
Under review as a conference paper at ICLR 2021

DYNAMIC RELATIONAL INFERENCE IN
MULTI-AGENT TRAJECTORIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Unsupervised learning of interactions from multi-agent trajectories has broad ap-
plications in physics, vision and robotics. However, existing neural relational
inference works are limited to static relations. In this paper, we consider a more
general setting of dynamic relational inference where interactions change over time.
We propose DYnamic multi-Agent Relational Inference (DYARI) model, a deep gen-
erative model that can reason about dynamic relations. Using a simulated physics
system, we study various dynamic relation scenarios, including periodic and addi-
tive dynamics. We perform comprehensive study on the trade-off between dynamic
and inference period, the impact of training scheme, and model architecture on
dynamic relational inference accuracy. We also showcase an application of our
model to infer coordination and competition patterns from real-world multi-agent
basketball trajectories.

1 INTRODUCTION

Particles, friends, and teams are multi-agent relations at different scales. Learning multi-agent
interactions is essential to our understanding of the structures and dynamics underlying many systems.
Practical examples include understanding social dynamics among pedestrians (Alahi et al., 2016),
learning communication protocols in traffic (Sukhbaatar et al., 2016; Lowe et al., 2017) and predicting
physical interactions of particles (Mrowca et al., 2018; Li et al., 2018; Sanchez-Gonzalez et al., 2020).
Most existing work on modeling relations assume the interactions are observed and train the models
with supervised learning. For multi-agent trajectories, the interactions are hidden and thus need
to be inferred from data in an unsupervised fashion. While one could impose an interaction graph
structure (Battaglia et al., 2016), it is difficult to find the correct structure as the search space is very
large (Grosse et al., 2012). The search task is computationally expensive and the resulting model can
potentially suffer from the model misspecification issue (Koopmans & Reiersol, 1950).
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Abstract

Interacting systems are prevalent in nature, from
dynamical systems in physics to complex societal
dynamics. The interplay of components can give
rise to complex behavior, which can often be ex-
plained using a simple model of the system’s con-
stituent parts. In this work, we introduce the neu-
ral relational inference (NRI) model: an unsuper-
vised model that learns to infer interactions while
simultaneously learning the dynamics purely from
observational data. Our model takes the form of
a variational auto-encoder, in which the latent
code represents the underlying interaction graph
and the reconstruction is based on graph neural
networks. In experiments on simulated physical
systems, we show that our NRI model can ac-
curately recover ground-truth interactions in an
unsupervised manner. We further demonstrate
that we can find an interpretable structure and pre-
dict complex dynamics in real motion capture and
sports tracking data.

1. Introduction
A wide range of dynamical systems in physics, biology,
sports, and other areas can be seen as groups of interacting
components, giving rise to complex dynamics at the level of
individual constituents and in the system as a whole. Mod-
eling these type of dynamics is challenging: often, we only
have access to individual trajectories, without knowledge of
the underlying interactions or dynamical model.

As a motivating example, let us take the movement of bas-
ketball players on the court. It is clear that the dynamics
of a single basketball player are influenced by the other
players, and observing these dynamics as a human, we are
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Figure 1. Physical simulation of 2D particles coupled by invisible
springs (left) according to a latent interaction graph (right). In this
example, solid lines between two particle nodes denote connections
via springs whereas dashed lines denote the absence of a coupling.
In general, multiple, directed edge types – each with a different
associated relation – are possible.

able to reason about the different types of interactions that
might arise, e.g. defending a player or setting a screen for a
teammate. It might be feasible, though tedious, to manually
annotate certain interactions given a task of interest. It is
more promising to learn the underlying interactions, perhaps
shared across many tasks, in an unsupervised fashion.

Recently there has been a considerable amount of work
on learning the dynamical model of interacting systems
using implicit interaction models (Sukhbaatar et al., 2016;
Guttenberg et al., 2016; Santoro et al., 2017; Watters et al.,
2017; Hoshen, 2017; van Steenkiste et al., 2018). These
models can be seen as graph neural networks (GNNs) that
send messages over the fully-connected graph, where the
interactions are modeled implicitly by the message passing
function (Sukhbaatar et al., 2016; Guttenberg et al., 2016;
Santoro et al., 2017; Watters et al., 2017) or with the help
of an attention mechanism (Hoshen, 2017; van Steenkiste
et al., 2018).

In this work, we address the problem of inferring an explicit
interaction structure while simultaneously learning the dy-
namical model of the interacting system in an unsupervised
way. Our neural relational inference (NRI) model learns the
dynamics with a GNN over a discrete latent graph, and we
perform inference over these latent variables. The inferred
edge types correspond to a clustering of the interactions.
Using a probabilistic model allows us to incorporate prior
beliefs about the graph structure, such as sparsity, in a prin-
cipled manner.
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Figure 1: Neural Relational Inference for
learning the interaction graph. Picture
taken from (Kipf et al., 2018)

Relational inference aims to discover hidden interactions
from data and has been studied for decades. Statistical rela-
tional learning are based on probabilistic graphical models
such as probabilistic relational model (Kemp & Tenen-
baum, 2008; Getoor et al., 2001; Koller et al., 2007; Shum
et al., 2019). However, these methods may require sig-
nificant feature engineering and high computational costs.
Recently, Battaglia et al. (2016); Santoro et al. (2017) pro-
pose to reason about relations using graph neural networks
but still requires supervision. One exception is Neural
Relational Inference (NRI) (Kipf et al., 2018), a flexible
deep generative model that can infer potential relations in
an unsupervised fashion. As shown in Figure 1, NRI simul-
taneously learns the dynamics from multi-agent trajectories and infers their relations. In particular,
NRI builds upon variational auto-encoder (VAE) (Kingma & Welling, 2013) and introduces latent
variables to represent the hidden relations. Despite its flexibility, a major limiting factor of NRI is that
it assumes the relations among the agents are static. That is, two agents are either interacting or not
interacting regardless of their states at different time steps, which is rather restrictive.
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In this paper, we study a more realistic setting: dynamic relational inference. For example, in game
plays, players can coordinate and compete dynamically depending on the strategy. We propose a
novel deep generative model, which we call DYnamic multi-Agent Relational Inference (DYARI).
DYARI encodes trajectory interactions at different time steps. It utilizes deep temporal CNN models
with pyramid pooling to extract rich representations from the interactions. DYARI infers the relations
for each sub-sequence dynamically and jointly decode a sequence of relations.

As relational inference is unsupervised, we use simulated dynamics physics systems as ground truth
for validation. We find that the performance of the static NRI model deteriorates significantly with
shorter output trajectories, making it unsuitable for dynamic relational inference. In contrast, DYARI
is able to accurate infer the hidden relations with various dynamics scenarios. We also perform
extensive ablative study to understand the effect of inference period, training schemes and model
architecture. Finally, We showcase our DYARI model on real-world basketball trajectories.

In summary, our contributions include:

• We tackle the challenging problem of unsupervised learning of hidden dynamic relations
given multi-agent trajectories.
• We develop a novel deep generative model called DYARI to handle time-varying interactions

and predict a sequence of hidden relations in an end-to-end fashion.
• We demonstrate the effectiveness our method on both the simulated physics dynamics and

real-world basketball game play datasets.

2 RELATED WORK

Deep sequence models Deep sequence models include both deterministic models (Alahi et al.,
2016; Li et al., 2019; Mittal et al., 2020) and stochastic models (Chung et al., 2015; Fraccaro et al.,
2016; Krishnan et al., 2017; Rangapuram et al., 2018; Chen et al., 2018; Huang et al., 2018; Yoon
et al., 2019). For GAN-like models, (Yoon et al., 2019) combine adversarial training and a supervised
learning objective for time series forecasting. Liu et al. (2019) propose a non-autoregressive model
for sequence generation. Compared with GANs, VAE-type models can provide explicit inference
and are preferable for our purpose. For instance, Chung et al. (2015) introduces stochastic layers in
recurrent neural networks to model speech and hand-writing. Rangapuram et al. (2018) parameterizes
a linear state-space model for probabilistic time series forecasting. Chen et al. (2018); Huang et al.
(2018) combine normalizing flows with autoregressive models. However, all existing models only
model the temporal latent states for individual sequences rather than their interactions.

Relational inference Graph neural networks (GNNs) seek to learn representations over relational
data, see several recent surveys on GNNs and the references therein, e.g. (Wu et al., 2019; Goyal &
Ferrara, 2018). Unfortunately, most existing work assume the graph structure is observed and train
with supervised learning. In contrast, relational inference aims to discover the hidden interactions and
is unsupervised. Earlier work in relational reasoning (Koller et al., 2007) use probabilistic graphical
models, but requires significant feature engineering. The seminal work of NRI (Kipf et al., 2018)
use neural networks to reason in dynamic physical systems. Alet et al. (2019) reformulates NRI as
meta-learning and proposes simulated annealing to search for graph structures. Relational inference
is also posed as Granger causal inference for sequences (Louizos et al., 2017; Löwe et al., 2020).
Nevertheless, all existing work are limited to static relations while we focus on dynamic relations.

Multi-agent learning Multi-agent trajectories arises frequently in reinforcement learning (RL) and
imitation learning (IL) (Albrecht & Stone, 2018; Jaderberg et al., 2019). Modeling agent interactions
given dynamic observations from the environment remains a central topic. In the RL setting, for
example, Sukhbaatar et al. (2016) models the control policy in a fully cooperative multi-agent setting
and applies a GNN to represent the communications. Le et al. (2017) models the agents coordination
as a latent variable for imitation learning. Song et al. (2018) generalizes GAIL (Ho & Ermon, 2016)
to multi-agent through a shared generator. However, these coordination models only capture the
global interactions implicitly without the explicit graph structure. Tacchetti et al. (2019) combines
GNN with a forward dynamics model to model multi-agent coordination but also requires supervision.
Grover et al. (2018) directly models the episodes of interaction data with GNs for learning multi-
agent policies. Our method instantiates the multi-agent imitation learning framework, but focuses on
relational inference. Our approach is also applicable to dynamic modeling in model-based RL.
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3 DYNAMIC MULTI-AGENT RELATIONAL INFERENCE

Given a collection of multi-agent trajectories, we aim to reason about their hidden relations over time.
First we describe the underlying probabilistic inference problem.

3.1 PROBABILISTIC INFERENCE FORMULATION

For each agent i ∈ {1, · · · , N}, define its state (coordinates) as xt ∈ RD. A trajectory τ (i) =
(x1, x2, · · · , xT ) is a sequence of states that are sampled from a policy. Given trajectories from N
agents {τ (i)}Ni=1, dynamic relational inference aims to infer the pairwise interactions of N agents at
every time step. Mathematically speaking, the joint distribution of the trajectories can be written as:
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Figure 2: Probabilistic graphical
model representation of dynamic
multi-agent relational inference.
Shaded nodes are observed and
unshaded nodes are hidden variables.

p(τ (1), · · · , τ (N)) =

T∏
t=1

p(xt+1|xt, · · · ,x1) (1)

where p(xt+1|xt, · · · ,x1) represents the state transition dy-
namics. We use the bold form xt := (x

(1)
t , · · · , x(N)

t ) to
indicate the concatenation of all agents observations and
x<t := (x1, · · · ,xt).

We introduce latent variables z(ij)t to denote the interactions
between agent i and j at time t. To make the problem
tractable, we restrict z(ij)t to be categorical, representing
discrete interactions such as coordination or competition.
We assume that the dynamics model can be decomposed into
the individual dynamics, in conjunction with the pairwise
interaction. This substantially reduces the dimensionality of the distribution and simplifies learning.
Therefore, we can rewrite the transition dynamics as:

p(xt+1|x<t) ≈
∫
z

N∏
i=1

p(x
(i)
t+1|x

(i)
<t, z

(ij)
t )

N∏
i=1

N∏
j=1,j 6=i

p(z
(ij)
t |x(i)<t, x(j)<t )dz (2)

Here each p(x(i)t+1|x
(i)
<t) captures the state transition dynamics of a single agent. p(z(ij)t |x(i)<t, x(j)<t )

represents the latent interactions between two agents. Figure 2 visualizes the graphical model
representation for three agents over t number of time steps. The shaded nodes represent observed
variables and the unshaded nodes are latent variables. Dynamic relational inference is to estimate
distributions of the hidden variables {z(ij)t } at different time steps.

3.2 DYNAMIC MULTIAGENT RELATIONAL INFERENCE (DYARI)

We propose a deep generative model: Dynamic multi-Agent Relational Inference (DYARI). Given
the trajectories (x1, · · · ,xT ) of all agents, DYARI first concatenates the trajectories based on a fully
connected graph. The concatenated trajectories are used as interaction features for the encoder.
Then we sample the sequence of relations from the encoded hidden states. Finally, we generate the
future trajectory predictions conditioned on the sampled relations. Figure 3 visualizes the overall
architecture of our model which encodes and decodes multi-agent trajectories. The bottom cut-out
diagram shows the architecture of our encoder.

Encoder. A key ingredient of DYARI is an encoder that is inspired by PSPNet (Zhao et al., 2017) to
learn rich representations of trajectories at different scales. In particular, we define a residual block as
a two-layer CNN with residual connections (He et al., 2016). Our encoder has four modules: feature
extraction, pyramid pooling, an aggregation module, and an interpolation module.

• Feature extraction: the feature extraction module consists of multiple residual blocks interleaved
with pooling layers to extract rich temporal features.
• Pyramid pooling: the pyramid pooling module learns multi-scale temporal representations from

the extracted features. First, the output of the feature extraction module is downsampled by 2x
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Concat layer

Figure 3: Visualization of the DYARI model. It infers pairwise relations at different time steps given
trajectories. The bottom diagram shows the details of the encoder and the decoder is the same as NRI.

and 5x through average pooling. Then, the downsampled features are passed through two residual
blocks and finally upsampled by 2x and 5x to generate features which are of the same size as the
input. The representations learned at 2x and 5x resolutions are concatenated with the input to
generate composite multi-scale features.

• Aggregation module: a 1-D convolution that aggregates the multi-scale features.
• Interpolation module: it average-pools the aggregated features corresponding to the dynamic

period. Then the outputs are upsampled through nearest neighbours interpolation to obtain the
hidden presentations for the relations.

Sampling. We utilize variational inference (Kingma & Welling, 2013) to sample the latent variables
from hidden representations. Specifically, assume the interaction posterior z(ij)t to be categorical:

qφ(z
(ij)
t |x<t) ∼ Cat(p1, · · · , pk)

Using the Gumbel-Max trick (Jang et al., 2017), we can reparameterize the categorical distribution as:
z
(ij)
t = Softmax(h(ij)t + g

(ij)
t ). Here h(ij)t is the hidden states of the encoder and g(ij)t is a random

Gumbel vector. Note that a defining feature of DYARI is that the latent variable z(ij)t is time-dependent,
requiring fine-grained modeling. Our encoder ensures that the learned representations are expressive
enough to capture such complex dynamics.

Decoder. Given the sampled latent variables, the decoder generates the prediction auto-regressively
following a Gaussian distribution:

p(x
(i)
t+1|x<t, z

(ij)
t ) = N (x

(i)
t+1|µ

(i)
t+1, σ

2I) (3)

µit+1 = fdec(
∑
j 6=i

∑
k z

(ij)
t,k uk; θ), uk = fkmlp(x

(i)
t , x

(j)
t ) (4)

Here the output x(i)t+1 is reparameterized by a Gaussian distribution with mean µ(i)
t+1 and a fixed

standard deviation σ2. The mean vector µ(i)
t+1 of agent i is computed by aggregating the hidden states

of all other agents. We use a separate MLP to encode the previous inputs into different type of edges
in a k-dimensional one-hot vector z(ij)t . To generate long-term predictions using the model in Eqn.
(4), we can also incorporate the predictions from the previous time step. The decoder architecture is
the same as in NRI at a given time step, which consists of message passing GNN operations, followed
by a GRU (Cho et al., 2014) decoder.

Inference. At every time step t, we learn a different distribution for the hidden relation z(ij)t . We
assume a uniform prior for pθ(zt) and use ELBO as the optimization objective:

LELBO = E[log pθ(x<T |z<T )]− βdKL[qφ(z<T |x<T )||pθ(z<T )]] (5)

= −
N∑
i=1

T∑
t=1

(µ
(i)
t − x(i)t )2

2σ2
+ β

N∑
i,j

T∑
t=1

H(qφ(z
(ij)
t |xt))
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where the mean vector µ(i)
t is parameterized by the decoder. H is the entropy function and β balances

the two terms in ELBO (Higgins et al., 2016).

4 EXPERIMENTS

We conduct extensive experiments on simulated physics dynamics and real-world basketball trajecto-
ries. The majority of our experiments are based on the physics simulation in the Spring environment.
This is ideal for model verification and ablative study as we know the ground truth relations.

4.1 PHYSICS SIMULATIONS

Figure 4: Example trajectories of
two particles. with two relation
changes. The trajectories start from
the end with lighter color and grad-
ually become darker.

Data Generation The Spring environment (Kipf et al., 2018)
simulates the movements of a group of particles connected
by a spring in a box. The hidden relation is whether there is
a spring connecting the two particles. To simulate dynamic
relations, we generate the trajectories by removing and adding
back the springs following certain patterns. Figure 4 visualizes
the trajectories resulting from such dynamic relations. Starting
from the bottom, the two-particle trajectories appear as straight
lines and bend in the middle due to the spring force, and return
to straight lines after the removal of the spring.

We define the number of time steps between the change of
relations as the dynamic period. The primary challenges for
dynamic relation inference arise along two dimensions:

1. The shorter the dynamic period, the more frequent the rela-
tion changes. Hence, it becomes more difficult to infer relations
with shorter dynamic period.

2. If the dynamic period itself also changes, then the task be-
comes much harder because the model also needs to adapt to
the unknown period in the changing relations. Note that the way relations change in the trajectories
must follow certain pattern and not be completely random. Otherwise it would be impossible to learn
anything meaningful.

We experiment with two types of dynamic relations: periodic dynamics and additive dynamics. For
periodic dynamics, we generate the trajectories by periodically removing and adding back the springs.
We investigate the model performance by generating data with different frequencies of periodicity.
For additive dynamics, we assume the dynamic period is increasing arithmetically. Each trajectory is
of length 50 and the decoding length is 40, see details of the generated dataset in Appendix.

Baselines and Setup We consider several baselines for comparison: (1) NRI (static): unsupervised
NRI with an encoder trained using the entire trajectory and infer repeatedly over time. This corre-
sponds to NRI (learned) in (Kipf et al., 2018). (2) NRI (adaptive): NRI (static) with an encoder trained
over sub-trajectories. The encoding length corresponds exactly to the dynamic period of the dataset.
We use the NRI (static) decoder to predict the entire trajectory in an auto-regressive fashion. (3)
Interaction Networks (IN) (Battaglia et al., 2016): a supervised GNN model which uses the ground
truth relations to predict future trajectories. We include this supervised learning model as the “gold
standard” for our inference tasks. It is important to note here that (Graber & Schwing, 2020) also
propose a model, dNRI, for this problem but the focus of their work is trajectory prediction whereas
we focus on unsupervised relational inference. In our experiments with their model, we observed a
relational inference accuracy of 0.505 on our periodic data with dynamic period 20. On the other
hand, the same model gives an accuracy of 0.66 on the 3-particle synthetic data presented in their
paper. Therefore, dNRI is unable to infer relations in an unsupervised setting.

In practice, we do not know the dynamic period beforehand. Therefore, how often we infer the
relations is a difficult choice: rare inference would miss the time steps where relations change
while predicting too frequently introduces more latent variables and complicates the inference. To
investigate this trade-off, we define inference period as the number of time steps between two
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predicted relations. Unless otherwise noted, the inference period in our experiments is the same as
the dynamic period. All the models are trained to predict the sequence in an auto-regressive fashion:
the prediction of the current time step is fed as the input to the next time step. We use Adam (Kingma
& Ba, 2014) optimizer with learning rate 5e−4 and weight decay 1e−4 and train for 300 epochs.

4.1.1 PATHOLOGICAL CASES OF NEURAL RELATIONAL INFERENCE

It is known that latent variable models suffer from the problem of identifiability (Koopmans &
Reiersol, 1950), which means certain parameters, in principle, cannot be estimated consistently. NRI
infers correlation-like relations between trajectories which highly depend on the length of the time lag.
To test this hypothesis, we follow the exact same setting as Kipf et al. (2018) to infer the interaction
graph. Instead of decoding 50 time steps, we vary the length of input and output sequence.

Table 1 summarizes the inference accuracy with different sequence length in the encoder and decoder.
We can see that the performance of NRI deteriorates drastically with shorter training sequences,
simply increasing the capacity of the encoder (NRI++) does not help. One plausible explanation is
that NRI is learning correlation-like interactions. Shorter decoding sequences carry less information
about correlations, making it harder to learn. Meanwhile, we also observed that using auto-regressive
can achieve better inference accuracy compared to teacher forcing. The pathological cases highlight
the issue of NRI for dynamic relational inference. If the interactions change frequently every few time
steps, repeatedly applying NRI to different time steps would suffer from short decoding sequences.
Therefore, having a model that can jointly infer a sequence of relations is critical.

Table 1: Inference accuracy (%) of NRI trained with trajectory lengths. Note that the performance
deteriorates significantly when the output length decreases. For NRI++, we added two more hidden
layers to the MLP encoder of NRI.

Teacher Forcing Auto-regressive
Output Length 40 20 8 4 40 20 8 4

NRI 0.99 0.65 0.63 0.54 0.99 0.81 0.80 0.69
NRI++ 0.99 0.66 0.63 0.53 0.99 0.80 0.80 0.70

4.1.2 DYNAMIC RELATIONAL INFERENCE COMPARISON

We compare the performance of different models for dynamic relational inference tasks.

Periodic dynamics In the periodic scenario, the dynamic period is fixed. We generate four datasets
with a dynamic period of 40, 20, 8, 4 to simulate relational dynamics with increasing frequency.
Table. 2 columns “40, 20, 8, 4” show the trajectory prediction mean square error (MSE) and interaction
inference accuracy comparison of different methods.

We can see that all methods can achieve almost perfect predictions of the trajectories with very
low MSE. However, there is a sharp difference in relational inference accuracy. NRI (static) is
incapable of learning dynamic interactions. NRI(adaptive) can learn but has lower accuracy due to
short decoding sequences. With a more expressive encoder and joint decoding, DYARI is able to
reach higher accuracy. When the dynamic period is very small at 4, even DYARI struggles slightly,
suggesting the fundamental difficulty with frequently changing dynamics.

Table 2: Performance comparison for ours and the baselines in both the periodic (40,20,8,4) and
additive (Add) dynamic scenarios. MSE is for trajectory prediction and Accuracy quantifies the
dynamic relational inference performance.

Dynamic MSE ↓ Accuracy ↑
Period 40 20 8 4 Add 40 20 8 4 Add

NRI (static) 2.2e-4 5.2e-3 2.7e-3 2.4e-3 3.6e-3 0.99 0.52 0.51 0.50 0.53
NRI (adaptive) 2.2e-4 2.7e-3 1.3e-3 5.9e-4 3.1e-3 0.99 0.81 0.80 0.69 0.81

DYARI 2.6e-5 4.1e-5 4.6e-6 3.6e-6 7.6e-6 0.99 0.92 0.91 0.74 0.87
IN 2.9e-5 2.3e-5 4.3e-5 4.7e-5 3.9e-5 0.99 0.99 0.99 0.98 0.99
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Figure 5: Learning curve of DYARI trained with teacher forcing (blue), auto-regressive (yellow), and
hybrid (green) in decoder. Hybrid model is first trained with teacher forcing in the beginning 30 time
steps and then auto-regressively in the later 10 time steps. We report the relational inference accuracy
on the validation data for different dynamic periods.

Additive Dynamics In the additive scenario, we allow the dynamic period itself to increase arith-
metically. We increase the dynamic period in steps of 4 starting from a dynamic period of 4 timesteps.
In a sequence of 40 timesteps, this implies that the relations (spring connection) get flipped at
timesteps 4, 12 and 24. We use four NRI(static) models, each trained separately with 4, 8, 12 and 16
encoding timesteps. We combine the ensemble model predictions into NRI(adaptive). Table. 2 “Add”
columns show the performance comparison. Similar to the periodic scenario, DYARI outperforms the
baselines in this challenging task as well. Note that NRI(adaptive) is a close competitor w.r.t inference
accuracy, but it is a four model ensemble and takes a long time to train.

4.1.3 ABLATIVE STUDY

We perform ablative study to further validate our experiment design and understand the behavior
of DYARI. In particular, we study the trade-off between dynamic and inference period, the effect of
training scheme, as well as the ablative study of model architecture design.

Table 3: Inference accuracy for different
combinations of dynamic and inference pe-
riods with DYARI.

Dynamic Period 40 8 4

Inference
Period

40 0.99 0.50 0.50
8 0.88 0.80 0.50
4 0.80 0.76 0.74

Dynamic vs. Inference Period. To understand the
relations between dynamic and inference period, we re-
peat the periodic scenario experiments by varying both
dynamic and inference period in 40, 8, 4 time steps.

In Table 3, we observe that dynamic relational inference
reaches the highest accuracy when the inference period
matches the dynamic period. If the inference period is
longer than the dynamic period, the model can miss the
changes in the relations and completely fails to perform
inference. Meanwhile, if the inference period is shorter
than the dynamic period, the model still can learn but suffers from low accuracy. This is potentially
due to the extra uncertainty introduced by estimating more latent variables.

Decoder Training Scheme Another fundamental challenge in sequence prediction is covariate
shift (Bickel et al., 2009) – a mismatch between distribution in training and testing – due to sequential
dependency. Common solutions to mitigate covariate shift include teacher forcing (Williams &
Zipser, 1989) and scheduled sampling (Bengio et al., 2015). However, all these work are focused the
prediction of observed sequence while our sequence predictions are on the latent variables. It is not
evident that covariate shift exists in this setting. We demonstrate the empirical evidence for the effect
of different training schemes on the accuracy of relational inference.

Quite surprisingly, we found that auto-regressive training is most effective for dynamic relations
inference. Figure. 5 summarizes the difference in learning curve between using teacher forcing and
auto-regressive for different dynamic periods. We also include a version of scheduled sampling
(hybrid): in the first 30 time-steps, we train the model with teacher forcing and then switch to
auto-regressive in the last 10 time-steps. We observe that while teacher forcing converges faster, it
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Figure 6: Visualization of the inferred relations (dashed links) in the basketball players trajectories
over time by DYARI with an inference period of 8. The blue dashed links in the top are the inferred
interactions from the same team (coordination) and red dashed links in the bottom are from different
teams (competition). Different columns represent different time steps.

MSE ↓ NELBO ↓
Inference Period 40 20 8 4 40 20 8 4

NRI(static) 2.3e-3 - - - 13.71 - - -
NRI(adaptive) 2.3e-3 3.0e-2 3.3e-2 9.7e-3 13.71 303.10 337.54 96.76

DYARI 2.2e-3 8.4e-4 4.6e-4 1.8e-4 12.65 6.16 4.38 3.67

Table 4: Performance comparison for DYARI and baselines on the real-world basketball trajectory
dataset with different inference periods 40, 20, 8 and 4.

leads to lower accuracy. This observation is consistent across different dynamic periods. Therefore,
auto-regressive training is preferred for dynamic relation inference.

4.2 REAL-WORLD BASKETBALL DATA EXPERIMENTS

To showcase the practical value of dynamic relational inference, we apply DYARI to a real-world
basketball trajectory dataset. The goal of the experiment is to extract meaningful “hidden” relations
in competitive basketball plays. The basketball dataset contains trajectories for 10 players in a game.
As the ground-truth relations are unknown, we use the trajectory prediction MSE and negative ELBO
as in-direct measures for the dynamic relational inference performance. We assume there are two
types of hidden relations: coordination and competition. We defer the details of the dataset and
training setup to the Appendix.

We report performance comparisons for different inference periods. As shown in Table 4, we observe
lower MSE loss and negative ELBO with shorter inference period. Intuitively, the interactions in
the real world may change constantly, thus shorter inference period can capture the dynamics better.
DYARI outperforms the baselines in trajectory prediction MSE and negative ELBO loss. Notice
that NRI(adaptive) is using encoder and decoder that are trained separately and this results in a high
negative ELBO loss on the test set. Fig. 6 visualizes a sample trajectory of 10 basketball players with
inferred relations from DYARI over different time steps. We separate coordination and competition
interactions in different rows. In Fig. 6, Kobe Bryant is moving along with three-point line and
guarded by a defender. We can see clear attention drawn to the specific players throughout the play.
See Appendix for other inferred relations.

5 CONCLUSION

We investigate unsupervised learning of dynamic relations in multi-agent trajectories. We propose a
novel deep generative model: Dynamic multi-Agent Relational Inference (DYARI) to infer changing
relations over time. We conduct extensive experiments using a simulated physics system to study
the performance of DYARI in handling various dynamic relations. We perform ablative study to
understand the effect of dynamic and inference period, training scheme and model design choice.
Compared with static NRI and its variant, our DYARI model demonstrates significant improvement in
simulated physics systems as well as in a real-world basketball trajectory dataset.

8



Under review as a conference paper at ICLR 2021

REFERENCES

Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li Fei-Fei, and Silvio
Savarese. Social lstm: Human trajectory prediction in crowded spaces. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 961–971, 2016.

Stefano V Albrecht and Peter Stone. Autonomous agents modelling other agents: A comprehensive
survey and open problems. Artificial Intelligence, 258:66–95, 2018.

Ferran Alet, Erica Weng, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. Neural relational
inference with fast modular meta-learning. In Advances in Neural Information Processing Systems,
pp. 11804–11815, 2019.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks
for learning about objects, relations and physics. In Advances in neural information processing
systems, pp. 4502–4510, 2016.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks. In Advances in Neural Information Processing Systems,
pp. 1171–1179, 2015.

Steffen Bickel, Michael Brückner, and Tobias Scheffer. Discriminative learning under covariate shift.
Journal of Machine Learning Research, 10(Sep):2137–2155, 2009.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differen-
tial equations. In Advances in neural information processing systems, pp. 6571–6583, 2018.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and Yoshua Bengio.
A recurrent latent variable model for sequential data. In Advances in neural information processing
systems, pp. 2980–2988, 2015.

Marco Fraccaro, Søren Kaae Sønderby, Ulrich Paquet, and Ole Winther. Sequential neural models
with stochastic layers. In Advances in neural information processing systems, pp. 2199–2207,
2016.

Lise Getoor, Nir Friedman, Daphne Koller, and Avi Pfeffer. Learning probabilistic relational models.
In Relational data mining, pp. 307–335. Springer, 2001.

Palash Goyal and Emilio Ferrara. Graph embedding techniques, applications, and performance: A
survey. Knowledge-Based Systems, 151:78–94, 2018.

Colin Graber and Alexander Schwing. Dynamic neural relational inference. Proceedings of the IEEE
conference on computer vision and pattern recognition, 2020.

Roger Grosse, Ruslan R Salakhutdinov, William T Freeman, and Joshua B Tenenbaum. Exploiting
compositionality to explore a large space of model structures. arXiv preprint arXiv:1210.4856,
2012.

Aditya Grover, Maruan Al-Shedivat, Jayesh K Gupta, Yura Burda, and Harrison Edwards. Learning
policy representations in multiagent systems. Proceedings of the 35th International Conference on
Machine Learning, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. 2016.

9



Under review as a conference paper at ICLR 2021

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in neural
information processing systems, pp. 4565–4573, 2016.

Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville. Neural autoregressive
flows. In International Conference on Machine Learning, pp. 2078–2087, 2018.

Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy Lever, Antonio Garcia
Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos, Avraham Ruderman, et al. Human-
level performance in 3d multiplayer games with population-based reinforcement learning. Science,
364(6443):859–865, 2019.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparametrization with gumble-softmax. In
International Conference on Learning Representations (ICLR 2017). OpenReview. net, 2017.

Charles Kemp and Joshua B Tenenbaum. The discovery of structural form. Proceedings of the
National Academy of Sciences, 105(31):10687–10692, 2008.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural relational
inference for interacting systems. In International Conference on Machine Learning, pp. 2688–
2697, 2018.

Daphne Koller, Nir Friedman, Sašo Džeroski, Charles Sutton, Andrew McCallum, Avi Pfeffer, Pieter
Abbeel, Ming-Fai Wong, David Heckerman, Chris Meek, et al. Introduction to statistical relational
learning. MIT press, 2007.

Tjalling C Koopmans and Olav Reiersol. The identification of structural characteristics. The Annals
of Mathematical Statistics, 21(2):165–181, 1950.

Rahul G Krishnan, Uri Shalit, and David Sontag. Structured inference networks for nonlinear state
space models. In Thirty-first aaai conference on artificial intelligence, 2017.

Hoang M Le, Yisong Yue, Peter Carr, and Patrick Lucey. Coordinated multi-agent imitation learning.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 1995–
2003. JMLR. org, 2017.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting. In Advances in Neural Information Processing Systems, pp. 5244–5254, 2019.

Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B Tenenbaum, and Antonio Torralba. Learning
particle dynamics for manipulating rigid bodies, deformable objects, and fluids. arXiv preprint
arXiv:1810.01566, 2018.

Yukai Liu, Rose Yu, Stephan Zheng, Eric Zhan, and Yisong Yue. Naomi: Non-autoregressive
multiresolution sequence imputation. In Advances in Neural Information Processing Systems, pp.
11236–11246, 2019.

Christos Louizos, Uri Shalit, Joris M Mooij, David Sontag, Richard Zemel, and Max Welling. Causal
effect inference with deep latent-variable models. In Advances in Neural Information Processing
Systems, pp. 6446–6456, 2017.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. In Advances in neural information
processing systems, pp. 6379–6390, 2017.

Sindy Löwe, David Madras, Richard Zemel, and Max Welling. Amortized causal discovery: Learning
to infer causal graphs from time-series data. arXiv preprint arXiv:2006.10833, 2020.

10



Under review as a conference paper at ICLR 2021

Sarthak Mittal, Alex Lamb, Anirudh Goyal, Vikram Voleti, Murray Shanahan, Guillaume Lajoie,
Michael Mozer, and Yoshua Bengio. Learning to combine top-down and bottom-up signals in
recurrent neural networks with attention over modules. arXiv preprint arXiv:2006.16981, 2020.

Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Li F Fei-Fei, Josh Tenenbaum, and
Daniel L Yamins. Flexible neural representation for physics prediction. In Advances in neural
information processing systems, pp. 8799–8810, 2018.

Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella, Yuyang Wang, and
Tim Januschowski. Deep state space models for time series forecasting. In Advances in neural
information processing systems, pp. 7785–7794, 2018.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Pe-
ter W Battaglia. Learning to simulate complex physics with graph networks. arXiv preprint
arXiv:2002.09405, 2020.

Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan Pascanu, Peter
Battaglia, and Timothy Lillicrap. A simple neural network module for relational reasoning. In
Advances in neural information processing systems, pp. 4967–4976, 2017.

Michael Shum, Max Kleiman-Weiner, Michael L Littman, and Joshua B Tenenbaum. Theory of
minds: Understanding behavior in groups through inverse planning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pp. 6163–6170, 2019.

Jiaming Song, Hongyu Ren, Dorsa Sadigh, and Stefano Ermon. Multi-agent generative adversarial
imitation learning. In Advances in neural information processing systems, pp. 7461–7472, 2018.

Sainbayar Sukhbaatar, Rob Fergus, et al. Learning multiagent communication with backpropagation.
In Advances in neural information processing systems, pp. 2244–2252, 2016.

Andrea Tacchetti, H Francis Song, Pedro AM Mediano, Vinicius Zambaldi, Neil C Rabinowitz, Thore
Graepel, Matthew Botvinick, and Peter W Battaglia. Relational forward models for multi-agent
learning. International Conference on Learning Representations (ICLR 2019), 2019.

Ronald J Williams and David Zipser. A learning algorithm for continually running fully recurrent
neural networks. Neural computation, 1(2):270–280, 1989.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596, 2019.

Jinsung Yoon, Daniel Jarrett, and Mihaela van der Schaar. Time-series generative adversarial networks.
In Advances in Neural Information Processing Systems, pp. 5509–5519, 2019.

Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene parsing
network. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
2881–2890, 2017.

11



Under review as a conference paper at ICLR 2021

A MODEL IMPLEMENTATION DETAILS

In this section, we include some details about the model implementation, especially the encoder part.
Our encoder is analogical to ResNet CNNs (He et al., 2016) used in the field of image recognition,
where the task can be abstracted to be a classification problem on 1D dimension. Meanwhile, inspired
by PSPNet used in visual scene semantic parsing (Zhao et al., 2017), we add additional 2 global
feature extractors to combine the whole-sequence (global) features and the sub-sequence (local)
features.

for DYARI, each residual block shown in Fig. 3 consists of 4 skip connections structure.

Figure 7: Pytorch code snippet of the Residual Block used in DYARI encoder.

B EXPERIMENTAL DETAILS

Particle dataset In general, we use the same pre-processing in NRI. Each raw simulated trajectory
has length of 5000 and we sample with frequency of 100 so that each sample has length of 50 in our
dataset. Correspondingly, the value of dynamic period/inference period matches the length of sample
in our dataset. For instance, dynamic period = 10 means that the in the raw trajectory, the state of a
node changes every 1000 time steps. In addition, The value of trajectories are all normalized to range
of [0, 1] and the evaluation is done on the same range as well.

Basketball dataset details The basketball dataset consists of trajectory from 30 teams. The raw
trajectory is captured with frequency of 25 ms. For our experiment, we sample the trajectory with
frequency of 50 ms for more evident player movements. We use a inference period that matches
the length of sample. For instance, inference period = 10 means that our model produce prediction
every 500 ms. The resulting dataset include 50,000 training samples, 10,000 validations samples and
10,000 test samples.

We normalize the values of the trajectories to range [0,1] and train all the models in an auto-regressive
fashion. We use the same training set up as in physics simulation experiments with a batch size of 64.
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Figure 8: Visualization of the basketball players trajectories with inference period = 8. The top row
visualizes the inferred interactions from the same team (coordination) and the bottom row visualizes
the inferred interactions from different teams (competition). Different columns represent different
time steps.

C ADDITIONAL EXPERIMENTS

Stochastic dynamics In order to make the problem even harder and to unify all the previous
settings, we generate a dataset where the edge types are flipped randomly with a probability p after
each dynamic period of 4 timesteps. The static data generation corresponds to p = 0 and the periodic
dynamics corresponds to p = 1. Table 5 shows the MSE and inference accuracy of NRI, DYARI and
Interaction Networks on the stochastic dataset for flipping probabilities p = 0.8 and p = 0.9.

Table 5: Qualitative results for stochastic dynamics. Accuracy improves by increasing the model
capacity. In the training, The inference period of the two DYARI match with the dynamic period.

MSE Accuracy
Flipping Probability 0.8 0.9 0.8 0.9

NRI 1.4e-3 2.3e-3 0.59 0.60
DYARI 8.3e-4 1.8e-3 0.57 0.63

IN (Supervised) 4.5e-5 4.2e-5 0.99 0.99

Table 6: Results with and without average pooling in the interpolation module of DYARI.

MSE Accuracy

DYARI without average pooling 1.8e-5 0.59
DYARI with average pooling 4.1e-5 0.92

The Effect of Average Pooling We perform an ablation study where we remove the average
pooling corresponding to the inference period in the interpolation module to study the effect of this
average pooling on the results. We find that without average pooling, inference accuracy decreases
from 0.92 to 0.59 (as shown in Table 6) for inference period at 20. Here we drop the average pooling
corresponding to the inference periods and directly interpolate to the sequence length. This shows
that intermediate average pooling is critical for the relational inference performance.

Additional Inferred Relations in Basketball Trajectories We set the number of relations in
Basketball dataset as two. In Sec 4.2, we visualized one of the inferred relations. Table 8 visualizes
the second relations. Notice that the first relation captures focus on the rightmost red player while
here the relation captures focus on the leftmost red player.
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