1 as necessary until the communication process finishes, which varies
depending on the speed of the worker as shown in Fig. 1. Each worker i starts from the same neural
network parameters θ(0) ∈ Rd. F : Rd → R is the differentiable loss computed by our work-
ers. A random mini-batch (modeled through the random variable ξ ∈ Ξ following some law P) is
drawn from the local data shard Di to initialize the stochastic gradient gi(−1) = ∇F (θ(0), ξ

(0)
i) and

N
(−1)
i = 1. Then, for t ∈ [[0, T]] we repeat the following, the left and right sides running in parallel:

g
(t)
i =

N
(t)
i∑

k=1

∇F (θ(t), ξ
(t)
i,k) , θ(t+1) = Opt

(
θ(t),

∑
i g

(t−1)
i∑

i Ni
(t−1)

)
, (DPU)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where Opt is the optimizer of our choice (e.g. Adam or AdamW for LLM training). Note that the
right side combines both the gradient averaging (communications) and the optimizer step, which
runs in parallel to the gradient computations to the left. Remark that, except at the first step t = 0,
the gradients used by Opt are computed on parameters θ(t−1) which differ from θ(t), the ones we
apply them to. This is inherently due to the parallel nature of our execution, and what we denote by
”delayed update”. We show in Sec. 5.2 that this has drastic impacts on the convergence in practice.

Toward ACCO. To counter this, we estimate what would be the parameters θ(t+2) in addition to
computing θ(t+1). This allows the gradients at the next round to be computed on these estimates
rather than the parameters of the last step. We denote this rule by ”Weight Prediction” (WP). We
initialize a common θ(0), g̃i(0) = ∇F (θ(0), ξ

(0)
i), N (0)

i = 1 and θ̃(1) = Est(•), where Est is our
estimation function that could take any argument at this point. This leads to the following:

g̃
(t+1)
i =

N
(t+1)
i∑
k=1

∇F (θ̃(t+1), ξ
(t+1)
i,k) , θ(t+1) = Opt

(
θ(t),

∑
i g̃

(t)
i∑

i Ni
(t)

)
, θ̃(t+2) = Est(•) . (WP)

Thanks to Est, the optimizer now applies to the parameters θ(t) the gradients that were computed
on an estimated version θ̃(t), compensating the one-step delay. Akin to the idea of Chen et al.
(2019) to counter delays in pipelining, a simple estimation function could be to re-use the gradients

just received and apply a second optimizer step, i.e. using θ̃(t+2) = Opt

(
θ(t+1),

∑
i g̃

(t)
i∑

i Ni
(t)

)
. We

investigate this method (denoted by ACCO-wp) in Sec. 5.2, but found that its training dynamic
differs from the baseline, whereas ACCO, the algorithm we present next, perfectly matches it. The

G
PU

comm./opt.
stream

 acc.
stream

Init. Step 1 Step 2 Step 3 Step 4

Figure 2: ACCO’s two-stage mechanism 1-2 to compensate the delayed updates.

crux of ACCO is to split the computation of the mini-batch gradients into two successive stages,
where the first half of the mini-batch is used to estimate θ̃(t+1) while θ(t+1) is computed using
the full mini-batch. This is motivated by the fact that gradient accumulation is often used to reach
the extremely large batch sizes required to train LLMs (Zhao et al., 2023a), and if gradients are
computed sequentially on a worker, we can leverage this to produce our estimate. Thus, starting
with an initialized θ(0), g̃i(0) = ∇F (θ(0), ξ

(0)
i) and N

(0)
i = 1, the two stages illustrated in Fig. 2

are (left and right side running in parallel):

g
(t)
i =

N
(t)
i∑

k=1

∇F (θ(t), ξ
(t)
i,k) , θ̃(t+1) = Opt

(
θ(t),

∑
i g̃

(t)
i∑

i Ñi
(t)

)
, (1)

g̃i
(t+1)=

Ñi
(t)∑

k=1

∇F (θ̃(t+1), ξ̃
(t+1)
i,k) , θ(t+1) = Opt

(
θ(t),

∑
i g

(t)
i + g̃

(t)
i∑

i N
(t)
i + Ñi

(t)

)
. (2)

We describe the different components of our two-stage mechanism as follows:

1 The gradient computation stream uses the second half of the mini-batch to compute the
gradients g

(t)
i with respect to parameters θ(t) while the communication stream estimates

what would be the next steps parameters θ̃(t+1) using the estimated gradients g̃(t)i .
2 The computation stream uses the first half of the mini-batch to estimate what would be the

gradients g̃(t+1)
i of the next parameters θ(t+1) using estimated parameters θ̃(t+1) while the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

communication stream computes θ(t+1) using the full mini-batch. Note that it starts from
the same version of the parameters θ(t) as in step 1. The first half g̃(t)i was estimated at step
2 of the last round, while the second half g(t)i was just computed in 1.

Theoretical discussion. We can view DPU (with SGD as the optimizer Opt) as a parallel imple-
mentation of a Delayed-SGD (D-SGD) with a one-step delay. This algorithm with a delay of one has
been studied in the convex setting, and is shown to converge at the same rate as SGD for quadratics
(Arjevani et al., 2020) as well as for strongly and quasi convex functions (Stich & Karimireddy,
2020a). Thus, one could hope that it would generalize to adaptive optimizers and non-convex func-
tions such as the ones met when training DNNs. However in practice, when training LLMs with
AdamW, our experiments in Sec. 5.2 reveal that this one-step delay drastically hurts performances.
To remove the impact of staleness, ACCO avoids using delayed gradients. Indeed, with SGD as
optimizer and learning rate γ > 0, the parameter update of equation 2 reads

θ(t+1) = θ(t) − γ

N∑
i=1

∑N
(t)
i

k=1 ∇F (θ(t), ξ
(t)
i,k) +

∑Ñ
(t)
i

k=1 ∇F (θ̃(t), ξ̃
(t)
i,k)

N
(t)
i + Ñi

(t)
.

This can be interpreted as a form of plain SGD with no delay, and a potentially variable batch-size
(modeled through the N

(t)
i , Ñ

(t)
i) split in two parts. While ACCO uses a mix of stochastic gradients

∇F (θ(t)), ∇F (θ̃(t)), they are not delayed compared to the parameters updated θ(t) (see Fig. 2 for
details). We verify experimentally this interpretation in Sec. 5 by showing that training LLMs with
ACCO and standard distributed AdamW with the same batch-size leads to the same losses.

4 EMPIRICAL MOTIVATION AND CLUSTER SETTING

8 16 32 64 12824
workers

0

2

4

6

8

t (
s) comp./comm.

 computation
All-Reduce

Figure 3: Time (per worker) spent comput-
ing and averaging gradients of a Llama-2 7B
model for different numbers of GPUs.

We empirically motivate the need for methods miti-
gating communication overhead in Distributed Data
Parallel (DDP) (Li et al., 2020). Our goal is to illus-
trate that the time spent communicating gradients
can quickly trump the one used for computing them
when using DDP to train LLMs. For that, we mea-
sure the time necessary to perform a forward and
backward pass on a Llama-2 model (Touvron et al.,
2023) with 7B parameters hosted on a single GPU,
using a batch size maxing out its memory. We com-
pare this to the time necessary to compute an All-
Reduce on those gradients with the NCCL backend,
varying the number of distributed workers. On all
the following, we experiment on our local cluster of
NVIDIA A100-80GB GPUs with 8 GPUs per node
and an Omni-PAth interconnection network at 100
Gb/s for inter-node connections, intra-node connections being done with NVLink 300 GB/s. Each
distributed worker is hosted on a single GPU. We observe in Fig. 3 that when we communicate out-
side of a GPU node in our cluster, the time needed to average the gradients across workers can take
more than four times the one spent on the whole forward and backward step. As DDP only partially
hides communications during the backward (Li et al., 2020), this means that our GPUs remain idle
the majority of the time when we use more than 24 distributed workers, motivating the need for
methods leveraging this time to compute instead.

5 EXPERIMENTS

In this section, we lay down our experiments. First in Sec. 5.1, we detail the common setup for all
our experiments. Second, in Sec. 5.2, we illustrate the failings of DPU and ACCO-wp that we hinted
at in Sec. 3, which led us to crafting ACCO. For this first exploration, we focus on small language
models and datasets, using TinyStories (Eldan & Li, 2023) as our test-bed. Then in Sec. 5.3,
we verify that ACCO allows to efficiently train LLMs at scale by considering a 125M parameters
GPT-Neo architecture (Black et al., 2021) and the OpenWebText dataset (Gokaslan et al., 2019).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

.

.

.

GPU0 GPUi GPUN-1

Ze
R

O
-1

B
as

el
in

e
A

cc
o

Parameters Gradients Comm. buffer Optimizer State

Figure 4: Memory requirements of ACCO vs DDP
and ZeRO-1, see Tab.1 for quantitative details.

Finally in Sec. 5.4, we consider even larger
models by using ACCO for an instruction fine-
tuning task with a 2.7B parameters GPT-Neo,
which accentuates the effects of the inter-node
communication bottlenecks and highlights all
the more the benefits of our method. They
are further displayed in Sec. 5.5 where we
compare between ACCO and DDP on hetero-
geneous hardware. Our method allows faster
GPUs to accumulate while they wait for the
slowest worker instead of remaining idle as in
DDP, thus allowing us to compute gradients for
large batch sizes faster than the baseline, result-
ing in quicker convergence in wall-clock time.

5.1 EXPERIMENTAL SETUP

All of our experiments are performed on the GPU cluster described in Sec. 4. A detailed pseudo-
code for ACCO can be found in Appendix B.2. Our code is in Pytorch (Paszke et al., 2019), and
we verified that our implementation produces two different CUDA streams running in parallel for
the computations and communications using NVIDIA’s Nsight System to profile it, as shown in Fig.
13. We trained all our models with AdamW (Loshchilov & Hutter, 2019), using mixed precision:
our model parameters, gradient accumulation buffer, and communication buffers are in bfloat16
(Kalamkar et al., 2019) while our sharded optimizer states are in single precision, as shown in Fig.
4. As nowadays all distributed frameworks training LLMs at scale use a form of partitioning due to
GPU memory constraints (Rasley et al., 2020; Andonian et al., 2023), our main baseline is Pytorch’s
Distributed Data Parallel (DDP) (Li et al., 2020) with ZeRO-1 (Rajbhandari et al., 2020a) to shard
the optimizer’s state. As justified in Tab. 1, local optimization methods cannot be realistically
considered for memory reasons. To compare in good faith DPU to ACCO in terms of wall-clock
time, we also implemented our own version of DPU, as the available implementation (Ren et al.,
2022) solves a different problem than ours. The original algorithm does not run parallel computation
and communications as it is designed to host the optimizer on the CPU, and is slower than ZeRO
due to recurrent memory transfers between CPU and GPU (Ren et al., 2021).

5.2 CRAFTING ACCO ON TINYSTORIES

Here, we experiment with small language models on the TinyStories dataset (Eldan & Li, 2023),
following the configuration and training hyper-parameters of their paper (Eldan & Li, 2023) to the
best of our abilities. Hence, we use a 36M parameters GPT-Neo based (Black et al., 2021) decoder-
only transformer architecture. To match the 10k vocabulary they used, we trained our own BPE
tokenizer on the TinyStories dataset. For our experiments, we used 8 workers on a single node.

0 10000 20000 30000 40000
minibatch

2

4

6

8

Tr
ain

in
g

lo
ss

Method
ACCO
DDP
DPU
DPU-warmup 40
DPU-warmup 500

(a) Training with the specified amount in (Eldan &
Li, 2023).

0 20000 40000 60000 80000
minibatch

2

4

6

8

Tr
ain

in
g

lo
ss

Method
ACCO
DDP
DPU-warmup 500

(b) Training for twice the specified amount.

Figure 5: Impact of the delayed update and the amount of warmup steps on the training

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Impact of delayed updates. First, we investigate the impact of using delayed updates, re-
purposing DPU (Ren et al., 2021) as described in Sec. 3. We run three variants of this algorithm:
(1) with no warmup, (2) with 40 warmup steps of non-delayed optimization step before switching
to DPU (recommended recipe in (Ren et al., 2021)), and (3) with 500 steps of warmup. We report
in Fig. 5 our training losses on 8 distributed workers averaged over 3 runs. We remark that using
delayed updates greatly hurts convergence, especially when no or too few warmup steps are per-
formed. Surprisingly, the number of warmup steps given in (Ren et al., 2021) does not work here,
hinting that it is a sensitive hyper-parameter to tune for each use-case. If we train for twice as long
than specified in Eldan & Li (2023), then the DPU training curve approaches the baseline one, with-
out totally catching it. Contrary to this, the training curve of our algorithm ACCO perfectly matches
DDP’s one from the beginning.

0 10000 20000 30000 40000
minibatch

2

4

6

8

Tr
ain

in
g

lo
ss

Method
ACCO
DDP
ACCO-wp

Figure 6: Comparison of ACCO with its
Weight Prediction version on TinyStories.

A simple approach to compensate delays. To
mitigate the detrimental impact of using delayed
updates, we test a first approach to mitigate it:
ACCO-wp, the Weight Prediction method described
in Sec. 3. This method applies two consecutive
optimizer steps, re-using the same mini-batch of
gradients twice. The first step produces the usual
updated parameters, while the second predicts the
parameters of the next step so that gradients can be
computed on this estimate rather than on a stale ver-
sion of the model. In Fig. 6 we compare the training
curves of this delay-compensation method to ours.
We remark that, while ACCO perfectly matches the
DDP baseline at all times, ACCO-wp displays worse
behavior, especially at the beginning of the training.
Thus, we dismiss this method and keep ours for the remaining of the experiments.

5.3 PASSING THE SCALING TEST: TRAINING GPT-NEO ON OPENWEBTEXT

Table 2: Perplexity of our trained LLMs
Method LAMBADA (ppl ↓) OpenWebText (ppl ↓)
ACCO 1x8 47.1 24.2
DDP 1x8 47.5 24.3

ACCO 4x8 45.5 22.5
DDP 4x8 44.1 21.7

To assess how ACCO scales with larger mod-
els and more data, we pre-trained a model
equivalent to GPT-2 (Radford et al., 2019) with
both ACCO and DDP with a ZeRO optimizer.
Specifically, we used the GPT-Neo architecture
(Black et al., 2021) with 125 million parameters
and the OpenWebText dataset (Gokaslan et al.,
2019), which contains 40 GB of text. We used the GPT-Neo tokenizer, pre-trained on the Pile
dataset (Gao et al., 2020). The models were trained on sequences of 1024 tokens, with documents
concatenated using end-of-sequence tokens. To assess the impact of using different hardware, the
experiment was repeated on 2 different clusters. The first was conducted on 8 H100-PCIe 80GB on
a single node. The second was on 32 A100-80G GPU distributed on 4 nodes. We maxed out the
memory of our GPUs with a local mini-batch size of 24. To reach a sufficiently large overall batch
size, we used 1 step of gradient accumulation for DDP, and none for ACCO as our method naturally
accumulates over 1 step, resulting for the first and second experiments in respectively 400K and
1.5M tokens per effective batch for both ACCO and DDP. In Tab. 3, we report additional experimen-
tal details, and notice that training with ACCO allows for a 25% speedup on this pre-training task,
which is additionally illustrated in Fig. 7. We also report that our implementation of ACCO adap-
tively scheduled 315 supplementary accumulation steps over the whole training to prevent GPUs
from idling while waiting for communications. Further details and results for the H100 experiment
can be found in Appendix A. Tab. 2 reports the perplexity of trained language models with both
methods. We evaluate the perplexity of language models on LAMBADA (Paperno et al., 2016) and
a test split of OpenWebText, and report similar results for both methods.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0
minibatch 1e6

4

6

8

10

Tr
ain

in
g

lo
ss

Method
ACCO
DDP

(a) Evolution of the loss over the whole training.

0 1000 2000 3000 4000 5000
Time (s)

4

6

8

10

Tr
ain

in
g

lo
ss

Method
ACCO
DDP

(b) Focus on the first part of the training w.r.t time.

Figure 7: Training curves for ACCO and DDP with 32 workers trained for 50B tokens.

5.4 ADVANTAGES OF USING ACCO FOR INSTRUCTION FINE-TUNING

In previous sections, we compared ACCO against DDP with ZeRO in the pre-training stage. To
further validate our algorithm, we consider the GPT-Neo 2.7B model (Black et al., 2021) pre-trained
on the Pile dataset (Gao et al., 2020) and finetuned it on the Alpaca dataset (Taori et al., 2023)
containing 52k pairs of instruction/answer. We fine-tuned the model using two configurations: 8
A100-80G on a single node, and 8 A100-80G distributed equally across 2 nodes. Samples are
padded to match the longest sequence in the mini-batch. We fixed the mini-batch size at 4, leading
to a total batch size of 128 for all methods. For DDP and DPU, we used a gradient accumulation of
4, while for ACCO , a gradient accumulation of 2 to account for the ACCO accumulation described
in Sec. 1. The learning rate was set to 2×10−5 for all methods with a warmup of 50 steps, for DPU.

0 200 400 600
Time (s)

1.10

1.15

1.20

Va
lid

ati
on

 lo
ss

Method
ACCO
DDP
DPU

0 2000 4000 6000
Time (s)

1.1

1.2

1.3

Va
lid

ati
on

 lo
ss

Method
ACCO
DDP

Figure 8: Validation curve with 8 workers on 1 node (left), and 4 workers/node on 2 nodes (right).

In this setting, padding to the longest sequence in the mini-batch induces more variability in the
number of tokens per mini-batch. This results in more variability in the computational load for each
worker, leading to increased wait times for synchronization. We observe in Fig. 8 that ACCO hits
a low validation loss faster than DDP on both settings. Note that the difference between ACCO and
DDP is accentuated when workers are distributed on multiple nodes, leading to a 87% speedup for
ACCO (see Tab. 3) and highlighting the impact of communication bottlenecks on standard methods.

Table 3: Pre-training and finetuning time speedup with ACCO against DDP on various setups.
Stage Model GPUs #tokens DDP w/ ZeRO-1 ACCO (∆T)

Pre-training GPT-Neo-125M 1x8 6B 4h41min 4h25min (−5.69%)
4x8 50B 14h41min 10h55min (−25.65%)

Finetuning GPT-Neo-2.7B 1x8 80M 43min 25min (−41.86%)
2x4 80M 3h46min 29min (−87.17%)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5.5 EXPERIMENT USING HETEROGENEOUS DEVICES

To witness the impact of using heterogeneous devices, we run ACCO and compare it to DDP in a four
workers setting, with one of the GPU four times slower than the other three. The training setting is
the same as in Sec. 5.2. As we experiment on a A100 GPUs cluster, we simulate the heterogeneity
of the hardware using the time.sleep() python command. First, we measure the time that
a standard forward-backward step takes, and make one of the four GPUs idle for three times this
amount after each forward-backward pass. In this context, DDP is only as fast as the slowest worker:
3 out of the 4 workers are idle 3/4 of the time. With ACCO, the other workers accumulate during
the time they are waiting for the slow one to finish. Thus, ACCO allows to compute gradients for
large batch sizes faster than standard baselines, resulting in faster convergence in terms of wall-clock
time, as displayed in Fig. 9.

0 500 1000 1500
Time (s)

2

4

6

8

Tr
ain

in
g

lo
ss

Method
ACCO
DDP

0 1 2 3
GPU rank

0

1

2

3

4

 ac

c.
/ r

ou
nd

0

100

200

300

t (
m

s)
/

t (
m

s)

t (
m

s)

t (
m

s)

t (
m

s)

Figure 9: Training curves with 3 normal workers and 1 slow worker (4× slower).

6 LIMITATIONS

Experiments mainly on one cluster environment. Due to the lack of variety in the compute
environments we have access to, the majority of our experiments were performed on a single cluster,
described in Sec. 4. This is a communication-constrained setting, as our hardware is not the most
cutting-edge in that regard as discussed in Sec. 4. However, to mitigate this one-sidedness, we also
run a small pre-training study on one of the fastest hardware available today, and report in Tab. 3
that even in that case, ACCO leads to a 5% time gain.

Communication cost only hidden, not reduced. While local optimization methods tackle the
communication overhead problem with scarce communications, here we only hide them. Thus, our
method does not lead to energy savings, nor question the cost of highly synchronized infrastructure.
However, ACCO naturally maximizes the hardware throughput, allowing to reduce their use time.

Further memory savings avenue not explored. Due to the parallel nature of ACCO, removing the
reliance on communication and gradient buffers seems hardly possible, questioning the feasibility
of further memory savings if all executions are kept on the GPU. But, akin to ZeRO-Offload (Ren
et al., 2021), the communication and optimizer stream could entirely be run on CPU, which would
allow significant memory gains. We did not experiment with this idea, and let it for future work.

CONCLUSION

We propose ACCO, a novel algorithm that jointly addresses the memory and communication chal-
lenges inherent in training LLMs on distributed systems. By allowing for parallel computation and
communication of gradients while partitioning the optimizer states, ACCO effectively reduces com-
munication overhead in a memory-efficient fashion. We introduce a novel two-stage mechanism to
compensate for the delayed update inherent to this parallel setting, which ensures consistent conver-
gence dynamics with the standard optimization algorithm for large-scale distributed LLM training
without the need for warmup steps. We empirically confirm the benefits of our methods over sev-
eral pre-training and finetuning tasks, reporting drastically reduced training times compared to our
baseline, especially in multi-node settings or with heterogeneous devices.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Alekh Agarwal and John C Duchi. Distributed delayed stochastic optimization. In
J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Weinberger (eds.), Ad-
vances in Neural Information Processing Systems, volume 24. Curran Associates, Inc.,
2011. URL https://proceedings.neurips.cc/paper_files/paper/2011/
file/f0e52b27a7a5d6a1a87373dffa53dbe5-Paper.pdf.

Alex Andonian, Quentin Anthony, Stella Biderman, Sid Black, Preetham Gali, Leo Gao, Eric
Hallahan, Josh Levy-Kramer, Connor Leahy, Lucas Nestler, Kip Parker, Michael Pieler, Jason
Phang, Shivanshu Purohit, Hailey Schoelkopf, Dashiell Stander, Tri Songz, Curt Tigges, Ben-
jamin Thérien, Phil Wang, and Samuel Weinbach. GPT-NeoX: Large Scale Autoregressive Lan-
guage Modeling in PyTorch, 9 2023. URL https://www.github.com/eleutherai/
gpt-neox.

Yossi Arjevani, Ohad Shamir, and Nathan Srebro. A tight convergence analysis for stochastic gradi-
ent descent with delayed updates. In Aryeh Kontorovich and Gergely Neu (eds.), Proceedings of
the 31st International Conference on Algorithmic Learning Theory, volume 117 of Proceedings
of Machine Learning Research, pp. 111–132. PMLR, 08 Feb–11 Feb 2020.

By Mahmoud Assran, Arda Aytekin, Hamid Reza Feyzmahdavian, Mikael Johansson, and
Michael G. Rabbat. Advances in asynchronous parallel and distributed optimization. Proceedings
of the IEEE, 108(11):2013–2031, 2020. doi: 10.1109/JPROC.2020.3026619.

Mahmoud Assran, Nicolas Loizou, Nicolas Ballas, and Mike Rabbat. Stochastic gradient push for
distributed deep learning. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings
of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 344–353. PMLR, 09–15 Jun 2019.

Sid Black, Gao Leo, Phil Wang, Connor Leahy, and Stella Biderman. GPT-Neo: Large Scale Au-
toregressive Language Modeling with Mesh-Tensorflow, March 2021. URL https://doi.
org/10.5281/zenodo.5297715.

Chi-Chung Chen, Chia-Lin Yang, and Hsiang-Yun Cheng. Efficient and robust parallel dnn training
through model parallelism on multi-gpu platform, 2019.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost, 2016.

Xiangyi Chen, Xiaoyun Li, and P. Li. Toward communication efficient adaptive gradient method.
Proceedings of the 2020 ACM-IMS on Foundations of Data Science Conference, 2020. URL
https://api.semanticscholar.org/CorpusID:224805256.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc' au-
relio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Quoc Le, and Andrew Ng. Large
scale distributed deep networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger
(eds.), Advances in Neural Information Processing Systems, volume 25. Curran Associates, Inc.,
2012. URL https://proceedings.neurips.cc/paper_files/paper/2012/
file/6aca97005c68f1206823815f66102863-Paper.pdf.

Michael Diskin, Alexey Bukhtiyarov, Max Ryabinin, Lucile Saulnier, Quentin Lhoest, Anton
Sinitsin, Dmitry Popov, Dmitriy Pyrkin, Maxim Kashirin, Alexander Borzunov, Albert Villanova
del Moral, Denis Mazur, Ilia Kobelev, Yacine Jernite, Thomas Wolf, and Gennady Pekhimenko.
Distributed deep learning in open collaborations. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL
https://openreview.net/forum?id=FYHktcK-7v.

Sanghamitra Dutta, Jianyu Wang, and Gauri Joshi. Slow and stale gradients can win the race. IEEE
Journal on Selected Areas in Information Theory, 2(3):1012–1024, 2021. doi: 10.1109/JSAIT.
2021.3103770.

Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak
coherent english?, 2023.

11

https://proceedings.neurips.cc/paper_files/paper/2011/file/f0e52b27a7a5d6a1a87373dffa53dbe5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/f0e52b27a7a5d6a1a87373dffa53dbe5-Paper.pdf
https://www.github.com/eleutherai/gpt-neox
https://www.github.com/eleutherai/gpt-neox
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://api.semanticscholar.org/CorpusID:224805256
https://proceedings.neurips.cc/paper_files/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf
https://openreview.net/forum?id=FYHktcK-7v

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Mathieu Even, Raphaël Berthier, Francis Bach, Nicolas Flammarion, Hadrien Hendrikx, Pierre Gail-
lard, Laurent Massoulié, and Adrien Taylor. A continuized view on nesterov acceleration for
stochastic gradient descent and randomized gossip. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021.

Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu Wang, Zhen Zheng, Chuan Wu, Guoping
Long, Jun Yang, Lixue Xia, et al. Dapple: A pipelined data parallel approach for training large
models. In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pp. 431–445, 2021.

Hamid Reza Feyzmahdavian and Mikael Johansson. Asynchronous iterations in optimization: New
sequence results and sharper algorithmic guarantees. Journal of Machine Learning Research, 24
(158):1–75, 2023. URL http://jmlr.org/papers/v24/22-0555.html.

Louis Fournier and Edouard Oyallon. Cyclic data parallelism for efficient parallelism of deep neural
networks, 2024.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text
for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus. http:
//Skylion007.github.io/OpenWebTextCorpus, 2019.

Eduard Gorbunov, Alexander Rogozin, Aleksandr Beznosikov, Darina Dvinskikh, and Alexander
Gasnikov. Recent Theoretical Advances in Decentralized Distributed Convex Optimization, pp.
253–325. Springer International Publishing, Cham, 2022. ISBN 978-3-031-00832-0. doi: 10.
1007/978-3-031-00832-0 8.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant neural
networks using pipeline parallelism. Advances in neural information processing systems, 32,
2019.

Jörn-Henrik Jacobsen, Arnold W.M. Smeulders, and Edouard Oyallon. i-revnet: Deep invertible
networks. In International Conference on Learning Representations, 2018. URL https://
openreview.net/forum?id=HJsjkMb0Z.

Dhiraj Kalamkar, Dheevatsa Mudigere, Naveen Mellempudi, Dipankar Das, Kunal Banerjee,
Sasikanth Avancha, Dharma Teja Vooturi, Nataraj Jammalamadaka, Jianyu Huang, Hector Yuen,
Jiyan Yang, Jongsoo Park, Alexander Heinecke, Evangelos Georganas, Sudarshan Srinivasan,
Abhisek Kundu, Misha Smelyanskiy, Bharat Kaul, and Pradeep Dubey. A study of bfloat16 for
deep learning training, 2019.

Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebas-
tian U. Stich, and Ananda Theertha Suresh. Mime: Mimicking centralized stochastic algorithms
in federated learning. ArXiv, abs/2008.03606, 2020.

Chiheon Kim, Heungsub Lee, Myungryong Jeong, Woonhyuk Baek, Boogeon Yoon, Ildoo Kim,
Sungbin Lim, and Sungwoong Kim. torchgpipe: On-the-fly pipeline parallelism for training giant
models, 2020.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), San Diega, CA, USA, 2015.

Anastasia Koloskova, Sebastian U. Stich, and Martin Jaggi. Sharper convergence guarantees for
asynchronous sgd for distributed and federated learning. In Proceedings of the 36th International
Conference on Neural Information Processing Systems, NIPS ’22, Red Hook, NY, USA, 2024.
Curran Associates Inc. ISBN 9781713871088.

Jakub Konecný, H. B. McMahan, Daniel Ramage, and Peter Richtárik. Federated optimization:
Distributed machine learning for on-device intelligence. ArXiv, abs/1610.02527, 2016. URL
https://api.semanticscholar.org/CorpusID:2549272.

12

http://jmlr.org/papers/v24/22-0555.html
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://openreview.net/forum?id=HJsjkMb0Z
https://openreview.net/forum?id=HJsjkMb0Z
https://api.semanticscholar.org/CorpusID:2549272

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Atli Kosson, Vitaliy Chiley, Abhinav Venigalla, Joel Hestness, and Urs Köster. Pipelined backprop-
agation at scale: Training large models without batches, 2021.

Dmitry Kovalev, Adil Salim, and Peter Richtarik. Optimal and practical algorithms for smooth
and strongly convex decentralized optimization. In H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp.
18342–18352. Curran Associates, Inc., 2020.

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke,
Jeff Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala. Pytorch distributed: experi-
ences on accelerating data parallel training. Proc. VLDB Endow., 13(12):3005–3018, aug 2020.
ISSN 2150-8097. doi: 10.14778/3415478.3415530. URL https://doi.org/10.14778/
3415478.3415530.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization for heterogeneous networks. In ICML Workshop on Adaptive & Multitask
Learning: Algorithms & Systems, 2019. URL https://openreview.net/forum?id=
SkgwE5Ss3N.

Tao Lin, Sebastian U. Stich, Kumar Kshitij Patel, and Martin Jaggi. Don’t use large mini-batches,
use local sgd. In International Conference on Learning Representations, 2020.

Yuliang Liu, Shenggui Li, Jiarui Fang, Yanjun Shao, Boyuan Yao, and Yang You. Colossal-auto:
Unified automation of parallelization and activation checkpoint for large-scale models, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Karttikeya Mangalam, Haoqi Fan, Yanghao Li, Chao-Yuan Wu, Bo Xiong, Christoph Feichtenhofer,
and Jitendra Malik. Reversible vision transformers. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 10830–10840, 2022.

Artavazd Maranjyan, Mher Safaryan, and Peter Richtárik. Gradskip: Communication-accelerated
local gradient methods with better computational complexity, 2022.

Ryan McDonald, Keith Hall, and Gideon Mann. Distributed training strategies for the structured
perceptron. In Human Language Technologies: The 2010 Annual Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics, HLT ’10, pp. 456–464, USA,
2010. Association for Computational Linguistics. ISBN 1932432655.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Ar-
cas. Communication-Efficient Learning of Deep Networks from Decentralized Data. In
Aarti Singh and Jerry Zhu (eds.), Proceedings of the 20th International Conference on Artifi-
cial Intelligence and Statistics, volume 54 of Proceedings of Machine Learning Research, pp.
1273–1282. PMLR, 20–22 Apr 2017. URL https://proceedings.mlr.press/v54/
mcmahan17a.html.

Konstantin Mishchenko, Francis Bach, Mathieu Even, and Blake Woodworth. Asynchronous SGD
beats minibatch SGD under arbitrary delays. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022a. URL
https://openreview.net/forum?id=4XP0ZuQKXmV.

Konstantin Mishchenko, Grigory Malinovsky, Sebastian Stich, and Peter Richtárik. Proxskip: Yes!
local gradient steps provably lead to communication acceleration! finally! arXiv preprint
arXiv:2202.09357, 2022b.

Ioannis Mitliagkas, Ce Zhang, Stefan Hadjis, and Christopher Ré. Asynchrony begets momen-
tum, with an application to deep learning. In 2016 54th Annual Allerton Conference on
Communication, Control, and Computing (Allerton), pp. 997–1004. IEEE Press, 2016. doi:
10.1109/ALLERTON.2016.7852343. URL https://doi.org/10.1109/ALLERTON.
2016.7852343.

13

https://doi.org/10.14778/3415478.3415530
https://doi.org/10.14778/3415478.3415530
https://openreview.net/forum?id=SkgwE5Ss3N
https://openreview.net/forum?id=SkgwE5Ss3N
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://openreview.net/forum?id=4XP0ZuQKXmV
https://doi.org/10.1109/ALLERTON.2016.7852343
https://doi.org/10.1109/ALLERTON.2016.7852343

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Adel Nabli and Edouard Oyallon. DADAO: Decoupled accelerated decentralized asynchronous op-
timization. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Ma-
chine Learning, volume 202 of Proceedings of Machine Learning Research, pp. 25604–25626.
PMLR, 23–29 Jul 2023.

Adel Nabli, Eugene Belilovsky, and Edouard Oyallon. $\textbf{A}ˆ2\textbf{CiD}ˆ2$: Accelerat-
ing asynchronous communication in decentralized deep learning. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=YE04aRkeZb.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R Devanur, Gre-
gory R Ganger, Phillip B Gibbons, and Matei Zaharia. Pipedream: Generalized pipeline par-
allelism for dnn training. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles, pp. 1–15, 2019.

Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie Chen, and Matei Zaharia. Memory-efficient
pipeline-parallel dnn training. In International Conference on Machine Learning, pp. 7937–7947.
PMLR, 2021.

John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Mike Rabbat, Mani Malek, and
Dzmitry Huba. Federated learning with buffered asynchronous aggregation. In Gustau Camps-
Valls, Francisco J. R. Ruiz, and Isabel Valera (eds.), Proceedings of The 25th International Con-
ference on Artificial Intelligence and Statistics, volume 151 of Proceedings of Machine Learning
Research, pp. 3581–3607. PMLR, 28–30 Mar 2022. URL https://proceedings.mlr.
press/v151/nguyen22b.html.

Jose Javier Gonzalez Ortiz, Jonathan Frankle, Mike Rabbat, Ari Morcos, and Nicolas Ballas. Trade-
offs of local sgd at scale: An empirical study. In NeurIPS 2020 OptML Workshop, 2021.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc Quan Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernandez. The LAMBADA
dataset: Word prediction requiring a broad discourse context. In Proceedings of the 54th An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
1525–1534, Berlin, Germany, August 2016. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/P16-1144.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: an imperative style, high-performance deep
learning library. In Proceedings of the 33rd International Conference on Neural Information
Processing Systems, Red Hook, NY, USA, 2019. Curran Associates Inc.

Suchita Pati, Shaizeen Aga, Mahzabeen Islam, Nuwan Jayasena, and Matthew D. Sinclair. Compu-
tation vs. communication scaling for future transformers on future hardware, 2023.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: memory optimizations
toward training trillion parameter models. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC ’20. IEEE Press, 2020a.
ISBN 9781728199986.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models, 2020b.

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong He. Zero-infinity:
Breaking the gpu memory wall for extreme scale deep learning, 2021.

14

https://openreview.net/forum?id=YE04aRkeZb
https://openreview.net/forum?id=YE04aRkeZb
https://proceedings.mlr.press/v151/nguyen22b.html
https://proceedings.mlr.press/v151/nguyen22b.html
http://www.aclweb.org/anthology/P16-1144

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System opti-
mizations enable training deep learning models with over 100 billion parameters. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
KDD ’20, pp. 3505–3506, New York, NY, USA, 2020. Association for Computing Machinery.
ISBN 9781450379984. doi: 10.1145/3394486.3406703.

Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný,
Sanjiv Kumar, and Hugh Brendan McMahan. Adaptive federated optimization. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=LkFG3lB13U5.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang, Min-
jia Zhang, Dong Li, and Yuxiong He. Zero-offload: Democratizing billion-scale model training,
2021.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang, Min-
jia Zhang, Dong Li, and Yuxiong He. https://github.com/microsoft/deepspeed/discussions/2461,
2022.

Kevin Scaman, Francis Bach, Sébastien Bubeck, Yin Tat Lee, and Laurent Massoulié. Optimal algo-
rithms for smooth and strongly convex distributed optimization in networks. In Doina Precup and
Yee Whye Teh (eds.), Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pp. 3027–3036. PMLR, 06–11 Aug
2017.

Shuheng Shen, Linli Xu, Jingchang Liu, Xianfeng Liang, and Yifei Cheng. Faster distributed deep
net training: computation and communication decoupled stochastic gradient descent. In Proceed-
ings of the 28th International Joint Conference on Artificial Intelligence, pp. 4582–4589. AAAI
Press, 2019. ISBN 9780999241141.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-
allelism. arXiv preprint arXiv:1909.08053, 2019.

Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari, Jared
Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Korthikanti, et al. Using deep-
speed and megatron to train megatron-turing nlg 530b, a large-scale generative language model.
arXiv preprint arXiv:2201.11990, 2022.

Zhuoqing Song, Lei Shi, Shi Pu, and Ming Yan. Optimal gradient tracking for decentral-
ized optimization. Mathematical Programming, Jul 2023. ISSN 1436-4646. doi: 10.1007/
s10107-023-01997-7.

Sebastian U. Stich. Local SGD converges fast and communicates little. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
S1g2JnRcFX.

Sebastian U. Stich and Sai Praneeth Karimireddy. The error-feedback framework: better rates for
sgd with delayed gradients and compressed updates. J. Mach. Learn. Res., 21(1), January 2020a.
ISSN 1532-4435.

Sebastian U. Stich and Sai Praneeth Karimireddy. The error-feedback framework: better rates for
sgd with delayed gradients and compressed updates. Journal of Machine Learning Research, 21
(1), jan 2020b. ISSN 1532-4435.

Weigao Sun, Zhen Qin, Weixuan Sun, Shidi Li, Dong Li, Xuyang Shen, Yu Qiao, and Yiran Zhong.
CO2: Efficient distributed training with full communication-computation overlap. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=ZO5cn4IfaN.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

15

https://openreview.net/forum?id=LkFG3lB13U5
https://openreview.net/forum?id=LkFG3lB13U5
https://openreview.net/forum?id=S1g2JnRcFX
https://openreview.net/forum?id=S1g2JnRcFX
https://openreview.net/forum?id=ZO5cn4IfaN
https://openreview.net/forum?id=ZO5cn4IfaN
https://github.com/tatsu-lab/stanford_alpaca

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Guanhua Wang, Heyang Qin, Sam Ade Jacobs, Connor Holmes, Samyam Rajbhandari, Olatunji
Ruwase, Feng Yan, Lei Yang, and Yuxiong He. Zero++: Extremely efficient collective commu-
nication for giant model training, 2023.

Jianyu Wang, Hao Liang, and Gauri Joshi. Overlap local-sgd: An algorithmic approach to hide
communication delays in distributed sgd. In ICASSP 2020 - 2020 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, May 2020a. doi: 10.
1109/icassp40776.2020.9053834. URL http://dx.doi.org/10.1109/ICASSP40776.
2020.9053834.

Jianyu Wang, Vinayak Tantia, Nicolas Ballas, and Michael Rabbat. Slowmo: Improving
communication-efficient distributed sgd with slow momentum. In International Conference
on Learning Representations, 2020b. URL https://openreview.net/forum?id=
SkxJ8REYPH.

Blake Woodworth, Kumar Kshitij Patel, Sebastian Stich, Zhen Dai, Brian Bullins, Brendan Mcma-
han, Ohad Shamir, and Nathan Srebro. Is local SGD better than minibatch SGD? In Hal Daumé
III and Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine Learn-
ing, volume 119 of Proceedings of Machine Learning Research, pp. 10334–10343. PMLR, 13–18
Jul 2020. URL https://proceedings.mlr.press/v119/woodworth20a.html.

Xuyang Wu, Sindri Magnusson, Hamid Reza Feyzmahdavian, and Mikael Johansson. Delay-
adaptive step-sizes for asynchronous learning. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pp. 24093–24113. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/
v162/wu22g.html.

Cong Xie, Sanmi Koyejo, and Indranil Gupta. Asynchronous federated optimization. In NeurIPS
2020 OptML Workshop, 2020.

Bowen Yang, Jian Zhang, Jonathan Li, Christopher Ré, Christopher R. Aberger, and Christopher De
Sa. Pipemare: Asynchronous pipeline parallel dnn training, 2020.

Bowen Yang, Jian Zhang, Jonathan Li, Christopher Re, Christopher Aberger, and Christopher
De Sa. Pipemare: Asynchronous pipeline parallel dnn training. In A. Smola, A. Dimakis,
and I. Stoica (eds.), Proceedings of Machine Learning and Systems, volume 3, pp. 269–
296, 2021. URL https://proceedings.mlsys.org/paper_files/paper/2021/
file/9412531719be7ccf755c4ff98d0969dc-Paper.pdf.

16

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://dx.doi.org/10.1109/ICASSP40776.2020.9053834
http://dx.doi.org/10.1109/ICASSP40776.2020.9053834
https://openreview.net/forum?id=SkxJ8REYPH
https://openreview.net/forum?id=SkxJ8REYPH
https://proceedings.mlr.press/v119/woodworth20a.html
https://proceedings.mlr.press/v162/wu22g.html
https://proceedings.mlr.press/v162/wu22g.html
https://proceedings.mlsys.org/paper_files/paper/2021/file/9412531719be7ccf755c4ff98d0969dc-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2021/file/9412531719be7ccf755c4ff98d0969dc-Paper.pdf

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Kun Yuan, Qing Ling, and Wotao Yin. On the convergence of decentralized gradient descent. SIAM
Journal on Optimization, 26(3):1835–1854, 2016. doi: 10.1137/130943170.

Jian Zhang and Ioannis Mitliagkas. Yellowfin and the art of momentum tuning. In A. Talwalkar,
V. Smith, and M. Zaharia (eds.), Proceedings of Machine Learning and Systems, volume 1, pp.
289–308, 2019. URL https://proceedings.mlsys.org/paper_files/paper/
2019/file/b205b525b7ce002baae53228bab6d26b-Paper.pdf.

Sixin Zhang, Anna Choromanska, and Yann LeCun. Deep learning with elastic averaging sgd. In
Proceedings of the 28th International Conference on Neural Information Processing Systems -
Volume 1, NIPS’15, pp. 685–693, Cambridge, MA, USA, 2015. MIT Press.

Zhen Zhang, Shuai Zheng, Yida Wang, Justin Chiu, George Karypis, Trishul Chilimbi, Mu Li, and
Xin Jin. Mics: Near-linear scaling for training gigantic model on public cloud, 2022.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and
Ji-Rong Wen. A survey of large language models, 2023a.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright,
Hamid Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can Balioglu, Pritam Damania,
Bernard Nguyen, Geeta Chauhan, Yuchen Hao, Ajit Mathews, and Shen Li. Pytorch fsdp: Expe-
riences on scaling fully sharded data parallel, 2023b.

Shuxin Zheng, Qi Meng, Taifeng Wang, Wei Chen, Nenghai Yu, Zhi-Ming Ma, and Tie-Yan
Liu. Asynchronous stochastic gradient descent with delay compensation. In Proceedings of
the 34th International Conference on Machine Learning - Volume 70, ICML’17, pp. 4120–4129.
JMLR.org, 2017.

Fan Zhou and Guojing Cong. On the convergence properties of a k-step averaging stochastic gra-
dient descent algorithm for nonconvex optimization. In Proceedings of the Twenty-Seventh Inter-
national Joint Conference on Artificial Intelligence, IJCAI-18, pp. 3219–3227. International Joint
Conferences on Artificial Intelligence Organization, 7 2018. doi: 10.24963/ijcai.2018/447. URL
https://doi.org/10.24963/ijcai.2018/447.

Huiping Zhuang, Zhiping Lin, and Kar-Ann Toh. Accumulated decoupled learning: Mitigating
gradient staleness in inter-layer model parallelization. arXiv preprint arXiv:2012.03747, 2020.

Huiping Zhuang, Yi Wang, Qinglai Liu, and Zhiping Lin. Fully decoupled neural network learning
using delayed gradients. IEEE transactions on neural networks and learning systems, 33(10):
6013–6020, 2021.

Martin Zinkevich, Markus Weimer, Lihong Li, and Alex Smola. Parallelized stochastic gradi-
ent descent. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta (eds.),
Advances in Neural Information Processing Systems, volume 23. Curran Associates, Inc.,
2010. URL https://proceedings.neurips.cc/paper_files/paper/2010/
file/abea47ba24142ed16b7d8fbf2c740e0d-Paper.pdf.

17

https://proceedings.mlsys.org/paper_files/paper/2019/file/b205b525b7ce002baae53228bab6d26b-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2019/file/b205b525b7ce002baae53228bab6d26b-Paper.pdf
https://doi.org/10.24963/ijcai.2018/447
https://proceedings.neurips.cc/paper_files/paper/2010/file/abea47ba24142ed16b7d8fbf2c740e0d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/abea47ba24142ed16b7d8fbf2c740e0d-Paper.pdf

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A EXPERIMENTAL DETAILS AND FURTHER RESULTS

A.1 PRE-TRAINING ON TINYSTORIES

For experiments in Sec. 5.2, we used the configuration available on the Huggingface Hub 1. We
trained our own 10k vocabulary tokenizer on the dataset. We also report in Fig. 10 the results of our
study on the impact of halving the batch size for DPU by not performing any gradient accumulation
(i.e., performing an optimizer’s step at each communication).

0 5000 10000 15000 20000 25000 30000 35000
minibatch

2

4

6

8
Tr

ain
in

g
lo

ss
Method

ACCO
DDP
DPU-warmup 40
DPU-warmup 40 bs/2

Figure 10: Comparison between running DPU on 8 GPUs with 2 steps of gradient accumulation on
each (to match the standard batch-size) and DPU with only 1 gradient accumulation step. Doing so
allows to double the number of optimizer’s step per minibatch, but divides the effective batch size
by 2. This leads to faster convergence early in the training, but worse training loss in the end.

A.2 PRE-TRAINING ON OPENWEBTEXT

For all pre-training experiments on OpenWebText, the configuration used to instantiate the GPTNeo
125M is available on the Huggingface Hub2. We only changed the ”max position embeddings”
parameter from 2048 to 1024. More details are displayed in Tab. 4. We used the OpenWebText
dataset available on Huggingface3. We also report in Fig. 11 further results for the pre-training on
H100 GPUs.

0 50000 100000 150000 200000 250000
minibatch

101

3 × 100

4 × 100

6 × 100

Tr
ain

in
g

lo
ss

Method
ACCO
DDP

Figure 11: Training loss during training on OpenWebText with 8 H100 GPUs and 6B tokens.

1Tiny Stories Available at: https://huggingface.co/datasets/roneneldan/
TinyStories

2GPT-neo 125M Configuration Available at: https://huggingface.co/EleutherAI/
gpt-neo-125m/blob/main/config.json

3OpenWebText Dataset Available at: https://huggingface.co/datasets/Skylion007/
openwebtext

18

 https://huggingface.co/datasets/roneneldan/TinyStories
 https://huggingface.co/datasets/roneneldan/TinyStories
https://huggingface.co/EleutherAI/gpt-neo-125m/blob/main/config.json
https://huggingface.co/EleutherAI/gpt-neo-125m/blob/main/config.json
https://huggingface.co/datasets/Skylion007/openwebtext
https://huggingface.co/datasets/Skylion007/openwebtext

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 4: Training hyperparameters for ACCO and DDP configurations.
Hyperparameter 8 H100 32 A100
mini-batch size 24 24
n grad accumulation ACCO: -DDP: 1 ACCO: -DDP: 1
sequence len 1024 1024
#tokens batch 400K 1.5M
optimizer AdamW AdamW
learning rate 6e-4 6e-4
weight decay 0.1 0.1
adam beta1 0.9 0.9
adam beta2 0.95 0.95
nb steps tot 50000 50000
scheduler cosine cosine
n warmup steps 0 0

A.3 INSTRUCTION FINE-TUNING

For all fine-tuning experiments, we used the pre-trained GPT-neo 2.7B available on the Huggingface
Hub4 and the associated tokenizer. We used the Alpaca dataset available on Huggingface5. More
details are displayed in Tab. 5.We also report in Fig. 12 further results on the experiment described
in Sec. 5.4.

0 5000 10000 15000 20000
minibatch

1.10

1.15

1.20

Va
lid

ati
on

 lo
ss

Method
ACCO
DDP
DPU

Figure 12: Validation curve with 8 workers on a single node.

Table 5: Finetuning hyperparameters for ACCO, DDP and DPU configurations.
Hyperparameter ACCO DDP DPU
mini-batch size 4 4 4
n grad accumulation 2 4 4
total batch size 128 128 128
optimizer AdamW AdamW AdamW
learning rate 2e-5 2e-5 2e-5
weight decay 0.0 0.0 0.0
adam beta1 0.9 0.9 0.9
adam beta2 0.95 0.95 0.95
nb steps tot 50000 50000 50000
scheduler cosine cosine cosine
n warmup steps 0 0 50

4GPT-neo 2.7B Available at: https://huggingface.co/EleutherAI/gpt-neo-2.7B
5Alpaca Dataset Available at: https://huggingface.co/datasets/tatsu-lab/alpaca

19

https://huggingface.co/EleutherAI/gpt-neo-2.7B
https://huggingface.co/datasets/tatsu-lab/alpaca

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

B IMPLEMENTATION DETAILS

B.1 PROFILING RESULTS

 accumulation stream∇

Cuda kernels on
accumulation stream

∇

Communication
streams

 accumulation stream∇

Cuda kernels on
accumulation stream

∇

Communication
streams

Clone optimizer
state to buffer

Load the grads from the
buffer to optimizer

All reduce the
grad counter

Reduce scatter the
accumulated gradients
on the buffer

Divide the gradients by
the number of gradient
steps

All gather the
params on the
buffer

Clone buffer to
optimizer state

Copy the params to
buffer

Figure 13: Nsight system profile of our implementation of ACCO: our two steams do run in parallel.
In this Figure, the computation take more time than the communication because we only profiled
small scale experiments with 8 workers, and small number of parameters (36M as we profiled on our
TinyStories Eldan & Li (2023) setting). This changes when using larger models and more workers,
as seen in 4.

B.2 ALGORITHM PSEUDO-CODE

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Algorithm 1 Training with ACCO in parallel for a worker i

1: Input: Model with differentiable loss F , number of models N , initial parameters θ(0), training
steps T , dataset shards Di.

2: Initialize: gradients gi(−1) = ∇F (θ(0), ξ
(0)
i) and number of gradients N (−1)

i = 1
3: # Computation CUDA stream
4: while t < T do
5: Stage 1.
6: while not Ready for Stage 2 do
7: ξ

(t)
i ← Di

8: g
(t)
i ← g

(t)
i +∇F (θ(t), ξ

(t)
i)

9: N
(t)
i ← N

(t)
i + 1

10: θ̃(t+1) ← Bufferi
11: Bufferi ← (N

(t)
i , g

(t)
i)

12: Stage 2.
13: while not Ready for Stage 1 do
14: ξ

(t)
i ← Di

15: g̃
(t)
i ← g̃

(t)
i +∇F (θ̃(t+1), ξ

(t)
i)

16: Ñ
(t)
i ← Ñ

(t)
i + 1

17: t← t+ 1
18: θ(t+1) ← Bufferi
19: Bufferi ← (Ñ

(t)
i , g̃

(t)
i)

20:
21: # Communication CUDA stream
22: while True do
23: Stage 1.
24: (Ñ

(t)
i , g̃

(t)
i)← Bufferi

25:
∑

i Ñ
(t)
i ← All Reduce(Ñ (t)

i)

26: Shardi

(∑
i g

(t)
i

)
← Reduce Scatter(g̃(t)i)

27: Shardi

(
θ̃(t+1)

)
← ShardedOpt

(
Shardi

(
θ(t)
)
,Shardi

(∑
i g̃

(t)
i∑

i Ñi
(t)

))
28: Bufferi ← All Gather(Shardi

(
θ̃(t+1)

)
)

29: N
(t)
i ← 0

30: Ready for Stage 2← True
31: Ready for Stage 1← False
32: Stage 2.
33: (N

(t)
i , g

(t)
i)← Bufferi

34:
∑

i N
(t)
i + Ñ

(t)
i ← All Reduce(N (t)

i +
∑

i Ñ
(t)
i)

35: Shardi

(∑
i g

(t)
i + g̃

(t)
i

)
← Reduce Scatter(g(t)i +

∑
i g̃

(t)
i)

36: Shardi

(
θ(t+1)

)
← ShardedOpt

(
Shardi

(
θ(t)
)
,Shardi

(∑
i g

(t)
i +g̃

(t)
i∑

i N
(t)
i +Ñi

(t)

))
37: Bufferi ← All Gather(Shardi

(
θ(t+1)

)
)

38: Ñ
(t)
i ← 0

39: Ready for Stage 1← True
40: Ready for Stage 2← False

21

	Introduction
	Related work
	Method
	Empirical motivation and cluster setting
	Experiments
	Experimental setup
	Crafting ACCO on TinyStories
	Passing the scaling test: training GPT-Neo on OpenWebText
	Advantages of using ACCO for instruction fine-tuning
	Experiment Using Heterogeneous Devices

	Limitations
	Experimental Details and Further Results
	Pre-training on TinyStories
	Pre-training on OpenWebText
	Instruction Fine-Tuning

	Implementation Details
	Profiling Results
	Algorithm Pseudo-Code

