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Abstract

While spiking neural networks (SNNs) offer a promising neurally-inspired model of compu-
tation, they are vulnerable to adversarial attacks. We present the first study that draws
inspiration from neural homeostasis to design a threshold-adapting leaky integrate-and-fire
(TA-LIF) neuron model and utilize TA-LIF neurons to construct the adversarially robust
homeostatic SNNs (HoSNNs) for improved robustness. The TA-LIF model incorporates a
self-stabilizing dynamic thresholding mechanism, offering a local feedback control solution
to the minimization of each neuron’s membrane potential error caused by adversarial distur-
bance. Theoretical analysis demonstrates favorable dynamic properties of TA-LIF neurons
in terms of the bounded-input bounded-output stability and suppressed time growth of mem-
brane potential error, underscoring their superior robustness compared with the standard
LIF neurons. When trained with weak FGSM attacks (ϵ = 2/255), our HoSNNs significantly
outperform conventionally trained LIF-based SNNs across multiple datasets. Furthermore,
under significantly stronger PGD7 attacks (ϵ = 8/255), HoSNN achieves notable improve-
ments in accuracy, increasing from 30.90% to 74.91% on FashionMNIST, 0.44% to 36.82%
on SVHN, 0.54% to 43.33% on CIFAR10, and 0.04% to 16.66% on CIFAR100.

1 Introduction

While neural network models have gained widespread adoption across many domains, a glaring limitation
of these models has also surfaced — vulnerability to adversarial attacks (Szegedy et al., 2013; Madry et al.,
2017). Subtle alterations in the input can trick a well-tuned neural network into producing misleading
predictions, particularly for mission-critical applications (Chakraborty et al., 2018). This vulnerability is
shared by both artificial neural networks (ANNs) and spiking neural networks (SNNs) (Sharmin et al., 2019;
2020; Ding et al., 2022), and stands in stark contrast to the inherent robustness of biological nervous systems,
prompting interesting questions: Why is the human brain immune to such adversarial noise? Can we leverage
biological principles to bolster the resilience of artificial networks?

Motivated by these questions, we offer a new perspective that connects adversarial robustness with homeo-
static mechanisms prevalent in living organisms. Homeostasis maintains essential regulatory variables within
a life-sustaining range (Bernard, 1865; Cooper, 2008; Pennazio, 2009; Jänig, 2022), and is crucial for sta-
bilizing neural activity (Turrigiano & Nelson, 2004), supporting neurodevelopment (Marder & Goaillard,
2006), and minimizing noisy information transfer (Woods & Wilson, 2013; Modell et al., 2015). Although
some studies have investigated homeostasis in SNNs, such as the generalized leaky-integrate-and-fire (GLIF)
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Figure 1: Proposed threshold-adapting leaky integrate-and-fire (TA-LIF) neuron model and homeostatic
SNNs (HoSNNs). (a) We leverage a LIF SNN trained using clean data to collect neural dynamic signatures
(NDS) as an anchor for the HoSNN (shown in the box above). (b) Adversarial inputs can cause large mem-
brane potential deviations from the NDS in deep layers of LIF SNNs, leading to incorrect model predictions.
(c) Homeostatic dynamic threshold voltage control in HoSNNs anchors neural activity based on the NDS,
resulting improved robustness.

models (AllenInstitute, 2018; Bellec et al., 2018; 2020; Teeter et al., 2018), no prior work has connected
homeostasis with adversarial robustness.

We aim to close this gap by exploring an online biologically-plausible defense solution based on homeostasis.
The proposed approach differs from common practices such as adversarial training in a major way, it explicitly
builds a localized neural-level self-adapting feedback mechanism into the dynamic operation of the proposed
HoSNNs. We view the time-evolving state, i.e., membrane potential ui(t|x) of each spiking neuron i in a well
trained network as its representation of the semantics of the received clean input x. Perturbed membrane
potential ui(t|x′) resulting from an adversarial input x′ corresponds to distorted semantics and can ripple
through successive layers to mislead the network output (Li et al., 2021; Rabanser et al., 2019; Nadhamuni,
2021; Shu et al., 2020; Fawzi et al., 2016; Ford et al., 2019; Kang et al., 2019; Ilyas et al., 2019a). For a
given pair (x, x′), we ensure adversarial robustness by minimizing the total induced membrane potential
perturbation Ei(x, x′).

We address two practical challenges encountered in formulating and solving this error minimization problem.
Firstly, during inference the clean membrane potential ui(t|x) reference is unknown. As shown in Fig 1(a),
we define Neural Dynamic Signature (NDS), the neuron’s membrane potential averaged over a given clean
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training dataset D, to provide a reference for anchoring membrane potential. Secondly, since externally
generated attacks are not known a priori, it is desirable to suppress the perturbation of each neuron’s
membrane potential in an online manner as shown in Fig 1(b). For this, we propose a new threshold-
adapting leaky integrate-and-fire (TA-LIF) model with a properly designed firing threshold voltage dynamics
that serves as a homeostatic control to suppress undesirable membrane potential perturbations, as shown
in Fig 1(c). We theoretically analyze the dynamic properties of TA-LIF neurons in terms of the bounded-
input bounded-output stability and suppressed time growth of membrane potential error, underscoring their
superior robustness compared with the standard LIF neurons.

We visualize the working of the proposed HoSNNs versus standard LIF-based SNNs in image classification
using several CIFAR-10 images in Figure 2. While the adversarial images generated by the Projected
Gradient Descent (PGD) (Madry et al., 2017) attack can completely mislead the attention of the LIF SNN,
the proposed homeostasis helps the HoSNN focus on parts of the input image strongly correlated with the
ground truth class label, leading to significantly improved adversarial robustness as described later.

SNN

HoSNN

Original Clean PGD Original Clean PGD Original Clean PGD Original Clean PGD

Figure 2: The heatmaps generated by Grad-CAM (Selvaraju et al., 2019) highlight the regions of the input
image that most significantly influence the classification decisions of a standard SNN and proposed HoSNN
based on the VGG architecture for a set of CIFAR-10 images. The adversarial images are generated using
PGD7 with strength of ϵ = 6/255. HoSNN can still maintain attention to the target object under attack.

2 Background

2.1 Adversarial Attacks

Two notable adversarial attack techniques are the Fast Gradient Sign Method (FGSM) (Goodfellow et al.,
2014) and Projected Gradient Descent (PGD) (Madry et al., 2017) method. Let x be an original input, y be
the true label, L(θ, x, y) the loss function with network parameters θ, and ϵ a small perturbation magnitude,
FGSM generates a perturbed input, or an adversarial input example x′ by: x′ = x + ϵ · sign[∇xL(θ, x, y)].
PGD is essentially an iterative FGSM. With xn as the perturbed input in the n-th iteration and α as
the step size, Projx+ϵ{·} as the projection within the ϵ-ball of x, PGD updates the input by: xn+1 =
Projx+ϵ{xn + α · sign[∇xL(θ, xn, y)]}. Other gradient-based attacks such as the RFGSM (Tramèr et al.,
2017), Basic Iterative Method (BIM) (Kurakin et al., 2018), and DeepFool (Moosavi-Dezfooli et al., 2016)
work in a similar fashion, APGD (Croce & Hein, 2020b). Beyond gradient-based methods, a significant area
of concern is black-box attacks (Biggio & Roli, 2018).

Some recent studies focused on delivering more powerful attacks in SNNs. Bu et al. (2023) proposed RGA,
which leveraged rate-coding in LIF neurons to generate more effective adversarial attacks with a time-
extended enhancement. Hao et al. (2024) proposed HART, which leveraged a hybrid gradient calculation
that simultaneously incorporates rate-based gradients and timing-based temporal gradients on SNNs.

2.2 Defense Methods

Adversarial training is one of the most widely adopted defense methods (Madry et al., 2017), which retrains
a model by using a mixture of clean and adversarial examples. Randomization (Xie et al., 2017) introduces
stochasticity during inference and can circumvent precise adversarial attacks. The projection technique of
(Mustafa et al., 2019) reverts adversarial attacks back to a safer set. Lastly, one may first detect the presence
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of adversarial attack and subsequently cope with it (Metzen et al., 2017a). However, these defense methods
are not free of limitations (Akhtar & Mian, 2018). Adversarial training relies on precise gradient information
and is not biologically plausible (Lillicrap et al., 2020). Randomization, projection, and detection strategies
do not fundamentally address the inherent vulnerabilities of ANNs.

2.3 Spiking Neuron Models

SNNs allow for spike-based communication and computation (Furber et al., 2014; Gerstner & Kistler, 2002;
Deng et al., 2020) and often leverage the Leaky Integrate-and-Fire (LIF) model for each neuron i with the
membrane time constant τm:

τm
dui(t)

dt
= −ui(t) + Ii(t) − τmsi(t)V i

th(t), (1)

where ui(t) is the membrane potential, Ii(t) ≜ R
∑

j wijaj(t) represents the input and is defined as the
sum of the pre-synaptic currents; wij represents the synaptic weight from neuron j to i; V i

th(t) is the firing
threshold of neuron i at time t. Neuron i’s postsynaptic spike train is:

si(t) =
{

+∞ if ui(t) ≥ V i
th(t)

0 otherwise
=

∑
f

δ(t − tf
i ) (2)

where δ(·) is the Dirac function, and tf
i is a postsynaptic spike time. With τs denoting the synaptic time

constant, the evolution of the generated postsynaptic current (PSC) aj(t) is described by:

τs
daj(t)

dt
= −aj(t) + sj(t) (3)

The LIF model uses a constant firing threshold. Generalized LIF (GLIF) models employ a tunable threshold
with short-term memory, which increases with every emitted output spike, and subsequently decays expo-
nentially back to the baseline threshold (AllenInstitute, 2018; Bellec et al., 2018; 2020; Teeter et al., 2018).
However, these models neither consider adversarial robustness nor provide mechanisms to discern "abnormal"
from "normal" neural activity.

2.4 Spiking Neural Networks Robustness

While there’s been growing interest in spiking neural networks (Imam & Cleland, 2020; Pei et al., 2019), em-
pirical studies have demonstrated that SNNs exhibit similar susceptibilities to adversarial attacks (Sharmin
et al., 2019; Ding et al., 2022). A line of research has explored porting defensive strategies developed for
ANNs to SNNs. To improve the robustness of SNNs, Kundu et al. (2021) proposed a SNN training algorithm
jointly optimizing firing thresholds and weights, and Liang et al. (2022) proposed certified training. Ding
et al. (2022) enhanced adversarial training by using a Lipschitz constant regularizer. Özdenizci & Legenstein
(2023) introduces an adversarially robust ANN-to-SNN conversion algorithm that initializes the SNN with
adversarially pre-trained ANN weights, followed by robust fine-tuning. Liu et al. (2024) improved SNN’s
adversarial robustness by adding a gradient sparsity regularization term in the loss function. However, these
methods have not fully addressed the challenges of ensuring adversarial robustness. Additionally, they are
computationally expensive and lack biological plausibility.

Another research direction has focused on studying the inherent robustness of SNNs not seen in their ANN
counterparts, and factors impacting robustness. Sharmin et al. (2020) recognized the inherent resistance of
SNNs to gradient-based adversarial attacks. El-Allami et al. (2021) investigated the impact of key network
parameters such as firing voltage thresholds on robustness. Chowdhury et al. (2021) demonstrated the LIF
model’s noise-filtering capability. Li et al. (2022) explored network inter-layer sparsity. Xu et al. (2022)
examined the effects of surrogate gradient techniques on white-box attacks. While these studies have shed
light on aspects of SNNs relevant to robustness, effective defense strategies are yet to be developed.

Similar to ours, some studies improve robustness from stability and biological and rational perspectives.
Ding et al. (2024a) enhanced adversarial robustness by reducing the mean square of perturbations in the last
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neuron layer. Inspired by Stochastic Gating Mechanisms, Ding et al. (2024b) introduced randomness into
spike transmission by simulating the probabilistic opening and closing of synaptic and ion channel gates. The
fundamental differences between our work and theirs are: 1.We adjust the threshold in a passive and online
manner instead of deliberately adding additional optimization loss terms to the loss function as (Ding et al.,
2024a), which significantly reduces the additional calculations for training and inference. 2.Our method
does not introduce additional randomness as (Ding et al., 2024b). Thus, our method can retain high clean
accuracy and ensures that the robustness does not come from gradient obfuscation (Athalye et al., 2018).

3 Method

We present the first study that draws inspiration from neural homeostasis to design a threshold-adapting
leaky integrate-and-fire (TA-LIF) neuron model and utilize TA-LIF neurons to construct the adversarially
robust homeostatic SNNs (HoSNNs) for improved robustness.

3.1 Adversarial Robustness as a Membrane Potential Error Minimization Problem

In a well-trained network, we view the time-evolving state, i.e., membrane potential ui(t|x) of each spiking
neuron i, over T timesteps as its representation of the semantics of the received clean input x. An adversarial
input x′ = x+δx, s.t. δx < ϵ, where ϵ is the attack budget (strength), and δx is a carefully crafted adversarial
noise, may lead to a perturbed membrane potential ui(t|x′), which corresponds to distorted semantics and
can ripple through successive layers to mislead the network’s decision (Li et al., 2021; Rabanser et al., 2019;
Nadhamuni, 2021; Shu et al., 2020; Fawzi et al., 2016; Ford et al., 2019; Kang et al., 2019; Ilyas et al., 2019a).

For a given pair of (x, x′), one may ensure adversarial robustness of the network by minimizing the total
induced membrane potential perturbation Ei(x, x′) of all N neurons over T timesteps:

min Ei(x, x′) =
N∑

i=0

T∑
t=0

∥ ui(t|x′) − ui(t|x) ∥2 (4)

However, there exist two challenges in formulating and solving equation 4. Firstly, since the model is oblivious
about the attack, it is impossible to determine how the adversarial input x′ is generated, whether it has
a corresponding clean input x, and what x is if it exists. As such, ui(t|x) is unknown, which serves as a
clean reference in equation 4. We address this problem by inducing the notion of Neural Dynamic Signature
(NDS), the neuron’s membrane potential averaged over a given clean training dataset D, to provide an anchor
for stabilizing membrane potential. Secondly, since externally generated attacks are not known a priori, it
is desirable to suppress the perturbation of each neuron’s membrane potential in an online manner. For
this, we propose a new type of spiking neurons, called threshold-adapting leaky integrate-and-fire (TA-LIF)
neurons with a properly designed firing threshold voltage dynamics that serves as a homeostatic control to
suppress undesirable membrane potential perturbations. We discuss these two techniques next.

3.2 Neural Dynamic Signature (NDS) as an Anchor

Eq 4 describes an "ideal" optimization problem. When Ei(x, x′) = 0, all neuron activities under adversarial
sample input are the same as normal sample input, this can certainly achieve "adversarial robustness" in
theory, but it is impossible to achieve in practice. There are two main limitations:(1) For a trained network,
the intensity and type of attack are determined by external attackers, which means that x’ has a huge range
of variation. (2) For a trained network, the attack sample x cannot be determined in advance, which means
that it is impossible to obtain an accurate ui(t|x). Under the constraints of these two problems, we still
hope to adopt the idea of Eq 4. A feasible approximation is that we use the available average value of the
training data set Ex∼D [ui(t|x)] as an approximation of the unavailable ui(t|x).

We utilize a clean training dataset D to anchor each spiking neuron i. While the membrane potential ui(t|x)
shows variability across individual samples x, its expected value over distribution D denoted by u∗

i (t|D) can
act as a reliable reference as illustrated in Fig 1(a):

u∗
i (t|D) ≜ Ex∼D[ui(t|x)] (5)
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The Neural Dynamic Signature (NDS) of neuron i is defined as a temporal series vector over T timesteps:
u∗

i (D) = [u∗
i (t1|D), u∗

i (t2|D), · · · , u∗
i (tT |D)]. u∗

i (D) captures the average semantic activation across D.
Adversarial perturbations induce input distributional shifts, leading to anomalous activation of out-of-
distributional semantics. u∗

i (D) facilitates the identification of neuronal activation aberrations and further
offers an anchor signal to bolster network resilience.

We also define the network-level NDS, UNET(D) ≜ {ui(D)}N
i=1, as the collection of NDS vectors in a well-

trained LIF-based SNN comprising N neurons. A densely populated SNN with N neurons typically has
O(N2) weight parameters. In contrast, UNET(D) scales as O(NT ). Recent algorithms have enabled training
of high-accuracy SNNs with short latency operating over a small number of time steps, e.g., 5 to 10 (Zhang
& Li, 2020). Consequently, the storage overhead of NDS remains manageable.

Dynamics of NDS While serving as an anchor signal, the dynamics of NDS provides a basis for under-
standing the property of the proposed TA-LIF neurons. As NDS u∗

i (t|D) of neuron i is derived from the
well-trained LIF SNN, we take expectation of the LIF dynamic equation 1 with a static firing threshold
Vth across the entire training distribution D while simplifying the dynamics by approximating the effects of
firing:

τm
du∗

i (t|D)
dt

= −u∗
i (t|D) + I∗

i (t|D) − τmr∗
i (D)Vth (6)

Here, I∗
i (t|D) defines the average current input Ex∼D[Ii(t|θ, x)], and r∗

i (D) denotes the average firing rate
Ex∼D[

∫ tT

0
si(t|x)

tT
dt].

Hypothesis of NDS We hypothesize that in SNNs, the original neural activity within the training set
holds reference significance for mitigating adversarial perturbations. This idea finds support in certain works
within the Artificial Neural Network (ANN) domain, which suggest that detecting and modifying neuron
activation values in feature space can alleviate adversarial issues (Silva & Najafirad, 2020; Metzen et al.,
2017b; Zhang et al., 2020). Some studies deny this view (Carlini & Wagner, 2017; Tramèr, 2022; Ilyas et al.,
2019b; Li et al., 2021). In SNNs, whether membrane potential sequences can effectively address adversarial
attack problems remains unclear and needs further investigation.

Here we provide an intuitive understanding of NDS’s effectiveness. Consider an adversarial sample x′ =
x + δx, where the perturbation δx represents the adversarial attack. As the strength of the perturbation
diminishes (δx → 0), the sample gradually converges to the original clean sample (x′ → x). Consequently, the
neural activity of the attacked network, denoted as f(x′), will approach the clean neural activity, f(x), i.e.,
f(x′) → f(x). This alignment between the attacked and clean neural activity suggests that the network’s
classification result will likewise revert to the correct prediction, y′ → y. Therefore, if we can identify a
method to reduce the discrepancy between the neural activity of the attacked network and that of the clean
network, we may be able to mitigate the impact of adversarial attacks on the classification outcome.

3.3 Threshold-Adapting Leaky Integrate-and-Fire (TA-LIF) Neurons

3.3.1 Membrane Potential Error Minimization with NDS

Instead of examining the deviation of membrane potential ui(t|x′) caused by the adversarial input x′ from
the unknown ui(t|x), we define a new error signal ei(t|x′) ≜ ui(t|x′) − u∗

i (t|D), and replace the optimization
problem of equation 4 by a more practical membrane potential error minimization problem while optimizing
the dynamically changing firing threshold V i

th(t|x′) of each neuron i:

min
Vi

th∈RT
Ei(x′) =

T∑
t=0

ei(t|x′)2 ≜
T∑

t=0
(ui(t|x′) − u∗

i (t|D))2 (7)

where Vi
th = [V i

th(t1|x′), V i
th(t2|x′), · · · , V i

th(tT |x′)]. The intrinsic parameter of firing threshold has a critical
role in neuronal dynamics and spiking firing. Adapting the firing threshold can mitigate the effects of
adversarial noise, and offer an online homeostatic mechanism for minimizing Ei(x′), which is potentially
generalizable across various attack strengths and types.
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3.3.2 Error Minimization of TA-LIF Neurons as a Second-Order Homeostatic Control System

Subtracting equation 6 from equation 1 gives the following dynamics of the error ei(t):

τm
dei(t|x′)

dt
= −ei(t|x′) + ∆Ii(t|x′) − τm[ri(x′)V i

th(t|x′) − r∗
i (D)Vth] (8)

where ∆Ii(t|x′) ≜ Ii(t|x′) − I∗
i (t|D), and ri(x′) ≜

∫ tT

0
si(t|x′)

tT
dt represents the average firing rate under

the adversarial input x′. Differentiating equation 8 with respect to time and incorporating the threshold
dynamics yields:

τm
d2ei(t)

dt2 + dei(t)
dt

+ riτm
dV i

th(t)
dt

= ε(t), (9)

where ε(t) ≜ d∆Ii(t|x′)
dt , and we omit the notational dependencies on x′ for clarity. Importantly, equation 9

characterizes the error dynamics ei(t) as a second-order control system influenced by the external disturbance
ε(t) with dV i

th(t)
dt serving as the control term.

We seek to solve the membrane potential error minimization problem in equation 7 by designing a control
scheme that leads to proper error dynamics based on the second-order error system of equation 9. To this
end, we utilize control signal dV i

th(t)
dt to provide a negative feedback control to suppress ei(t|x′):

dV i
th(t|x′)
dt

= θiei(t|x′) = θi[ui(t|x′) − u∗
i (t|D)], (10)

where θi is a neuron-level learnable parameter, dictating the pace of firing threshold adjustment.

TA-LIF model. equation 1, equation 2, and equation 10 together delineate the proposed TA-LIF model.
We construct a homeostatic SNN (HoSNN) using TA-LIF neurons, where each TA-LIF neuron maintains its
unique θi and V i

th(t). To extract precise semantic information from D, we collect the NDS for the HoSNN
from a well-trained LIF-SNN with identical network configurations. θi and network weights W of the HoSNN
can be jointly optimized using a training algorithm such as backpropagation.

During inference with the optimized θi, V i
th(t) is adapted in an unsupervised manner according to equation 10.

Intuitively, if a TA-LIF neuron i shows a abnormal increased activation relative to the reference NDS, V i
th(t)

would be stepped up to suppress the increase in membrane potential. Conversely, if the neuron is abnormally
inhibited, V i

th(t) would be tuned down. Figure 3(a) compares the LIF and TA-LIF models via numerical
simulation of equation 9, showing the growth of error ei(t) over time. We set the ε(t) as Gaussian white
noise ξ(t) ∼ N (0, 1) and repeated the simulation 1000 times. The membrane potential error of TA-LIF (red
area) is significantly smaller than that of LIF (blue area), revealing TA-LIF’s dynamic robustness under
noisy input perturbations.

The feedback control in equation 10 offers a straightforward means to implement homeostasis, which in
turn enhances the adversarial resilience of the proposed HoSNNs. Furthermore, this homeostatic control
exhibits two favorable dynamic properties presented next, underscoring its relevance in solving the membrane
potential error minimization problem of equation 7 as a feedback control solution.

3.3.3 Theoretical Dynamic Properties of TA-LIF Neurons

We highlight key properties of the TA-LIF dynamics from two perspectives: bounded-input bounded-output
(BIBO) stability of membrane potential error and suppressed time growth of error in comparison with the
standard LIF model. See Appendix A for complete derivation of these properties.

BIBO Stability If a system is BIBO stable, then the output will be bounded for every input to the system
that is bounded. The characteristic equation and its roots of the proposed second-order TA-LIF dynamics
equation 9 incorporating the homeostatic control equation 10 are:

τms2 + s + riτmθi = 0, s1,2 = −1 ±
√

1 − 4riτ2
mθi

2τm
(11)
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Figure 3: (a) Numerical simulations of equation 9 show that TA-LIF can well suppress the growth of error
with time. (b) Box plot of the post-synaptic current relative error distribution per layer of a SNN and a
HoSNN, trained with FGSM adversarial training with ϵ = 2/255 and attacked by a same CIFAR10 black-box
PGD7 dataset with ϵ = 8/255.

For a second-order system to be BIBO, the roots of its characteristic equation must be a negative real or
have a negative real part, which is clearly the case for the TA-LIF model with both θi and ri > 0, affirming
the BIBO stability of the TA-LIF model. This signifies that when the adversarial input perturbation ε(t) is
bounded, the deviation of the TA-LIF neuron’s membrane potential ei(t) is also bounded, showing the good
control of error under various attack intensities.

Suppressed Time Growth of Membrane Potential Error To analyze the evolution of membrane
potential error induced by injected input perturbations over time, we follow the common practice (Gerstner
et al., 2014; Abbott & Van Vreeswijk, 1993; Brunel, 2000; Renart et al., 2004) to approximate ∆I(t) in
equation 9 as a Wiener process, representing small, independent, and random perturbations. Consequently,
the driving force ε(t) on the right of equation 9 can be approximated by white noise ξ(t) with zero mean
and variance σ2. By the theory of stochastic differential equations (Kloeden et al., 1992), this leads to the
following mean square error for the LIF and TA-LIF models, respectively:

LIF : dV i
th

dt
= 0 =⇒ ⟨e2

i (t)⟩ = O(σ2t) = τ2
mσ2

2

(
t − τm + τme−t/τm

)
(12)

TA-LIF : dV i
th

dt
= θiei =⇒ ⟨e2

i (t)⟩ = O(σ2) = τmσ2

2riθi

[
1 − e

−t
2τm

(
cos (ω1t) + sin (ω1t)

2ω1τm

)]
(13)

where ω1 =
√

riθi − 1
4τ2

m
. Importantly, the mean square error of the TA-LIF neuron is O(σ2) and does not

grow with time while that of LIF neurons grows unbounded with time. The suppression of time growth of
membrane potential error by the TA-LIF model underscores its superiority over the LIF model in terms of
adversarial robustness.

3.4 Homeostatic SNNs (HoSNNs)

We further introduce the homeostatic SNNs (HoSNNs), which deploy TA-LIF neurons as the basic compute
units to leverage their noise immunity. Architecturally, HoSNNs can be constructed by adopting typical
connectivity such as dense or convolutional layers, with two learnable parameters: synaptic weights W
and threshold dynamics parameter θ per equation 10. We extract the network-level NDS UNET(D) from
a LIF-based SNN with identical architecture well-trained on the clean data distribution D. The HoSNNs
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optimization problem can be described as:

W ∗, θ∗ = arg min
W ,θ

∑
{x,y}

Ltrain(x, y | W , θ, V∗
th(x)) (14)

s.t.V∗
th(x) = arg min

Vth
Lmem(W , θ, Vth(x), UNET(D)|x) (15)

where x and y are an input/label pair; Ltrain(·) is the loss over a training dataset that can include
clean/adversarial examples, or a combination of the two; Lmem ≜

∑N
i=0

∑T
t=0 ei(t|x)2 is the sum of all

neurons’ membrane potential error in equation 7. In practice, Lmem is optimized online by the homeostatic
control of firing threshold during the forward process. Ltrain(·) is optimized by gradient during the backward
process, for which any backpropagation based training algorithm such as BPTT (Neftci et al., 2019; Wu
et al., 2018), BPTR (Lee et al., 2020), or TSSL-BP (Zhang & Li, 2020) can be applied to optimize the
network based on equation 14.

3.5 Complexity Analysis of HoSNN

In a standard Spiking Neural Network (SNN), the number of neurons is n, with weights w = O(n2) and
training time T . For Higher-order Spiking Neural Networks (HoSNNs), additional space is required to store
the learnable parameters θi = O(n), but this storage cost is negligible compared to the network weights.
The primary additional cost in training a HoSNN is training the baseline SNN first. The extra time due
to the TA-LIF model’s dynamic threshold calculation is minimal (<10%). Therefore, the overall training
time for a HoSNN is about 2T . The dynamic threshold adjustment during inference has negligible impact,
so the inference cost of a trained HoSNN is almost identical to that of an SNN. There are some challenges
in the training of HoSNN. (1) θi Initialization: Initializing θi too large (> 1) can destabilize training. It is
recommended to set θi between 0 and 0.5, with smaller values needed for complex datasets. (2) Optimizer
Choice: HoSNNs converge slower in later training stages, especially in adversarial settings. Using the Adam
optimizer with a cosine decay learning rate helps achieve similar convergence speeds as SNNs.

4 Experiments

4.1 Experimental Setup

The proposed HoSNNs are compared with LIF-based SNNs with identical architecture across four benchmark
datasets: Fashion-MNIST (FMNIST) (Xiao et al., 2017), Street View House Numbers (SVHN) (Netzer
et al., 2011) CIFAR10 and CIFAR100 (Krizhevsky, 2009). VGG-5/9/11 (Simonyan & Zisserman, 2015)
convolutional neural network (CNN) architectures of different sizes and depths are utilized. Widely used
methods including FGSM (Goodfellow et al., 2014), RFGSM (Tramèr et al., 2017), PGD (iteration = 7, 20,
40) (Madry et al., 2017), and BIM (Kurakin et al., 2018) are used to generate both white-box and black-box
attacks. To test stronger attacks, we introduce APGD (Croce & Hein, 2020a) in our white-box attack, with
cross entropy loss (APGDCE), difference of logits ratio loss (APGDDLR) and targeted attack (T-APGD).
Unless otherwise specified, PGD refers to PGD7. The dynamically changing firing thresholds of the
HoSNNs are exposed to the attacker and utilized in the gradient calculation when generating
white-box attacks. We independently trained SNNs with the same architecture and used their white-box
attacks as the black-box attacks to the HoSNNs.

For each HoSNN, an LIF-based SNN with an identical architecture is trained on the corresponding clean
dataset to derive the NDS. Model training employs the BPTT learning algorithm (T = 5), leveraging a
sigmoid surrogate gradient (Xu et al., 2022; Neftci et al., 2019; Wu et al., 2018). The learning rate for
each θi in equation 10, which controls the adaptation of the firing threshold of TA-LIF neurons, is set
to 1/10 of that for the network weights, ensuring hyperparameter stability during training. We ensure
that θi is non-negative during optimization. We train four types of models: SNNs and HoSNNs on a
clean dataset and a weak FGSM-based adversarial training dataset, respectively. For FGSM adversarial
training, we set the attack budget to ϵ = 2/255 on FMNIST, SVHN and CIFAR10 as in (Ding et al., 2022)
and ϵ = 4/255 on CIFAR100 as in (Kundu et al., 2021). For iterative attacks (PGD & BIM), we adopt

9



Published in Transactions on Machine Learning Research (03/2025)

parameters α = 2.5∗ϵ/steps and steps = 7, 20, 40 in accordance with (Ding et al., 2022). Mode experimental
settings are in the Appendix C.

4.2 Adversarial Robustness under White-box Attacks

Robustness without adversarial training Table 1 compares HoSNNs and SNNs intrinsic resilience
without adversarial training. Both types of network are trained exclusively on the clean dataset, and then
subjected to ϵ = 8/255 white-box adversarial attacks. The HoSNNs show consistently higher accuracy than
the SNN counterparts under all four datasets and four attacks. For example, on CIFAR-10, the HoSNN
significantly improves accuracy from 20.86% to 54.76% under FGSM, from 0.54% to 15.32% under PGD7,
from 0.69% to 10.35% under APGD with cross entropy loss, from 4.44% to 16.02% under T-APGD.

Robustness with adversarial training In Table 2, we evaluate the enhanced robustness of HoSNNs
under adversarial training. We train both the SNNs and HoSNNs using FGSM adversarial training and then
expose them to ϵ = 8/255 white-box attacks. The results show a significant boost in robustness for HoSNNs
when using adversarial training. Furthermore, the HoSNNs noticeably outperform the SNNs trained using
the same FGSM adversarial training. For example, on CIFAR10, the HoSNNs improve the accuracy of the
corresponding SNN to 63.98% from 37.93% under FGSM attack, and to 43.33% from 12.42% under PGD7
attack, from 8.23% to 38.89% under APGD-CE attack. On CIFAR100, the HoSNN improves the accuracy
to 16.66% from 8.82% under PGD7 attack, from 7.75% to 12.55% under APGD-CE attack.

Dataset Net Clean FGSM RFGSM BIM7 PGD7 PGD20 PGD40 APGDCE APGDDLR T-APGD
Fashion
MNIST

× 92.92 56.01 70.02 38.85 30.90 28.73 27.88 23.22 40.25 39.67
✓ 92.96 65.36 76.10 49.02 35.79 32.99 32.63 37.78 61.01 50.57

SVHN × 95.51 26.07 42.94 2.26 0.44 0.18 0.13 0.11 7.73 0.81
✓ 93.55 44.87 57.27 12.91 4.33 1.87 1.47 3.09 12.26 5.32

CIFAR
10

× 92.47 20.86 38.72 3.29 0.54 0.38 0.3 0.69 7.03 4.44
✓ 92.43 54.76 62.33 28.06 15.32 11.58 10.74 10.35 27.39 16.02

CIFAR
100

× 74.00 5.74 8.94 0.10 0.04 0.01 0.00 0.00 0.01 0.01
✓ 71.98 13.48 12.27 0.50 0.19 0.02 0.02 2.55 0.02 0.02

Table 1: Training on clean dataset. Whitebox attack results on Fashion-MNIST, SVHN, CIFAR10 and
CIFAR100 under various types of attack with an intensity of ϵ = 8/255. The data on the left and right are
based on training using the clean and weak FGSM datasets, respectively. HoSNNs (denoted as ✓) provide
greater robustness than SNNs (denoted as ×) under all attacks and datasets.

Dataset Net Clean FGSM RFGSM BIM7 PGD7 PGD20 PGD40 APGDCE APGDDLR T-APGD
Fashion
MNIST

× 92.08 74.12 83.12 68.36 62.92 61.97 61.43 55.47 68.25 62.56
✓ 92.31 84.7 87.99 79.61 74.91 73.53 73.21 67.94 76.24 74.48

SVHN × 93.85 48.37 68.81 30.09 18.46 15.52 14.79 9.70 25.66 20.82
✓ 92.84 61.78 75.60 48.83 36.82 32.24 30.89 28.20 47.89 43.96

CIFAR
10

× 91.87 37.93 59.50 22.31 12.42 11.03 10.63 8.23 16.8 14.62
✓ 90.00 63.98 71.07 52.33 43.33 40.97 40.02 38.89 37.94 41.69

CIFAR
100

× 68.72 22.54 36.93 13.58 8.82 7.88 7.52 7.75 7.51 5.4
✓ 64.64 26.97 41.45 21.09 16.66 15.83 15.37 12.55 13.66 10.2

Table 2: Training on FGSM dataset (ϵ = 2/255). Whitebox attack results on Fashion-MNIST, SVHN,
CIFAR10 and CIFAR100 under various types of attack with an intensity of ϵ = 8/255. The data on the left
and right are based on training using the clean and weak FGSM datasets, respectively. HoSNNs (denoted
as ✓) provide greater robustness than SNNs (denoted as ×) under all attacks and datasets.

4.3 Adversarial Robustness under Black-box Attacks

Layer-wise Relative Error of Post-synaptic Currents Perturbation in membrane potential caused by
adversarial inputs can alter the output spike train of each neuron, and the resulting shifts in its post-synaptic
current (PSC) can propagate through the successive layers. The PSC ai(t) is calculated by equation 3. To
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reveal the source of HoSNNs robustness, we examine the relative error in PSC induced by adversarial attacks.
On CIFAR10, we use the ϵ = 8/255 black-box PGD7 attack to attack SNN and HoSNN trained with the
ϵ = 2/255 FGSM adversarial training. For neuron i, we record its PSC ai(t) and a′

i(t) under each pair of
clean and adversarial input, respectively, and then calculate the difference of eP SC

i (t) ≜ |ai(t) − a′
i(t)| as an

error metric. The layer-wise distributions of the relative error eP SC
i are plotted in Figure 3(b) and Figure 4.

The experiment results show that each error distribution of the HoSNN has a significantly reduced mean
compared with that of the SNN, and has its probability mass concentrated on low PSC error values, reveal-
ing the favorable internal self-stabilization introduced by the proposed homeostasis. Correspondingly, the
HoSNN delivers an accuracy of 76.62%, significantly surpassing the 46.97% accuracy of the SNN.
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Figure 4: Distribution of post-synaptic current relative error of a SNN and HoSNN trained with FGSM
adversarial training with ϵ = 2/255 and attacked by black-box PGD7 attack with ϵ = 8/255.

Dataset Net Clean FGSM RFGSM PGD7 BIM7
Fashion
MNIST

× 92.08 66.26 80.09 74.08 73.43
✓ 92.31 68.31 80.73 75.12 74.09

SVHN × 93.85 17.37 42.64 21.16 36.70
✓ 92.84 19.08 44.57 25.97 40.75

CIFAR
10

× 91.87 13.48 8.79 0.11 0.31
✓ 90.00 25.18 31.11 13.42 23.34

CIFAR
100

× 68.72 12.18 17.87 6.74 17.36
✓ 64.64 14.54 24.32 16.90 32.04

Table 3: SNNs and HoSNNs black-box attack accuracy,
trained with FGSM adversarial training and tested by dif-
ferent black-box attack methods with ϵ = 32/255.

Black Box Robustness Table 3 evaluates
the robustness of SNNs (denoted as ×) and
HoSNNs (denoted as ✓) against black-box at-
tacks. All models are trained by weak FGSM
adversarial training and tested by ϵ = 32/255
black-box attacks generated using separately
trained SNNs with identical architecture. Ta-
ble 3 shows that the HoSNNs exhibit signifi-
cantly stronger black-box robustness than the
SNN counterparts. For example on CIFAR-
10, the HoSNN outperforms the traditional
SNN under the FGSM and PGD7 attacks with
11.7% and 13.31% accuracy improvements, re-
spectively. On CIFAR-100, HoSNN improves
the PGD7 accuracy from 6.74% to 16.90%.

4.4 Checklist for gradient obfuscation

For a detailed check of gradient obfuscation (Athalye et al., 2018; Carlini et al., 2019), we provide
comprehensive inspection and data (in Appendix D). HoSNNs pass all five tests as show in Table 4

For Test (1) We plot the curves of white-box FGSM and PGD7 attacks on four datasets in Figure 5 and
Table 8, with attack budgets ϵ from 0 to 64/255 to ensure that the network can be completely fooled. The
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Items to identify gradient obfuscation HoSNN Experiment
(1) Single-step attack performs better compared to iterative attacks ✓ Fig 5 and Table 8
(2) Black-box attacks perform better compared to white-box attacks ✓ Fig 6 and Table 9
(3) Increasing perturbation bound can’t increase attack strength ✓ Fig 7 and Table 10
(4) Unbounded attacks can’t reach 100% success ✓ Fig 7 and Table 10
(5) Adversarial example can be found through random sampling ✓ Fig 8

Table 4: Checklist for gradient obfuscation

red curve is the accuracy under FGSM, while the blue curve is PGD7. From the Figure 5 we can confirm
that all iterative attacks are much stronger than single-step attack.
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Figure 5: For Test (1). Performance of HoSNN under white-box FGSM and PGD7 attack.

For Test (2) We plot the curves of white-box and black-box PGD7 attacks on four datasets in Figure 6
and Table 9, with attack budgets ϵ from 0 to 64/255 to ensure that the network can be completely fooled.
The green curve is the accuracy under black-box PGD7 attack, while the blue curve is under white-box.
From the Figure 6 we can confirm that all white-box attacks are much stronger than black-box.

02468 16 32 64
ε/255

0
10
20
30
40
50
60
70
80
90

T
es

t
A

cc
ur

ac
y

HoSNN-BB-PGD

HoSNN-WB-PGD

(a) Fashion-MNIST

02468 16 32 64
ε/255

0
10
20
30
40
50
60
70
80
90

T
es

t
A

cc
ur

ac
y

HoSNN-BB-PGD

HoSNN-WB-PGD

(b) SVHN

02468 16 32 64
ε/255

0
10
20
30
40
50
60
70
80

T
es

t
A

cc
ur

ac
y

HoSNN-BB-PGD

HoSNN-WB-PGD

(c) CIFAR-10

02468 16 32 64
ε/255

0

10

20

30

40

50

60

T
es

t
A

cc
ur

ac
y

HoSNN-BB-PGD

HoSNN-WB-PGD

(d) CIFAR-100

Figure 6: For Test (2). Performance of HoSNN under white-box and black-box and PGD7 attack.

For Test (3) & (4) We increasing perturbation bound can’t increase attack strength & Unbounded
attacks can’t reach ∼ 100% success, we plot the curves of white-box and black-box PGD7 attacks on four
datasets in Figure 7 and Table 10, with attack budgets ϵ from 0 to 64/255 to ensure that the network can
be completely fooled. The blue curve is HoSNN’s accuracy under white-box PGD7 attack, while the yellow
curve is SNN’s baseline. From the Figure 7 we can confirm that as perturbation bound increasing HoSNN’s
accuracy is decreasing and all unbounded attacks reach ∼ 100% success.

For Test (5) Since all gradient-based attacks work, there is no need to use random sampling methods.
Therefore Test (5) passed obviously. Figure 8 shows model performance with and without adversarial training
(ADV) under white-box PGD7 attacks with varying intensities: ϵ = 2, 4, 6, 8/255. The proposed HoSNNs
consistently outperform the SNNs in terms of model accuracy across all attack intensities and four datasets.

12



Published in Transactions on Machine Learning Research (03/2025)

02468 16 32 64
ε/255

0
10
20
30
40
50
60
70
80
90

T
es

t
A

cc
ur

ac
y

SNN-WB-PGD

HoSNN-WB-PGD

(a) Fashion-MNIST

02468 16 32 64
ε/255

0
10
20
30
40
50
60
70
80
90

T
es

t
A

cc
ur

ac
y

SNN-WB-PGD

HoSNN-WB-PGD

(b) SVHN

02468 16 32 64
ε/255

0
10
20
30
40
50
60
70
80
90

T
es

t
A

cc
ur

ac
y

SNN-WB-PGD

HoSNN-WB-PGD

(c) CIFAR-10

02468 16 32 64
ε/255

0
10
20
30
40
50
60
70

T
es

t
A

cc
ur

ac
y

SNN-WB-PGD

HoSNN-WB-PGD

(d) CIFAR-100

Figure 7: For Test(3) and (4). Performance of HoSNN under larger white-box PGD7 attack.
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Figure 8: For Test(5). Performance of SNNs and HoSNNs as a function of white-box PGD7 attack intensity.

4.5 Comparison with other works

Data Methods Clean FGSM PGD7

CIFAR-
10

Ding et al. (2022) 83.45 39.69 20.14
Özdenizci & Legenstein (2023) 91.86 41.55 27.35
Our work 90.00 63.98 42.63

CIFAR-
100

Ding et al. (2022) 67.47 25.38 15.66
Özdenizci & Legenstein (2023) 67.26 21.35 13.45
Our work 64.64 26.97 16.66

Table 5: Comparison with others work. We use ϵ = 2 FGSM
adversarial training for CIFAR10 and ϵ = 4 for CIFAR100. Ad-
versarial examples are generated from the gradient of BPTT.

We compare our method against recent
state-of-the-art defense methods under
white-box FGSM and PGD7 attacks in
Table 5. We tested all three methods
on the same VGG7 network architecture,
detailed in Appendix A. We use ϵ = 2
FGSM adversarial training for CIFAR10
and ϵ = 4 for CIFAR100. Adversarial ex-
amples are generated from the gradient of
BPTT. Our adversarially trained models
achieved the highest defense accuracies.

5 Discussions

This paper presents the first work on bi-
ologically inspired homeostasis for enhancing adversarial robustness of spiking neural networks. Specifically,
we propose a new TA-LIF model with a threshold adaptation mechanism and use TA-LIF neurons to con-
struct inherently more robust HoSNN networks. Yet, there is room for future investigations including better
trading off between model accuracy under clean and adversarial inputs. More broadly, we recognize the vast
and yet untapped potential of biological homeostasis in neural network research. The relationship between
the properties of individual neurons and the overall performance of the network warrants further exploration.
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A Appendix

We mainly present the derivation of the second-order dynamic equation of TA-LIF in B, dynamic stability
analysis in C the detailed experimental setup in D and checklist for gradient obfuscation in E.

B Derivation of TA-LIF Dynamic Equation

In this section, we derive the approximate second-order dynamic equations of the threshold-adapting leaky
integrate-and-fire (TA-LIF) neurons and subsequently analyze them.

B.1 LIF Dynamics

To facilitate our discussion, let’s commence by presenting the first-order dynamic equations of the LIF neuron
i at time t:

τm
dui(t)

dt
= −ui(t) + Ii(t) − τmsi(t)Vth (16)

The input current is defined as

Ii(t) = R
∑

j

wijaj(t) (17)

The spiking behavior si(t) is defined as:

si(t) =
{

+∞ if ui(t) ≥ Vth

0 otherwise
=

∑
f

δ(t − tf
i ) (18)

And the post-synaptic current dynamics are given by:

τs
daj(t)

dt
= −aj(t) + sj(t) (19)

Where:

• τm: Represents the membrane time constant.

18



Published in Transactions on Machine Learning Research (03/2025)

• Ii(t): Denotes the input, which is the summation of the pre-synaptic currents.

• wij : Stands for the synaptic weight from neuron j to neuron i.

• aj(t): Refers to the post-synaptic current induced by neuron j at time t.

• Vth: Is the static firing threshold.

• tf
i : Indicates the f -th spike time of neuron i.

• τs: Is the synaptic time constant.

B.2 Neural Dynamic Signature

Let’s begin by reviewing the definition of the Neural Dynamic Signature (NDS). Given a data instance x
sampled from distribution D, the NDS of neuron i, contingent upon the training set distribution D, can be
represented as a temporal series vector u∗

i ([D). Specifically, at time t, it holds the value:

u∗
i (t|D) ≜ Ex∼D[ui(t|x)], for t ∈ [0, T ] (20)

To derive the dynamics of NDS, we start by revisiting Equation equation 16, rewriting it with respect to x

τm
dui(t|x)

dt
= −ui(t|x) + Ii(t|x) − τmsi(t|x)Vth (21)

For the convenience of dynamic analysis, we choose to approximate the discontinuous Dirac function term
si(t|x) with the average firing rate ri( x) of neuron i. The average firing rate is calculated by

ri(x) ≜
∫ T

0

si(t|x)
T

dt (22)

We take this approximation to address discontinuity of Dirac funtion, as ri(x) and si(t|x) have the same
integral value over time: the number of neuron firings. Substituting Equation equation 22 into Equation
equation 21 and computing the expectation on both sides, we have:

τmEx∼D[dui(t|x)
dt

] = −Ex∼D[ui(t|x)] + Ex∼D[Ii(t|x)] − τmEx∼D[ri(x)]Vth (23)

Here, we denote the average input current of neuron i over the entire dataset as:

I∗
i (t|D) ≜ Ex∼D[Ii(t|x)] (24)

and the average spike frequency of neuron i over the entire dataset as:

r∗
i (D) ≜ Ex∼D[ri(x)] (25)

With the definition from Equation equation 20, the dynamics of NDS can be expressed as:

τm
du∗

i (t|D)
dt

= −u∗
i (t|D) + I∗

i (t|D) − τmr∗
i (D)Vth (26)

As mentioned in the main text, we usually expect NDS to have precise semantic information of the distribu-
tion D. So NDS should be obtained through a well-trained model with optimal weight parameter W ∗. For
clarity in the following sections, we use W ∗ to represent the actually used NDS:

τm
du∗

i (t|W ∗, D)
dt

= −u∗
i (t|W ∗, D) + I∗

i (t|W ∗, D) − τmr∗
i (W ∗, D)Vth (27)
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B.3 TA-LIF Dynamics

In this section, we delve deeper into the dynamical equations governing the TA-LIF neuron and derive its
second-order dynamic equation

τm
dui(t)

dt
= −ui(t) + Ii(t) − τmsi(t)V i

th(t) (28)

The synaptic input Ii(t), the spike generation function si(t) and post-synaptic current dynamics of TA-LIF
are defined same as equation 17equation 18equation 19. For a specific network parameter W and a sample
x′ drawn from D′, the dynamic equation governing the threshold V i

th(t) is:

dV i
th(t|W , x′)

dt
= θiei(t|W , x′), (29)

where the error signal, utilizing the NDS as given in equation 20, is defined as:

ei(t|W , x′) ≜ ui(t|W , x′) − u∗
i (t|W ∗, D) (30)

Applying the continuity approximation for the Dirac function as per equation 22 and incorporating the
conditional dependency of W and x′, rewriting the dynamics for TA-LIF equation 28 as:

τm
dui(t|W , x′)

dt
= −ui(t|W , x′) + Ii(t|W , x′) − τmri(W , x′)V i

th(t|W , x′) (31)

Subtracting equation 27 from equation 31 and employing equation 30, denoting

∆Ii(t|W , x′) ≜ Ii(t|W , x′) − I∗
i (t|W ∗, D) (32)

we derive the 1st-order dynamic of ei(t|W , x′)

τm
dei(t|W , x′)

dt
= −ei(t|W , x′) + ∆Ii(t|W , x′) − τm[ri(W , x′)V i

th(t|W , x′) − r∗
i (W ∗, D)Vth] (33)

Differentiating equation 33 with respect to time and utilizing the threshold dynamics from equation 30, we
obtain:

τm
d2ei(t|W , x′)

dt2 = −dei(t|W , x′)
dt

+ d∆Ii(t|W , x′)
dt

− τmθiri(W , x′)ei(t|W , x′) (34)

For succinctness, we will omit dependencies on W and x′, resulting in TA-LIF dynamics in the main text
equation 26:

τm
d2ei(t)

dt2 + dei(t)
dt

+ riτmθiei(t) = d∆Ii(t)
dt

(35)

For the standard LIF neurons where θi → 0, the equation simplifies to:

τm
d2ei(t)

dt2 + dei(t)
dt

= d∆Ii(t)
dt

(36)

C Dynamic Stability Analysis

In this section, we analyze the stability of equation 35 and equation 36 to explore the influence of our dynamic
threshold mechanism on the noise suppression ability of the TA-LIF neuron.
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C.1 BIBO Stability of Equation equation 35

Characteristic Equation: We first show the BIBO (Bounded Input, Bounded Output) stability Ogata (2010)
of TA-LIF neurons based on equation 35. The characteristic equation of equation 35 of non-silent (ri > 0)
and non-degenerating (τm, θi > 0) TA-LIF neurons is:

τms2 + s + riτmθi = 0 (37)

and its roots are
s1,2 = −1 ±

√
∆

2τm
, ∆ = 1 − 4riτ

2
mθi (38)

• For ∆ > 0: Both roots s1,2 are real and negative.

• For ∆ = 0: There’s a single negative real root.

• For ∆ < 0: Both roots are complex with negative real parts.

For a second-order system to be BIBO, the roots of its characteristic equation must be negative real or have
negative parts, which is clearly the case for the TA-LIF model under the above three situations, affirming
the BIBO stability of equation 35. The BIBO stability signifies that with the bounded driving input to
system equation 35, the deviation of the TA-LIF neuron’s membrane potential from its targeted NDS is also
bounded, demonstrating the well control of the growth of error ei(t).

C.2 Stability of Equation equation 35 Under White Noise

To elucidate the dynamic characteristics of TA-LIF further, we adopt the prevalent method Abbott &
Van Vreeswijk (1993); Brunel (2000); Gerstner et al. (2014); Renart et al. (2004), approximating ∆I(t) with
a Wiener process. This approximation effectively represents small, independent, and random perturbations.
Hence, the driving force in equation equation 35 d∆Ii(t)

dt can be modeled by a Gaussian white noise F (t),
leading to the well-established Langevin equation in stochastic differential equations theory Kloeden et al.
(1992); Van Kampen (1992); Risken (1996):

d2ei(t)
dt2 + 1

τm

dei(t)
dt

+ riθiei(t) = F (t) (39)

Denoting ⟨·⟩ as averaging over time, F (t) is a Gaussian white noise with variance σ2 that satisfies:


⟨F (t)⟩ = 0,
⟨F (t1) F (t2)⟩ = σ2δ (t1 − t2) ,
⟨F (t1) F (t2) · · · F (t2n+1)⟩ = 0,
⟨F (t1) F (t2) · · · F (t2n)⟩ =

∑
all pairs ⟨F (ti) F (tj)⟩ · ⟨F (tk) F (tl)⟩ · · ·

(40)

where the sum has to be taken over all the different ways in which one can divide the 2n time points
t1 · · · t2n into n pairs. Under this assumption equation 40, the solution of the Langevin equationequation 39
is Uhlenbeck & Ornstein (1930); Wang & Uhlenbeck (1945):

〈
[∆ei(t)]2

〉
= τmσ2

2riθi

[
1 − e

−t
2τm

(
cos (ω1t) + sin (ω1t)

2ω1τm

)]
= O(σ2) (41)

where ∆ei(t) = ei(t) − ⟨ei(t)⟩ and ω1 =
√

riθi − 1
4τ2

m
. While under the same assumptions equation 40,

equation equation 36 yields:

〈
[∆ei(t)]2

〉
= τ2

mσ2

2

(
t − τm + τme−t/τm

)
= O(σ2t) (42)
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Obviously, Gaussian white noise with zero mean equation 40 leads ⟨ei(t)⟩ = 0, ⟨[∆ei(t)]2⟩ = ⟨e2
i (t)⟩. Hence,

d∆I(t)
dt

∼ F (t) =⇒

{
⟨e2

i (t)⟩LIF = O(σ2t)
⟨e2

i (t)⟩T A−LIF = O(σ2)
(43)

Significantly, the mean square error ⟨e2
i (t)⟩T A−LIF of the TA-LIF neuron remains bounded to O(σ2) and

doesn’t increase over time. In contrast, under identical input perturbations, the mean square error ⟨e2
i (t)⟩LIF

of the LIF neuron may grow unbounded with time, highlighting its potential susceptibility to adversarial
attacks.

C.3 A more intuitive explanation

We would like to provide a more intuitive explanation of Eq 9 and Eq 10. Notice that when θi = 0 according
to Eq 10, TA-LIF no longer has a dynamically changing threshold and thus degenerates into standard LIF.
Its second-order dynamics degenerates into:

τm
d2ei(t)

dt2 + dei(t)
dt

= ε(t)

An example to intuitively understand these two formulas is that they correspond to a driven damped oscillator
in the physical world, that is, the movement of a ball connected to a spring under a driving force and
damping environment. Considering ei(t) as the distance the ball deviates from the equilibrium position, we
can understand the physical meaning of each term in the formula: τm

d2ei(t)
dt2 describes the acceleration of

the ball; dei(t)
dt describes the frictional resistance of the ball; riτmθiei(t) describes the restoring force of the

spring, which is the tendency of the spring to pull the ball toward the equilibrium position (ei(t) = 0); ε(t)
describes the driving force exerted by the environment on the ball.

With this explanation, we can easily understand the difference between the second-order dynamics of TA-LIF
and LIF. The key term is riτmθiei(t). For TA-LIF, it is like a small ball that is constantly pulled toward its
initial equilibrium position by a spring when it is subjected to external disturbances: the result is that the
ball will not deviate too far (ei(t) remains small). However, there is no such term in the dynamics of LIF,
which causes ei(t) to become larger under external disturbances.

D Experiment Setting Details

Our evaluation encompasses three benchmark datasets: FashionMNIST, SVHN, CIFAR10, and CIFAR100.
For experimental setups, we deploy:

• LeNet (32C5-P-64C5-P-1024-10) for FashionMNIST.

• VGGs (32C3-32C3-P-64C3-P-128C3-128C3-128-10) for SVHN.

• VGGs (128C3-P-256C3-P-512C3-1024C3-512C3-1024-512-10) for CIFAR10.

• VGGs (128C3-P-256C3-P-512C3-1024C3-512C3-1024-1024-100) for CIFAR100.

Here, the notation 32C3 represents a convolutional layer with 32 filters of size 3×3, and P stands for a pooling
layer using 2 × 2 filters. For the CIFAR10 and CIFAR100 datasets, we incorporated batch normalization
layers and dropout mechanisms to mitigate overfitting and elevate the performance of the deep networks.
In our experiments with FashionMNIST, SVHN, and CIFAR10, the output spike train of LIF neurons was
retained to compute the kernel loss, as described in Zhang & Li (2020). For CIFAR100, we directly employed
softmax for performance.

For all HoSNN experiments, a preliminary training phase was carried out using an LIF SNN, sharing the
same architecture, on the clean datasets to deduce the NDS. Hyperparameters for LIF and TA-LIF neurons
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included a simulation time T = 5 , a Membrane Voltage Constant τm = 5, and a Synapse Constant τs = 3.
For the TA-LIF results in the main text, we assigned θi initialization values of 5 for FashionMNIST, SVHN,
CIFAR10 and 3 for CIFAR100. All neurons began with an initial threshold of 1. The step function was
approximated using σ(x) = 1

1+e−5x , where x = u(t)−Vth(t) and the BPTT learning algorithm was employed.
For TA-ALIF neurons, the learning rate for θi was set at 1/10 of the rate designated for weights, ensuring
hyperparameter stability during training. We also constrained θi to remain non-negative during optimization,
ensuring a possible transition from TA-LIF to LIF. For the generation of all gradient-based adversarial
attacks, we assume that the attacker can know all Vth(t) and use it in the gradient, even if it is generated
dynamically and is not stored as network parameters. During training, we use Vth(t) = Vth(0). We utilized
the Adam optimizer with hyperparameters betas set to (0.9, 0.999), and the lr = 5 × 10−4 with cosine
annealing learning rate scheduler (T = epochs). We set batch size to 64 and trained for 200 epochs. All
images were transformed into currents to serve as network input. Our code is adapted from Zhang & Li
(2020). The experiment used four NVIDIA A100 GPUs. For CIFAR10 and CIFAR100, it took up to about
48 hours for adversarial training.

Regarding adversarial attack, we use an array of attack strategies, including FGSM, RFGSM, PGD, and
BIM. For both CIFAR10 and CIFAR100, we allocated an attack budget with ϵ = 8/255. For iterative
schemes like PGD, we set α = 2.5 ∗ ϵ/steps and steps = 7, 20, 40, aligning with the recommendations in
Ding et al. (2022). For the adversarial training phase, FGSM training was used with ϵ values of 2/255 for
CIFAR10 as per Ding et al. (2022) and 4/255 for CIFAR100, following Kundu et al. (2021).

Items to identify gradient obfuscation HoSNN
(1) Single-step attack performs better compared to iterative attacks ✓
(2) Black-box attacks perform better compared to white-box attacks ✓
(3) Increasing perturbation bound can’t increase attack strength ✓
(4) Unbounded attacks can’t reach 100% success ✓
(5) Adversarial example can be found through random sampling ✓

Table 6: Checklist for gradient obfuscation

E More Experiment Data

Obfuscated gradients are a type of gradient masking that leads to a false sense of security when defending
against adversarial examples Athalye et al. (2018); Carlini et al. (2019). Here we perform sanity checks
including three obfuscated types and a checklist as per Athalye et al. (2018). First, we examine three types
of obfuscated gradients. Specifically, we use the same surrogate to train HoSNN from scratch and deliver
attacks; decent clean accuracy and a smooth training process indicate that it’s not Shattered Gradient
with nonexistent or incorrect value. As our defense doesn’t introduce any random factors, Stochastic
Gradient is not applicable. Our method also doesn’t include any multiple iterations of neural network
evaluation, so Vanishing/Exploding Gradient are also not applicable.

Items to identify gradient obfuscation HoSNN Experiment
(1) Single-step attack performs better compared to iterative attacks ✓ Fig 5 and Table 8
(2) Black-box attacks perform better compared to white-box attacks ✓ Fig 6 and Table 9
(3) Increasing perturbation bound can’t increase attack strength ✓ Fig 7 and Table 10
(4) Unbounded attacks can’t reach 100% success ✓ Fig 7 and Table 10
(5) Adversarial example can be found through random sampling ✓ Fig 8

Table 7: Checklist for gradient obfuscation
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Dataset Method ϵ = 0 2 4 6 8 16 32 64

FMNIST WB-FGSM 92.31 90.26 88.16 86.25 84.70 77.70 60.70 24.27
WB-PGD 92.31 89.34 85.44 80.61 74.91 47.93 5.87 0.00

SVHN WB-FGSM 92.84 83.96 75.85 68.45 61.78 43.45 28.64 20.79
WB-PGD 92.84 80.53 63.98 47.56 35.06 10.40 2.00 0.21

CIFAR-10 WB-FGSM 90.00 77.84 71.14 67.05 63.98 56.66 48.92 26.93
WB-PGD 90.00 72.24 58.66 49.65 42.63 24.38 6.82 0.65

CIFAR-100 WB-FGSM 64.63 52.78 42.12 33.79 26.97 12.47 4.01 2.68
WB-PGD 64.64 51.20 36.82 25.23 16.65 1.99 0.00 0.00

Table 8: HoSNN accuracy data for Test1. We compared the performance under white-box FGSM and PGD
attack. Our data shows that single-step attacks are strictly weaker than multi-step attacks.

Dataset Method ϵ = 0 2 4 6 8 16 32 64

FMNIST BB-PGD 92.31 91.05 89.81 88.85 87.67 84.61 75.12 39.93
WB-PGD 92.31 89.34 85.44 80.61 74.91 47.93 5.87 0.00

SVHN BB-PGD 92.84 89.31 86.10 82.68 78.49 57.02 25.96 8.02
WB-PGD 92.84 80.53 63.98 47.56 35.06 10.40 2.00 0.21

CIFAR-10 BB-PGD 90.00 86.55 83.46 80.11 76.61 56.77 13.43 0.92
WB-PGD 90.00 72.24 58.66 49.65 42.63 24.38 6.82 0.65

CIFAR-100 BB-PGD 64.64 61.68 59.22 56.67 54.06 42.08 16.90 1.82
WB-PGD 64.64 51.20 36.82 25.23 16.65 1.99 0.00 0.00

Table 9: HoSNN accuracy data for Test2. We compared the performance under white-box PGD and black-
box PGD attack. Our data shows that black-box attacks are strictly weaker than white-box attacks.

Dataset Method ϵ = 0 2 4 6 8 16 32 64

FMNIST SNN-WB-PGD 92.92 78.87 58.03 42.27 30.54 2.71 0.00 0.00
HoSNN-WB-PGD 92.31 89.34 85.44 80.61 74.91 47.93 5.87 0.00

SVHN SNN-WB-PGD 95.51 44.78 9.66 1.83 0.44 0.10 0.02 0.01
HoSNN-WB-PGD 92.84 80.53 63.98 47.56 35.06 10.40 2.00 0.21

CIFAR-10 SNN-WB-PGD 92.47 44.00 11.73 2.46 0.56 0.01 0.00 0.00
HoSNN-WB-PGD 90.00 72.24 58.66 49.65 42.63 24.38 6.82 0.65

CIFAR-100 SNN-WB-PGD 74.00 11.62 1.29 0.13 0.04 0.00 0.00 0.00
HoSNN-WB-PGD 64.64 51.20 36.82 25.23 16.65 1.99 0.00 0.00

Table 10: HoSNN accuracy data for Test3&4. We showed the performance of SNN and HoSNN under white-
box PGD attack. Our data shows that increasing perturbation bound can increase attack strength and the
accuracy can drop to 0 as the attack becomes stronger.
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