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Lossy image compression is essential for efficient transmission and storage. Traditional compres

sion methods mainly rely on discrete cosine transform (DCT) or singular value decomposition 
(SVD), both of which represent image data in continuous domains and, therefore, necessitate 
carefully designed quantizers. Notably, these methods consider quantization as a separate step, 
which prevents quantization errors from being incorporated into the compression process and 
degrades the reconstruction quality, particularly in SVD-based methods. To address this issue, 
we introduce a quantization-aware matrix factorization (QMF) to develop a novel lossy image 
compression method. QMF provides a low-rank representation of the image data as a product of 
two smaller matrices, with elements constrained to bounded integer values, thereby effectively 
integrating quantization with low-rank approximation. We propose an efficient, provably con

vergent iterative algorithm for QMF using a block coordinate descent scheme, with subproblems 
having closed-form solutions. Our experiments demonstrate that our method consistently outper

forms JPEG at low bit rates below 0.25 bits per pixel. We also demonstrated that our method 
has an improved capability to preserve visual semantics compared to JPEG at low bit rates by 
evaluating an ImageNet pre-trained classifier on compressed images. The project is available at 
https://github.com/pashtari/qmf.

1. Introduction

Lossy image compression involves reducing the storage size of digital images by discarding some image data that are redundant 
or less perceptible to the human eye. This is crucial for efficiently storing and transmitting images, particularly in applications where 
bandwidth or storage resources are limited, such as web browsing, streaming, and mobile platforms. Lossy image compression methods 
enable adjusting the degree of compression, providing a selectable tradeoff between storage size and image quality. Widely used 
methods such as JPEG [1] and JPEG 2000 [2] follow the transform coding paradigm [3]. They use orthogonal linear transformations, 
such as discrete cosine transform (DCT) [4] and discrete wavelet transform (DWT) [5], to decorrelate small image blocks. Since 
these transforms map image data into a continuous domain, quantization is necessary before coding into bytes. Unfortunately, as 
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quantization errors can significantly degrade compression performance, the quantizers must be carefully crafted to minimize this 
impact, which further complicates codec design.

Another promising paradigm relies on low-rank approximation techniques, with singular value decomposition (SVD) being a 
notable example. SVD is recognized as the deterministically optimal transform for energy compaction [6]. In practice, current SVD

based methods [6--8] can represent image data only with factors that contain floating-point elements, necessitating a quantization step 
prior to any byte-level processing. The quantization step often introduces errors, which result in suboptimal compression performance.

Motivated by this, we introduce quantization-aware matrix factorization (QMF) and, based on it, develop an effective lossy image 
compression method. Unlike traditional compression methods, the proposed approach integrates quantization into the optimization 
process rather than treating it as a separate step before byte-level processing. Our QMF formulation provides a low-rank represen

tation of image data as the product of two smaller factor matrices. The quantization is integrated via introducing constraints in the 
optimization process, where the elements of the factor matrices are constrained to bounded integer values. These elements, with dis

crete values represented as bounded integers, can be directly stored using standard integral data types—such as int8 and int16 
supported by programming languages—and losslessly processed, making QMF arguably better suited than SVD for image compres

sion. Another advantage of QMF is that the reshaped factor matrices can be treated as 8-bit grayscale images, allowing any lossless 
image compression standard to be seamlessly integrated into the proposed framework. We propose an efficient iterative algorithm 
for QMF using a block coordinate descent (BCD) scheme, where each column of a factor matrix is taken as a block and updated one 
at a time using a closed-form solution.

Our contributions are summarized as follows. We propose a novel optimization framework that enables the integration of quan

tization and low-rank approximation for image compression. Moreover, we introduce an efficient algorithm for the QMF problem 
and prove its convergence. Finally, to the best of our knowledge, this work is the first effort to explore QMF for image compression, 
presenting the first algorithm based on a low-rank approach that significantly outperforms SVD and competes favorably with JPEG, 
particularly at low bit rates. Our method narrows the gap between factorization and quantization by integrating them into a single 
layer and optimizing the compression system.

2. Related work

Transform coding Transform coding is a widely used approach in lossy image compression, leveraging mathematical transforms to 
decorrelate pixel values and represent image data more compactly. One of the earliest and most influential methods is the discrete 
cosine transform (DCT) [4], used in JPEG [1], which converts image data into the frequency domain, prioritizing lower frequencies 
to retain perceptually significant information. The discrete wavelet transform (DWT) [5], used in JPEG 2000 [2], offers improved 
performance by capturing both frequency and location information, leading to better handling of edges and textures [9]. More 
recently, the WebP [10] and HEIF [11,12] formats combine DCT and intra-frame prediction to achieve superior compression and 
quality compared to JPEG.

Learned image compression (LIC) Recently, learned image compression (LIC) has gained attention for potentially outperforming tra

ditional methods by leveraging deep neural networks. Ballé et al. [13] pioneered this area with an end-to-end trainable convolutional 
neural network based on variational autoencoders. Cheng et al. [14] incorporated a simplified attention module and discretized 
Gaussian mixture likelihoods for achieving a more accurate and flexible entropy model. Liu et al. [15] combined transformers and 
CNNs to exploit the local modeling ability of convolutions and the global modeling ability of the attention mechanism. Yang and 
Mandt [16] introduced diffusion models into LIC, using a denoising decoder to iteratively reconstruct a compressed image. Unlike LIC 
methods that require training on large datasets of images, our QMF is a single-image compression method that optimizes specifically 
for each input image. While both QMF and some LIC methods integrate quantization into their core algorithms rather than treating 
it as a separate step, LIC methods involve complex deep neural networks for encoding and decoding, resulting in significantly higher 
computational requirements. The proposed QMF method offers a more lightweight alternative with much faster encoding and de

coding times, making it particularly suitable for resource-constrained environments where deep learning-based approaches may be 
impractical.

Low-rank techniques Low-rank approximation can provide a compact representation by decomposing image data into smaller com

ponents. Notably, truncated singular value decomposition (tSVD) is a classical technique that decomposes images into singular values 
and vectors, retaining only the most significant components to achieve compression [6,7]. Hou et al. [8] proposed sparse low-rank 
matrix approximation (SLRMA) for data compression, which is able to explore both the intra- and inter-coherence of data samples 
simultaneously from the perspective of optimization and transformation. More recently, Yuan and Haimi-Cohen [17] introduced a 
graph-based low-rank regularization to reduce compression artifacts near block boundaries at low bit rates.

Integer matrix factorization There are applications where meaningful representation of data as discrete factor matrices is crucial. 
While typical low-rank techniques like SVD and nonnegative matrix factorization (NMF) are inappropriate for such applications, 
integer matrix factorization (IMF) ensures the integrality of factors to achieve this goal. Lin et al. [18] investigates IMF to effectively 
handle discrete data matrices for cluster analysis and pattern discovery. Dong et al. [19] introduce an alternative least squares method 
for IMF, verifying its effectiveness with some data mining applications. However, the application of IMF in image compression remains 
unexplored.
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Fig. 1. An illustration of the encoder for our image compression method. 

While existing IMF methods generally constrain factor elements to the entire set of integer values, we propose quantized matrix 
factorization (QMF), which minimizes the objective function over a bounded interval of integers, thereby modeling a uniformly 
quantized domain. Furthermore, we introduce a block coordinate descent (BCD)-based algorithm to solve the QMF problem, which is 
both computationally efficient and provably convergent. This work investigates the potential of QMF for image compression, arguing 
that it can serve as a powerful tool for this purpose. It is noted that while [18] and [19] propose iterative algorithms for integer 
matrix factorization, their settings differ from ours. Lin et al. [18] allow unbounded or binary-unbounded factors, which are not 
compatible with compression pipelines. Dong et al. [19] solve an integer matrix approximation problem via complex subroutines 
involving constrained least-squares and enumeration, making it computationally intensive for image compression tasks.

3. Method

3.1. Overall encoding framework

The proposed compression method follows a transform coding paradigm, but it does not involve a separate quantization step. Fig. 1
illustrates an overview of our encoding pipeline based on quantization-aware matrix factorization (QMF). The encoder accepts an 
RGB image with dimensions 𝐻 ×𝑊 and a color depth of 8 bits, represented by the tensor X ∈ {0,… ,255}3×𝐻×𝑊 . Each step of 
encoding is described in the following.

Color space transformation Analogous to the JPEG standard, the image is initially transformed into the YCBCR color space. Let 
𝒀 ∈ [0,255]𝐻×𝑊 represent the luma component, and 𝑪𝐵,𝑪𝑅 ∈ [0,255]

𝐻

2 ×
𝑊

2 represent the blue-difference and red-difference chroma 
components, respectively. Note that as a result of this transformation, the elements of the luma (𝒀 ) and chroma (𝑪𝐵 , 𝑪𝑅) matrices 
are not limited to integers and can take any value within the interval [0,255].

Chroma downsampling After conversion to the YCBCR color space, the chroma components 𝑪𝐵 and 𝑪𝑅 are downsampled using 
average-pooling with a kernel size of (2,2) and a stride of (2,2), similar to the process used in JPEG.

Patchification After chroma downsampling, we have three components: the luma component 𝒀 ∈ [0,255]𝐻×𝑊 and the chroma compo

nents 𝑪𝐵,𝑪𝑅 ∈ [0,255]
𝐻

2 ×
𝑊

2 . Each of the matrices is split into non-overlapping 8×8 patches. If a dimension of a matrix is not divisible 
by 8, the matrix is first padded to the nearest size divisible by 8 using reflection of the boundary values. These patches are then flat

tened into row vectors and stacked vertically to form matrices 𝑿𝑌 ∈ [0,255]
𝐻𝑊

64 ×64, 𝑿𝐶𝐵
∈ [0,255]

𝐻𝑊

256 ×64, and 𝑿𝐶𝑅
∈ [0,255]

𝐻𝑊

256 ×64. 
Later, these matrices will be low-rank approximated using QMF. Note that this patchification technique differs from the block splitting 
in JPEG, where each block is subject to DCT individually and processed independently. This patchification technique help capture 
the locality and spatial dependencies of neighboring pixels.
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Fig. 2. The channels of QMF basis maps for the kodim23 image from Kodak. (a) shows the original image. The QMF basis maps corresponding to luma (b), blue

difference (c), and red-difference chroma (d) are shown. The channels of basis map with higher energy maintain the overall texture of the original image, where 
channels with lower energy focus more on subtle changes.

Low-rank approximation We now apply a low-rank approximation to the matrices 𝑿𝑌 , 𝑿𝐶𝐵
, and 𝑿𝐶𝑅

, which is the core of our 
compression method that provides a lossy compressed representation of these matrices. The low-rank approximation [20] aims to 
approximate a given matrix 𝑿 ∈ℝ𝑀×𝑁 by

𝑿 ≈𝑼𝑽
𝖳 =

𝑅 ∑
𝑟=1 
𝑈∶𝑟𝑉∶𝑟

𝖳, (1)

where 𝑼 ∈ ℝ𝑀×𝑅 and 𝑽 ∈ ℝ𝑁×𝑅 are factor matrices (or simply factors), 𝑅 ≤min(𝑀,𝑁) represents the rank, 𝑈∶𝑟 and 𝑉∶𝑟 represent 
the 𝑟-th columns of 𝑼 and 𝑽 , respectively. We refer to 𝑼 as the basis matrix and 𝑽 as the coefficient matrix. By selecting a sufficiently 
small value for 𝑅, the factor matrices 𝑼 and 𝑽 , with a combined total of (𝑀 +𝑁)𝑅 elements, offer a compact representation of the 
original matrix 𝑿 , which has 𝑀𝑁 elements, capturing the most significant patterns in the image. Depending on the loss function 
used to measure the reconstruction error between 𝑿 and the product 𝑼𝑽

𝖳, as well as the constraints on the factor matrices 𝑼
and 𝑽 , various formulations and variants have been proposed for different purposes [21,22,18]. In Section 3.3, we introduce and 
elaborate on our variant, termed quantization-aware matrix factorization (QMF), and argue why it is well-suited and effective for 
image compression.

Lossless compression QMF yields factor matrices 𝑼 𝑌 ∈ {0,… ,255}
𝐻𝑊

64 ×𝑅 and 𝑽 𝑌 ∈ {0,… ,255}64×𝑅; 𝑼𝐶𝐵
∈ {0,… ,255}

𝐻𝑊

256 ×𝑅 and 

𝑽 𝐶𝐵
∈ {0,… ,255}64×𝑅; and 𝑼𝐶𝑅

∈ {0,… ,255}
𝐻𝑊

256 ×𝑅 and 𝑽 𝐶𝑅
∈ {0,… ,255}64×𝑅 that correspond to 𝑿𝑌 , 𝑿𝐶𝐵

, and 𝑿𝐶𝑅
. Since 

these matrices have elements constrained to integer values (allowing seamless integration of quantization with their optimization 
process), they can be directly encoded using any standard lossless data compression method, such as zlib [23]. In contrast, other 
lossy image compression methods typically require a separate quantization step, introducing errors that cannot be incorporated or 
considered during the compression process.

Alternatively, we can first reshape the factor matrices by unfolding their first dimension to obtain 𝑅-channel 2D spatial maps, 
referred to as factor maps and represented by the following tensors:

U𝑌 ∈ {0,… ,255}𝑅×
𝐻

8 ×
𝑊

8 ,

U𝐶𝐵
,U𝐶𝑅

∈ {0,… ,255}𝑅×
𝐻

16 ×
𝑊

16 , (2)

V𝑌 ,V𝐶𝐵
,V𝐶𝑅

∈ {0,… ,255}𝑅×8×8.

As each channel of a factor map can be treated as an 8-bit grayscale image, we can encode it by any standard lossless image compres

sion method such as PNG. For images with a resolution of 𝐻,𝑊 ≫ 64, which are most common nowadays, the basis maps (U) are 
significantly larger than the coefficient maps (V), accounting for the majority of the storage space. Interestingly, in practice, the QMF 
basis maps turn out to be meaningful images, each capturing some visual semantic of the image (see Fig. 2 for an example). There

fore, our QMF approach can effectively leverage the power of existing lossless image compression algorithms, offering a significant 
advantage over current methods. However, in this work, we take the first approach and use the zlib library [23] to encode factor 
matrices, creating a stand-alone codec that is independent from other image compression methods.

3.2. Decoding

The decoder receives an encoded image and reconstructs the RGB image by applying the inverse of the operations used by the 
encoder, starting from the last layer and moving to the first. Initially, the factor matrices are produced by losslessly decompressing the 
encoded image. The matrices 𝑿𝑌 , 𝑿𝐶𝐵

, and 𝑿𝐶𝑅
are calculated through the product of the corresponding factor matrices, according 

to (1). The luma and downsampled chroma components are then obtained by reshaping 𝑿𝑌 , 𝑿𝐶𝐵
, and 𝑿𝐶𝑅

back into their spatial 
forms, following the inverse of the patchification step. Subsequently, the downsampled chroma components are upsampled to their 
original size using nearest-neighbor interpolation. Finally, the YCBCR image is converted back into an RGB image.
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Algorithm 1 The proposed block coordinate descent (BCD) algorithm for QMF.

Input: 𝑿 ∈ℝ𝑀×𝑁 , factorization rank 𝑅, factor bounds [𝛼, 𝛽], # iterations 𝐾
Output: Factor matrices 𝑼 ∈ℤ𝑀×𝑅

[𝛼,𝛽] and 𝑽 ∈ℤ𝑁×𝑅
[𝛼,𝛽]

1: Initialize 𝑼 init , 𝑽 init using the truncated SVD method, provided by (8) and (9), and set 𝑘= 0
2: while 𝑘 < 𝐾 do 
3: 𝑘← 𝑘+ 1
4: 𝑨←𝑿𝑽

𝑘

5: 𝑩← 𝑽
𝑘𝖳
𝑽
𝑘

6: for 𝑟 = 1,… ,𝑅 do 

7: 𝑈
𝑘+1∕2
∶𝑟 ←

𝐴∶𝑟 −
∑𝑟−1
𝑠=1 𝐵𝑠𝑟𝑈

𝑘+1
∶𝑠 −

∑𝑅

𝑠=𝑟+1 𝐵𝑠𝑟𝑈
𝑘
∶𝑠‖𝑉 𝑘

∶𝑟‖2
8: 𝑈𝑘+1

∶𝑟 ← clamp[𝛼,𝛽](round(𝑈
𝑘+1∕2
∶𝑟 ))

9: end for

10: 𝑨←𝑿
𝖳
𝑼
𝑘+1

11: 𝑩←𝑼
𝑘+1𝖳

𝑼
𝑘+1

12: for 𝑟 = 1,… ,𝑅 do 

13: 𝑉
𝑘+1∕2
∶𝑟 ←

𝐴∶𝑟 −
∑𝑟−1
𝑠=1 𝐵𝑠𝑟𝑉

𝑘+1
∶𝑠 −

∑𝑅

𝑠=𝑟+1 𝐵𝑠𝑟𝑉
𝑘
∶𝑠‖𝑈𝑘+1

∶𝑟 ‖2
14: 𝑉 𝑘+1

∶𝑟 ← clamp[𝛼,𝛽](round(𝑉
𝑘+1∕2
∶𝑟 ))

15: end for

16: end while

17: return (𝑼𝐾 ,𝑽 𝐾 )

3.3. Quantization-aware matrix factorization (QMF)

The main building block of our method is quantization-aware matrix factorization (QMF), which is responsible for the lossy 
compression of matrices obtained through patchification. QMF can be framed as an optimization problem, aiming to minimize the 
reconstruction error between the original matrix 𝑿 ∈ ℝ𝑀×𝑁 and the product 𝑼𝑽

𝖳, while ensuring, as an integrated quantization 
step, that the elements of the factor matrices 𝑼 and 𝑽 are integers within a specified interval [𝛼, 𝛽] with integer endpoints, i.e., 
𝛼, 𝛽 ∈ℤ. Formally, the QMF problem can be expressed as:

minimize
𝑼 ,𝑽

‖𝑿 −𝑼𝑽
𝖳‖2

F

subject to 𝑼 ∈ℤ𝑀×𝑅
[𝛼,𝛽] ,𝑽 ∈ℤ𝑁×𝑅

[𝛼,𝛽] , (3)

where ‖ ⋅ ‖F denotes the Frobenius norm; 𝑅 ≤ min(𝑀,𝑁) represents the rank; and ℤ[𝛼,𝛽] ≜ [𝛼, 𝛽] ∩ ℤ denotes the set of integers 
within [𝛼, 𝛽]. Without constraints on the factors, the problem would have an analytic solution through singular value decomposition 
(SVD), as addressed by the Eckart–Young--Mirsky theorem [20]. If only a nonnegativity constraint were applied (without integrality), 
variations of nonnegative matrix factorization (NMF) would emerge [21,24]. The QMF problem (3) poses a challenging integer 
program, with finding its global minima known to be NP-hard [19,25]. Only a few iterative algorithms [19,18] have been proposed 
to find a ``good solution'' for some QMF variants in contexts other than image compression. Unlike [18], which considers unbounded 
or binary-unbounded factors, our QMF formulation constrains both factors to bounded integers, enabling integration with lossless 
compression. The method in [19], while related, involves heavy least-squares and enumeration procedures, in contrast to our efficient 
closed-form BCD updates. Therefore, we propose an efficient iterative algorithm for the QMF problem (3) in Section 3.4.

The existing lossy image compression methods based on SVD and NMF approach the problem as an optimization task, followed by 
a separate quantization step. The optimization focuses on finding factors that minimize the reconstruction error. Before any byte-level 
processing, a quantization step is applied to project the floating-point elements of the resulting factors onto a set of discrete values. 
However, because the quantization is performed separately from the optimization, the quantization errors cannot be incorporated into 
the compression process. This separation leads to suboptimal compression performance (as demonstrated in Section 4) and additional 
complications in designing quantizers.

In contrast, our QMF formulation, through the constrained optimization in (3), produces integer factor matrices that minimize the 
reconstruction error while ensuring that all elements are discrete. These integer factor matrices can be directly stored and processed 
losslessly without introducing roundoff errors. The reason for limiting the feasible region to [𝛼, 𝛽] in our QMF formulation is to 
enable more compact storage of the factors using standard integral data types, such as int8 and int16, supported by programming 
languages. Given that the elements of the input matrix 𝑿 are in [0,255], we found the signed int8 type, which represents integers from 
-128 to 127, suitable for image compression applications. As a result, our QMF formulation is well-suited for image compression, 
effectively integrating the factorization and quantization steps into a single, efficient compression process. Note that due to the 
integrality constraints on the factor matrices, exact reconstruction of the original matrix is not possible even when the rank reaches 
its maximum possible value (i.e., 𝑅 =min(𝑀,𝑁)). As such, the proposed method does not support lossless compression.

3.4. Block coordinate descent scheme for QMF

We propose an efficient algorithm for QMF using the block coordinate descent (BCD) scheme (aka alternating optimization). The 
pseudocode is provided in Algorithm 1. Starting with some initial parameter values, this approach involves sequentially minimizing 
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the cost function with respect to a single column of a factor at a time, while keeping the other columns of that factor and the entire 
other factor fixed. This process is repeated until a stopping criterion is met, such as when the change in the cost function value falls 
below a predefined threshold or the maximum number of iterations is reached. Formally, this involves solving one of the following 
subproblems at a time:

𝒖𝑟 ← arg min
𝒖𝑟∈ℤ𝑀×1

[𝛼,𝛽]

‖𝑬𝑟 − 𝒖𝑟𝒗
𝖳
𝑟
‖2

F
, (4)

𝒗𝑟 ← arg min
𝒗𝑟∈ℤ𝑁×1

[𝛼,𝛽]

‖𝑬𝑟 − 𝒖𝑟𝒗
𝖳
𝑟
‖2

F
, (5)

where 𝒖𝑟 ≜ 𝑈∶𝑟 and 𝒗𝑟 ≜ 𝑉∶𝑟 represent the 𝑟-th columns of 𝑼 and 𝑽 , respectively. 𝑬𝑟 ≜𝑿 −
∑𝑅

𝑠≠𝑟 𝒖𝑠𝒗
𝖳
𝑠

is the residual matrix. We 
define one iteration of BCD as a complete cycle of updates across all the columns of both factors. In fact, the proposed algorithm is a 
2𝑅-block coordinate descent procedure, where at each iteration, first the columns of 𝑼 and then the columns of 𝑽 are updated (see 
Algorithm 1). Note that subproblem (5) can be transformed into the same form as (4) by simply transposing its error term inside the 
Frobenius norm. Therefore, we only need to find the best rank-1 approximation with integer elements constrained within a specific 
interval. Fortunately, this problem has a closed-form solution, as addressed by Theorem 1 below.

Theorem 1 (Monotonicity). The global optima of subproblems (4) and (5) can be represented by closed-form solutions as follows:

𝒖𝑟 ← clamp[𝛼,𝛽]
(
round

(
𝑬𝑟𝒗𝑟‖𝒗𝑟‖2

))
, (6)

𝒗𝑟 ← clamp[𝛼,𝛽]
(
round

(
𝑬
𝖳
𝑟 𝒖𝑟‖𝒖𝑟‖2

))
, (7)

where round(𝒁) denotes an element-wise operator that rounds each element of 𝒁 to the nearest integer, and clamp[𝛼,𝛽](𝒁)≜max(𝛼,min(𝒁, 𝛽))
denotes an element-wise operator that clamps each element of 𝒁 to the interval [𝛼, 𝛽]. Moreover, the cost function in (3) is monotonically 
nonincreasing over BCD iterations of Algorithm 1, which involve sequential updates of (6) and (7) over columns of 𝑼 and 𝑽 .

Proof. See Appendix A for the proof. □

It is noteworthy that the combination of round(⋅) and clamp[𝛼,𝛽](⋅) in (6) and (7) can be interpreted as the element-wise projector to 
ℤ[𝛼,𝛽]. In addition, updates (6) and (7) are presented in Algorithm 1 at steps 7 and 8, and steps 13 and 14, respectively. In Theorem 2, 
the convergence of Algorithm 1 is established.

Theorem 2 (Convergence). Let (𝑈𝑘∶𝑟)𝑘∈ℕ and (𝑉 𝑘∶𝑟)𝑘∈ℕ for 𝑟 ∈ {1,… ,𝑅} be sequences generated by the proposed Algorithm 1. Then all 
sequences are bounded and convergent to a locally optimal point of optimization problem (3).

Proof. See Appendix B for the proof. □

Initialization The initial values of factors can significantly impact the convergence performance of the BCD algorithm. We found 
that the convergence with naive random initialization can be too slow. To address this issue, we propose an initialization method 
using SVD. The procedure is straightforward. First, the truncated SVD of the input matrix 𝑿 ∈ℝ𝑀×𝑁 is computed as 𝑼̃𝚺𝑽̃ 𝖳

, where 
𝚺 ∈ℝ𝑅×𝑅 is a diagonal matrix corresponding to the 𝑅 largest singular values. 𝑼̃ ∈ℝ𝑀×𝑅 and 𝑽̃ ∈ℝ𝑁×𝑅 contain the corresponding 
left-singular vectors and right-singular vectors in their columns, respectively. The initial factors are then calculated as follows:

𝑼
init = clamp[𝛼,𝛽](round(𝑼̃𝚺

1
2 )), (8)

𝑽
init = clamp[𝛼,𝛽](round(𝚺

1
2 𝑽̃ )). (9)

Essentially, this means that instead of performing a constrained optimization, we first low-rank approximate 𝑿 and then satisfy the 
constraints by projecting the elements of the resulting factor matrices onto ℤ[𝛼,𝛽] .

4. Experiments

4.1. Setup

QMF configuration In our QMF implementation, we used a default patch size of 8×8. The default factor bounds were set to [−16,15]. 
Unless otherwise specified, the number of BCD iterations was set to 10 although our ablation studies in Section 4.6 suggest that even 
2 iterations may suffice in practice (see Fig. 6b). For lossless compression of factors, we encoded and decoded each column of a factor 
separately using the zlib library [23]. We also tested other lossless compression methods, such as zstd [26] and Huffman coding [27], 
which demonstrated a comparable performance. However, as zlib is well-established, simple, and offers fast performance in Python, 
the experimental results are reported for this compression method.
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Baseline codecs We compared our QMF method against JPEG and SVD baselines. For JPEG compression, we used the Pillow library 
[28]. Our SVD baseline follows the same framework as the proposed method (described in Section 3.1) but substitutes truncated SVD 
for QMF, followed by uniform quantization of the SVD factor matrices before lossless compression using zlib [23]. We incorporated 
this baseline (SVD + post-hoc quantization) to provide a direct comparison between our joint optimization approach (QMF) and a 
separate quantization approach. Notably, QMF produces integer factors that can be directly encoded with zlib, eliminating the need 
for a post-hoc quantization step.

Datasets To validate the effectiveness of our method, we conducted experiments using the widely-used Kodak dataset [29], consisting 
of 24 lossless images with a resolution of 768 × 512. To evaluate the robustness of our method in a higher-resolution setting, we also 
experimented with the CLIC 2024 validation dataset [30], which contains 30 high-resolution, high-quality images. Additionally, we 
assessed the compression methods by their ability to retain visual semantics. This was achieved by evaluating a pre-trained ImageNet 
classifier on compressed images from the ImageNet validation set [31], consisting of 50,000 images with a resolution of 224 × 224
across 1000 classes.

Metrics To evaluate the rate-distortion performance of methods on the Kodak and CLIC 2024 datasets, we measured the bit rate 
in bits per pixel (bpp) and assessed the quality of the reconstructed images using peak signal-to-noise ratio (PSNR) and multiscale 
structural similarity index measure (MS-SSIM). Then, these metrics were plotted as functions of bit rate for each method to illustrate 
their rate-distortion performance. To control the quality of the reconstructed images in QMF and SVD, similar to JPEG, we defined a 
quality factor 𝑄 ∈ [0,1], where 0 represents the highest compression and 1 represents no compression. To determine the factorization 
rank 𝑅 in Algorithm 1, we used 𝑅 =max{round (𝑄 ×min{𝑀,𝑁}) ,1}.

More precisely, to construct a rate-distortion curve for each method on each dataset, we evaluated various qualities 𝑄 for each 
image. For each quality, we first measured the PSNR/MS-SSIM values at the corresponding bit rate. Next, PSNR/MS-SSIM values were 
interpolated at evenly spaced bit rates ranging from 0.05 bpp to 0.5 bpp using LOESS (locally estimated scatterplot smoothing) [32]. 
Finally, the interpolated values were averaged over all images at each of these bit rates.

4.2. Rate-distortion performance

Fig. 3 illustrates the rate-distortion curves comparing the performance of QMF, SVD, and JPEG compression methods.

Kodak On the Kodak dataset, as shown in Figs. 3a and 3b, our QMF method consistently outperforms JPEG at low bit rates below 
0.25 bpp but slightly underperforms at higher bit rates in terms of both PSNR and MS-SSIM. Furthermore, QMF significantly surpasses 
the SVD-based baseline across all bit rates.

CLIC 2024 A similar trend is observed with the CLIC 2024 dataset, as shown in Figs. 3c and 3d. Here, the PSNR and MS-SSIM results 
further confirm the competitive performance of QMF at low bit rates. For example, at a bit rate of 0.15 bpp, QMF achieves a PSNR 
of over 25 dB, compared to approximately 22 dB for both SVD and JPEG, and MS-SSIM of around 0.88, compared to 0.78 for SVD 
and 0.75 for JPEG. The superiority of QMF over JPEG is more pronounced in terms of MS-SSIM than PSNR, with QMF outperforming 
JPEG up to 0.25 bpp for PSNR and 0.35 bpp for MS-SSIM. This demonstrates the robustness of QMF in preserving visual quality across 
different datasets.

4.3. Qualitative performance

Fig. 4 compares various compression methods using images from the Kodak (top three rows) and CLIC 2024 (bottom two rows) 
datasets, compressed at similar bit rates.

In the building image (first row), JPEG compression, with a PSNR of 20.22 dB at a bit rate of 0.21 bpp, introduces blocking artifacts 
and changes the facade color, as visible in the blue boxes. SVD compression reduces these artifacts but causes blurriness. Our QMF 
compression, with a similar bit rate but a higher PSNR (21.93 dB), maintains both texture and sharpness with minimal artifacts.

In the seascape image (second row), JPEG causes blocking and significant color bleeding artifacts, such as the redness in the cloud 
area marked by the red boxes and also on the water surface (outside the red box). SVD reduces color distortion but still has blockiness 
and blurriness. QMF preserves the color and texture of clouds and water more effectively, resulting in a more visually pleasing image.

In the vegetables image (fourth row), JPEG yields visible color distortion (marked by the cyan boxes), while SVD introduces 
significant blurriness. QMF, however, effectively preserves the color fidelity and detail.

In the flower image (fifth row), JPEG compression, with a PSNR of 20.22 dB at a bit rate of 0.14 bpp, exhibits severe color banding 
artifacts around the flower boundary. SVD compression offers smoother gradients but remains blurry. Our QMF compression maintains 
the gradient fidelity and intricate petal distinctions, achieving a significantly higher PSNR of 30.63 dB at a lower bit rate of 0.12 bpp.

However, in the parrots image (third row), JPEG achieves a higher PSNR of 33.25 dB at approximately 0.4 bpp, whereas QMF 
attains only 30.67 dB at the same bit rate. This reflects the rate-distortion curves in Fig. 3, where JPEG outperforms QMF in recon

struction quality at high bit rates (> 0.4 bpp). Nevertheless, at these high PSNR levels (> 30 dB), visual differences between JPEG 
and QMF are typically imperceptible to the human eye.
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Fig. 3. Rate-distortion performance on the Kodak (top panels) and CLIC 2024 (bottom panels) datasets. The average PSNR (left panels) and average MS-SSIM (right 
panels) for each method are plotted as functions of bit rate. Shaded areas represent standard errors. Dashed lines indicate extrapolated values predicted using LOESS 
[32] for extremely low bit rates that are otherwise unattainable.

Table 1
Mean encoding and decoding CPU times for different compression methods at bit rates of 0.15 bpp and 0.25 bpp, measured 
on the Kodak and CLIC 2024 datasets.

Method Kodak CLIC 2024 
Bitrate = 0.15 bpp Bitrate = 0.25 bpp Bitrate = 0.15 bpp Bitrate = 0.25 bpp 
Encoding Decoding Encoding Decoding Encoding Decoding Encoding Decoding 

JPEG 9.40 ms 4.54 ms 9.76 ms 4.23 ms 60.01 ms 26.76 ms 60.33 ms 25.75 ms 
SVD 27.99 ms 1.33 ms 25.63 ms 1.23 ms 96.83 ms 5.29 ms 98.82 ms 4.82 ms 
IMF 64.04 ms 2.82 ms 82.57 ms 2.66 ms 256.15 ms 9.91 ms 374.52 ms 9.06 ms 

4.4. Run time

The encoding and decoding times at bit rates of 0.15 bpp and 0.25 bpp for each method on Kodak and CLIC 2024 are reported 
in Table 1. All experiments in this section were conducted on 2 Xeon Gold 6140 CPUs @ 2.3 GHz (Skylake), each with 18 cores, and 
with 192 GiB RAM.

Although JPEG compression consistently has a lower encoding time, QMF and SVD have a significant advantage in decoding 
speed over JPEG, with SVD being the fastest. Specifically, QMF decodes more than twice as fast as JPEG on the CLIC 2024 dataset 
across all bit rates. Overall, QMF is preferable for applications requiring high image quality at low bit rates, especially in scenarios 
where compressed images are frequently accessed or displayed while encoding occurs less often. Examples include web browsing, 
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Fig. 4. Qualitative performance comparison on example images from the Kodak (top three rows) and the CLIC 2024 (bottom two rows) datasets. Each column shows 
the original image, JPEG, SVD, and QMF compression results respectively. The bit rate and PSNR values for each compressed image is reported. The colored bounding 
boxes highlight artifacts produced by JPEG and SVD compression.

image hosting, mobile applications, satellite imagery for maps, and interactive gaming applications. These use cases often involve 
large numbers of images or thumbnails, where faster decoding times are essential for seamless user experiences, even if encoding 
takes more time or demands higher computational resources.

From a theoretical perspective, a single BCD iteration in QMF has time complexity O(𝑀𝑁𝑅). For an image of size 𝐻 ×𝑊 and 
patch size 𝑝×𝑝, with 𝑀 =𝐻𝑊 ∕𝑝2 and 𝑁 = 𝑝2, this simplifies to O(𝐻𝑊𝑅) per iteration for fixed 𝑝. As only a small, fixed number of 
BCD iterations is required in practice (see Section 4), QMF encoding time complexity remains linear in the number of image pixels. 
Decoding QMF involves only a single matrix multiplication between the factor matrices, requiring exactly 𝑀𝑁𝑅 =𝐻𝑊𝑅 operations, 
again linear in image size. For JPEG, the main computational cost in both encoding and decoding is the 2D discrete cosine transform 
(DCT) on each 𝑝× 𝑝 patch. With fast algorithms (e.g., FFT), each DCT requires O(𝑝2 log𝑝) operations, and with 𝐻𝑊 ∕𝑝2 patches, the 
total is O(𝐻𝑊 log𝑝). Thus, JPEG’s complexity also scales linearly with the number of pixels.

The empirical results in Table 1 align with this theoretical analysis, where QMF’s slower encoding time compared to JPEG is 
attributed to the sequential BCD iterations, while its faster decoding may stem from the cheap, parallelizable matrix multiplication.

4.5. ImageNet classification performance

It is relevant to assess the ability of different compression methods in preserving the visual semantic information in images. To 
this end, we investigate the performance of an image classifier on images compressed using various compression methods. This is 
particularly crucial in scenarios where the ultimate goal is a vision task such as image classification, rather than maintaining perceived 
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Fig. 5. Impact of different compression methods on ImageNet classification accuracy. A ResNet-50 classifier pre-trained on the original ImageNet images is evaluated 
using validation images compressed by different methods. Panels (a) and (b) show top-1 and top-5 accuracy plotted as a function of bit rate, respectively. Dashed lines 
indicate extrapolated values predicted using LOESS [32] for extremely low bit rates that are otherwise unattainable.

Fig. 6. Ablation studies for QMF. The average PSNR on the Kodak dataset is plotted as a function of bit rate under various experimental conditions: (a) varying the 
bounds [𝛼, 𝛽] for the elements of the factor matrices, (b) changing the number of BCD iterations, and (c) adjusting the patch size.

image quality, and we compress images before classification to minimize resource requirements, such as memory and communication 
bandwidth.

In this experiment, we employed a ResNet-50 classifier [33], pre-trained on the original ImageNet [34] dataset, to classify com

pressed images from the ImageNet validation set using different compression methods. The classification performance comparison is 
presented in Fig. 5. Notably, the results indicate that QMF compression achieves over a 5% improvement in top-1 accuracy compared 
to JPEG at bit rates under 0.25 bpp and reaches a top-5 accuracy exceeding 70% at a bit rate of 0.2 bpp. QMF compression leads to 
higher classification accuracies than JPEG at bit rates up to approximately 0.30 bpp.

4.6. Ablation studies

We conducted ablation studies to investigate the impact of factor bounds, the number of BCD iterations, and patch size on the 
compression performance of our QMF method. All experiments in this section were performed using the Kodak dataset. We followed 
the QMF configuration described in Section 4.1 and varied only the parameters under ablation one at a time.

Factor bounds Fig. 6a shows the average PSNR as a function of bit rate for QMF using various factor bounds [𝛼, 𝛽] in Algorithm 1. The 
results indicate that the interval [−16,15] yields the optimal performance, showing moderate improvement over both [−32,31] and 
[−128,127], while significantly outperforming [−8,7]. In fact, constraining the factor elements within a sufficiently narrow range can 
reduce the bit allocation needed, leading to a lower bit rate after lossless compression in the final stage of our framework. However, 
the tighter bounds on the factor elements constrain the feasible region, which comes at the cost of higher reconstruction error. Our 
experiments showed that using the bounds [−16,15] provides the best trade-off between compression ratio and reconstruction quality. 
Note that in all these cases, the factor elements are represented as the int8 data type.
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BCD iterations The next parameter studied is the number of BCD iterations 𝐾 in Algorithm 1, where each BCD iteration involves one 
complete cycle of updates across all the columns of both factors. Fig. 6a shows the average PSNR plotted against the bit rate for QMF 
with different numbers of iterations 𝐾 ∈ {0,1,2,5,10}. As expected, more iterations consistently resulted in higher PSNR for QMF 
compression. Without any BCD iterations (𝐾 = 0) and relying solely on the SVD-based initialization given by (8) and (9), the results 
became very poor. However, performance improved significantly after a few iterations, with more than 𝐾 = 5 iterations yielding 
only marginal gains. We found that 𝐾 = 10 iterations are sufficient in practice for image compression applications. This makes QMF 
computationally efficient, as decent compression performance can be achieved even with a limited number of BCD iterations.

Patchification Fig. 6c explores the impact of different patch sizes on QMF performance in terms of PSNR. As observed, a patch 
size of (8,8) yields the best performance. A patch size of (16,16) follows closely, with only marginally lower PSNR at higher bit 
rates. Conversely, larger patch sizes like (32,32) or omitting the patchification step altogether significantly degrade compression 
performance.

5. Discussion

All our comparative results (Fig. 3 and Fig. 5) consistently show that our QMF method outperforms JPEG in both maintaining 
image quality and preserving visual semantics at low bit rates (< 0.25 bpp), while its performance advantage diminishes and even 
reverses at higher bit rates. Moreover, QMF consistently demonstrates superior performance compared to SVD across all bit rates. 
This superiority can be attributed to the integration of quantization with low-rank approximation in QMF, which enables more 
accurate reconstruction. In contrast, the high sensitivity of SVD to quantization errors, which arise during a separate quantization 
step, significantly degrades the reconstruction quality.

The performance degradation of QMF compared to JPEG at higher bit rates can be attributed to two key factors: 1) In QMF, as 
the bit rate is controlled by adjusting the rank, higher bit rates require increased rank, leading to a linear growth in the number of 
factor matrix elements to be losslessly compressed. However, the reduction in reconstruction error quickly saturates, resulting in a 
less favorable rate-distortion trade-off at high bit rates compared to JPEG. 2) The nonconvex nature of the QMF optimization problem 
means that as rank increases, the problem’s dimensionality grows, making it more likely to converge to suboptimal local minima. 
JPEG avoids this issue by operating on fixed-size patches with closed-form DCT solutions, giving it an advantage at high bit rates.

While QMF is outperformed by JPEG at approximately 0.25 bpp in PSNR (see Figs. 3a and 3c), the ImageNet classification results 
(Fig. 5) and MS-SSIM curves (Figs. 3b and 3d) indicate a take-over point at around 0.3 bpp and over 0.35 bpp, respectively. These 
slight shifts imply that QMF’s superiority over JPEG at low bit rates in preserving visual semantics is more pronounced than its 
advantage in maintaining image quality.

As observed in Fig. 6a, contracting the QMF factor bounds from [−128,127] to [−16,15] consistently improves the rate-distortion 
performance. Generally, narrowing the factor bounds [𝛼, 𝛽] can potentially lower the entropy, thereby improving the effectiveness of 
lossless compression in the final stage of our framework and subsequently reducing the bit rate. However, this reduction in entropy 
comes at the cost of increased reconstruction error, as the feasible region in (3) becomes more constrained. This trade-off between 
entropy and reconstruction quality limits the compression performance of QMF. Therefore, it would be beneficial to moderately 
expand the factor bounds [𝛼, 𝛽] while simultaneously controlling the entropy of the elements in the factor matrices. We plan to 
address this in the future by incorporating an entropy-aware regularization term into the current QMF objective function.

Patchification with an appropriate patch size (e.g., (8,8)) helps capture local spatial dependencies and, as confirmed by our results 
in Fig. 6c, positively impacts the performance of QMF and SVD. However, discontinuities at patch boundaries can introduce blocking 
artifacts, similar to JPEG compression at very low bit rates (see the building image example in Fig. 4). Moreover, while JPEG suffers 
more from color distortion (e.g., color bleeding and color banding) at low bit rates, QMF and SVD are more affected by blurriness, as 
observed in the seascape image example in Fig. 4. As a potential solution for future work, a deep neural network could be trained to 
remove these artifacts and then integrated as a post-processing module to further enhance the quality of QMF-compressed images.

6. Conclusion

This work presents a novel lossy image compression method based on quantization-aware matrix factorization (QMF). By repre

senting image data as the product of two smaller factor matrices with elements constrained to bounded integer values, the proposed 
QMF approach effectively integrates quantization with low-rank approximation. In contrast, traditional compression methods such 
as JPEG and SVD consider quantization as a separate step, where quantization errors cannot be incorporated into the compression 
process. The reshaped factor matrices in QMF are compatible with existing lossless compression standards, enhancing the overall 
flexibility and efficiency of our method. Our proposed iterative algorithm, utilizing a block coordinate descent scheme, has proven 
to be both efficient and convergent. Experimental results demonstrate that the QMF method significantly outperforms JPEG in terms 
of PSNR and SIMM at low bit rates (< 0.25 bpp) and maintains better visual semantic information. This advantage underscores the 
potential of QMF to set a new standard in lossy image compression, bridging the gap between factorization and quantization.
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Appendix A. Proof of Theorem 1

We start by proving the closed-form solution (6), noting that the proof for (7) follows the same reasoning. The objective function 
in the subproblem (4) can be reformulated as follows:

arg min 
𝒖𝑟∈ℤ𝑀[𝛼,𝛽]

‖𝑬𝑟 − 𝒖𝑟𝒗
𝖳
𝑟
‖F = arg min 

𝒖𝑟∈ℤ𝑀[𝛼,𝛽]

𝑀∑
𝑖=1 

𝑁∑
𝑗=1 

(𝑒𝑟
𝑖𝑗
− 𝑢𝑟

𝑖
𝑣𝑟
𝑗
)2, (A.1)

where 𝑒𝑟
𝑖𝑗

denotes the element of matrix 𝑬𝑟 in the 𝑖th row and 𝑗th column, and 𝑢𝑟
𝑖

and 𝑣𝑟
𝑗

are the 𝑖th and 𝑗th elements of vectors 
𝒖𝑟 and 𝒗𝑟, respectively. Since the elements of 𝑬𝑟 and 𝒗𝑟 are fixed in problem (4), the optimization (A.1) can be decoupled into 𝑀
optimizations as follows:

arg min 
𝑢𝑟
𝑖
∈ℤ[𝛼,𝛽]

𝑞𝑖(𝑢𝑟𝑖 ), where 𝑞𝑖(𝑢𝑟𝑖 ) ≜
∑𝑁

𝑗=1(𝑒
𝑟
𝑖𝑗
− 𝑢𝑟

𝑖
𝑣𝑟
𝑗
)2, ∀𝑖 ∈ {1,… ,𝑀}. (A.2)

The objective functions 𝑞𝑖(𝑢𝑟𝑖 ) in (A.2) are single-variable quadratic problems. Hence, the global optimum in each decoupled opti

mization problem can be achieved by finding the minimum of each quadratic problem and then projecting it onto the set ℤ[𝛼,𝛽] . The 
minimum of each quadratic function in (A.2), denoted by 𝑢̄𝑟

𝑖
, can be simply found by

∇𝑢𝑟
𝑖
𝑞𝑖(𝑢𝑟𝑖 ) = 0 ⟹ 𝑢̄𝑟

𝑖
=

∑𝑁
𝑗=1 𝑒

𝑟
𝑖𝑗
𝑣𝑟
𝑗∕∑𝑁

𝑗=1 𝑣
𝑟2
𝑗
, (A.3)

where ∇𝑥 is the partial derivative with respect to 𝑥. Since 𝑞𝑖 has a constant curvature (second derivative) and 𝑞𝑖(𝑢̄𝑟𝑖 +𝑑) is nondecreas

ing with increasing |𝑑|, the value in the set ℤ[𝛼,𝛽] which is closest to 𝑢̄𝑟
𝑖

is the global minimizer of (A.2). This value can be reached 
by projecting 𝑢̄𝑟

𝑖
onto the set ℤ[𝛼,𝛽], namely 𝑢𝑟⋆

𝑖
= clamp[𝛼,𝛽](round(𝑢̄𝑟𝑖 )), which is presented for all 𝑖 ∈ {1, ...,𝑀} in a compact form in 

(6).

Since 𝒖⋆
𝑟
≜ (𝑢𝑟⋆1 ,… , 𝑢𝑟

⋆

𝑀
) is the global optimum of optimization (A.1), it is evident that

‖𝑬𝑟 − 𝒖
⋆
𝑟
𝒗
𝖳
𝑟
‖F ≤ ‖𝑬𝑟 − 𝒖𝑟𝒗

𝖳
𝑟
‖F. (A.4)

This inequality guarantees a nonincreasing cost function over one update of 𝒖𝑟. Following the same reasoning for updates of 𝒗𝑟 in 
(7), it can be concluded that in each update of (6) and (7), the cost function is nonincreasing. Therefore, the sequential updates over 
the columns of 𝑼 and 𝑽 in Algorithm 1 result in a monotonically nonincreasing cost function in (3).

Appendix B. Proof of Theorem 2

To study the convergence of the proposed Algorithm 1, we recast the optimization problem (3) into the following equivalent 
problem:

minimize 
𝑈∶𝑟∈ℝ𝑀,𝑉∶𝑟∈ℝ𝑁 ,∀𝑟∈{1,...,𝑅}

Ψ(𝑼 ,𝑽 ) (B.1)

where

Ψ(𝑼 ,𝑽 ) ≜ 𝑓0(𝑼 ,𝑽 ) +
𝑅 ∑
𝑟=1 
𝑓 (𝑈∶𝑟) +

𝑅 ∑
𝑟=1 
𝑔(𝑉∶𝑟),

𝑓0(𝑼 ,𝑽 ) ≜ ‖𝑿 −𝑼𝑽
T‖2F,

𝑓 (𝑈∶𝑟) ≜ 𝛿[𝑎,𝑏](𝑈∶𝑟) + 𝛿ℤ(𝑈∶𝑟),
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𝑔(𝑉∶𝑟) ≜ 𝛿[𝑎,𝑏](𝑉∶𝑟) + 𝛿ℤ(𝑉∶𝑟),

with 𝛿B(⋅) as the indicator function of the nonempty set B where 𝛿B(𝒙) = 0 if 𝒙 ∈ B and 𝛿B(𝒙) = +∞, otherwise. By the definition of 
functions above, it is easy to confirm that the problems (3) and (B.1) are equivalent.

The unconstrained optimization problem (B.1) consists of the sum of a differentiable (smooth) function 𝑓0 and nonsmooth func

tions 𝑓 and 𝑔. This problem has been extensively studied in the literature under the class of nonconvex nonsmooth minimization 
problems. In Algorithm 1, the blocks 𝑈∶𝑟 and 𝑉∶𝑟 are updated sequentially following block coordinate descent (BCD) minimization 
algorithms, also often called Gauss-Seidel updates or alternating optimization [35,36]. Hence, in this convergence study, we are in

terested in algorithms that allow BCD-like updates for the nonconvex nonsmooth problem of (B.1) [37,38]. Specifically, we focus on 
the proximal alternating linearized minimization (PALM) algorithm [38], to relate its convergence behavior to that of Algorithm 1. 
To that end, we show that the updates of Algorithm 1 are related to the updates of PALM on the recast problem of (B.1), and all the 
assumptions necessary for the convergence of PALM are satisfied by our problem setting. It is noted that, for the sake of presentation 
and without loss of generality, in this proof, we assume each of the matrices 𝑼 and 𝑽 has only one column (𝑅 = 1); hence, we only 
have two blocks in the BCD updates. The iterates in PALM and the presented proof can be trivially extended for more than two blocks.

The PALM algorithm can be summarized as follows:

1. Initialize 𝑼 init ∈ℝ𝑀×𝑅, 𝑽 init ∈ℝ𝑁×𝑅

2. For each iteration 𝑘 = 0,1, ...

(𝑎) 𝑼𝑘+1 ∈ prox𝑓
𝑐𝑘

(
𝑼
𝑘 − 1 

𝑐𝑘
∇𝑼𝑓0(𝑼𝑘,𝑽 𝑘)

)
,

(𝑏) 𝑽 𝑘+1 ∈ prox𝑔
𝑑𝑘

(
𝑽
𝑘 − 1 

𝑑𝑘
∇𝑽 𝑓0(𝑼𝑘+1,𝑽 𝑘)

)
,

(B.2)

where the proximal map for an extended proper lower semicontinuous (nonsmooth) function 𝜑 ∶ℝ𝑛 → (−∞,+∞] and 𝛾 > 0 is defined 
as prox𝜑𝛾 (𝒙) ≜ arg min𝒘∈ℝ𝑛

{
𝜑(𝒘) + 𝛾

2 ‖𝒘− 𝒙‖22}. In (B.2), 𝑐𝑘 > 𝐿1(𝑽 𝑘) and 𝑑𝑘 > 𝐿2(𝑼𝑘+1) where 𝐿1 > 0, 𝐿2 > 0 are local Lipschitz 
moduli, defined in the following proposition.

The following proposition investigates the necessary assumptions (cf. [38, Asm. 1 and Asm. 2]) for convergence of iterates in 
(B.2).

Proposition 1 (Meeting required assumptions). The assumptions necessary for the convergence of iterates in (B.2) are satisfied by the functions 
involved in the problem (B.1), specifically:

1. The indicator functions 𝛿[𝑎,𝑏] and 𝛿ℤ are proper and lower semicontinuous functions, so do the functions 𝑓 and 𝑔;

2. For any fixed 𝑽 , the partial gradient ∇𝑼𝑓0(𝑼 ,𝑽 ) is globally Lipschitz continuous with modulus 𝐿1(𝑽 ) = ‖𝑽 𝑇
𝑽 ‖F. Therefore, for all 

𝑼 1,𝑼 2 ∈ℝ𝑀×𝑅 the following holds

‖∇𝑼𝑓0(𝑼 1,𝑽 ) − ∇𝑼𝑓0(𝑼 2,𝑽 )‖ ≤𝐿1(𝑽 )‖𝑼 1 −𝑼 2‖,
where ‖ ⋅ ‖ denotes the 𝓁2-norm of the vectorized input with the proper dimension (here, with the input in ℝ𝑀𝑅×1). The similar Lipschitz 
continuity is evident for ∇𝑽 𝑓0(𝑼 ,𝑽 ) as well with modulus 𝐿2(𝑼 ) = ‖𝑼𝑼

𝑇 ‖F.

3. The sequences 𝑼𝑘 and 𝑽 𝑘 are bounded due to the indicator functions 𝛿[𝑎,𝑏] with bounded 𝑎 and 𝑏. Hence the moduli 𝐿1(𝑽 𝑘) and 𝐿2(𝑼𝑘)
are bounded from below and from above for all 𝑘∈ℕ.

4. The function 𝑓0 is twice differentiable, hence, its full gradient ∇𝑓0(𝑼 ,𝑽 ) is Lipschitz continuous on the bounded set 𝑼 ∈ [𝑎, 𝑏]𝑀×𝑅, 
𝑽 ∈ [𝑎, 𝑏]𝑁×𝑅. Namely, with 𝑀 > 0:

‖(∇𝑼𝑓0(𝑼 1,𝑽 1) − ∇𝑼𝑓0(𝑼 2,𝑽 2),∇𝑽 𝑓0(𝑼 1,𝑽 1) − ∇𝑽 𝑓0(𝑼 2,𝑽 2)
)‖ ≤𝑀‖(𝑼 1 −𝑼 2,𝑽 1 − 𝑽 2)‖,

where (⋅, ⋅) denotes the concatenation of the two arguments.

5. The sets [𝑎, 𝑏] and integer numbers are semi-algebraic; so are their indicator functions. The function 𝑓0 is also polynomial, hence it 
is semi-algebraic. The sum of these functions results in a semi-algebraic function Ψ in (B.1), hence Ψ is a Kurdyka-Łojasiewicz (KL) 
function.

By Proposition 1, the optimization problem (B.1) can be solved by the iterates in (B.2), due to the following proposition:

Proposition 2 (Global convergence [38]). With the assumptions in Proposition 1 being met by the problem (B.1), let ((𝑼𝑘,𝑽 𝑘))𝑘∈ℕ be 
a sequence generated by the iterates in (B.2). Then the sequence converges to a critical point (𝑼⋆,𝑽 ⋆) of the problem (B.1), where 0 ∈
𝜕Ψ(𝑼⋆,𝑽 ⋆), with 𝜕 as the subdifferential of Ψ.

It is noted that the so-called forward steps 𝑼𝑘 − 1 
𝑐𝑘
∇𝑼𝑓0(𝑼𝑘,𝑽 𝑘) and 𝑽 𝑘 − 1 

𝑑𝑘
∇𝑽 𝑓0(𝑼𝑘+1,𝑽 𝑘) in the prox operators in (B.2) are 

replaced by the simple closed-form solutions 𝑬𝑟𝒗𝑟∕‖𝒗𝑟‖2 and 𝑬𝖳
𝑟 𝒖𝑟∕‖𝒖𝑟‖2 in Algorithm 1 at steps 7 and 13 (cf. (6) and (7)), respectively. 
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In the case where the iterates (B.2) are extended to multi-block updates, each block represents one column. This is thanks to the 
special form of the functions 𝑓0(⋅,𝑽 𝑘) and 𝑓0(𝑼𝑘+1, ⋅) being quadratic functions, each having a global optimal point, which ensures a 
descent in each forward step. Furthermore, the proximal operators prox𝑓𝑐𝑘 and prox𝑔

𝑑𝑘
can efficiently be implemented by the operators 

round and clamp[𝛼,𝛽] in (6) and (7) (and equivalently in Algorithm 1 at steps 8 and 14). The equivalence of these steps is proven in 
the following lemma.

Lemma 1 (prox implementation). Consider the operators round and clamp[𝛼,𝛽] defined in (6) and (7). Then prox𝑓𝑐𝑘 (𝑾 ) = 
round(clamp[𝛼,𝛽](𝑾 )) and prox𝑔

𝑑𝑘
(𝒁) = round(clamp[𝛼,𝛽](𝒁)) for any 𝑾 ∈ ℝ𝑀×𝑅, 𝒁 ∈ ℝ𝑁×𝑅, and round(clamp[𝛼,𝛽](⋅)) being an el

ementwise operator on the input matrices.

Proof. Define the following norms for a given matrix 𝑾 ∈ℝ𝑀×𝑅:

‖𝑾 ‖2[𝑎,𝑏] ≜ ∑
𝑖,𝑗∣𝑎≤𝑾 𝑖𝑗≤𝑏

𝑾
2
𝑖𝑗
, ‖𝑾 ‖2

𝑎
≜

∑
𝑖,𝑗∣𝑾 𝑖𝑗<𝑎

𝑾
2
𝑖𝑗
, ‖𝑾 ‖2

𝑏
≜

∑
𝑖,𝑗∣𝑾 𝑖𝑗>𝑏

𝑾
2
𝑖𝑗
.

Moreover, note that the round operator can be equivalently driven by the following proximal operator:

round(𝑾 ) = arg min 
𝑼∈ℤ𝑀×𝑅

{‖𝑼 −𝑾 ‖2
𝐹
}. (B.3)

The proximal operator prox𝑓𝑐𝑘 (𝑾 ) can be rewritten as

prox𝑓
𝑐𝑘
(𝑾 ) = arg min 

𝑼∈ℝ𝑀×𝑅
{𝛿[𝑎,𝑏](𝑼 ) + 𝛿ℤ(𝑼 ) +

𝑐𝑘

2 
‖𝑼 −𝑾 ‖2

𝐹
}

= arg min 
𝑼∈ℤ𝑀×𝑅

[𝑎,𝑏]

{‖𝑼 −𝑾 ‖2
𝐹
}

= arg min 
𝑼∈ℤ𝑀×𝑅

[𝑎,𝑏]

{‖𝑼 −𝑾 ‖2[𝑎,𝑏] + ‖𝑼 −𝑨‖2
𝑎
+ ‖𝑼 −𝑩‖2

𝑏
}

= arg min 
𝑼∈ℤ𝑀×𝑅

{‖𝑼 −𝑾 ‖2[𝑎,𝑏] + ‖𝑼 −𝑨‖2
𝑎
+ ‖𝑼 −𝑩‖2

𝑏
}

= arg min 
𝑼∈ℤ𝑀×𝑅

{‖𝑼 − clamp[𝛼,𝛽](𝑾 )‖2
𝐹
}

= round(clamp[𝛼,𝛽](𝑾 )).

The first equality is due to the definition of prox which is equivalent to the second equality. In the third equality the matrices 
𝑨 ∈ ℝ𝑀×𝑅 and 𝑩 ∈ ℝ𝑀×𝑅 have elements all equal to 𝑎 and 𝑏, respectively. The third equality is due to the fact that replacing ‖𝑼 −𝑾 ‖2

𝑎
+ ‖𝑼 −𝑾 ‖2

𝑏
with ‖𝑼 −𝑨‖2

𝑎
+ ‖𝑼 − 𝑩‖2

𝑏
has no effect on the solution of the minimization. The fourth equality is also 

trivial due to the involved norms in the third equality. The fifth equality can be easily confirmed by the definition of clamp[𝛼,𝛽]. 
Finally, in the last equality, (B.3) is invoked. It is noted that in the implementation, round(clamp[𝛼,𝛽](⋅)) = clamp[𝛼,𝛽](round(⋅)) due to 
the integrality of the bounds 𝛼, 𝛽 ∈ℤ. A similar proof can be trivially followed for prox𝑔

𝑑𝑘
(𝒁) = round(clamp[𝛼,𝛽](𝒁)) as well. □

Now that the equivalence of iterates (B.2) with the simple and closed-form steps in Algorithm 1 is fully established, and the 
assumptions required for the convergence are verified in Proposition 1 to be met by problems (B.1) and (3), Proposition 2 can be 
trivially invoked to establish the convergence of Algorithm 1 to a locally optimal point of problem (3).

Data availability

The code repository address has been provided in the abstract.
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