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ABSTRACT

Diffusion models have recently emerged as powerful generative models in medi-
cal imaging. However, it remains a major challenge to combine these data-driven
models with domain knowledge to guide brain imaging problems. In neuroimag-
ing, Bayesian inverse problems have long provided a successful framework for
inference tasks, where incorporating domain knowledge of the imaging process
enables robust performance without requiring extensive training data. However,
the anatomical modeling component of these approaches typically relies on clas-
sical mathematical priors that often fail to capture the complex structure of brain
anatomy. In this work, we present the first general-purpose application of diffu-
sion models as priors for solving a wide range of medical imaging inverse prob-
lems. Our approach leverages a score-based diffusion prior trained extensively on
diverse brain MRI data, paired with flexible forward models that capture common
image processing tasks such as super-resolution, bias field correction, inpainting,
and combinations thereof. We further demonstrate how our framework can refine
outputs from existing deep learning methods to improve anatomical fidelity. Ex-
periments on heterogeneous clinical and research MRI data show that our method
achieves state-of-the-art performance producing consistent, high-quality solutions
without requiring paired training datasets. These results highlight the potential of
diffusion priors as versatile tools for brain MRI analysis.

1 INTRODUCTION

Magnetic resonance imaging (MRI) stands as one of the most versatile and informative neuroimag-
ing modalities, providing detailed insights into the living brain. However, a substantial portion
of the vast amounts of human brain MRI data collected worldwide remains underutilized due to
acquisition limitations that result in images that are unsuitable for most downstream tasks. Most
neuroimaging analysis tools, e.g., SPM Ashburner & Friston (2005), FSL Jenkinson et al. (2012)
and FreeSurfer Fischl (2012), assume access to high-resolution, 1 mm isotropic scans across stan-
dardized contrasts Kofler et al. (2024); Blumenthal et al. (2002); Klapwijk et al. (2019); Iglesias
et al. (2021). However, acquiring such scans is costly, requiring longer scan times and higher field
strengths. Moreover, these methods assume a level of homogeneity that is rarely present in clini-
cal practice, where variability may arise from both acquisition factors (such as choice of contrast,
anisotropy, motion-corrupted slices, or low field strength) and biological differences (including nor-
mal anatomical variation and pathological effects). Furthermore, ultra low-field MRI has emerged
as a promising low-cost and portable alternative to high-field MRI Sorby-Adams et al. (2024). How-
ever, the low signal-to-noise ratio and spatial resolution currently limits its applicability.

This disparity between ideal and available data has motivated extensive research into image en-
hancement methods. Bayesian inverse problems have long been a popular approach, leveraging
well-established forward models to provide principled solutions grounded in domain knowledge of
the imaging process Balbastre et al. (2018); Brudfors et al. (2019). However, although the like-
lihood models represent the underlying physics well, these approaches typically rely on classical
mathematical priors that are insufficient to capture the complex anatomical structures characteristic
of brain imaging data.

Conversely, modern deep learning approaches can learn sophisticated image statistics from large
datasets Islam et al. (2023); Safari et al. (2025); Bercea et al. (2024). However, they often neglect
crucial domain knowledge about the underlying problem and rely on paired training data, which is
frequently unavailable. As a result, researchers must either train on small datasets that may not gen-
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eralize well or use synthetic data Kalluvila et al. (2022); Lawry Aguila et al. (2025) that may fail to
bridge the domain gap when applied to real-world datasets. Moreover, most data-driven methods are
designed for specific processing tasks or imaging modalities, limiting their generalizability across
the diverse range of problems encountered in clinical practice.

Recently, diffusion models have emerged as a powerful class of generative models, demonstrat-
ing remarkable success in medical imaging applications including synthesis Pinaya et al. (2022),
segmentation Fernandez et al. (2022), and anomaly detection Lawry Aguila et al. (2025); Wolleb
et al. (2022). In computational imaging more broadly, researchers have begun combining diffusion
model priors with explicit forward models to solve inverse problems Chung et al. (2023); Kawar
et al. (2022); Zhang et al. (2024), enabling principled solutions that leverage both powerful gen-
erative models and task-specific domain knowledge. This promising framework remains largely
unexplored in neuroimaging, where the complex anatomy and diverse imaging challenges presents
a unique opportunity for data-driven inverse problem solving.

In this work, we present the first general-purpose application of diffusion models as priors for solving
medical imaging inverse problems. Our approach combines a score-based diffusion prior, trained
on a large and diverse brain MRI cohort, with flexible forward models that can handle a wide range
of imaging scenarios. Unlike existing data-driven methods that require paired training data for each
specific task, our framework operates by solving inverse problems directly, making it highly versatile
and applicable to scenarios where paired training data may not exist.

Our key contributions include: (i) A unified probabilistic framework for brain MRI analysis that
combines powerful data-driven diffusion priors with knowledge-based forward models. (ii) A range
of likelihood formulations designed to address a number of challenges in the medical imaging field,
including; super-resolution, bias field correction, disease inpainting, and image enhancement. (iii)
We demonstrate the robustness and versatility of our method by applying it to a range of challenging
heterogeneous datasets, including real-world clinical and ultra low-field data, showing that it can
consistently generate high-quality images and outperform baseline approaches.

2 BACKGROUND

2.1 INVERSE PROBLEMS IN MEDICAL IMAGING

Many tasks in medical imaging can be formulated as inverse problems, where we seek to recover an
unknown image x € R% from observed measurements y € R% related by:

y=F(x)+e ey

where the forward model F' is assumed to be well established and € is the measurement noise. When
y provides incomplete information about x then solving for X is ill-posed. The Bayesian framework
addresses this by introducing a prior that encodes assumptions about plausible solutions. The inverse
problem is then expressed through the posterior distribution:

logp(x | y) = logp(y | x) + log p(x) + const (2)

which naturally decomposes inference into a data-fitting term (likelihood) and a regularizer (prior).
Traditionally in medical imaging, regularizers which enforce some property of an image such as
smoothness Ehrhardt & Betcke (2016); Brudfors et al. (2019) or sparsity Lustig et al. (2007); Arridge
(1999) are used as priors. However, these priors fail to capture the complex structure of the brain.

2.2 SCORE-BASED DIFFUSION MODELS

Diffusion models Ho et al. (2020); Song et al. (2021) define a forward stochastic process that grad-
ually transforms data samples xg ~ ¢(Xo) into samples from a known prior distribution pr(x),
which is generally Gaussian. This transformation is achieved via a time-indexed sequence of vari-
ables {x;}7_, governed by a linear stochastic differential equation (SDE):

dXt = f(Xt, t)dt + g(t)th, (3)

where f : R? x [0,T] — R is the drift function, g : [0, 7] — R is the diffusion coefficient, and
w; is a Wiener process. Using the EDM framework Karras et al. (2022), the transition kernel p(x; |
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x0) ~ N(xo,0?1I) is a Gaussian with parameters controlled by o4, a predefined noise schedule.
These choices in the forward process ensure that the terminal distribution is approximately Gaussian
pr(x) =~ N(0,021).

To sample from g(xg), we can solve the reverse-time SDE:
dx; = [£(x1,t) — g°(t) Vix, log p(xs) | dt + g(t) dv, )

which shares the same marginals {p(x;)}7_, as the forward process and dw; is the reverse-time
Weiner process. The score function Vy, log p(x;) can be approximated using a neural network sp,
trained via the denoising score matching objective:

E(e) = Ext ~p(x¢|x0), x0~q(x0), t~U(0,T) |:H59 (Xta t) - vxt Ing(Xt | XO) HQ] (5)
which is tractable because the transition kernel has known mean and variance from the forward SDE.

2.3 POSTERIOR SAMPLING FOR INVERSE PROBLEMS

Score-based diffusion models can serve as powerful learned priors p(x) for inverse problems by
leveraging their ability to capture complex data distributions. Instead of classical regularizers, we
can use the score function sg(x;,t) ~ Vy, log p(x;) as a data-driven prior that has learned realis-
tic image statistics from large datasets. By leveraging the diffusion model as a prior, it is possible
to modify Equation 4 such that the reverse SDE for sampling from the posterior distribution be-
comes Chung et al. (2023):

dx; = [f(xt, t) — g%(t)(Vx, log p(y | x¢) + Vi, 1ogp(xt))] dt + g(t) dwy. 6)

While the prior gradient Vy, log p(x;) is readily available from the pre-trained score network, the
true likelihood gradient requires computing:

Vi, log p(y | %) = Vi, log j p(¥ | %0) p(Xo | %) d%o ™

which is intractable because it involves integrating over all possible clean images X that could have
generated the noisy diffusion state x;.

Due to this intractability, researchers have introduced several strategies to approximate the noisy
likelihood and enable posterior sampling Chung et al. (2023); Kawar et al. (2022); Zhang et al.
(2024); Feng et al. (2023); Wang et al. (2023); Dou & Song (2024). These advances have facili-
tated the real-world application of diffusion priors for solving inverse problems Zheng et al. (2025).
In medical imaging, these approaches have been used for image reconstruction of MRI Jalal et al.
(2021); Song et al. (2022), where y corresponds to k-space measurements (spatial frequencies in the
Fourier domain), and CT Chung et al. (2022); Song et al. (2022), where y corresponds to sinograms
generated from X-ray projections at multiple angles. Importantly, however, our approach differs
from these existing methods, which require incorporating acquisition measurements into the likeli-
hood. Instead, our method operates in the image space such that it can be applied to scenarios where
acquisition parameters are not available, as is the case in most clinical settings and archived datasets.
Our work is also related to the recent study by (Kim et al., 2025), which adapts the diffusion poste-
rior sampling (DPS) approach Chung et al. (2023) to reduce hallucinations in super-resolved images
of low-resolution MRI generated by deep generative models. In this work, we adopt a generic,
task-agnostic approach to medical imaging challenges, introducing a versatile framework that can
be applied across modalities and datasets without requiring task-specific training.

3 DIFFUSION PRIORS FOR MEDICAL IMAGING PROBLEMS

3.1 A PRIOR FOR THE BRAIN

The first step in our medical imaging inverse problem framework is to train a data-driven prior.
This prior should be trained on images that are both high-quality and representative of the target
distribution we wish to recover through our inverse problem solver. In medical imaging, it is often
desirable to obtain a high-resolution (I mm isotropic) scan of the brain, with many neuroimaging
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Figure 1: Overview of our approach to use diffusion priors for inverse problems in 3D brain analy-
sis. (Left) Training phase learns the diffusion prior score function from diverse brain data. (Middle)
Task-specific likelihood formulations for different medical imaging problems. (Right) DAPS algo-
rithm samples from posterior distribution to generate clean images.

software packages tailored for such data Ashburner & Friston (2005); Jenkinson et al. (2012); Fischl
(2012). Furthermore, large pathological structures, such as brain tumours, can cause these tools to
fail Kofler et al. (2024), making the analysis of disease effects and clinical decision-making more
difficult. A prior trained on healthy brain anatomy could enable super-resolution and restoration
of low-resolution scans and inpainting of pathological regions, allowing the application of standard
neuroimaging pipelines. We therefore assemble a large cohort of 1 mm isotropic images of healthy
subjects spanning multiple datasets, contrasts, and demographics (described in Section 4.1.1). This
diverse cohort is designed to minimize the domain gap between the prior and target images and
capture the substantial variability present in MRI data. Importantly, this dataset consists of artifact-
free, healthy, high-resolution scans and thus any corruption is not learned by the prior but is instead
explicitly modeled within our inverse problem formulation.

3.2 POSTERIOR SAMPLING

To sample from the posterior distribution, we take the approach proposed by (Zhang et al., 2025)
where they approximate the likelihood gradient in Equation 6 by introducing a decoupled noise
annealing process to consecutively sample from p(x; | y). At cach step, we first draw an approximate
clean sample X, ~ p(Xo|X;1A¢,y), and then reapply the forward diffusion kernel to obtain x; ~
N (Xo)y> o21). To sample Xg|y, We apply the Langevin dynamics Welling & Teh (2011) update rule
given by:
(3+1) (5) , (4) , (5) ‘ o~

xg ) x5 +m (Vx(()]) log p(xg” | xt)+Vx[()J) logp(y | x5 )) +4/2nc €5, €5 ~N(0,I) (8)
where 7; is the step size at time ¢. We can approximate the conditional distribution p(xg|x;) ~
N (x0; xg(x¢,t), 721) where xg(x, t) is the predicted denoised data at time ¢ = 0 predicted by the

diffusion model and the variance 77 is specified heuristically.

3.3 LIKELIHOOD FORMULATION FOR MEDICAL IMAGING PROBLEMS

Whilst a high-resolution scan is often desirable for a number of medical imaging tasks, in practice,
however, often only partial or degraded information is available, for example, a lower-resolution
image, an image with corrupt slices, or with pathology. These challenging scenarios can be naturally
formulated as inverse problems. Let x denote the unknown high resolution image and y denote the
observed image. Assuming the noise ¢ ~ N'(0,77'I) is Gaussian with precision 7, we can use
Equation 1 to introduce a general likelihood for common medical imaging tasks:

yIx~My|F(x;0),7'T), ply|x)cexp(—F |y — F(x;0)[3) . 9)

Here, F'(x; 0) represents the forward operator that maps the high-resolution image to the measure-
ment space, 6 denotes problem-specific parameters that may be optimized jointly with the recon-
struction, and 7 accounts for both acquisition noise and model uncertainty. We apply this inverse
problem framework to three key challenges in medical imaging: image restoration for generating
high-quality 1 mm isotropic images from acquisitions with lower resolution, inpainting of patholog-
ical tissue, and image refinement for enhancing the results of existing image processing methods.
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Image restoration. For image super-resolution or restoration tasks, we need to consider the follow-
ing elements in our forward model; resolution modeling, image alignment, and bias field correction.
The first two points can be addressed by considering a deterministic projection matrix A, well es-
tablished in the MRI super-resolution literature Balbastre et al. (2018); Brudfors et al. (2019), as a
sequence of linear operators, A = RST. First, the T operator aligns the high resolution image x to
the low resolution image y field-of-view. Secondly, the S operator simulates the slice profile of MRI
acquisition, functioning as an anisotropic blurring operator. Following previous work Brudfors et al.
(2019), we assume a Gaussian slice profile and infer the slice gap using the image metadata. Finally,
the R operator performs downsampling to the low-resolution grid.

The second aspect to consider is removing bias field effects. Clinical MRI images are corrupted
by spatially-varying intensity inhomogeneities known as bias fields, which arise from imperfections
in the RF coils and By field variations Van Leemput et al. (1999). The bias field is smooth and
multiplicative in nature, meaning that the observed intensity at each voxel is the product of the true
tissue intensity and a spatially-varying multiplicative factor. We model the bias field b as a vector
where each element is defined by:

b = exp( D e 0(r1))- (10)
k

where ¢y (r;) are smooth basis functions evaluated at spatial location r; and ¢y, are the corresponding
cocfficients. In our implementation, we use 4th order polynomial basis functions and initialize ¢
using the N4ITK algorithm Tustison et al. (2010). As in previous work Ashburner & Friston (2005);
Cerri et al. (2023), we use a smoothing prior p(c)oc exp(—A|c|?) where X is chosen heuristically.
Combining these elements we define the following likelihood:

N/2

y|X7C~N(y|(b®AX)7T_1I)7 p(Y|XaC):W

exp ( - %Hy - b@AxH%). (11)

To optimize both x and c, we perform alternate updates via coordinate descent. For gaussian obser-
vation noise n ~ A(0, 7, 'T), the x update rule in Equation 8 simplifies to:

(€2 S 2 €] 2
G+ _ _G) x5 — %o (%) Ib® Ax;’ —y|
X =) g P 702 +/2ng;  (12)

Given that log p(c|x,y) = log p(y|c,x) + log p(c) + const, we can define the ¢ update as:

_ ()2 2
vc<|y bOAx|? | ] )] 13

2Ty2 2

kD — ) _ (1)

where a/(t) is an annealing schedule that scales the bias field update based on the diffusion timestep,
providing smaller updates early in the reverse process when x((f )
image estimate becomes more reliable.

is noisy and larger updates as the

Inpainting. In some cases, we may wish to inpaint disease or corrupt regions of an image with
realistic healthy tissue while preserving individual anatomical characteristics. This enables the use
of a wide range of existing analysis tools that often fail or produce unreliable results in the presence
of pathology. For such inpainting tasks, we can define the likelihood given a binary mask m €
{0, 1} where m; = 1 indicates healthy pixels and m; = 0 indicates pathology pixels and defining
a selection matrix S € {0, 1}V *M where N is the number of healthy pixels:

¥ lx,m~ Ny | Sx,7,'T) (14)

where y = Sy represents the observed healthy pixels extracted from the full observation y. The
update becomes:

(4 _ ¢ 2 (@) _ 52
G+ _ () g — %o ()| |Sxg” — 3| o
XOJ = XOJ — r;ng]) 2Tt2 - T]Vx(()j) T + 2f[€j (15)

This formulation allows the prior to determine the values of disease regions while constraining
healthy pixels to match the data.
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Image refinement. Many existing image processing tools provide approximate solutions that could
benefit from further refinement. While these methods have proven valuable for processing heteroge-
neous data, their outputs often exhibit characteristic artifacts such as over-smoothing of fine details
or inconsistencies with the underlying morphology. For example, SynthSR Iglesias et al. (2023) can
fail to fully inpaint pathology or smooths images. Our diffusion-based inverse problem framework
provides a principled approach to refine outputs from any existing method by treating them as initial
approximations that can be iteratively improved. We formulate this as a constrained reconstruction
problem where we seek to generate a high-quality image x that maintains consistency with the initial
approximation X from the existing method. We construct the likelihood and posterior:

X|x~N&|x,7,'T), logp(x|%)=logp(k | x)+ logp(x) + const. (16)

where 75 controls the trust placed in the initial approximation.

4 EXPERIMENTS

In this section, we evaluate the performance of our method on three medical imaging inverse problem
tasks; image restoration, image inpainting and image refinement. For the image restoration and
image inpainting tasks, we compare our method against a number of both traditional and data driven
baselines. For the image refinement task, we qualitatively assess the ability of our method to improve
the quality of image generated by SynthSR Iglesias et al. (2023), a machine learning method for joint
super-resolution and anomaly inpainting of T1w MRI brain scans.

4.1 EXPERIMENTAL SETUP

We use a U-net Dhariwal & Nichol (2021) for our diffusion model prior backbone and DAPS Zhang
et al. (2025) for posterior sampling. Further details are available in Appendix A.1 and A.2.

4.1.1 TRAINING AND EVALUATION DATASETS

Training. To train our prior, we create a cohort of 7383 high-quality 1 mm isotropic T1-weighted
(T1w), T2-weighted (T2w) and FLAIR MRI images from the following datasets; ADNI Weiner
et al. (2017), HCP Essen et al. (2012), Chinese HCP Yang et al. (2024), ADHD200 Brown et al.
(2012), AIBL Fowler et al. (2021), COBRE Sidhu (2018) MCIC Gollub et al. (2013), ISBI2015
challenge and OASIS3 LaMontagne et al. (2018). Processing steps are available in Appendix A.3.

To showcase the versatility and robustness of our method, we perform experiments on a selection of
challenging datasets. For each dataset, we have paired target and low-resolution images.

Image restoration. For image restoration tasks, we test our method on two datasets; a Clinical
dataset and a Low-field dataset. The clinical dataset contains paired high- (1 mm isotropic) and low-
resolution scans with greater slice spacing and thickness, acquired with T1w (N=41), T2w (N=33),
or FLAIR contrast (N=31). The low-resolution scans were acquired axially with voxel spacings
provided in Appendix A.4. The Low-field dataset consists of paired low- and high-field TI1w (N=16)
and T2w (N=16) images acquired in healthy subjects. Low-field images were acquired at 0.064 T
(Hyperfine Inc) either isotropically (3 mm) or axially (1.6, 1.6, 5 mm). High-field isotropic (1 mm)
images were acquired at 3 T (Siemens Prisma), as described in previous work Sorby-Adams et al.
(2024). Example figures as well as further details on data preprocessing and dataset descriptions,
including demographics information, are available in Appendix A.4.

Image inpainting and refinement. We evaluate our inpainting approach on brain lesion datasets,
where the goal is to reconstruct healthy tissue in regions affected by pathology. We conduct experi-
ments on binary manual chronic strokes lesion segmentations and T1w images from the BraTS Baid
et al. (2021) (N=398) and ATLAS Liew et al. (2018) (N=646) datasets. For the image refinement
task, we first apply SynthSR to a subset of the ATLAS dataset and then apply our method with the
forward model given in Equation 16 (7,=0.05, set heuristically) to refine the images.

4.1.2 EVALUATION METRICS

To evaluate image restoration and refinement, we compare generated images from degraded scans
with the original high-resolution 1 mm isotropic scans. We compute standard image quality met-



Under review as a conference paper at ICLR 2026

rics (IQMs): mean absolute error (MAE), peak signal-to-noise ratio (PSNR), structural similarity
(SSIM) Wang et al. (2004), visual information fidelity (VIF) Sheikh & Bovik (2006), gradient mag-
nitude similarity deviation (GMSD) Xue et al. (2014), and learned perceptual image patch similarity
(LPIPS) Zhang et al. (2018) using an AlexNet backbone Krizhevsky et al. (2012). For metrics
designed for 2D images, we adopt a 2.5D approach.

For inpainting, the goal is to not only inpaint disease regions but also produce anatomically plausible
reconstructions. We generate pseudo-healthy images for each method and evaluate them using two
unsupervised anomaly detection models—a VAE Baur et al. (2021) and an LDM Graham et al.
(2023) with pretrained weights from Lawry Aguila et al. (2025). Successful inpainting should yield
pseudo-healthy images within the natural variation of healthy anatomy, resulting in minimal detected
anomalies by the anomaly detection methods. For each model we compute anomaly maps, we report
MAE, LPIPS, and the maximum Dice for the respective method between the anomaly map and
segmentation; here, lower Dice scores indicate effective removal of disease-related anomalies.

4.1.3 COMPARISON WITH STATE-OF-THE-ART METHODS

Image restoration. We compare our method to both data-driven and classical baselines designed
for medical imaging. For classical approaches, we compare to UniRes Brudfors et al. (2019), a
principled inverse problem solving approach to super resolution of clinical images which uses a
total variation (TV) prior. In terms of data-driven methods, we compare to SynthSR, a data-driven
machine learning method for joint SR and inpainting of heterogeneous T1w scans, as well as two
generative models; LoHiResGAN Islam et al. (2023) and Res-SRDiff Safari et al. (2025), a GAN
and diffusion model approach respectively, which require paired images for training. For methods
not designed for a specific modality, we exclude them from the corresponding analysis.

Inpainting. To assess our anomaly inpainting performance, we compare to SynthSR as well as
two recently proposed diffusion model approaches; DDPM-2D Durrer et al. (2024a) and DDPM-
pseudo3D Zhu et al. (2023). All baselines use paired images and segmentation maps during training.

Table 1: Super-resolution results for the Clinical and Low-ficld MR datasets. For each modality and
metric, bold indicates the best results, and underlined indicates the second best performance.

Modality Method MAE (|) PSNR (1) SSIM (1) LPIPS () VIF (1) GMSD ({) Rank (1)
SynthSR 0.1229 16.9876 0.1458 0.1834 0.1527 0.2660 217
UniRes 0.1948 11.1006 0.5101 0.4260 0.0930 0.3601 3.83
Tlw LoHiResGAN  0.0938 18.0808 0.1249 0.3984 0.0656 0.3536 3.00
3 Res-SRDiff 0.1825 13.1292 0.0608 0.6786 0.0477 0.3526 433
,g Ours 0.0869 17.8909 0.1783 0.1929 0.1085 0.2383 1.67
S|
6 UniRes 0.0355 20.8495 0.7509 0.2112 0.3238 0.3079 1.50
E Tow LoHiResGAN  0.1752 12.6202 0.0768 0.6601 0.0090 0.3841 4.00
o Res-SRDiff 0.0803 19.1157 0.1439 0.4317 0.0979 0.3344 3.00
Ours 0.0557 21.4820 0.1908 0.1671 0.1028 0.2537 1.50
UniRes 0.0951 15.7761 0.6624 0.2827 0.2992 0.3191 1.67
FLAIR  Res-SRDiff 0.1611 13.7190 0.0824 0.5745 0.0940 0.3357 3.00
Ours 0.0656 20.7568 0.2126 0.1662 0.1495 0.2253 1.33
SynthSR 0.1238 13.8642 0.2767 0.3176 0.1401 0.3722 3.17
3 UniRes 0.1138 12.8471 0.5709 0.3077 0.1489 0.3038 2.33
& Tiw LoHiResGAN  0.0879 18.5893 0.1175 0.4366 0.0740 0.3536 3.17
=] Res-SRDiff 0.2147 11.6563 0.0540 0.7800 0.0146 0.3736 5.00
% Ours 0.0724 19.6039 0.1992 0.1503 0.3485 0.2068 117
B
é UniRes 0.0403 22.2391 0.6743 0.2215 0.1834 0.2912 1.67
2 Tow LoHiResGAN  0.0826 19.1590 0.1249 0.3763 0.0708 0.3543 3.33
Res-SRDiff 0.0955 18.4865 0.1116 0.3763 0.1116 0.3172 3.67
Ours 0.0491 22.7399 0.2113 0.1625 0.3157 0.2005 1.33

4.2 IMAGE RESTORATION RESULTS

IQM values comparing generated to ground-truth high-resolution scans are shown in Table 1. Our
method outperforms baselines across several metrics, achieving the highest, or joint highest, rank
for all datasets. Data-driven methods, LoHiResGAN and Res-SRDiff, fail to generalise to these
cohorts, as illustrated by their poor performance. SynthSR, although outperforming our method on
some IQMs (LPIPS and VIF for T1w Clinical), is restricted to predicting T1w intensities. UniRes
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is the closest-performing baseline, which is expected given that it also models image restoration ex-
plicitly with a forward model similar to ours. UniRes achieves the best SSIM, whereas our method
underperforms on this metric. However, SSIM has well-documented limitations as an IQM for ra-
diological data (Mason et al., 2019). In contrast, for GMSD, our method outperforms all baselines,
with percentage improvements over the second-best method of 10.4% (Clinical T1w), 17.6% (Clin-
ical T2w), 29.4% (Clinical FLAIR), 35.2% (Low-field T1w), and 31.1% (Low-field T2w).

Qualitative T1w results are shown in Figure 2, with further examples for other modalities in Ap-
pendix A.8. LoHiResGAN and Res-SRDiff produce unrealistic images with severe artifacts, likely
arising from bias fields, sharp intensity artifacts, and other noise not present during training. UniRes
generates oversmoothed images, likely due to its TV prior and its reliance on information from mul-
tiple input modalities, whereas we apply it unimodally. SynthSR, like our method, preserves key
anatomical structures; however, our difference maps show reduced contrast, further supporting the
strong quantitative results shown in Table 1.

4.3 IMAGE INPAINTING RESULTS

Inpainting results
are given in
Table 2. Our
method achieves
the best overall
performance,

attaining the
highest rank on
both datasets.

For ATLAS,
our method
outperforms

all baselines

with  improve-
ments of 39.2%
(VAEmaE), 8.3%

(VAELprps),

2.7% (VAEpi.), Figure 2: Example restoration results for the clinical (top) and Low-Field MR
44.2% dataset (bottom). Each column shows a stacked pair of images (top/bottom)
(LDMpaE), corresponding to a different method. (a) Ground truth TIw (Imm) image and
19.0% linearly interpolated low-resolution image, (b) SynthSR, (c) UniRes, (d) Lo-
(LDM pps), HiResGAN, (e) Res-SRDiff, and (f) Ours. Difference maps are shown for each
and 51.4% method.

(LDMpjce). On BraTs, it improves over the best baselines by 25.6% (VAEwmag), 5.2% (VAELpips),
27.4% (LDMpag), and 15.2% (LDM ppps), while remaining competitive on the remaining metrics.

Figure 3 (additional examples in Appendix A.9) shows that SynthSR preserves healthy tissue but
struggles with large lesions, while DDPM-2D and DDPM-3D, despite producing high-contrast
anomaly maps, generate unrealistic homogeneous inpainting, consistent with their lower perfor-
mance in Table 2. In contrast, our method yields the most anatomically plausible inpainted regions,
although anomaly maps appear subtle due to low contrast between lesions and healthy tissue.

Table 2: Inpainting results for inpainting of the BraTS and ATLAS datasets.

Dataset Method VAEMAE ( l) VAE_ prps (l ) VAEpice ( l) LDMMmAE ( l) LDM pips ( l) LDMDpjce (l Rank ( l)
SynthSR 0.0947 0.3692 0.1466 0.1071 0.2234 0.0310 2.33

BraTS DDPM-2D  0.1122 0.3723 0.1707 0.1042 0.2291 0.1862 3.50
DDPM-3D  0.1025 0.3615 0.1736 0.0932 0.2127 0.1913 2.83
Ours 0.0705 0.3428 0.1579 0.0677 0.1804 0.0834 1.33
SynthSR 0.1049 0.4047 0.0486 0.1221 0.2309 0.0037 3.17

ATLAS DDPM-2D  0.1162 0.3956 0.0491 0.1078 0.2283 0.0448 3.17
DDPM-3D  0.1012 0.3808 0.0493 0.0900 0.2046 0.0470 2.67
Ours 0.0615 0.3492 0.0473 0.0502 0.1657 0.0018 1.00
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Figure 5: 7, performance for (a) restoration and (b) inpainting tasks.

4.4 IMAGE REFINEMENT RESULTS

cJhll (T Tl
B B B

The image refinement
results (see  Appendix
A.10 for more examples)
in Figure 4 highlight our
framework’s  ability to
enhance outputs from
existing methods. While
SynthSR can inpaint dis-
ease regions, the resulting
tissue often appears un-
realistic. Our method
further refines these areas,
producing  anatomically
plausible reconstructions
with more realistic surface
structures.

4.5 HYPERPARAMETER

STUDIES Figure 3: Example inpainting results for the BraTS (top) and ATLAS
(bottom) datasets. (a) Original image and manual segmentation map,

Figure 5 reports results (b) SynthSR, (c¢) DDPM-2D, (d) DDPM-3D and (e) Ours. Recon-

across a range of likeli- structions and difference maps are shown for each method.

hood precision values 7, in-

formed by prior work Zheng et al. (2025) and synthetic data (see Appendix A.5). Image restoration

performs best with moderate 7 (0.025), balancing data fidelity and prior regularization, while in-

painting benefits from lower 7 (0.005) to better preserve subject-specific features, highlighting the

importance of task-specific tuning.

5 CONCLUSION

‘We present the first general-purpose application

g 4 = of diffusion models as priors for medical imag-
;‘i‘; l - ﬁ ing inverse problems in neuroimaging. Our ap-

1 3 proach integrates powerful data-driven priors

N ! learned from diverse brain MRI with flexible

forward models to tackle a range of imaging
challenges. Importantly, our method does not
require acquisition parameters or paired train-
ing data and can be applied directly to degraded
scans. Extensive experiments on heterogeneous, noisy datasets demonstrate that our proposed
method achieves state-of-the-art performance, highlighting its efficacy. Limitations and further work
is discussed in Appendix A.7. By flexibly improving low-resolution or otherwise suboptimal scans,
our method has the potential to significantly advance both clinical practice and research, for example
by reducing scan times, enabling retrospective analysis of archived datasets, or supporting studies in
populations where high-quality imaging is difficult to obtain.

Original pathology SynthSR generation Our refinement

Figure 4: Example ATLAS refinement result.



Under review as a conference paper at ICLR 2026

REFERENCES
Simon R Arridge. Optical tomography in medical imaging. Inverse Problems, 15(2):R41, 1999.

John Ashburner and Karl J. Friston. Unified segmentation. Neurolmage, 26(3):839-851, 2005.

Ujjwal Baid et al. The RSNA-ASNR-MICCALI brats 2021 benchmark on brain tumor segmentation
and radiogenomic classification. CoRR, 2021.

Yaél Balbastre, Mikael Brudfors, Kevin Bronik, and John Ashburner. Diffeomorphic brain shape
modelling using gauss-newton optimisation. In Medical Image Computing and Computer Assisted
Intervention — MICCAI 2018, pp. 862-870. Springer International Publishing, 2018.

Christoph Baur, Stefan Denner, et al. Autoencoders for unsupervised anomaly segmentation in brain
mr images: A comparative study. Medical Image Analysis, 2021.

Cosmin I. Bercea, Benedikt Wiestler, Daniel Rueckert, and Julia A. Schnabel. Towards universal
unsupervised anomaly detection in medical imaging. arXiv, 2024.

Benjamin Billot, Douglas Greve, Oula Puonti, et al. SynthSeg: Segmentation of brain MRI scans of
any contrast and resolution without retraining. MedIA, 2023.

Jonathan D. Blumenthal, Alex Zijdenbos, Elizabeth Molloy, and Jay N. Giedd. Motion artifact in
magnetic resonance imaging: Implications for automated analysis. Neurolmage, 16(1):89-92,
2002.

Matthew R. G. Brown, Gagan Preet Singh Sidhu, Russell Greiner, et al. ADHD-200 global com-
petition: diagnosing ADHD using personal characteristic data can outperform resting state fMRI
measurements. Frontiers in Systems Neuroscience, 2012.

Mikael Brudfors, Yael Balbastre, Parashkev Nachev, and John Ashburner. A tool for super-resolving
multimodal clinical mri. arXiv, 2019.

Stefano Cerri, Douglas N. Greve, Andrew Hoopes, Henrik Lundell, Hartwig R. Siebner, Mark
Miihlau, and Koen Van Leemput. An open-source tool for longitudinal whole-brain and white
matter lesion segmentation. Neurolmage: Clinical, 38:103354, 2023.

Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving diffusion models for
inverse problems using manifold constraints. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), NeurIPS, 2022.

Hyungjin Chung, Jeongsol Kim, Michael Thompson Mccann, Marc Louis Klasky, and Jong Chul
Ye. Diffusion posterior sampling for general noisy inverse problems. In The Eleventh Interna-
tional Conference on Learning Representations, 2023.

Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat GANs on image synthesis.
In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), NeurIPS, 2021.

Zehao Dou and Yang Song. Diffusion posterior sampling for linear inverse problem solving: A
filtering perspective. In The Twelfth International Conference on Learning Representations, 2024.

Alicia Durrer, Philippe C. Cattin, and Julia Wolleb. Denoising diffusion models for inpainting of
healthy brain tissue. arXiv, 2024a.

Alicia Durrer, Julia Wolleb, Florentin Bieder, Paul Friedrich, Lester Melie-Garcia, Mario Alberto
Ocampo Pineda, Cosmin I Bercea, Ibrahim Ethem Hamamci, Benedikt Wiestler, Marie Piraud,
et al. Denoising diffusion models for 3d healthy brain tissue inpainting. In MICCAI Workshop on
Deep Generative Models, pp. 87-97. Springer, 2024b.

Matthias J. Ehrhardt and Marta M. Betcke. Multicontrast mri reconstruction with structure-guided
total variation. SIAM Journal on Imaging Sciences, 9(3):1084-1106, 2016.

David Van Essen, Kamil Ugurbil, Edward Auerbach, et al. The human connectome project: A data
acquisition perspective. Neurolmage, 2012.

10



Under review as a conference paper at ICLR 2026

Alan Evans, Louis Collins, S.R. Mills, E.D. Brown, R.L. Kelly, and Terence Peters. 3d statisti-
cal neuroanatomical models from 305 mri volumes. Nuclear Science Symposium and Medical
Imaging Conference, 1993 IEEE Conference Record, 3:1813 — 1817, 1993.

Berthy T. Feng, Jamie Smith, Michael Rubinstein, Huiwen Chang, Katherine L. Bouman, and
William T. Freeman. Score-based diffusion models as principled priors for inverse imaging. arXiv,
2023.

Virginia Fernandez, Walter Hugo Lopez Pinaya, Pedro Borges, Petru-Daniel Tudosiu, Mark S. Gra-
ham, Tom Vercauteren, and M. Jorge Cardoso. Can Segmentation Models Be Trained with Fully
Synthetically Generated Data?, pp. 79-90. Springer International Publishing, 2022.

Bruce Fischl. Freesurfer. Neurolmage, (2):774-781, 2012.

Christopher Fowler, Stephanie R. Rainey-Smith, Sabine M. Bird, et al. Fifteen years of the aus-
tralian imaging, biomarkers and lifestyle (AIBL) study: Progress and observations from 2,359
older adults spanning the spectrum from cognitive normality to alzheimer’s disease. Journal of
Alzheimer’s Disease Reports, 2021.

Robert L. Gollub, J. Michael Shoemaker, Michael D. King, Tonya White, Stefan Ehrlich, Scott R.
Sponheim, Vincent P. Clark, Jessica A. Turner, Bryon A. Mueller, Vincent Magnotta, Daniel
O’Leary, Beng-Choon Ho, Stefan Brauns, Dara S. Manoach, Larry Seidman, Juan R. Bustillo,
John Lauriello, H. Jeremy Bockholt, Kelvin O. Lim, Bruce R. Rosen, Stephan C. Schulz, Vince D.
Calhoun, and Nancy C. Andreasen. The mcic collection: a shared repository of multi-modal,
multi-site brain image data from a clinical investigation of schizophrenia. Neuroinformatics, 11
(3):367-388, 2013.

Mark Graham, Walter Pinaya, Paul Wright, et al. Unsupervised 3d out-of-distribution detection with
latent diffusion models. arXiv, 2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In NeurlIPS,
pp. 6840-6851, 2020.

Juan E. Iglesias. A ready-to-use machine learning tool for symmetric multi-modality registration of
brain MRI. Scientific Reports, 2023.

Juan Eugenio Iglesias, Benjamin Billot, Yaél Balbastre, Azadeh Tabari, John Conklin, R. Gilberto
Gonzdlez, Daniel C. Alexander, Polina Golland, Brian L. Edlow, and Bruce Fischl. Joint super-
resolution and synthesis of 1 mm isotropic mp-rage volumes from clinical mri exams with scans
of different orientation, resolution and contrast. Neurolmage, 237:118206, 2021.

Juan Eugenio Iglesias, Benjamin Billot, Yael Balbastre, et al. SynthSR: A public Al tool to turn
heterogeneous clinical brain scans into high-resolution T1-weighted images for 3D morphometry.
Science Advances, 2023.

Kh Tohidul Islam, Shenjun Zhong, Parisa Zakavi, Zhifeng Chen, Helen Kavnoudias, Shawna Far-
quharson, Gail Durbridge, Markus Barth, Katie L. McMahon, Paul M. Parizel, Andrew Dwyer,
Gary F. Egan, Meng Law, and Zhaolin Chen. Improving portable low-field mri image quality
through image-to-image translation using paired low- and high-field images. Scientific Reports,
13, 2023.

Ajil Jalal, Marius Arvinte, Giannis Daras, Eric Price, Alexandros G Dimakis, and Jon Tamir. Robust
compressed sensing mri with deep generative priors. In M. Ranzato, A. Beygelzimer, Y. Dauphin,
P.S. Liang, and J. Wortman Vaughan (eds.), NeurIPS, pp. 14938—-14954. Curran Associates, Inc.,
2021.

Mark Jenkinson, Christian F. Beckmann, Timothy E.J. Behrens, Mark W. Woolrich, and Stephen M.
Smith. Fsl. Neurolmage, 62(2):782-790, 2012. 20 YEARS OF fMRIL.

Aryan Kalluvila, Neha Koonjoo, Danyal Bhutto, Marcio Rockenbach, and Matthew S. Rosen. Syn-
thetic low-field mri super-resolution via nested u-net architecture. arXiv, 2022.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. arXiv, 2022.

11



Under review as a conference paper at ICLR 2026

Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration
models. In NeurIPS, 2022.

Seunghoi Kim, Henry Tregidgo, Matteo Figini, Chen Jin, Sarang Joshi, and Daniel Alexander. Tack-
ling hallucination from conditional models for medical image reconstruction with dynamicdps.
arXiv, 2025.

Eduard T. Klapwijk, Ferdi van de Kamp, Mara van der Meulen, Sabine Peters, and Lara M.
Wierenga. Qoala-t: A supervised-learning tool for quality control of freesurfer segmented mri
data. Neurolmage, 189:116-129, 2019.

Florian Kofler, Felix Meissen, Felix Steinbauer, Robert Graf, Stefan K Ehrlich, Annika Reinke, Eva
Oswald, Diana Waldmannstetter, Florian Hoelzl, Izabela Horvath, Oezguen Turgut, Suprosanna
Shit, Christina Bukas, Kaiyuan Yang, Johannes C. Paetzold, Ezequiel de da Rosa, Isra Mekki,
Shankeeth Vinayahalingam, Hasan Kassem, Juexin Zhang, Ke Chen, Ying Weng, Alicia Dur-
rer, Philippe C. Cattin, Julia Wolleb, M. S. Sadique, M. M. Rahman, W. Farzana, A. Temtam,
K. M. Iftekharuddin, Maruf Adewole, Syed Muhammad Anwar, Ujjwal Baid, Anastasia Janas,
Anahita Fathi Kazerooni, Dominic LaBella, Hongwei Bran Li, Ahmed W Moawad, Gian-Marco
Conte, Keyvan Farahani, James Eddy, Micah Sheller, Sarthak Pati, Alexandros Karagyris, Ale-
jandro Aristizabal, Timothy Bergquist, Verena Chung, Russell Takeshi Shinohara, Farouk Dako,
Walter Wiggins, Zachary Reitman, Chunhao Wang, Xinyang Liu, Zhifan Jiang, Elaine Johanson,
Zeke Meier, Ariana Familiar, Christos Davatzikos, John Freymann, Justin Kirby, Michel Bilello,
Hassan M Fathallah-Shaykh, Roland Wiest, Jan Kirschke, Rivka R Colen, Aikaterini Kotrot-
sou, Pamela Lamontagne, Daniel Marcus, Mikhail Milchenko, Arash Nazeri, Marc-André We-
ber, Abhishek Mahajan, Suyash Mohan, John Mongan, Christopher Hess, Soonmee Cha, Javier
Villanueva-Meyer, Errol Colak, Priscila Crivellaro, Andras Jakab, Abiodun Fatade, Olubukola
Omidiji, Rachel Akinola Lagos, O O Olatunji, Goldey Khanna, John Kirkpatrick, Michelle
Alonso-Basanta, Arif Rashid, Miriam Bornhorst, Ali Nabavizadeh, Natasha Lepore, Joshua
Palmer, Antonio Porras, Jake Albrecht, Udunna Anazodo, Mariam Aboian, Evan Calabrese, Jef-
frey David Rudie, Marius George Linguraru, Juan Eugenio Iglesias, Koen Van Leemput, Spyridon
Bakas, Benedikt Wiestler, Ivan Ezhov, Marie Piraud, and Bjoern H Menze. The brain tumor seg-
mentation (brats) challenge: Local synthesis of healthy brain tissue via inpainting. arXiv, 2024.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In NeurIPS, 2012.

Pamela LaMontagne, Sarah Keefe, Wallace Lauren, et al. OASIS-3: Longitudinal neuroimaging,
clinical, and cognitive dataset for normal aging and alzheimer’s disease. Alzheimer’s & Dementia,
2018.

Ana Lawry Aguila, Peirong Liu, Oula Puonti, and Juan Eugenio Iglesias. Conditional diffusion
models for guided anomaly detection in brain images using fluid-driven anomaly randomization.
arXiv, 2025.

Sook-Lei Liew, Julia Anglin, Nick Banks, et al. A large, open source dataset of stroke anatomical
brain images and manual lesion segmentations. Sci. data, 2018.

Michael Lustig, David L. Donoho, and John M. Pauly. Sparse mri: The application of compressed
sensing for rapid mr imaging. Magnetic Resonance in Medicine, 58, 2007.

Allister Mason, James Rioux, Sharon Clarke, Andreu Costa, Matthias Schmidt, Valerie Keough,
Thien Huynh, and Steven Beyea. Comparison of objective image quality metrics to expert radi-
ologists’ scoring of diagnostic quality of mr images. IEEE Transactions on Medical Imaging, pp.
1-1, 2019.

Sébastien Ourselin, Alexis Roche, Gérard Subsol, Xavier Pennec, and Nicholas Ayache. Recon-
structing a 3d structure from serial histological sections. Image and Vision Computing, 19:25-31,
2001.

Sébastien Ourselin, Radu Stefanescu, and Xavier Pennec. Robust registration of multi-modal im-
ages: Towards real-time clinical applications. volume 2489, pp. 140-147, 2002.

12



Under review as a conference paper at ICLR 2026

Walter H. L. Pinaya, Petru-Daniel Tudosiu, Jessica Dafflon, Pedro F da Costa, Virginia Fernandez,
Parashkev Nachev, Sebastien Ourselin, and M. Jorge Cardoso. Brain imaging generation with
latent diffusion models. arXiv, 2022.

Mojtaba Safari, Shansong Wang, Zach Eidex, Qiang Li, Erik H. Middlebrooks, David S. Yu, and
Xiaofeng Yang. Mri super-resolution reconstruction using efficient diffusion probabilistic model
with residual shifting. arXiv, 2025.

H.R. Sheikh and A.C. Bovik. Image information and visual quality. IEEE Transactions on Image
Processing, 15(2):430-444, 2006.

Gagan Sidhu. Cobre dataset (locally linear embedding and fmri feature selection for psychiatric
classification), 2018.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv, 2021.

Yang Song, Liyue Shen, Lei Xing, and Stefano Ermon. Solving inverse problems in medical imaging
with score-based generative models. In International Conference on Learning Representations,

2022.
Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv, 2023.

Annabel Sorby-Adams, Jennifer Guo, Pablo Laso, John Kirsch, Julia Zabinska, Ana-Lucia Gar-
cia Guarniz, Pamela Schaefer, Seyedmehdi Payabvash, Adam de Havenon, Matthew Rosen, Kevin
Sheth, Teresa Gomez-Isla, J. Iglesias, and W. Kimberly. Portable, low-field magnetic resonance
imaging for evaluation of alzheimer’s disease. Nature Communications, 15, 2024.

N. Tustison, Brian B. Avants, Philip A. Cook, Yuanjie Zheng, Alexander Egan, Paul Yushkevich,
and James C. Gee. N4itk: Improved n3 bias correction. IEEE Transactions on Medical Imaging,
29:1310-1320, 2010.

Koen Van Leemput, Frederik Maes, Dirk Vandermeulen, and Paul Suetens. Automated model-based
bias field correction of mr images of the brain. IEEE transactions on medical imaging, 18:885-96,
1999.

Yinhuai Wang, Jiwen Yu, and Jian Zhang. Zero-shot image restoration using denoising diffusion
null-space model. In The Eleventh International Conference on Learning Representations, 2023.

Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment: from error
visibility to structural similarity. IEEE Transactions on Image Processing, 13(4):600-612, 2004.

Michael Weiner, Dallas Veitch, Paul Aisen, et al. The Alzheimer’s disease neuroimaging initiative
3. Alzheimer’s & Dementia, 2017.

Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient langevin dynamics.
In Proceedings of the 28th International Conference on International Conference on Machine

Learning, pp. 681-688. Omnipress, 2011.

Julia Wolleb, Florentin Bieder, Robin Sandkiihler, and Philippe C. Cattin. Diffusion models for
medical anomaly detection. In Linwei Wang, Qi Dou, P. Thomas Fletcher, Stefanie Speidel, and
Shuo Li (eds.), Medical Image Computing and Computer Assisted Intervention — MICCAI 2022,
pp. 35-45, Cham, 2022. Springer Nature Switzerland.

Wufeng Xue, Lei Zhang, Xuanqin Mou, and Alan C. Bovik. Gradient magnitude similarity devia-
tion: A highly efficient perceptual image quality index. IEEE Transactions on Image Processing,
23(2):684-695, 2014.

Guoyuan Yang, Jiangiao Ge, and Jia-Hong Gao. Chinese Human Connectome Project, 2024.

Bingliang Zhang, Wenda Chu, Julius Berner, Chenlin Meng, Anima Anandkumar, and Yang Song.
Improving diffusion inverse problem solving with decoupled noise annealing. arXiv, 2024.

13



Under review as a conference paper at ICLR 2026

Bingliang Zhang, Wenda Chu, Julius Berner, Chenlin Meng, Anima Anandkumar, and Yang Song.
Improving diffusion inverse problem solving with decoupled noise annealing. In 2025 [EEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 20895-20905. IEEE, 2025.

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 586-595, 2018.

Hongkai Zheng, Wenda Chu, Bingliang Zhang, Zihui Wu, Austin Wang, Berthy Feng, Caifeng
Zou, Yu Sun, Nikola Borislavov Kovachki, Zachary E Ross, Katherine Bouman, and Yisong
Yue. Inversebench: Benchmarking plug-and-play diffusion priors for inverse problems in physical
sciences. In The Thirteenth International Conference on Learning Representations, 2025.

Lingting Zhu, Zeyue Xue, Zhenchao Jin, Xian Liu, Jingzhen He, Ziwei Liu, and Lequan Yu. Make-
a-volume: Leveraging latent diffusion models for cross-modality 3d brain mri synthesis. In Hayit
Greenspan, Anant Madabhushi, Parvin Mousavi, Septimiu Salcudean, James Duncan, Tanveer
Syeda-Mahmood, and Russell Taylor (eds.), Medical Image Computing and Computer Assisted
Intervention — MICCAI 2023, pp. 592—-601, Cham, 2023. Springer Nature Switzerland.

14



Under review as a conference paper at ICLR 2026

A APPENDIX

LLM usage. In this work we use LLMs for text refinement and generation, coding, and problem
solving.

Code. We base our code on the InverseBench (https://github.com/devzhk/
InverseBench) and UniRes packages (https://github.com/brudfors/UniRes). It
is available at: https://anonymous. 4open.science/r/iclr2026-E1BC.

A.1 DIFFUSION MODEL PRIOR
For the prior, we use a diffusion model trained with the EDM framework Karras et al. (2022) using

the data described in Section 4.1.1. The model architecture, training and diffusion parameters are
given in Tables 3 and 4.

Table 3: UNet Architecture Parameters

Parameter Value
Model type DhariwalUNet Dhariwal & Nichol (2021)
Image resolution 176
Input channels 1
Output channels 1
Model channels 128
Channel multipliers [1,2,2]
Channel embedding multiplier 4
Attention resolutions [16]
Number of blocks per resolution 1
Attention heads 1
Dropout rate 0
FP16 precision True

Table 4: Diffusion Model Training Parameters

Parameter Value

Loss Parameters

Loss type EDM Loss
Noise mean (Prean) -1.2
Noise standard deviation (Pyq) 1.2
Data standard deviation (oga) 0.5
Minimum noise level (o yin) 0
Maximum noise level (o ax) 0

Training Parameters

Optimizer Adam

Learning rate 1x1074

Batch size 1

Total training steps 220,000

Warmup steps 500

Gradient clipping 1.0
EMA parameters

EMA decay 0.9999

EMA ramp-up ratio 0.05

EMA update frequency Every 10 steps
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A.2 POSTERIOR SAMPLING HYPERPARAMETERS

There are a number of hyperparameters in the DAPS sampling algorithm. We choose these parame-
ters heuristically using the synthetic data described in Appendix A.5 and based on prior work Zheng
et al. (2025). The hyperparameter settings are given in Table 5. The 7 values are described in the
main text.

Table 5: DAPS Algorithm Parameters

Parameter Value
Annealing steps 50
Annealing oyax 100
Annealing opin 0.1
Diffusion steps 5
Diffusion o, 0.01
Langevin step size 1x1074
Langevin step number 20
Noise level (1) -
Step size decay ratio 0.01
Schedule type Linear
Timestep method Polynomial-7

A.3 TRAINING DATASETS
The number of scans from each dataset are provided in Table 6. Each image is skull-stripped and

Table 6: Summary of MRI scans in the training data by dataset and modality

Dataset Tiw T2w FLAIR
ABIDE 819 - -
AIBL 820 - -
HCP 1033 821 -
OASIS3 1238 695 273
ADNI3 316 - 315
Buckner40 38 - -
Chinese-HCP 212 - -
COBRE 187 - -
ISB12015¢ 21 - -
MCIC 161 - -
Total 5279 1516 588

‘https://biomedicalimaging.org/2015/program/isbi-challenges/

bias-field corrected with FreeSurfer Fischl (2012) and N4ITK Tustison et al. (2010) respectively,
and min-max normalized to [-1,1], All volumes are affinely registered the MNI305 template Evans
etal. (1993) using EasyReg Iglesias (2023) and transformed and cropped to 1763 voxels. The affine
transformation to MNI305 space is recomputed by aligning the centroids of anatomical labels from
SynthSeg Billot et al. (2023) segmentations to the corresponding atlas centroids.

A.4 DATA FOR POSTERIOR SAMPLING

The experiments in this work use four datasets: two in-house datasets for image restoration (a Clin-
ical cohort and a Low-field cohort), and two open-source datasets for inpainting and refinement
(BraTS and ATLAS). In this section we provide additional information on these datasets.

For both the Clinical and Low-field datasets, low-resolution images are skull-stripped and normal-
ized to [-1, 1]. The alignment to MNI space is required by forward model given in Equation 11 and is
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(b)

Figure 6: Example low-resolution images from the (a) Clinical and (b) Low-field datasets. Both
cohorts exhibit clear registration requirements, downsampling, low signal, and bias-field artifacts,
highlighting the challenges of image restoration in such heterogeneous and noisy data.

achieved by recomputing the affine transformation through centroid alignment of anatomical labels
from SynthSeg Billot et al. (2023) segmentations with the corresponding atlas centroids. Example
low-resolution images are shown in Figure 6.

At inference, super-resolved degraded scans are affinely registered to MNI space if not already
aligned. In cases where super-resolved images were too poor in quality for direct registration, we
instead applied the inverse affine transform obtained by registering the high-resolution image to its
low-resolution counterpart using NiftyReg Ourselin et al. (2001; 2002).

Images from the ATLAS and BraTS datasets are skull-stripped, bias field corrected, and affinely
registered to MNI space. For the BraTS dataset, scans were manually QCed for limited noise and
artifacts.
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Table 7: Demographics of Clinical and Low-field MRI Datasets

Dataset Modality Age Range (yrs) Racial Split (White / Total # Scans
Black / Asian / Other)

Clinical T1 5-82 19/15/7/0 41

Clinical T2 21-63 15/10/8/0 33

Clinical FLAIR 3-73 15/5/11/0 31

Low-field TI1/T2/FLAIR 23-53 24/0/6/2 32

Table 8: Voxel spacing and number of scans per dataset and modality

Dataset Modality Voxel Spacing (mm) # Scans
Clinical T1 (1.375, 1.375, 6.0) 35
Clinical T1 (1.0, 1.0, 3.0) 6
Clinical T2 (0.977,0.977, 3.0) 20
Clinical T2 (1.429, 1.429, 5.0) 10
Clinical T2 (1.6, 1.6, 6.0) 3
Clinical FLAIR (1.375, 1.375, 6.0) 18
Clinical FLAIR (1.0, 1.0, 3.0) 12
Clinical FLAIR (1.6, 1.6, 6.0) 1
Low-field TI1/T2/FLAIR (2.0,2.0,2.0) 30
Low-field TI1/T2/FLAIR (1.6, 1.6, 5.0) 2

A.5 SYNTHETIC DATA FOR BASELINE TRAINING AND HYPERPARAMETER ANALYSIS

Synthetic low-resolution MRI data are generated from the high-resolution scans describe in A.3
using frequency-domain filtering and spatial downsampling to simulate thick-slice acquisition.

First, the image is transformed to Fourier space using a 3D FFT with frequency shifting. A 3D
Gaussian low-pass filter is then applied to approximate the point-spread function and slice profile,
attenuating high-frequency components that would otherwise cause aliasing during resampling. The
filtered frequency representation is then returned to the spatial domain via inverse frequency shift
and inverse FFT.

Next, the image is spatially downsampled with trilinear interpolation to match the target resolution.
Output dimensions are set as |original size/factor| along each axis, where the factors correspond to
the ratio of original to target voxel spacing.

For the hyperparameter analysis, we simulate axially acquired samples of voxel spacing
(1.6,5.0,1.6) mm. For the baseline training, we samples factors stochastically from realistic ranges.

A.6 BASELINE METHODS

SynthSR. We use the implementation available with FreeSurfer 7.4.1. Since SynthSR generates
the skull, we use SynthSeg Billot et al. (2023) for skull stripping of all generated images to ensure
consistent preprocessing with other methods.

UniRes. We use the original implementation available at https://github.com/brudfors/
UniRes. For fair comparison with our approach and other baselines, we use a uni-modal configu-
ration with default hyperparameters settings from the GitHub repository.

LoHiResGAN. We use the original codebase and pre-trained model weights from https://
github.com/khtohidulislam/LoHiResGAN. All input samples are registered to the refer-
ence test image provided with the original implementation.

Res-SRDiff. We use the original codebase available at https://github.com/mosaf/
res—-srdiff. Since pre-trained weights were not publicly available, we train the model from
scratch using high-resolution and synthetic low-resolution image pairs described in Section A.1 and
A.5. All training data is pre-registered to MNI space.
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DDPM-2D and DDPM-Pseudo3D. We use the implementation, inference code, and pre-trained
network weights from Durrer et al. (2024b) without modification.

A.7 FURTHER DISCUSSION

There are number of limitations and directions of further work which warrant discussion. Firstly, our
methods ability to generate realistic tissue contrasts requires improvement, as evidenced by the low
SSIM values for image restoration tasks. We plan to investigate more sophisticated likelihood for-
mulations that better preserve contrast characteristics, and improved training of the prior to capture
a wider range of potential image contrasts. Additionally, sampling time remains slow due to the iter-
ative nature of diffusion-based posterior sampling, which may limit real-time clinical applications.
The method’s performance varies across different imaging modalities and requires task-specific hy-
perparameter tuning, reducing its plug-and-play applicability. Future work will focus on exploring
consistency models Song et al. (2023) to accelerate sampling and develop adaptive hyperparameter
selection strategies. Additionally, we will conduct downstream analyses of the generated images to
further evaluate their clinical utility, including assessment of how well enhanced images perform in
standard neuroimaging pipelines such as image segmentation.

A.8 ADDITIONAL QUALITATIVE RESTORATION RESULTS

Additional qualitative results for the Clinical dataset are given in Figures 7, 8 and 9, and for the
Low-field dataset in Figures 10 and 11.

A.9 ADDITIONAL QUALITATIVE INPAINTING RESULTS

Additional qualitative results for the ATLAS and BraTS datasets are given in Figures 12 and 13,
respectively.

A.10 ADDITIONAL QUALITATIVE REFINEMENT RESULTS

Additional qualitative refinement results for subjects from the ATLAS dataset are given in Figure 14
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Figure 7: Example restoration results for T1w images from the Clinical dataset. (a) Original T1w
(Imm) image and linearly interpolated low-resolution image, (b) SynthSR, (c) UniRes, (d) LoHiRes-
GAN, (e) Res-SRDiff, and (f) Ours. Difference maps are shown for each method.
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Figure 8: Example restoration results for T2w images from the Clinical dataset. (a) Original T2w
(Imm) image and linearly interpolated low-resolution image, (b) UniRes, (c) LoHiResGAN, (d)
Res-SRDiff, and (e) Ours. Difference maps are shown for each method.
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Figure 9: Example restoration results for FLAIR images from the Clinical dataset. (a) Original
FLAIR (1Imm) image and linearly interpolated low-resolution image, (b) UniRes, (c) Res-SRDiff,
and (d) Ours. Difference maps are shown for each method.
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Figure 10: Example restoration results for T1w images from the Low-field dataset. (a) Original
Tlw (Imm) image and linearly interpolated low-resolution image, (b) SynthSR, (c) UniRes, (d)
LoHiResGAN, (e) Res-SRDiff, and (f) Ours. Difference maps are shown for each method.
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Figure 11: Example restoration results for T2w images from the Low-field dataset. (a) Original
T2w (Imm) image and linearly interpolated low-resolution image, (b) UniRes, (c) LoHiResGAN,
(d) Res-SRDiff, and (e) Ours. Difference maps are shown for each method.
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Figure 12: Example inpainting results for the ATLAS datasets. (a) Original image and manual
segmentation map, (b) SynthSR, (c) DDPM-2D, (d) DDPM-3D and (e) Ours. Reconstructions and
difference maps are shown for each method.
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Figure 13: Example inpainting results for the BraTS datasets. (a) Original image and manual seg-
mentation map, (b) SynthSR, (c) DDPM-2D, (d) DDPM-3D and (e) Ours. Reconstructions and
difference maps are shown for each method.

26



Under review as a conference paper at ICLR 2026

J g L ‘

G

Figure 14: Example refinement results for subjects from the ATLAS dataset. For each subject, initial
approximations generated by SynthSR are given in the left column and refined images generated by
our method are given in the right column.
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