Published as a conference paper at ICLR 2025

LEARNING RANDOMIZED ALGORITHMS
WITH TRANSFORMERS

Johannes von Oswald*!, Seijin Kobayashi*! 2, Yassir Akram*2, Angelika Steger?
! Paradigms of Intelligence Team, Google

2 Department of Computer Science, ETH Ziirich

* Equal contribution, order determined randomly

{jvoswald, seijink}@google.com, {yakram, asteger}@ethz.ch

ABSTRACT

Randomization is a powerful tool that endows algorithms with remarkable prop-
erties. For instance, randomized algorithms excel in adversarial settings, often
surpassing the worst-case performance of deterministic algorithms with large mar-
gins. Furthermore, their success probability can be amplified by simple strategies
such as repetition and majority voting. In this paper, we enhance deep neural net-
works, in particular transformer models, with randomization. We demonstrate for
the first time that randomized algorithms can be instilled in transformers through
learning, in a purely data- and objective-driven manner. First, we analyze known
adversarial objectives for which randomized algorithms offer a distinct advantage
over deterministic ones. We then show that common optimization techniques, such
as gradient descent or evolutionary strategies, can effectively learn transformer
parameters that make use of the randomness provided to the model. To illustrate
the broad applicability of randomization in empowering neural networks, we study
three conceptual tasks: associative recall, graph coloring, and agents that explore
grid worlds. In addition to demonstrating increased robustness against oblivious
adversaries through learned randomization, our experiments reveal remarkable
performance improvements due to the inherently random nature of the neural
networks’ computation and predictions.

1 INTRODUCTION

Randomization is inherent to nature and an important ingredient in numerous scientific fields. In
computer science, for example, randomness can be a powerful theoretical and practical tool to design
algorithms (Papadimitrioul [1994). However, understanding how, if, and when randomization can
be beneficial for algorithms is neither obvious nor intuitive. Nevertheless, randomness is by now a
well-established and widely used concept to design powerful and often strikingly simple algorithms
(Motwani & Raghavanl [1995; Rabin, |1980). In particular, randomization is known to be crucial to
obtain algorithms performing well in game-theoretical adversarial settings, cf. rock-paper-scissors as a
simple example. Here, randomization is essential as otherwise players will get exploited from a clever
opponent. Within algorithmic design, furthermore, randomized algorithms are often surprisingly
simple to implement. While base versions often have a non-satisfactory high failure probability,
simple repetition and majority voting strategies typically allow to enhance overall success probability
drastically at comparably low cost, see our illustrative example below and Appendix [E|for a short
background. In this paper we combine the power of randomization and deep learning, in particular
transformer models |Vaswani et al.| (2017)), and show that powerful randomized algorithms within
transformers are discovered when optimized on adversarial objectives. These transformer algorithms
are significantly more robust against oblivious adversaries and dramatically outperform deterministic
strategies through majority voting.

To set the stage, let’s consider the example of associative recall to build up our intuition, illustrated in
Figure[I] Assume a simple computer system with memory size M - d bits needs to save N vectors,
each of d bits. These vectors are denoted as values v; = [v;1, . . ., v;q4] € {0, 1} which are associated
with a unique one-hot binary key k; = [k;1,. .., k;n] with k;; = 1,—;. The aim of the computer
system is to retrieve the correct value vector if queried with some key k; € {ki,...,kn} after

Published as a conference paper at ICLR 2025

A B e
[N ,(\ ed)] Bi-modal success rate: N
Vi\seed B os correct or incorrect ‘ A
=] for every input | \ N -
a \
T £ 1\ \
"‘6 0.6 | N ' ~ -
linear transformer S o4 1 s ~
i i B Non-zero ~
with finite memory M < N S S ‘ 1 ~
L 02 for every input 02 2 1 =
SR 1
T T T wld ol Y B Ny ——
0 20 10 60 80 100 0 20 10 60 80 100 10 12 14 16 18 20
[(ky,v1,seed) ... (ky,vn,seed)] [k] Success % Success % Sequence length
I Deterministic [N Randomi I Rand-majority (5) MMM Rand-majority (30)

Figure 1: Solving associative recall tasks - the randomized way. A): A causal transformer model,
with linear self-attention layers, is trained to remember [V value vectors each associated with a unique
key. Given finite memory of size M < N, the model needs to decide which data to memorize in order
to return the correct value when queried with some k;. An algorithm that deterministically chooses
what to remember will perform poorly as simple adversarial strategies will break retrieval. On the
other hand, randomly deciding what to store protects the algorithm against such worst-case scenarios.
To have a transformer learn such a randomized strategy we train it with an adversarial objective and
, furthermore, diverge from usual machine learning setups and provide randomness, denoted as a
seed, as an additional input to the model. B): Histogram showing the fraction of possible inputs,
all of length N = 20, with varying recall success rates. Left: We train two different models: 1)
a deterministic one where we fix the input seed and 2) a randomized one with varying input seed.
While the deterministic model consistently fails on some fraction of the inputs, the randomized model
stores in memory varying parts of the sequence leveraging the provided seed, thus succeeding with
non-zero probability on all possible recall tasks. Right: At inference time, majority voting can be
used on the randomized model evaluated on several seeds, thus amplifying the success rate. Enough
seeds leads to optimal recall. C): Recall success rate for worst-case sequences of each model when
trained on various input lengths. For larger sequence lengths, the deterministic model fails to recall on
adversarial inputs and the worst case success rate thus drops to zero. On the other hand, randomized
models have a non-zero success rate on all inputs. Strikingly, when amplifying the success probability
with majority voting, the randomized model succeeds in recalling virtually all inputs.

observing the whole sequence of IV value vectors. Crucially, if the memory of the system is not
large enough i.e. M < N, the system needs to decide which data to store in memory and which
data to disregard, assuming no compression is feasible. This problem is a variant of the well-known
paging problem in computer science (Sleator & Tarjan, |1985a) for which randomized solutions
exist, see Appendix [E.3] for a short description. The problem is also a well-studied problem for
transformers (Vaswani et al., 2017) and transformer architecture variants with the goal to assess
retrieval capabilities (Schlag et al.| 2021} |Arora et al., 2023} Jelassi et al.| 2024)).

Let us first assume that the computer system or transformer implements a deterministic strategy. For
example, it always saves the first M/ elements in the sequence until memory capacity is reached. Given
this knowledge, there is a simple adversarial strategy that breaks retrieval: query the system with
keys k; where j > M. Note that a similar retrieval failure can be observed in large-scale language
models where this test is known as finding a needle in a haystack (Liu et al.,|2023b). Consider now
that the transformer model is given an additional input, namely a random seed, and that based on
the seed, it chooses uniformly at random which data to store. Then, every query will break retrieval
(only) with probability 1 — % Therefore, in stark contrast to a deterministic system, there exists no
input sequence on which the system will do specifically bad. In particular, no adversarial strategy can
make the system fail consistently. In other words: randomization improves worst-case behavior, see
Figure[]|B & C. Strikingly, randomization can enhance success rates of our trained transformers by
repetition. Simply taking the majority vote among m predictions computed on different seeds boosts
performance to a perfect success rate far beyond the deterministic transformer counterpart - despite
the same network capacity and training objective.

2 THEORETICAL CONSIDERATIONS

We start by presenting some well-known theoretical results providing a more thorough description of
when and why randomized algorithms can be beneficial compared to deterministic ones. This will
lead us to define a simple training objective, closely related to robust optimization, that enforces the

Published as a conference paper at ICLR 2025

implementation of powerful randomized algorithms within deep neural networks like transformerg]
We then verify experimentally, in the following section, that this is indeed the case and show that
transformer models do implement deep randomized algorithms in practice after training.

To this extent, we introduce some notation and definitions. We denote our model, in this paper a
parametrized transformer, by Ag(z,) with input € X and some randomness (or seed) r from a
set R. We will fix distributions over the input space X" and the seeds R of the transformer model.
Specifically, we define two random variables X (over X’) and R (over R). For any parameter 6,
x — Ag(z, R) is a randomized transformer model , which we also call randomized transformer
algorithm. We provide the transformer models in the following with a random seed encoding
(RSE), similar to positional encodings common in transformer models. This encoding provides
the randomness to the transformer and is usually a vector of noise, such as random bits, which
we concatenate to the input tokens. Note that optimization can therefore ignore R, by setting, for
example, the appropriate weights in the first layer to zero resulting in a deterministic transformer.
When there exists z € X such that the function — Ay (x,r) is not constant, we say that our
transformer is properly random. For any fixed input x € X and r € R, the loss is determined by
L(xz, Ag(z,7)) > 0. For notational simplicity, we will drop the dependence of the loss on x in the
following whenever it is clear from the context. The performance of the randomized transformer
on the input z is its expected loss, i.e. E[L(Ag(x, R))]. We now review well-known results from
the randomized algorithms literature and analyze when randomization is advantageous compared
to determinism and vice versa. This analysis will lead to an optimization procedure from which we
expect that the random source in the transformer’s input is leveraged to reach lower loss values.

2.1 EXCESSIVE MODEL CAPACITY WILL NOT ENFORCE RANDOMNESS

A first necessary condition for randomness being beneficial is that the model capacity doesn’t allow to
achieve optimal performance without using randomness i.e. ignoring it in the input. More precisely,
if there exists #,r € R that perfectly fits the data, i.e. such that Ay(z,r) € argmin, L(x,y) for
all z € X, then randomness has no incentive to be leveraged. Whether the optimization algorithm
will discover this 6 is however not guaranteed. We now continue by showing that commonly used
expected risk minimization or empirical risk, in practice, should not lead to randomization.

2.2 RANDOMIZATION IS NOT BENEFICIAL IN EXPECTATION

To see that randomization is not beneficial in expectation, and therefore unlikely to be leveraged by
optimization to reach lower loss, we discuss Yao’s Minimax Principle (Yao, |1977). This is a pivotal
concept across various domains like game theory and randomized algorithms [Neumann| (1928)). In
the latter, it provides a framework to understand how randomized algorithms fare in adversarial
environments. It can be articulated as follows, for any random variables X and R over X and R:

min E[L(Ag(X, 7))} < £7(0) = E[L(49(X, R))] < maxE[L(Ag(z, R))])

More intuitively, given a fixed distribution over our dataset, Yao’s Minimax Principle shows:

* 1st inequality: There always exists a deterministic algorithm performing, in expectation over
the data, at least as well as the randomized algorithm A(-, R). The process of extracting a
particular seed that performs as well as the randomized algorithm is called derandomization.
There is however no general efficient recipe for this task.

* 1st and 2nd inequality: Any randomized algorithm will inevitably perform worse on some
input than the average performance of the best deterministic algorithm.

At first glance, this principle might seem to nullify any advantage of randomized algorithms over
deterministic ones. However, the above principle applies to the setting where we assume a distribution
over input data on which we want to perform well on expectation - in particular, when the objective
is that of the empirical risk minimization (ERM) on a fixed dataset. Therefore, we recognize that
the most common optimization strategy in deep learning is not expected to show benefits from

“We take the liberty throughout this paper to use the term (transformer) algorithm and model interchangeably.

Published as a conference paper at ICLR 2025

randomization. In fact, we will show empirically that transformers that are trained on ERM do
not have random predictions when varying r, i.e. ERM does not lead to properly randomized
transformers.

2.3 RANDOMIZATION CAN BE BENEFICIAL IN ADVERSARIAL SETTINGS.

As discussed, randomness does not provide advantages when considering expected performance on
an arbitrary distribution over data. This picture changes drastically when considering adversarial, in
particular min-max settings. To understand these settings, we first define a oblivious adversary:

Definition 1 (Oblivious adversary). An oblivious adversary possesses complete knowledge of the
agent’s algorithm but lacks control over the randomness.

In our context, such an adversary knows the algorithm A and R (the distribution of the seeds) but does
not know the outcome of R in advance. However, it can choose the distribution over the input and
therefore restrict the input to the most "difficult” instances in X'. For example, in rock-paper-scissors it
would constantly play paper, if it determines that the opponent deterministically chooses rock. Unlike
in other more game-theoretical settings, this adversary isn’t a real opponent but rather a theoretical
construct: the agent seeks in fact to ensure a favourable outcome irrespective of the input. This setting
is closely linked to min-max strategies [Wald| (1945): an agent facing an oblivious adversary aims to
optimize the min-max loss, defined as:

Definition 2 (Min-max loss). The min-max objective is the minimization of the following loss:

£4(0) = maxE[L(Ag(, R))] ©)

Proposition 1. [Randomization can be beneficial in worst-case scenarios] Assume that X is a
compact set of R? for some d, and that L is continuous. Furthermore assume that there exist a
parameter 8* and a set of random seeds (1;)1<i<N € RN such that for each i

max L(Ap- (,7i)) = rg}ﬂglggﬂ%(sc#)% and ﬂargng}xL(Ae*(xﬂm)) =0. 3

Then there exists a randomized model with strictly smaller loss L than any deterministic model.

We provide the proof in Appendix [A.T] Note that the above subsumes the more straightforward
argument that no randomization is expected if the model can fit the data perfectly. Intuitively, the
proposition shows that whenever there are several possible optimal functions for £4 that can be
implemented within our model class, such that there is no input = which is adversarial to all of them,
then it is more beneficial to have a distribution over such functions than to deterministically encode a
single one.

As argued by Rice et al.|(2021)), in the context of robust optimization it is often advantageous to
relax the strict adversary of equation [2]by optimizing the g—norm of the expected loss of the model
distribution for ¢ > 1, i.e.

min £7(6) = min E[[E[L (4 (X, R))|X]|]"/* @

Here, the conditional expectation E[L(Ay (X, R))|X] is the averaged loss over R. The outer expecta-
tion is over inputs. Note that with ¢ = 1, £¢ = £ and with ¢ = co we obtain £¢ = L4,

2.4 OUR TRAINING OBJECTIVE.

Based on the previous description, summarized in Proposition[I] of when randomization is beneficial,
we propose the following practical training objective:
A I /1 & \ V9
in £9(0) = 'f(f L(A) . 5
ang i £1(6) = avg i 325 2 Bttt))

Note that this a biased approximation of equationd Although approximating the g-norm by such
Monte Carlo sampling in practice is known to slowly converge to the expected value, see Rice et al.
(2021)), we stick to it here now and leave further investigations of refined sampling to future work.

Published as a conference paper at ICLR 2025

In our training objective, we introduce, compared to the common stochastic approximation of the
expected loss over the data, two new hyperparameters namely m, the number of random seeds we
consider, and q. We will analyze the role of these in our experimental results section, focussing on
the sensitivity of g, as it shifts between ERM and adversarial training.

We stress that finding adversarial examples to compute the loss in equation [2is difficult, especially
in settings where computing gradients poses challenges such as in language with discrete inputs or
in reinforcement learning (RL). Therefore, the relaxation of ¢ < oo approximating the min-max
adversary leads to a practical loss for which no explicit adversary is computed. Finally, note that the
adversarial loss upper bounds the expected loss, i.e., £4(6) > £F(6). Nevertheless it is not expected
that optimizing £ () will lead to better £ () compared to when optimizing £ () directly.

In the next section we show how we can turn the above theoretical considerations into practice and
present experimental results where optimization leads to randomized algorithms in transformers.

3 EXPERIMENTAL RESULTS

Before we present experimental results, we first describe an evaluation protocol to validate experi-
mentally that

1. the algorithm implemented by a transformer model after optimizing on £, for certain ¢
and m, induces randomization: The distribution of the random variable Ay (z, R) does not
collapse i.e. is not degenerate. Therefore » — Agy(z, r) is not constant.

2. the randomized transformer algorithm found is performing, compared to baselines described
below, better on data that is adversarially chosen.

3. training on expected risk £ will not lead to randomization i.e. now r — Ag(x,7) is
constant and does not possess the associated robustness against adversaries.

Finally, we investigate the robustness and scaling of proper randomization with respect to the novel
hyperparameters m and q. In order to provide the results in a structured way, we present an evaluation
protocol which we follow when discussing our empirical findings in the following.

3.1 EVALUATION PROTOCOL AND BASELINES
In most of our experiments, we compare the following four transformer models:

1. A,’,‘J0 - trained on expected loss, single seed: This is the transformer baseline, trained on
ERM, which is by definition deterministic. The transformer is — Agy(z,9) where rg is a
static seed selected at the beginning of training from R. The same r is used for evaluation.
The transformer is thus trained on L (6) = E[L(A¢(X,70))].

2. Al - trained on relaxed adversarial loss, single seed: This is the same transformer as

above, but trained on the (relaxed) adversarial loss £ (0) = E[L(Ag(X,70))?] 1/4 for some
parameter ¢. In practice, we approximate the objective using equation 5] where r; = 7 for
all 7. This transformer is closely related to robust optimization e.g. distributionally robust
optimization (DRO), see related works section.

3. AE - trained on expected loss, multi seed: This transformer model is given as input a
random seed r which is sampled from R, but trained on ERM. Concretely, the transformer
is trained on LE(0) = E[L(Ag(X, R))].

4. A% - trained on relaxed adversarial loss, multi seed: This is our transformer model of
main interest trained on our proposed objective in equation[5] This is the model we expect
to randomize itself and the focus of our investigation.

Given these models, we evaluate them in the following ways:

1. For AZ and AZ , the loss L(Ag(z, o)) for an input x is computed by using the same seed
ro which was used for training. In all our experiments, Agy(x, ro) parametrizes a discrete
decision to take, such as the recalling of bits in the associative recall task (Section [3.2)),
the coloring of vertices in the graph coloring task (Section [3.3), or the action to take in

Published as a conference paper at ICLR 2025

the grid world task (Section . In all these cases, Ag(z, o) produces a D-dimensional
vector where D is the number of possible discrete decisions. We may train the model by
interpreting the prediction as parametrizing e.g. a categorical distribution. To compute the
success percentage however, we record whether the argmax of the prediction Ag(z, 7o) is
correct or not. Furthermore, we also report the success percentage by sampling from the
distribution parametrized by A(x, ry), in the case the loss L allows for such interpretation
(e.g. L is the cross entropy loss). We denote these by Af;-sampled and A -sampled, resp.

2. For AE and A%, the loss for an input 2 is computed as the expected loss over random seeds,
i.e. E[L(Ag(z, R))]. For the success percentage given an input, we record the fraction of
seeds r for which the argmax of the prediction Agy(z,r) is correct. Furthermore, we report
the success rate of majority voting of the transformer predictions across seeds, which we
denote by AE-majority and A%-majority, resp. See Appendix for more details.

Finally, we report the performance of these models when averaging over the input distribution
(Average) and measure the performance on adversarial inputs by reporting the 95th percentile
performance values over the input distribution (95‘"-percentile). We use the common transformer
architecture and variations throughout our experiments; more details in Appendix [A.2]

3.2 RANDOMIZED TRANSFORMERS SOLVE ASSOCIATIVE RECALL

We start by revisiting the associative recall task 012 e [
which we introduced in the introduction, cf. Fig- -6
ure [[l Here we train transformers with linear - =32
self-attention layers i.e. we replace the stan- ;

dard softmax operation with the identity func- i
tion £ « E + (QKT © M)VWp. This ar- i
chitecture change allows the transformer to be ~ § i
regarded as a fast-weight programmer Schmid+ ;

huber] (1992)); Schlag et al.| (2021)) where an in- 000
ternal fixed size memory matrix can be over-
written with incoming information. Studying
memory allocation issues with transformer vari-
ants has seen considerate interest recently (Gu &
Dao, 2023; |De et al., 2024} |Orvieto et al., 2023}
Arora et al., [2023; ivon Oswald et al., 2023b;
Zucchet et al.,[2024). We give more details on
the tokenization and how we provide random-
ness in Appendix[B] The transformer is provided
with the inputs that are the to-be-remembered
key and value pairsi.e. E = [ey,...,en] with
e; = |vi, ki, seed], where v; is a binary vector
of d bits v; = ['UiO; S 7Uz‘d] with Vij € {0, 1}
and ey = [, ki, seed]. We train the model on
the sum of binary cross-entropy (CE) between
ground truth bits and transformer predictions:
L(Ag(E,7),v;) = > ; CE(d;,v;;). We report
the performance of the different models, including when varying ¢ and m, in Figure 2land[3]

0.104 ==== 95'"-percentile

_— -

0081 — A}
'

0.06

Predictive Variance

Fraction of inputs

o or e 003 50 100

q Success %

Figure 2: Left: Variance of the predictive prob-
ability conditioned on the input sequence, w.r.t.
increasing q: Larger ¢ leads to randomized trans-
former models with non-zero output variance over
the seeds, with a phase transition around ¢ ~ 16.
Right: Histogram showing the fraction of inputs,
all of length N = 20, with varying recall success
rates, when training A‘}% with various ¢q. For ERM
training i.e. ¢ = 1, we see the transformer produc-
ing essentially binary predictions, i.e.the predic-
tions, over seeds r, are either correct or incorrect.
For ¢ > 1, we see randomization emerging, with
non-zero success rate on all input for ¢ = 32.

We start by analyzing ERM trained transformers for which we do not expect randomization to emerge,
i.e. AIE; = A%, AE) = A;ZO with ¢ = 1, and their variants, Figure ‘ . All models perform similarly,
concluding that ERM models are not benefiting from additional randomness, even when random
seeds are provided. Furthermore, even transformers that could potentially leverage randomness, i.e.
AE. collapse in their predictions, see Figure [2| where we show the collapsed predictive variance
induced when varying seeds for AE. This behaviour changes when increasing ¢. Indeed, when
choosing for example ¢ = 100, we observe that randomization emerges demonstrated by increased
predictive variance and gradual, instead of bi-modal, success rate, see Figure@ Performance wise,
the randomized A% (blue) improves significantly on worst-case inputs and especially A% -majority
(green), performs almost optimally on all inputs, see Figure. We denote AE) as "deterministic” in
Figure|l| where we show for illustrative purposes the performance of the 95th percentile.

Published as a conference paper at ICLR 2025

A o B
100 100
0.50
1
& 80 \\ . 80
< \ < o 045
w6 \ 0 0 a
7] \ w0 o
8 \ 8 — 040
O W (Y O 10
3 \ 3
[92] % [%2] 035
0 N, 0
\ \
\\
0 I L LT T 0 0.30
10 12 14 16 18 20 10 12 14 16 18 20 10" 10" 107 0 20 10
Sequence length Sequence length q m
—— Average - 95" percentile ~ —— Al —— A% —— Al-sampled —— A% -majority

Figure 3: Associative recall analyses. A): Performance of models trained on ERM does not improve
when provided with additional seeds, cf. overlapping lines of A7 and A%,. B): Models trained with
our objective (¢ = 100) do exhibit drastic improvements, especially with majority voting, compared
to models trained with a single fixed seed in their input. C): Influence when training with different ¢
and m, measured on the loss with ¢ = 1. First, models show gradual improvement when increasing
q, with randomness emerging over a certain threshold. Second, when fixing ¢ = 100, outer right plot,
we observe already for small m > 1 improvements over the deterministic counterpart.

We conclude that training linear self-attention transformers to solve associative recall tasks instills a
randomized strategy inside the transformer which outperforms deterministic counterparts.

3.3 RANDOMIZED TRANSFORMERS CAN SOLVE GRAPH COLORING PROBLEMS

Randomization has numerous applications in combinatorics as a theoretical and practical tool to
design powerful and strikingly simple algorithms. One prominent use case of randomized algorithms
is solving graph coloring problems, with the aim to color the vertices of a graph G = (V, E) in
such a way that vertices connected by edges are colored differently. Randomized algorithm are
particularly useful in distributed settings in which each vertex can only see and talk to its neighbors.
See Appendix [E-4] for a detailed description. We consider the problem of 3-coloring cycles, see
Figure[d While the problem per se is trivial, the goal in the distributed setting is to minimize the
time/number of communication rounds until the coloring is found.

A ? ? B [Cc1 e CN] C ?a\\“‘e
N tor N e
/ [\ / \ / \
[] [] locally masked transformer [] e o o o ®
\ LN SN
.\o/. i 1 1 .\o/. e .\./.
Cn [(vi,seed) ... (vn,seed)] [seedl] [seed2] [seed3]

Figure 4: Transformers solving graph coloring problems. A): We study distributed vertex coloring
problems on cycles C',, where every vertex can only communicate with its immediate neighbors. B):
A locally masked transformer, which can only attend to the immediate neighboring vertices on the
graph by an appropriate attention mask, has to decide on the vertex color. C): If the transformer
realizes a fixed mapping of vertex id v; to a color, an adversary can provide an input permutation for
which the transformer fails to generate a correct coloring. However, when trained with our objective,
the transformer model, to protect itself against this adversary, implements a randomized strategy. The
coloring computed by the transformer for a fixed graph, now depends on the random seed and will
fail in some and be correct in others. With the probability of being correct hopefully being large.

We consider N = 10 vertices, each with a unique id from 1 to /V. Each task consists of the 3-coloring
problem i.e. a cycle drawn uniformly from the set of possible cycles with IV vertices. A transformer
input are N tokens, each consisting in a distinct N-dimensional 1-hot vector, representing the N
vertices. The random noise is concatenated to each of these tokens, see Figure] The adjacency
matrix of the cycle is translated into an attention mask of the transformer, such that each vertex can
only attend to its neighbors on the cycle. No other information about the particular configuration of
the cycle is given. Every token stream then outputs the distribution over its color. Details in App.[C]

The objective is a partial coloring loss, which is an upper bound of the probability of the model
outputting an invalid coloring of the graph. Specifically, given all edges E of a given cycle, the
loss is defined as: } =, ,ep D ce(1,2,3) P(C(u) = ¢)P(C(v) = c) which upper bounds the quantity

Published as a conference paper at ICLR 2025

P(U(u,0)er C(u) = C(v)) where C(u) is the random variable assigning a color to u, sampled from

A B c v
100
1 0.030

\ q
\
\ q
[}
S |
00251 1
1
[
[

q
q
q

1
2
1

== © —— Average 0

---- 95"_percentile
_— A
Al
— Al
1y 0.010 1Y jmccccccaca=. R

i/ o —— AY-sampled
)

yo__ 0.005 \/———
N u’_‘)___:_—_—_-_ R T T —— Af-majority

0.000 —
4 6 8 10 2 4 6 8 10 0 20 10 60 80 100

q q Success %

0.020

(%]
0
_IO 0.015 n

Success %
Fraction of inputs

Figure 5: Graph coloring performance analyses. A): Performance of models trained on £4 for
varying value of ¢. As ¢ increases, A% learns to leverage randomness to implement a randomized
algorithm, inducing large improvements of worst-case performance compared to the deterministic
counterpart A7 . Furthermore, majority voting boosts performance to close to optimal performance
(green). Both the average and percentile curves are computed over all possible cycles of size N=10.
B): Influence of varying ¢ during training evaluated on the loss with ¢ = 1. After training with ¢ > 3
a clear advantage of the randomized model is observed. C): Histogram over all possible inputs, of the
transformers success probability when varying ¢ when training A%. When increasing ¢ we observe
non-zero success rate due to randomization.

For our experiments we choose the transformer depth and the task difficulty defined by /N such that
there cannot be enough communication between vertices to coordinate and return a valid coloring. A
deterministic strategy may work on a large fraction of possible cycles, but may fail on the remainder.
To investigate the effect of the adversarial loss on the emergence of proper randomness, we again
train AZ and A%, for varying adversarial strength g. We present our results in Figure |5 We see that
at ¢ = 1 the performances of the various transformers are almost identical. In particular, despite
having a random source at its disposition, both A%, and AE learn a degenerate transformer that is, for
each input, either correct or incorrect for all seeds, cf plot on the right, ¢ = 1. As ¢ increases proper
randomness emerges and, in particular, the performance of A%-majority improves significantly close
to 100% success probability. This signals that the transformer learned a randomized algorithm,
where each seed underfits different parts of the input space such that, on expectation, the transformer
returns a correct output for each input with relatively high probability. Intriguingly, A7 -sampled,
despite leveraging randomness at the output, does not recover the same performance as the properly
randomized transformer, even though the objective optimizes the predictive distribution. To conclude,
we are able to show that powerful randomization emerges within transformers from first principles
due to optimization in the graph coloring setting as well.

3.4 RANDOMIZED TRANSFORMER AGENTS EXPLORE GRID WORLDS

A Regret -20.0 Regret -22.0 Regret -20.0
5 [zn'+177'N+1]‘— <+ [ay] s s s — p1
o Ep2
4 * T 4 L 4 ' 4 L
3 5 lole N oo d1 ;) WP
rolled-out transformer
2 2 === 2 21 ¢ ®
h
1 * 1 1 ool ld| : 00
1 2 3 4 5 T T T T 1 2 3 4 5 1 2 3 4 5 1 2 3 4
- Treasure - Start [seed][(z1,71) ... (zn,7N)] [seed]] [seed2] [seed3]

Figure 6: Transformer agents exploring grid worlds in-context. A): The transformer agent is
trained to explore a simple grid efficiently and search for a randomly placed treasure. B): The
transformer agent’s output provides the next action (right, left, up, down) for which the environment
returns the next state and a reward. The tuple is appended to the transformer model’s context. C):
Given different initial seeds, the agent chooses different explorations as it is adversarially trained
to avoid a deterministic strategy which could be easily attacked leading to high negative regret. We
observe that after an initial exploration phase (Ep 1), the transformer exploits in a second episode (Ep
2) the previously obtained knowledge i.e. the treasure’s position and approaches it optimally.

To showcase that our objective can discover randomized algorithms when lacking differentiability,
we study rolled out transformers which we train to explore and exploit simple grid worlds with
evolutionary strategies, see Appendix [D]for details on the environment dynamics as well as training

Published as a conference paper at ICLR 2025

setup. We stress that we do not consider reinforcement learning strategies e.g. based on policy
gradients, as this requires sampling from a policy and therefore uses additional randomness. Here we
aim to isolate the effect of randomness provided to the input of the transformer i.e. the first token.

As illustrated in Figure[6|C, after training the transformer on our objective, the model successfully
implements a randomized strategy: Over different random seeds, the transformer explores the grid
differently in the first episode while exploiting in the second episode its knowledge about the treasure
location. The performance during training when comparing to A% is shown in Figure [7| where
we see again A% outperforming wrt. worst-case inputs and coming close to Ag on average. In
Appendix @, we also provide the other baselines Af , A,:EO where the former did not properly train
given our hyperparameter scan, and where we observe that AE) ~ AL, see Figure To quantify
randomization, we visualize the average time the transformer agent visits a cell for the first time -
showing its randomized exploration when considering A%, instead of AE . see Figure

To conclude, even in this non-differentiable setting, optimization forces the transformer to use the
provided randomness and instils efficient randomized exploration inside the transformer weights.

A Perf. during Training of Grid World B Training Rand w. varying m on Grid World C AE
R

-m=20
_40 — AZ-m=10
- AZ-m=5

— Average

fi ---- 95M-percentile
¢ —

Acc. Reward
Acc. Avg. Reward
b

— A2 ! — Af-m=1 1

0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000 1 > 3
Training Steps Training Steps

Figure 7: Grid world performance analyses. A): Accumulated reward over training transformers
on our adversarial loss leading to models Ag and A%. The randomized model, while competitive
on average, drastically outperforms on adversarial inputs. B): The adversarial loss requires several
seeds for proper optimization. We scan m for the transformer A%, and observe that with m > 10 we
reach close to optimal average performance, while being robust to adversarial inputs. C): Average
timestep at which the agent visits a given cell for the first time capped at 25. Despite having access to
random seed, A% degenerates to a deterministic trajectory. On the other hand, A% learns a collection

of trajectories such that on average, the timestep of the first visit is relatively uniform over cells.
4 DISCUSSION & RELATED WORK

Summary & Limitations. Randomness is an integral part of computer science. In particular, there is
a long history in developing and analyzing randomized algorithms. In this paper, we build a bridge
between this intriguing class of algorithms and deep learning and study under which circumstances
optimization learns powerful randomized transformer algorithms. By optimizing a well-motivated
objective we show that randomness is chosen by optimization to endow transformer models with
remarkable properties similar to those which classic randomized algorithms posses. Specifically, our
learned randomized transformer algorithms significantly outperform their deterministic counterparts
on adversarial inputs. Furthermore, simple majority voting among predictions computed on different
seeds can boost performance far beyond deterministic transformers. Nevertheless, the provided
evidence is only a first conceptual step into how to learn powerful randomized neural network
algorithms, although we believe that the presented theory is general and applies to more practically
relevant and large scale settings. Furthermore, it is noteworthy that the computational intensity of our
approach limits the applicability and scalability of the current form of our approach. Note that when
comparing to ERM trained models, the hyperparameter m scales the memory as well as train and
inference time (roughly) by a factor of m. We leave scaling up our approach for future work.

Sampling from distributions, such as policies or probabilistic models, requires randomness. However,
it remains unclear and a key research direction to analyze the differences, advantages, and synergies
of sampling from policies or (Bayesian) probabilistic models versus input-level sampling, as proposed
here. In deep learning, methods like Markov-Chain-Monte-Carlo (MCMC) and variational inference
(Kingma & Welling, 2013 Rezende et al., [2014)), loosely including dropout (Srivastava et al.|
2014; |Gal & Ghahramani, [2015) and ensembling (Lakshminarayanan et al., 2017), are related to

Published as a conference paper at ICLR 2025

our approach. This also applies to generative adversarial networks (GANSs) (Goodfellow et al.|
2014). These methods use randomness to sample from prior or (approximate) posterior distributions.
However, we emphasize that in these methods, randomness is an intentional design choice and forced
upon the algorithms computational graph rather than a learned characteristic. Therefore, when trained
with our objective, weight distributions that randomize network predictions might be learned without
a Bayesian formalism. This suggests a connection between Bayesian inference and our method
leading to randomized neural networks based on, for example, "adversarial weight uncertainty".

Relationship to neuroscience. Randomness is also hypothesized to be useful for the brain. On the
one hand, it is well-known that the brain is exposed to noise but also produces activity that resembles
chaos (London et al., 2010; |Srajer et al.,|1996; [Faisal et al., 2008)). On the other hand theories on
functional properties due to criticality and learning algorithms that harness the randomness within
the activity of recurrent neural networks exist (Lengler et al.,[2013 [Moss et al., [2004; [Shew & Plenz|
2012} Jaeger & Haas|, 2004 Sussillo & Abbott, 2009). Nevertheless, an objective that leads, in theory
and in practice, to learning and leveraging randomness is not known to us. Here, we provide such
an objective: the desire to perform well in worst-case scenarios. Furthermore, we provide evidence
that optimization of the objective actually leads to randomized behaviour. The presented results
provide an explanation of human and animal behavior and decision-making processes which resemble
taking actions leveraging randomization (Maoz et al 2019} |Glimcher, [2005; Noble & Noble, 2018},
Domenici et al.| |2008; Braun, [2021)), hypothesizing that learning in the brain or evolution might
optimize for some relaxation of worst-case behaviour as well.

Meta-learning learning transformer algorithms. Through the advent of the transformer and large
foundation models we are diverging from the classic perspective of neural networks learning abstract
complex data representation LeCun et al.| (2015). Indeed, large language models can be regarded as
flexible tools and algorithms Weiss et al.| (202 1)); Lindner et al.| (2023)); |Giannou et al.|(2023b) which
can learn in-context/Brown et al.| (2020); |(Garg et al.| (2022); |Akytirek et al.|(2023); ivon Oswald et al.
(2023a); Giannou et al.|(2023a); Liu et al.| (2023a); L1 et al.| (2023)) and be re-configured by prompting
Wei et al.[(2022)); Radford et al.|(2019); [Lester et al.| (2021). We expand the class of algorithms that
transformers can learn from data, to the family of randomized algorithms. We hope that through
this work, we put more emphasis on the neural algorithms perspective with exciting future research
directions aiming towards distilling known, e.g. stochastic gradient descent, or discovering novel,
unknown randomized algorithms hidden inside the trained weights of deep neural networks.

Robustness. At the heart of our objective lies the desire to perform better in adversarial settings, a
goal shared by established deep learning and RL methods. This goal is closely related to having more
robust models. In this context, the incorporation of randomness has already proven to be beneficial in
many domains. For instance, adversarial bandits have been extensively studied within the broader
field of RL, particularly as a robust extension of the classical multi-armed bandits. Foundational work
in adversarial bandits by |Auer et al.|(2002) introduces the EXP3 algorithm which uses randomization
to cope with oblivious adversaries. This line of research is already conceptually close to our grid
world task, where smart exploration is learned to protect the agent against adversarial environments.
Due to these connections, we speculate that our approach could allow for randomized algorithms
being learned when trained with our objective in the domain of adversarial bandits and RL.

In another line of work, in the domain of supervised learning, common adversarial training techniques
are entirely deterministic. Some of them (Madry et al., 2018) employ gradient-based attacks to
augment training data with the most challenging perturbations, aiming to ensure consistent output
within the neighborhood of any input. Other work investigated objectives aiming at prepare a
model to perform well under distributional shifts (Arjovsky et al.l2020). These objectives are very
similar to our training objective (Duchi & Namkoong} 2020; Rahimian & Mehrotral 2022)), except
for the random component. Recent advancements have focused on improving robustness through
randomization, either of the model parameters or of the inputs, during both training and inference
Rakin et al.| (2018). These methods, when combined with adversarial training, are closely related
to our proposed randomization technique. However, our approach determines the adversarial input
based on the expected loss over random seeds, rather than relying on a single sampled seed i.e. m = 1
- a crucial distinction to our objective which relied on mm > 1 as shown by our experiments.

Randomization is also used in randomized smoothing (Cohen et al.| (2019), a certified adversarial
robustness method. This technique computes the majority vote over random perturbations of the
input rather than over random seeds for a given input. We hypothesize that our procedure may offer

10

Published as a conference paper at ICLR 2025

better robustness guarantees by additionally randomizing decision boundaries. Overall, our technique
is readily applicable to methods aimed at defending against adversarial attacks and distribution shifts
Sinha et al.|(2020); |Zou et al.| (2023)), positioning it as a promising avenue for future research.

REFERENCES

Ekin Akyiirek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? Investigations with linear models. In International Conference of
Learning Representations, 2023.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv preprint arXiv:1907.02893, 2020.

Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri Rudra,
and Christopher Ré. Zoology: Measuring and improving recall in efficient language models. arXiv
preprint arXiv:2312.04927, 2023.

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic multiarmed
bandit problem. SIAM Journal on Computing, 32(1), 2002.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. arXiv preprint
1607.06450, 2016.

Hans Albert Braun. Stochasticity versus determinacy in neurobiology: From ion channels to the
question of the “free will”. Frontiers in Systems Neuroscience, 15, 2021.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In Advances in Neural
Information Processing Systems, volume 33, 2020.

Jeremy M Cohen, Elan Rosenfeld, and J. Zico Kolter. Certified adversarial robustness via randomized
smoothing. arXiv preprint arXiv:1902.02918, 2019.

Soham De, Samuel L. Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Albert
Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, Guillaume Desjardins,
Arnaud Doucet, David Budden, Yee Whye Teh, Razvan Pascanu, Nando De Freitas, and Caglar
Gulcehre. Griffin: mixing gated linear recurrences with local attention for efficient language
models. arXiv preprint arXiv:2402.19427, February 2024.

Paolo Domenici, David Booth, Jonathan Blagburn, and Jonathan Bacon. Cockroaches keep predators
guessing by using preferred escape trajectories. Current biology : CB, 18:1792-6, 12 2008.

John Duchi and Hongseok Namkoong. Learning models with uniform performance via distributionally
robust optimization. arXiv preprint arXiv:1810.08750, 2020.

AA Faisal, LPJ Selen, and DM Wolpert. Noise in the nervous system. Nature Review Neuroscience,
9:292-303, 2008.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. arXiv preprint arXiv:1506.02142, 2015.

Shivam Garg, Dimitris Tsipras, Percy S. Liang, and Gregory Valiant. What can transformers learn
in-context? A case study of simple function classes. In Advances in Neural Information Processing
Systems, volume 35, 2022.

Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D. Lee, and Dimitris
Papailiopoulos. Looped transformers as programmable computers. In International Conference on
Machine Learning, 2023a.

11

Published as a conference paper at ICLR 2025

Angeliki Giannou, Shashank Rajput, Jy-Yong Sohn, Kangwook Lee, Jason D. Lee, and Dimitris
Papailiopoulos. Looped transformers as programmable computers. In Proceedings of the 40th
International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning

Research. PMLR, 2023b.

Paul Glimcher. Indeterminacy in brain and behavior. Annual review of psychology, 56:25-56, 02
2005. doi: 10.1146/annurev.psych.55.090902.141429.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural
Information Processing Systems, volume 27, 2014.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Herbert Jaeger and Harald Haas. Harnessing nonlinearity: Predicting chaotic systems and saving
energy in wireless communication. Science, 304(5667):78-80, 2004.

Samy Jelassi, David Brandfonbrener, Sham M. Kakade, and Eran Malach. Repeat after me: Trans-
formers are better than state space models at copying. arXiv preprint arXiv:2402.01032, 2024.

Richard M. Karp. An introduction to randomized algorithms. Discrete Applied Mathematics, 34(1),
1991.

Diederik P. Kingma and Jimmy Ba. Adam: a method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Advances in Neural Information Processing
Systems, volume 30, 2017.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436, 2015.

Johannes Lengler, Florian Jug, and Angelika Steger. Reliable neuronal systems: The importance of
heterogeneity. PloS one, 8:¢80694, 12 2013.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers
as algorithms: Generalization and stability in in-context learning. In Proceedings of the 40th
International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research. PMLR, 2023.

David Lindner, Janos Kramar, Sebastian Farquhar, Matthew Rahtz, Thomas McGrath, and Vladimir
Mikulik. Tracr: Compiled transformers as a laboratory for interpretability. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. arXiv preprint arXiv:2210.10749, 2023a.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
and Percy Liang. Lost in the middle: How language models use long contexts. arXiv preprint
arXiv:2307.03172, 2023b.

Michael London, Arnd Roth, Lisa Beeren, Michael Hausser, and Peter Latham. Sensitivity to
perturbations implies high noise and suggests rate coding in cortex. Nature, 466:123-7, 07 2010.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

12

Published as a conference paper at ICLR 2025

Uri Maoz, Gideon Yaffe, Christof Koch, and Liad Mudrik. Neural precursors of decisions that
matter—an erp study of deliberate and arbitrary choice. eLife, 8, oct 2019. ISSN 2050-084X.

Gary L Miller. Riemann’s hypothesis and tests for primality. In Proceedings of the seventh annual
ACM symposium on Theory of computing, pp. 234-239, 1975.

Frank Moss, Lawrence M Ward, and Walter G Sannita. Stochastic resonance and sensory information
processing: a tutorial and review of application. Clinical Neurophysiology, 115(2):267-281, 2004.

Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press,
New York, NY, USA, 1995.

J. von Neumann. Zur theorie der gesellschaftsspiele. Mathematische Annalen, 100, 1928.

Ray Noble and Denis Noble. Harnessing stochasticity: How do organisms make choices? Chaos: An
Interdisciplinary Journal of Nonlinear Science, 28:106309, 10 2018.

Antonio Orvieto, Samuel L. Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pascanu,
and Soham De. Resurrecting recurrent neural networks for long sequences. In International
Conference on Machine Learning, 2023.

Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

Mary Phuong and Marcus Hutter. Formal algorithms for transformers. arXiv preprint
arXiv:2207.09238, 2022.

Michael O Rabin. Probabilistic algorithm for testing primality. Journal of Number Theory, 1980.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Hamed Rahimian and Sanjay Mehrotra. Frameworks and results in distributionally robust optimiza-
tion. Open Journal of Mathematical Optimization, 3, 2022.

Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Parametric noise injection: Trainable random-
ness to improve deep neural network robustness against adversarial attack. arXiv preprint
arXiv:1811.09310, 2018.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In Eric P. Xing and Tony Jebara (eds.), Pro-
ceedings of the 31st International Conference on Machine Learning, volume 32 of Proceedings of
Machine Learning Research. PMLR, 2014.

Leslie Rice, Anna Bair, Huan Zhang, and J. Zico Kolter. Robustness between the worst and average
case. In Advances in Neural Information Processing Systems, volume 34, 2021.

Joel Rybicki and Jukka Suomela. Exact bounds for distributed graph colouring. In International
Colloquium on Structural Information and Communication Complexity, pp. 46—60. Springer, 2015.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

Imanol Schlag, Kazuki Irie, and Jiirgen Schmidhuber. Linear transformers are secretly fast weight
programmers. In International Conference on Machine Learning, 2021.

Jirgen Schmidhuber. Learning to control fast-weight memories: an alternative to dynamic recurrent
networks. Neural Computation, 4(1):131-139, 1992.

Frank Sehnke, Christian Osendorfer, Thomas Riickstie3, Alex Graves, Jan Peters, and Jiirgen Schmid-
huber. Parameter-exploring policy gradients. Neural Networks, 23(4):551-559, 2010. The 18th
International Conference on Artificial Neural Networks, ICANN 2008.

Woodrow Shew and Dietmar Plenz. The functional benefits of criticality in the cortex. The Neurosci-
entist : a review journal bringing neurobiology, neurology and psychiatry, 19, 05 2012.

13

Published as a conference paper at ICLR 2025

Aman Sinha, Hongseok Namkoong, Riccardo Volpi, and John Duchi. Certifying some distributional
robustness with principled adversarial training. arXiv preprint arXiv:1710.10571, 2020.

Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update and paging rules. Commun.
ACM, 28, 1985a.

Daniel D Sleator and Robert E Tarjan. Amortized efficiency of list update and paging rules. Commu-
nications of the ACM, 28, 1985b.

Vukica Srajer, Wilfried Schildkamp, Michael Wulff, and Keith Moffat. Chaos in neuronal networks
with balanced excitatory and inhibitory activity. Science, 274:1724 — 1726, 1996.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 2014.

David Sussillo and L. F. Abbott. Generating coherent patterns of activity from chaotic neural networks.
Neuron, 63:544-557, 20009.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, volume 30, 2017.

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, Jodo Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
International Conference on Machine Learning, 2023a.

Johannes von Oswald, Eyvind Niklasson, Maximilian Schlegel, Seijin Kobayashi, Nicolas Zucchet,
Nino Scherrer, Nolan Miller, Mark Sandler, Blaise Agiiera y Arcas, Max Vladymyrov, Razvan
Pascanu, and Jodao Sacramento. Uncovering mesa-optimization algorithms in transformers. arXiv
preprint arXiv:2309.05858, 2023b.

Abraham Wald. Statistical decision functions which minimize the maximum risk. Annals of
Mathematics, 46(2):265-280, 1945.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems, volume 35, 2022.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers. In Proceedings of the 38th
International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research. PMLR, 2021.

Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure of complexity. In /8th
Annual Symposium on Foundations of Computer Science (sfcs 1977), 1977.

Andy Zou, Zifan Wang, J. Zico Kolter, and Matt Fredrikson. Universal and transferable adversarial
attacks on aligned language models. arXiv preprint arXiv:2307.15043, 2023.

Nicolas Zucchet, Seijin Kobayashi, Yassir Akram, Johannes von Oswald, Maxime Larcher, Angelika
Steger, and Jodo Sacramento. Gated recurrent neural networks discover attention. arXiv preprint
arXiv:2309.01775, 2024.

14

Published as a conference paper at ICLR 2025

A APPENDIX

We provide here additional results and training details to reproduce the experiments one by one, as
well as a proof of proposition [I]

We give first a short overview of the compute budget used for this project. For the associative recall
task as well as the graph coloring problem, we estimate a total compute budget using 4 Nvidia RTX
4090 for a month. For the grid world problem, we use a cluster of 16xA100 GPUs which we used to
scan over the hyperparameters on and off over a total of 2 weeks.

A.1 PROOF OF PROPOSITION[]]

We first restate Proposition

Proposition 1 (Randomization can be beneficial in worst-case scenarios). Assume that X is a
compact set of R? for some d, and that L is continuous. Furthermore assume that there exist a
parameter 0* and a set of random seeds (1;)1<i<N € RN such that for each i

. = i * ! ; =Y.
I;lea%(L(Ag*(l‘,Tl)) rral}Tnglea)){(L(Ag(x,r)), and Oargn&@xL(Ae (z',r)) =10 6)

Then there exists a randomized model which has a strictly smaller loss L than any deterministic
model.

Proof. Assume there exist a parameter 6* and a set of random seeds (7)1<i<n € RYN such that for
each i equation [6] holds.

Let M = ming , maxyex L(Ap(x,7)). Any deterministic model, i.e. any choice of parameter 6,
and fixed seed r € R, will yield an adversarial loss of at least M. On the other hand, consider R
following a uniform distribution on the (r;);.

Let us now assume that

1
inf E[L(Ag« = inf — L(Ag~ i) =M
inf E[L(Ap- (, R))] = inf Z (Ag- (x,71))
We can then fix a sequence (7,)neny € XN such that lim,, oo E[L(Ag (2., R))] = M. Since X
is a compact set, without loss of generality we can assume (.,)nen to converge to some z*. By
continuity of L, we have E[L(Ag«(z*, R))] = M. Thus, necessarily, for all 4, L(Ag~(z*,r;)) = M,
i.e. x* € (), arg max, L(Ag-(a',7;)) which contradicts that assumption in equation [}

We therefore have, for each x € X,

L£A6*) = inf E[L(Ag- (, R))] < M

A.2 THE TRANSFORMER ARCHITECTURE AND THE RANDOM SEED ENCODING

We provide here a short recap of the transformer neural network architecture (Vaswani et al.| [2017;
Phuong & Hutter, [2022)) that we use throughout our experiments. We define a transformer of depth
K as being the transformation in blocks of the following two operations K times. First, we are
considering input tokens E € RZ*4m for a sequence of length L, to which we add common positional
encodings P € RL*4n and either add or, as we do in this paper in most experiments, concatenate
the random seed encoding (RSE). This is simply R € RE>*4" or R € [0, 1]2*9 where each element
of R is sampled randomly from a unit interval or a Normal distribution. Then, a self-attention layer
followed by a multi-layer-perceptron transform the tokens by first computing queries, keys and values
Q,K,V = EW,, EW},, EW, with which we then update F as

E + E + (softmax(QKT) ® M)VWp (7
E(—E+U(EW1>W2 (8)

15

Published as a conference paper at ICLR 2025

where Wy, Wy, W,, € R%m Xk and W, € R%*dm as well as W € Rém*4dm 1/, € R4dmXdm are
learnable parameter matrices. The softmax operation is applied row-wise. M is a 0-1 mask that
controls the attention span, o a non-linearity. We apply LayerNorm Ba et al.| (2016) to the inputs
of the self-attention layer as well as the MLPs. We now present results where we trained the just
described transformer, as well as variants, on our training objective. We stress that these models
are parametrized in a way, although potentially only by taking positional encodings into account,
which allows to condition computation on the input position and therefore ignore the parts where we
provide randomness. We see that this is indeed the case when training on ERM and show this in the
following.

B RANDOMIZED TRANSFORMERS SOLVE ASSOCIATIVE RECALL TASKS

q q
Al A%
100 —— 100
80 80
== 2 10!
n 601 w601
("] (V2]
g g
O 401 O 401 ‘
3 3 1072
(V] wm
20 201
0 Co— 0 : 10
1 4 16 64256 1 4 1664256

Figure 8: Fine-grained performance analyses of A%, models trained with varying ¢ on the associative
recall task. When increasing g, above ERM (q=1), we observe non-zero success rate on all inputs due
to randomization. This success probability, see main text, can be increased by majority voting.

Table 1: Hyperparameters for the associative recall task.

Hyperparameter Value

Dataset Randomly generated binary value vectors with d = 5 and corresponding
one-hot encodings as the keys

Tokenization & RSE One token is the concatenated vector [v;, k;, ;] where r; is
(the same) random binary vector for all ¢ with d,, = 10.

Context size Variable size from 8 - 20, see Figure

Optimizer Adam (Kingma & Bal[2015) with € = 1675, B1=0.9,82 =0.95

Hyperparamters of our objective m = 30 and ¢ = 100

Batchsize 512

Gradient clipping Global norm of 1.

Positional encodings We add standard positional encodings.

Architecture details 2 transformer blocks with linear self-attention, 1 head, key size 5, token size 15,
no input- but output-embedding

Attention mask details Causal mask

Weight init Truncated normal initial with variance computed by common fan-in,

bias parameter to zero. We scale all weight matrices before a skip
connection with 2\}ﬁ with N the number of layers.

Learning rate scheduler Linear warm-up starting from 0 to 0.003 for 2000 steps annealed to 0.0003
Standard deviation / Stat. robustness ~ We average all results over 5 random seeds. We omit showing the deviation due

to negligible differences across seeds.

16

Published as a conference paper at ICLR 2025

Success %

100

80

60

40

20

0

q q
Al A
— 100 1
o 80
3~ 107!
m 4
@ 60
S
O 40)
3 1072
(0p]
201
04m 10-3
13579 13579

Figure 9: Fine-grained performance analyses of A%, models trained with varying ¢ on the 3-coloring
problem. When increasing g, above ERM (q=1), we observe non-zero success rate on all inputs due
to randomization. This success probability, see main text, can be increased by majority voting.

C RANDOMIZED TRANSFORMERS SOLVE A GRAPH COLORING TASK

Table 2: Hyperparameters for the graph coloring task.

Hyperparameter Value

Dataset Random permutation of graph indices

Randomness Single random floating point concatenated to embedding

Tokenization Every token is the concatenated vector [v;, k;, ;] where r; € [0, 1] and d, = 1.

Context size 10 i.e. we only consider cycles C'1o

Optimizer Adam (Kingma & Ba, [2015) with e = 1le ™3, 81 = 0.9, B2 = 0.95 with weight decay of 0.1

Training steps

Hyperparamters of our objective
Batchsize

Gradient clipping

Positional encodings
Architecture details

Attention mask details
Weight init

Learning rate scheduler

Standard deviation / Stat. robustness

300000

m = 10and ¢ = 10

256

Global norm of 1.

We add standard positional encodings.

2 blocks of self-attention, 1 head, key size 16, token size 16,

no input- but output-embedding

Mask that only allows to observe direct neighboring tokens

Truncated normal initial with variance computed by common fan-in,

bias parameter to zero. We scale all weight matrices before a skip
connection with ﬁ with N the number of layers.

Linear warm-up starting from 0 to 0.001 for 1000 steps annealed to 0.0001
We average all results over 5 random seeds. We omit to show the deviation
due to negligible differences across seeds.

D TRAINING TRANSFORMER AGENTS TO EXPLORE AND EXPLOIT GRID

WORLDS.

We provide here additional results and details accompanying the main text.

Here, we first described the environment dynamics, loss functions and further details. For every task,
we set the starting point of the agent in the lower left corner of a 5 x 5 grid but sample a random
treasure location. The aim of the agent is now to explore the grid world efficiently. After 25 steps,
the agent’s position is reset and is given an additional 25 steps to exploit the (potential) knowledge
of the treasure location. After every step, the transformer agent is either given a reward of 1 if the
treasure is found and —0.1 otherwise, i.e. L(Ag) = >, 7. To have the ability to explore differently,

17

Published as a conference paper at ICLR 2025

the first token of the model is a vector sampled from a normal distribution. Given this vector, the
transformer first emits an output probability over the 4 actions {left, up, right, down} from which
we extract the action by computing the argmax. Given the environment response providing the
reward and next state, the concatenated embedding of the (4, j) coordinates as well as the reward
is appended to the sequence which is fed back to the same transformer agent. If the transformer
finds the treasure, the episode terminates. To compute an adversary in this setting, we do not fall
back to the g-norm relaxation. Rather we compute the worst-case treasure position for the current
transformer strategy by brute force iteration over all treasure positions. The adversarial position in
the grid is the one with the lowest accumulated reward. We stress the scalability issues, which we
leave for future work, of this strategy to compute an adversary for most practical environments. To
optimize the transformer weights, we use parameter-exploring policy gradients (PEPG) (Sehnke
et al., [2010) a common gradient-free optimization method. PEPG estimates gradients based on
evaluating populations of weight samples. Unlike methods like OpenAI-ES (Salimans et al.l 2017), it
leverages a diagonal search covariance to infer directions of improvement.

Perf. during Training of Grid World

-20
o
—_
g -30
(7]
o
8 _40 — Average
P M ---- 95"._percentile
I — Aq
_ - ,
50 — Al

0 5000 10000 15000 20000 25000
Training Steps

Figure 10: Performance of models AE) and A} . While A7 is difficult to train, given the hyperpa-
rameter sweep considered, AE) performs similarly as AE, see main text.

Table 3: Hyperparameters for the grid world task.

Hyperparameter Value

Dataset Randomly generated treasure location in 5 x 5 grid

Randomness Diverging from the other setups, here we only provide a single first random token
i.e. E]0] where every element is a sample from a Normal distribution.

Tokenization One token is the concatenated vector [emb(z),emb(j), 7] where emb

is a learnable embedding vector and (%, j) the current position of the token.
r € {—0.1,1} is the reward at that time step.
Context size 2 x 25 + 1 for two episodes of 25 steps each plus one initial random vector
Optimizer PGPE with a population size of 300, center Ir = 0.01, std Ir = 0.01 and init std = 0.03
We sweeped over the following parameters and choose the best for the
randomized transformer as well as deterministic baseline
center Ir € {0.03,0.01,0.003,0.001} , std Ir € {0.03,0.01,0.003,0.001} and
init std € {0.03,0.01, 0.003,0.001}.
Hyperparamters of our objective ~ m = 10 and ¢ = oo

Positional encodings We add standard positional encodings.
Architecture details 2 transformer blocks, 4 heads, key size 10, token size 80,
we use an output-embedding
Attention mask details Causal mask
Weight init Truncated normal initial with variance computed by common fan-in,

bias parameter to zero. We scale all weight matrices before a skip

. . 1 .
connection with - N with N the number of layers.

18

Published as a conference paper at ICLR 2025

E SOME BACKGROUND ON RANDOMIZED ALGORITHMS

As we motivated in the introduction, we are aiming in this paper to learn randomized algorithms
within neural networks, in particular transformers. Here we want to provide a short background on
randomized algorithms and their features.

A randomized algorithm is simply " ... one that receives, in addition to its input data, a stream of
random bits that it can use for the purpose of making random choices. Even for a fixed input, different
runs of a randomized algorithm may give different results; thus it is inevitable that a description of
the properties of a randomized algorithm will involve probabilistic statements. For example, even
when the input is fixed, the execution time of a randomized algorithm is a random variable" - Karp
(1991).

Given this class of algorithms, the main goal of this paper is to bring its advantages to deep learning.
But it is neither obvious not intuitive what the advantages of randomization actually are. Nevertheless,
in the last decades of intensive studies their benefits are established. To cite |[Karp, (1991) (1989)
again:

"By now it is recognized that, in a wide range of applications, randomization is an extremely important
tool for the construction of algorithms. There are two principal types of advantages that randomized
algorithms often have. First, often the execution time or space requirement of a randomized algorithm
is smaller than that of the best deterministic algorithm that we know of for the same problem. But
even more strikingly, if we look at the various randomized algorithms that have been invented, we
find that invariably they are extremely simple to understand and to implement; often, the introduction
of randomization suffices to convert a simple and naive deterministic algorithm with bad worst-case
behavior into a randomized algorithm that performs well with high probability on every possible
input."

Although much more manifold, one of the major advantages of randomized algorithms, which we
also leverage to define a learning objective in the main text, is their robustness against adversarial
inputs. To cite |[Karp| (1991) a final time:

"A game-theoretic view is often useful in understanding the advantages of a randomized algorithm.
One can think of the computational complexity of a problem as the value of certain zero-sum two-
person game in which one of the players is choosing the algorithm and the other player, often called
the adversary, is choosing the input data to foil the algorithm. The adversary’s payoff is the running
time of the algorithm on the input data chosen by the adversary. A randomized algorithm can be
viewed as a probability distribution over deterministic algorithms, and thus as a mixed strategy
for the player choosing the algorithm. Playing a mixed strategy creates uncertainty as to what the
algorithm will actually do on a given input, and thus makes it difficult for the adversary to choose an
input that will create difficulties for the algorithm."

Generally, one distinguishes between two classes of randomized algorithms, see below, whereas we
focus on Monte-Carlo algorithms in this paper i.e. randomized algorithms with fixed runtime (such
as a common feed-forward neural network) which we allow to produce incorrect predictions. We
go on to furthermore discuss when and how one can boost the performance of these algorithms by
repetition, a technique that we leverage heavily in the main text.

To showcase the advantages of randomized algorithms and give the reader a quick overview, we
furthermore introduce and describe in the following a few classic randomized algorithms, which also
served as an inspiration for deciding on which problems we trained neural networks on.

E.1 TWwO CLASSES OF RANDOMIZED ALGORITHMS: MONTECARLO VS. LASVEGAS
ALGORITHMS

Definition 3. A Monte Carlo algorithm is a randomized algorithm that runs for a deterministic
runtime and whose output may be incorrect with some (usually small) probability.

Definition 4. A Las Vegas algorithm is a randomized algorithm that runs for a randomized runtime
and always outputs a correct solution.

These two notions are nevertheless tightly intertwined. Indeed, given a Las Vegas algorithm, one
can construct a Monte Carlo algorithm by running the algorithm for a prefixed amount of time (i.e.

19

Published as a conference paper at ICLR 2025

early terminating the algorithm if it exceeds this runtime) and returning whatever output if it didn’t
succeed. A simple Markov inequality allows to bound the probability of returning a wrong answer.
In general however, a Monte Carlo algorithm cannot be converted into a Las Vegas algorithm. There
are however special cases where this can be done. When for example the correctness of a solution
can be tested with a deterministic algorithm, one can construct a Las Vegas algorithm from a Monte
Carlo algorithm, by running it as many times as needed to find a correct answer. We describe this
procedure in detail in the following section which we leverage heavily in the main text, denoted as
majority voting, to boost performance.

E.1.1 PROBABILITY AMPLIFICATION

Assume we have access to a randomized algorithm that can, for every single input z € X, output A(x)
that is correct with a certain probability. Note that in our experiments of the main text, the output of
the neural network A(x) returns a probability distribution e.g. the probability over certain classes or
actions. We stress that to compute the final result of the algorithm we must therefore either sample to
obtain the final result of the algorithm or compute it by the argmax. Note that this additional sampling
/ argmax step is usually not necessary for common (randomized) algorithms. In the following, we
will show a procedure that allows to define another algorithm that will significantly amplify the
probability of success of A. Therefore, we wish to explain the presented results in the main text where
we observe majority voting of the randomized transformer predictions indeed improves performance
significantly while surpassing the deterministic transformer models dramatically.

More precisely, let) be the output space, and C,; C Y be the correct outputs for input z € X'.

Letz € X. A(x) is a distribution over) (one can think of A as the random output for a given input).
We sample N € N* samples of A(x) and return the statistical mode M, i.e., the most frequent output.
We want to bound the probability to return a correct output y € C,.

Proposition 2. Let § > 0,

A= max PlA(z) = y] — Imax P[A(z) = y]

IfA>0and N > 25 In 305, then P[M € O] > 1 6.

The proof follows from Hoeffding inequality and a union bound.

We now present well-known randomized algorithms which should give the reader better intuition
how and why randomness is used to design powerful algorithms.

E.2 RABIN-MILLER (MILLER|(1975)); RABIN|(1980))

Setting: Given a number n € N, decide whether 7 is prime or not.

Approach: If n is prime, any a € [1,...,n — 1] satisfies a”~! = 1 mod p. We can write
n — 1 = 2Ym where m is odd. We necessarily have that "7 = -1 mod por a"7 =1 mod p.

By recurrence, we either have ™ = 1 or there exists a k < v such that a?'™ = —1 mod p. One
can show that, if n is composite, at most i of the a in [1,...,n — 1] will verify this property.

A naive solution would be to then try all possible bases. That would give an exact but very inefficient
algorithm. Instead, we can sample independently and uniformly at random k bases, and return
"pseudoprime" if all tests are successful, and "composite" otherwise. If the algorithm gets a prime, it
will always output "pseudoprime”. If it gets a composite number, it will output "pseudoprime" with
probability ﬁ. Conversely, the number is always composite if the algorithm returns "composite".
Using Bayes rule, one can easily bound the probability that the number is composite given that the
algorithm returns "pseudoprime". The complexity of the algorithm is @(k‘ log? n), much less than

the @(n) we would have needed with the deterministic approach.

Assuming the Grand Riemann hypothesis, it is enough to test the first (’)(log2 n) basis to get an exact
deterministic algorithm running in @(log4 n). The hypothesis remains an open problem so far. The
randomized version is still mainly used in practice because the deterministic algorithms that exist are
much more complex mathematically, more difficult to implement, and more expensive in terms of
computational complexity.

20

Published as a conference paper at ICLR 2025

E.3 PAGING PROBLEM (SLEATOR & TARJAN (1985B))

Problem: We are given a fast memory (cache) that can fit k pages and an unlimited slow memory.
A user can only access data from the cache while there is communication channel between the fast
and the slow memory. If a user wants to access data which is not currently in cache, it requires a cost
of 1 to overwrite a cache entry by the required page from the slow memory. Writing data from the
cache to the slow memory costs 0. Therefore the goal of this problem is to find a strategy to fetch as
little data from the slow memory. An oblivious adversary chooses a sequence of queries. What is the
best online memory management strategy to minimize the cost?

Approach: One of the easiest strategies, the Random Marking Algorithm, goes as follows: initialize
all pages in the cache as marked; whenever the queried page is not in the cache, evict one of the
unmarked cache pages chosen uniformly at random; in case all pages are marked, unmark all before.
It can be shown that this achieves is O(log k)-competitive against an oblivious adversary. This is also
the best one can achieve theoretically. One can show that any deterministic algorithm can at best be
k-competitive against an oblivious adversary.

E.4 CYCLE 3-COLORING

Problem: Given an oriented cycle defined by a set of N vertices V = {v;}¥; and edges E =
{(vi, Vit1 mod N)}lN:l, color the vertices using 3 colors such that neighbouring vertices receive
different colors. Formally speaking, we desire a mapping f : V +— {1,2, 3} such that f(v) # f(w)
for all (v, w) € E. In the distributed graph coloring problem, which we consider here, we require that
all vertices v compute f(v) locally, being able to only communicate with their immediate vicinity.

Approach: A simple randomized approach proceeds in two phases: In the first phase, each vertex
selects itself with probability 1/2. If one of its neighbours also selected itself, it subsequently unselects
itself again following some deterministic rule based on the vertex id. A typical example for such a
rule, is that always the one with smaller id unselects itself. In the second phase, every vertex that is
still selected colors itself with color 0. Crucially, one easily shows that, regardless of the distribution
of the vertex ids, this process ensures that with high probability the paths between vertices in color 0
have lengths at most O(log n). Therefore, they can be colored properly, in a third and final phase, by
a simple propagation process using only O(logn) rounds. This defines a Las Vegas algorithm, that
one can turn to a Monte Carlo algorithm (check section [E.I). Using a different approach, one can
actually achieve a much better complexity of O(log*(n))'|(Rybicki & Suomela|(2015)).

log* (n) counts the number of times one has to apply log composedly to become smaller than 1

21

	Introduction
	Theoretical Considerations
	Excessive model capacity will not enforce randomness
	Randomization is not beneficial in expectation
	Randomization can be beneficial in adversarial settings.
	Our training objective.

	Experimental Results
	Evaluation protocol and baselines
	Randomized transformers solve associative recall
	Randomized transformers can solve graph coloring problems
	Randomized transformer agents explore grid worlds

	Discussion & Related work
	Appendix
	Proof of Proposition 1
	The transformer architecture and the random seed encoding

	Randomized Transformers solve associative recall tasks
	Randomized Transformers solve a graph coloring task
	Training transformer agents to explore and exploit grid worlds.
	Some background on randomized algorithms
	Two classes of randomized algorithms: MonteCarlo vs. LasVegas algorithms
	Probability amplification

	Rabin-Miller ()
	Paging problem ()
	Cycle 3-coloring

