
Enhancing LLM Tool Use with High-quality Instruction Data from
Knowledge Graph

Anonymous ACL submission

Abstract001

Teaching large language models (LLMs) to use002
tools is crucial for improving their problem-003
solving abilities and expanding their applica-004
tions. However, effectively using tools is chal-005
lenging because it requires a deep understand-006
ing of tool functionalities and user intentions.007
Previous methods relied mainly on LLMs to008
generate instruction data, but the quality of009
these data was often insufficient. In this paper,010
we propose a new method that uses knowledge011
graphs to generate high-quality instruction data012
for LLMs. Knowledge graphs are manually013
curated datasets rich in semantic information.014
We begin by extracting various query pathways015
from a given knowledge graph, which are trans-016
formed into a broad spectrum of user queries.017
We then translate the relationships between en-018
tities into actionable tools and parse the path-019
ways of each query into detailed solution steps,020
thereby creating high-quality instruction data.021
Our experiments show that LLMs fine-tuned022
with this data significantly improve their tool023
utilization and overall capabilities.024

1 Introduction025

The use of tools is a revolutionary hallmark of026

advanced intelligence in human civilization (Qin027

et al., 2024), deeply expanding the limits of our028

physical capabilities. Integrating real-world tools029

with powerful large language models (LLMs) is im-030

perative to unleash their problem-solving potential031

in accuracy, efficiency, and automation.032

However, proficiently manipulating tools re-033

mains a challenging task for LLMs because it re-034

quires a thorough understanding of tool functional-035

ities and a deep insight into varying user intentions.036

Recently, some studies have found that instruction037

tuning can significantly enhance the tool-use capa-038

bilities of LLMs (Tang et al., 2023; Qin et al., 2023;039

Liu et al., 2024). These methods typically start by040

collecting real APIs or synthesizing simulated APIs.041

They then use LLMs to generate user queries based042

on the APIs. After that, LLMs are employed again 043

to synthesize detailed solution steps for each query, 044

including tool invocations. 045

Despite the progress made by these methods, 046

several limitations in the construction of instruc- 047

tion data may hinder their full potential, including 048

unguaranteed data quality, insufficient query com- 049

plexity, and prohibitive costs. First, data quality is 050

crucial for instruction-tuning-based methods and di- 051

rectly impacts the capabilities of LLMs (Gunasekar 052

et al., 2023; Zhou et al., 2024a). Researchers often 053

use advanced commercial models like ChatGPT 054

or GPT-4 to generate data. However, even with 055

these models or careful human review, errors can 056

still occur in the dataset. Second, many methods 057

(Qin et al., 2023; Srinivasan et al., 2023) randomly 058

sample APIs and prompt LLMs to generate queries. 059

This simple approach often leads to irrelevant tool 060

combinations and low-complexity queries rather 061

than high-complexity ones that require advanced 062

reasoning skills. As a result, the final dataset may 063

not be challenging enough to fully engage the rea- 064

soning and planning capabilities of LLMs. More- 065

over, the inconsistent quality of LLM-generated 066

data necessitates meticulous manual review and rig- 067

orous revision. The extensive human intervention 068

throughout the data construction process—from 069

initial creation to final validation—makes rapid 070

scaling impractical and labor costs prohibitive. 071

In this paper, we tackle these challenges by us- 072

ing knowledge graphs (KGs) to create high-quality 073

instruction-tuning data. KGs contain rich, struc- 074

tured knowledge with concepts and relationships 075

represented as nodes and edges. From a tool use 076

perspective, the basic unit of KGs—the "entity- 077

relation-entity" triple—can be interpreted as "input- 078

function-output." By extracting subgraphs from 079

KGs, we can generate complex tool combinations 080

that exhibit high complexity, along with corre- 081

sponding queries and solution paths. Since KGs 082

are carefully curated and verified by humans, their 083

1

accuracy and reliability are well-established, en-084

suring the integrity of the extracted subgraphs. By085

converting these subgraphs into natural language086

through a simple formatting process, we can eas-087

ily generate tool-using instructions and solution088

paths without relying on potentially flawed LLM-089

generated data. This approach avoids errors and090

noise, maintaining the high quality of our datasets.091

Moreover, our method bypasses labor-intensive092

prompting and eliminates redundant interactions093

with LLMs. Leveraging existing large-scale KGs094

and using diverse sampling patterns without man-095

ual verification, our approach provides an efficient,096

low-cost solution for scaling up datasets.097

In particular, we present a new framework that098

generates high-quality instruction data by leverag-099

ing query-solution pairs from KGs. Our approach100

integrates First-Order Logic (FOL) queries into the101

data generation process, ensuring precise execu-102

tion of each step and guaranteeing answer quality.103

The framework extracts subgraphs from KGs that104

match predefined FOL patterns, representing tool105

utilization queries and solution paths. By executing106

API sequences associated with these queries, we107

log API calls and outcomes, creating solution paths108

and an instruction-tuning dataset called ToolKG.109

By fine-tuning various LLMs with ToolKG, we ob-110

serve significant performance improvements on the111

T-Eval benchmark. Our framework thus provides a112

high-quality, low-cost solution for enhancing LLM113

tool utilization.114

Our major contributions are as follows:115

• We propose to utilize knowledge graphs to116

generate high-quality instruction data to en-117

hance LLM tool use capability.118

• We design a new framework that utilizes FOL119

queries as intermediates to transform data in120

KGs into tool-use format, including the gener-121

ation of APIs, queries, and solution paths.122

• We conduct extensive experiments with var-123

ious LLMs that validate the effectiveness of124

our synthesized data.125

2 Related Work126

2.1 Tool Use of LLMs127

Integrating external tools within LLMs has128

emerged as a growing field of research (Qin et al.,129

2024). Current methodologies can be delineated130

into two discrete lines. The first line of methods131

stimulates the tool-use capabilities within LLMs 132

via pure prompting strategies, enabling full in- 133

teractions among language models, users, and 134

tools. These endeavors encompass the utilization 135

of LLMs with a diverse array of tools, such as code 136

interpreters (Gao et al., 2023), search engines (Yao 137

et al., 2022), retrieval frameworks (Khattab et al., 138

2022), etc. (Shen et al., 2024; Lu et al., 2024). 139

The remaining methods in the second line enhance 140

tool utilization abilities within LLMs using super- 141

vised fine-tuning (SFT). They commonly leverage 142

closed-sourced LLMs like ChatGPT to construct 143

instruction-tuning datasets tailored for tool usage. 144

Meanwhile, Retrieval-Augmented Generation 145

(RAG) (Lewis et al., 2020) techniques have also 146

been integrated into studying tool learning within 147

LLMs. While some may opt to employ retriever to 148

enhance prompting method (Yuan et al., 2023) di- 149

rectly, other approaches incorporate retrieval com- 150

ponents and tool-use tuning procedures via API 151

retrieval (Qin et al., 2023) or prompt demonstration 152

(Srinivasan et al., 2023). 153

2.2 Tool-use Instruction Dataset 154

Instruction tuning relies heavily on curated datasets 155

to enhance LLMs’ capacity to comprehend human 156

instructions and generate appropriate responses 157

(Wei et al., 2021; Bach et al., 2022). Thus, con- 158

structing instruction data is the core of tool learning 159

methods based on instruction tuning. The construc- 160

tion process usually consists of three phases: API 161

collection, query generation, and solution path an- 162

notation. ToolAlpaca (Tang et al., 2023) simulates 163

an environment to generate tool-use instances with- 164

out manual intervention. ToolFormer (Schick et al., 165

2024) meticulously designs a bootstrapping frame- 166

work including in-context learning (ICL) prompt- 167

ing, API calls sampling, executing, and filtering to 168

generate an interleaved dataset with API invoca- 169

tions. Llama3 (Dubey et al., 2024) utilizes a com- 170

bination of human preference annotations and man- 171

ual rewrites progressively to generate annotation 172

data. However, these data construction methods 173

inevitably either involve costly human annotations 174

or heavily rely on unreliable LLM generation, lead- 175

ing to high expenses or unguaranteed quality. Our 176

approach, in contrast, could address these issues. 177

2.3 KG for LLMs 178

Incorporating KGs can significantly enhance 179

LLMs’ ability to acquire up-to-date information 180

and factual knowledge, thereby reducing hallucina- 181

2

Knowledge
Graph

Relation

Sets

FOL Query Pattern

Grounding
to KG

Instantiated FOL Query

API Calling

SFT

ToolLLM

LLM

ToolKG

Solution Paths Tool-use Queries

LLMLLM

API
Execution

𝑞 = 𝑣.∃𝑢 : Rel_1(𝑢, A)∧Rel_2 (𝑢, B)∧Rel_3(𝑢,𝑣)

Subgraph Matching

𝑞 = 𝑣.∃𝑢 :

𝑊𝑖𝑛(𝑢,𝑇𝑢𝑟𝑖𝑛𝑔𝐴𝑤𝑎𝑟𝑑)∧𝐹𝑖𝑙𝑒𝑑(𝑢,𝐷𝑒𝑒𝑝𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔)∧𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦(𝑢,𝑣)

Returned
Values

API
Generation

API Collection Solution Path
Generation

Query
Generation

LLM

Instruction
Construction

SFT
Corpus

Figure 1: The framework of our proposed method. We exploit a reliable knowledge graph and introduce FOL
queries as intermediates to produce tool-use queries and solution paths.

tion. Recent studies have primarily focused on the182

RAG framework, which retrieves relevant KG sub-183

graphs and integrates them into the input context184

using well-designed prompts. For example, RoG185

(Luo et al., 2023) proposes a planning-retrieval-186

reasoning framework to generate relation paths187

from KGs, enabling valid reasoning for LLMs.188

StructGPT (Jiang et al., 2023) introduces an itera-189

tive reading-then-reasoning framework that allows190

LLMs to access structured knowledge through spe-191

cialized interfaces, aiding answer generation. Be-192

yond prompt-based methods, (Zhou et al., 2024b)193

shows that SFT with synthetic graph-based reason-194

ing data can effectively improve LLMs’ reasoning195

performance. (Wang et al., 2024) constructs plan-196

ning data from KGs and fine-tunes LLMs to fol-197

low instructions and execute plans to obtain final198

answers. To our knowledge, our approach is the199

first to generate instruction-tuning data from KGs200

specifically for enhancing LLM tool utilization.201

3 Preliminary202

In this section, we describe the background infor-203

mation of KGs and FOL queries.204

Knowledge Graphs. KGs organize and store real-205

world knowledge in a heterogeneous graph struc-206

ture, representing entities as nodes and relations207

as edges. Given a set of entities V and a set of208

relations R, a knowledge graph can be denoted as209

a tuple G = (V, E ,R), where E is a set of triplets210

E = (hi, ri, ti) ⊆ V ×R× V . Each triplet repre-211

sents a fact from head entity hi to tail entity ti with212

the relation type ri. 213

First-order Logic Queries. To enable large-scale 214

subgraph sampling from KGs and directly translate 215

these subgraphs into natural language instructions, 216

we introduce FOL queries. A FOL query is a 217

formula composed of constants (denoted with the 218

entity’s name), variables (denoted with lowercase 219

letters, e.g., u, v), relations (denoted with relation 220

term, formatted as R(a, b)) and logic symbols 221

(including ∃, ∧, ∨, ¬). In our method, each 222

constant or variable represents an entity from the 223

set V . Every relation symbol R(a, b) acts as a 224

binary function, signifying whether a relation R 225

exists between a pair of constants or variables. 226

Regarding logical symbols, our considerations 227

encompass conjunction (∧), disjunction (∨), 228

negation (¬) and existential quantification (∃). 229

A bounded variable is free if it is quantified in 230

the expression If a variable is quantified with 231

an existential symbol, it is termed a bounded 232

variable; otherwise, it is a free variable. For 233

example, a natural language question, “Which 234

universities do the Turing Award winners of deep 235

learning work in?” can be equivalent to a FOL 236

query as q = v.∃u : Win(u, TuringAward) ∧ 237

Filed(u,DeepLearning) ∧ University(u, v) 238

(Zhu et al., 2022). For an FOL query, our goal is to 239

find the answers to the free variables that make the 240

formula true. 241

Basic Operations on KGs. Corresponding to re- 242

lations and logical symbols in FOL queries, we 243

define four basic operations over entities to enable 244

3

reasoning on KG. The operations are as follows:245

• Relation Projection: Pq(A) computes the en-246

tity set of tail entities reachable by the input247

set of head entities through relation q. To de-248

rive head entities given tail entities (e.g. q=v.249

Win(v, Turing Award)), the projection is de-250

noted as Pq−1(A) for inverse relation q−1.251

• Intersection Operation: The intersection op-252

eration, denoted as A∩B, computes the entity253

set containing all entities common to both sets254

A and B.255

• Union Operation: The union operation, de-256

noted as A ∪B, computes the entity set con-257

taining all entities that belong to either set A258

or set B, or to both.259

• Complement Operation: The complement260

operation, denoted as U \ A, computes the261

entity set containing all entities that are in set262

U but not in set A. U stands for the universal263

set in the current operation.264

4 Data Construction265

Drawing on the analogy between relations in triples266

and function operations, we abstract head nodes267

and their relations as input parameters and API268

calls. Building on this, we treat the search for269

missing nodes in a KG subgraph and its deduction270

process as the tool-use query and solution path, re-271

spectively. We introduce FOL queries as intermedi-272

ates for generating these queries and solution paths.273

FOL queries naturally align with problem decom-274

position and multi-step solutions, and can be easily275

translated into natural language. Each FOL query276

corresponds to a unique subgraph pattern, enabling277

large-scale sampling of reasoning subgraphs. By278

leveraging these advantages, we minimize human279

effort (such as manual verification and modifica-280

tion) while maximizing data quality and generation281

efficiency. We will detail our data construction282

method using FOL queries, covering query genera-283

tion, API generation, solution path generation, and284

instruction data construction. Our framework is285

illustrated in Figure 1.286

4.1 API Generation287

When written in the projection form Pri(hi) = ti,288

each fact triplet (hi, ri, ti) in the knowledge graph289

can be understood as applying a relation-specific290

operation on the head node to yield the tail node.291

This closely parallels function calling in tool-using, 292

where a function identified by its name is exe- 293

cuted on the provided input parameters and re- 294

turns outputs after performing its designated op- 295

erations. Viewed from a translation perspective 296

(Bordes et al., 2013), each relation instance within 297

a triplet acts as a function that conducts a trans- 298

formation from its head into its tail. Therefore, 299

we abstract each relation type as an API in our ap- 300

proach, requiring head nodes as input parameters 301

and returning tail nodes. While these functions are 302

not directly collected from real-world API reposi- 303

tories, almost all correspond to genuine needs and 304

functionalities in certain real scenarios. It should 305

be noted that instead of simulating executions as 306

ToolAlpaca (Tang et al., 2023), each API call can 307

get accurate and verifiable results via truly execut- 308

ing queries in the knowledge graph. 309

To complete the API generation using relation 310

types, we perform format conversions to align with 311

API conventions and linguistic conversions to en- 312

sure appropriate function names for projections 313

from head entities to tail entities. In most cases, 314

this API generation process is straightforward by 315

simply prefixing "get_" and postfixing "_of_" with 316

head type. In the aforementioned query scenario, 317

with "University" as the relation and persons as 318

head entities, the API name can be easily derived 319

as "get_university_of_person". When dealing with 320

reverse relations like Win−1, it requires generat- 321

ing an API with the inverse meaning of the origi- 322

nal relation(i.e., winners). In practice, we design 323

forward and reverse relation templates, utilizing 324

in-context learning methods to prompt the LLM to 325

generate APIs. As our API generation approach 326

avoids excessive reasoning that could introduce er- 327

rors or inaccuracies, a compact open-source LLM 328

is adequate for this procedure. 329

Our API set encompasses relation-based APIs 330

and three dedicated APIs for executing logical 331

operations, including conjunction, disjunction, 332

and negation. Specifically, get_intersection_of, 333

get_union_of and get_negation_of serve as the cor- 334

responding APIs to perform intersection operation, 335

union operation and complement operation. These 336

APIs are implemented as functions and executed 337

by Python interpreters. 338

4.2 FOL Instantiation and Query Generation 339

To facilitate large-scale data generation of diverse 340

tool-usage queries with reasoning complexity, we 341

use FOL queries as the intermediate form to pro- 342

4

FOL Query corresponded Solution Paths

Step 1

Input parameter
Turing Award

Outputs 1

API Called
get_winners_of_award

Input parameter
Deep Learning

API Called
get_researchers_of_filed

Outputs 2

FOL Query

Outputs 3

Input parameter
Outputs 3

Outputs 4

API Called
get_university_of_person

Input parameter
Outputs 1, Outputs 2

API Called
get_conjunction_of

Geoffrey Hinton

Yoshua Bengio

Yann LeCun

Geoffrey Hinton

Yoshua Bengio

Yann LeCun

Max Welling

Donald Ervin Knuth

Geoffrey Hinton

Yoshua Bengio

Yann LeCun

University of Toronto

University of Montreal

University of New York
… …

Natural Language Query

API name:
get_researchers_of_Filed

Which universities do the Turing Award winners of deep learning work in?

University

Conjunction

Win-1

Field-1

Turing Award

Deep Learning
Subgraph Pattern

…

API DocumentationAPI name:
get_winners_of_award
Description:
Retrieves the names of individuals who
have been honored as winners of a given
award.
Parameters:
award_name (str): The name of the award
for which winners are to be retrieved.
Returns:
List[str]: A list of names representing the
individuals who have received the specified
award.

𝑞 = 𝑣.∃𝑢 :𝑊𝑖𝑛(𝑢,𝑇𝑢𝑟𝑖𝑛𝑔𝐴𝑤𝑎𝑟𝑑)∧𝐹𝑖𝑙𝑒𝑑(𝑢,𝐷𝑒𝑒𝑝𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔)∧𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦(𝑢,𝑣)

Win-1

API name:
get_conjunction_of

Step 2
Field-1

Step 3 Conjunction

Turing Award Deep Learning

Step 4
University

Figure 2: Demo of solution path generation from a given subgraph.

duce queries and solution paths to ensure efficient343

and high-quality data generation. Following prior344

research (Zhu et al., 2022), we define a total of 14345

FOL query patterns in practice, denoted as P =346

{1p, 2p, 3p, 2i, 3i, pi, ip, 2u, up, 2in, 3in, inp, pin,347

pni}. Here, p, i, u, and n represent operations348

of relation projection, intersection, union, and349

complement. Each FOL query pattern corresponds350

to a specific sub-graph pattern, as shown in351

Appendix Table 2 and 3 with their examples.352

To instantiate a FOL query pattern using its sub-353

graph pattern, we sample real reasoning subgraphs354

from the KG via simple subgraph matching. Specif-355

ically, we randomly select an entity e from the KG356

as the root node of the tree-structured subgraph357

pattern. We then use a pre-order traversal to assign358

KG entities and relations to the subgraph structure.359

We uniformly select an existing relation r from e’s360

incoming relations for each edge and assign r and361

its head entity e′ to the corresponding edge and362

node in the subgraph pattern. This process contin-363

ues until all nodes and relations are matched. If any364

required relation is missing, the instantiation fails.365

We use a post-order traversal for FOL subgraphs366

with negations to avoid cases where the comple-367

ment operation results in an empty set. Once suc-368

cessfully instantiated, we fill the entities and re-369

lations into the FOL query pattern to obtain the370

instantiated FOL query. With the help of LLMs,371

these FOL queries can then be easily transformed372

into natural language tool-use queries.373

Given that tool-use queries are natural lan- 374

guage form of our obtained FOL queries, 375

we can easily translate an FOL query (e.g., 376

q = v.∃u : Win(u, TuringAward) ∧ 377

Filed(u,DeepLearning) ∧ University(u, v)) 378

into the final query (e.g., "Which universities do the 379

Turing Award winners of deep learning work in?"), 380

while ensuring the accuracy of this procedure. We 381

utilize a compact LLM to perform query generation 382

from FOL quires. We present our prompt for query 383

generation in the Appendix. 384

4.3 Solution Path Generation 385

Since FOL queries of the same pattern share identi- 386

cal execution sequences, we obtain the execution 387

chains for each FOL pattern by traversing the in- 388

stantiated subgraph structure in a post-order man- 389

ner. With the FOL queries established, their solu- 390

tion paths are naturally derived by calling the APIs 391

and recording their results. Because each API call 392

and its response are sourced from reliable knowl- 393

edge graphs, the correctness of the solution paths 394

is ensured. For example, consider the instance in 395

Figure 2. The FOL query dictates the decomposi- 396

tion steps and overall execution sequence. Initially, 397

two APIs are called to retrieve single-step results: 398

one for querying the winners of the Turing Award 399

and another for researchers in Deep learning. Next, 400

an intersection API is invoked to find overlapping 401

researchers. Finally, a relation projection API is 402

applied to the intermediate set to obtain the desired 403

5

answers regarding their universities.404

4.4 Instruction Data Construction405

At this point, we can obtain the initial query-406

solution pairs, where the solution includes detailed407

steps to resolve the query, with each step containing408

the required API, parameters, and the API’s return409

results. The instruction data for fine-tuning LLMs410

is typically presented in a chat format. Hence, we411

convert the initial query-solution pairs into a dia-412

logue format to align with standard instruction data413

formats (such as Alpaca or ShareGPT). Following414

(Chen et al., 2023, 2024), we add a system prompt415

to each query-solution pair, informing the assistant416

which tools can be called, then regard the query as417

the user’s input and each tool invocation as output,418

thus constructing complete instruction-following419

data. Since we use high-quality knowledge graphs420

like FB15k (Kadlec et al., 2017) that have been421

manually curated, the instruction data constructed422

in this way does not need to be quality-checked by423

advanced LLMs like GPT-4, also avoiding the need424

for extensive manual quality control. We refer to425

this instruction data constructed from the knowl-426

edge graph as ToolKG and will make our code and427

data publicly available after the review process.428

5 Evaluation and Results429

5.1 Experimental Setup430

Benchmark. We use the largest available tool uti-431

lization benchmark to evaluate the tool use perfor-432

mance of LLMs comprehensively: T-Eval (Chen433

et al., 2023). T-Eval has 23,305 test cases cover-434

ing various tool sets and yields 5.8 calling steps435

for each query on average. T-Eval is a step-by-step436

tool evaluation benchmark for LLMs, which explic-437

itly decomposes the evaluation into six sub-tasks438

(i.e., plan, reason, retrieve, understand, instruct,439

and review) along the basic capabilities of LLMs.440

Training setting. To test the effectiveness of our441

data, we conduct extensive experiments by training442

LLMs with the generated ToolKG instruction data.443

We train the open-source LLMs, Qwen2.5-Instruct444

series (Team, 2024), in the SFT manner. We refer445

to the model trained with our data as Qwen2.5-446

ToolKG. For example, Qwen2.5-7B, after being447

fine-tuned with ToolKG, is denoted as Qwen2.5-448

ToolKG-7B. Due to the limited resources, we adopt449

the parameter-efficient training strategy LoRA (Hu450

et al., 2021) to fine-tune all models. As for the451

hyper-parameters setting, we adopt one of the most452

common settings, which sets the rank as 16 and 453

alpha as 32 for all modules in the model. The learn- 454

ing rate is 0.0001, warmup ratio 0.1, LR scheduler 455

cosine, and batch size 32. We used 2k randomly 456

sampled data from ToolKG for instruction fine- 457

tuning in all experiments. 458

Inference setting. To enhance evaluation effi- 459

ciency, we adopt one of the most popular LLM 460

inference engines, vLLM (Kwon et al., 2023), to 461

implement the inference process of various open- 462

source LLMs. For the inference parameters, we 463

set the temperature to 0, top_p to 1.0, top_k to −1, 464

and batch size to 32. 465

5.2 Overall Performance 466

Table 1 summarizes the results of various LLMs, 467

including close-source and open-source models, 468

and our SFT models on T-Eval. Firstly, closed- 469

source LLMs achieve exceptionally good tool-use 470

performance and have a significant lead compared 471

to early open-source models. However, this gap is 472

rapidly narrowing; for instance, the overall perfor- 473

mance of Qwen2-7B has already far surpassed that 474

of previous 70B-level large models (like Llama2- 475

70B and Qwen-72B). The overall performance of 476

Qwen2-72B (83.45) and Qwen2.5-72B (86.71) has 477

reached or even surpassed the levels of GPT-3.5 478

(84.05) and GPT-4 (86.44). These results show that 479

open-source LLMs have made significant progress 480

in tool usage capabilities, and the gap between 7B- 481

size and 70B-size models is also narrowing. 482

Further, we can see that the models fine-tuned 483

with our ToolKG data have experienced a very sig- 484

nificant performance improvement. For instance, 485

Qwen2.5-ToolKG-7B improved its performance 486

by 9.0% over Qwen2.5-7B, and its overall score 487

(84.72) also surpassed GPT-3.5. In particular, 488

Qwen2.5-ToolKG-14B achieved the highest score 489

of 87.21, surpassing its 70B-scale counterpart in 490

the same series, Qwen2.5-72B (86.71). These re- 491

sults demonstrate the effectiveness of our ToolKG 492

data for tool use. 493

5.3 Scaling Performance of Model Size 494

Generally, the performance of LLMs increases with 495

scale, as shown in Table 1. To explore whether 496

models fine-tuned with our data exhibit a simi- 497

lar scale effect, we conduct experiments using the 498

Qwen2.5-Instruct series, which offers a wide range 499

of model sizes. Due to resource limitations, we 500

only performed instruction fine-tuning on models 501

6

Table 1: Main Results of T-Eval. Overall stands for the score calculated from an average of metrics on all subsets.
(Bold and underlined text indicate the optimal and the second-best scores, respectively.)

Model Instruct Plan Reason Retrieve Understand Review Overall

GPT-3.5 96.60 86.60 67.75 92.25 85.50 75.60 84.05
GPT-4 96.30 87.80 65.35 88.95 85.75 94.50 86.44
GPT-4o 94.01 75.54 66.56 78.86 81.73 83.84 80.09

ToolAlpaca-7B 0.47 17.26 19.07 17.73 19.52 0 12.34
LLaMA2-7B 34.45 28.05 22.10 16.90 24.45 38.60 27.43
ToolACE-8B 2.15 37.15 26.23 17.03 17.9 68.79 28.21
Vicuna-7B 48.05 30.60 48.75 22.50 60.50 58.50 44.82
InternLM-7B 39.15 55.40 36.90 47.15 50.30 46.20 45.85
ChatGLM3-6B 72.05 42.70 36.15 45.25 57.75 54.80 51.45
Mistral-7B 61.65 71.05 39.15 51.80 48.95 63.20 55.97
Baichuan2-7B 73.00 52.30 41.30 51.10 59.65 61.40 56.46
Qwen-7B 61.45 64.65 45.25 62.15 61.90 61.60 59.50
LLaMA3.1-8B 81.62 69.92 66.66 76.76 73.38 82.14 75.08
GLM4-9B 90.18 77.09 68.38 77.08 74.71 64.89 75.39
Qwen2-7B 97.66 83.02 63.92 85.65 83.41 42.51 76.03
Qwen2.5-7B 93.70 74.61 66.52 87.96 75.63 67.97 77.73

LLaMA2-13B 33.35 56.90 26.45 24.65 29.40 53.00 37.29
Vicuna-13B 48.90 39.90 52.70 20.35 65.90 60.80 48.09
Baichuan2-13B 29.85 60.80 41.85 55.70 56.00 57.30 50.25
Qwen-14B 73.65 74.65 52.35 75.60 64.65 56.90 66.30
Qwen2.5-14B 98.37 87.90 69.00 84.50 77.66 74.33 81.96

LLaMA2-70B 78.95 60.55 31.10 39.55 44.80 62.80 52.96
Qwen-72B 63.05 79.25 59.45 70.90 75.30 80.30 71.38
Qwen2-72B 98.36 86.29 71.06 89.95 86.87 68.17 83.45
Qwen2.5-72B 98.75 88.61 72.42 90.71 80.63 89.12 86.71
LLaMA3.1-70B 98.25 89.79 69.55 91.05 88.83 83.78 86.87

Qwen2.5-ToolKG-7B 97.36 83.83 75.47 90.45 84.64 76.59 84.72
Qwen2.5-ToolKG-14B 98.68 86.68 77.71 91.96 85.28 82.96 87.21

within the scale range of 0.5B to 14B. The original502

Qwen2.5-Instruct models are denoted as raw mod-503

els, and the models after instruction fine-tuning504

with our data are marked as SFT models.505

Both raw and SFT models are evaluated on the506

T-Eval benchmark, with results in Figure 3. The507

performance of both the raw and SFT models con-508

tinues to improve as the model size increases. At509

the same time, the advantage of the SFT models510

over the raw models remains consistent, indicating511

that our data has the potential to enhance the tool512

usage capabilities of larger LLMs. Notably, the 3B513

model for mobile applications scored over 80 after514

SFT, achieving performance comparable to GPT-515

4o (80.09). This result suggests that small language516

models on the mobile side can also achieve tool use517

performance comparable to advanced LLMs like 518

GPT-4o. This finding strongly supports the devel- 519

opment of powerful LLM applications for mobile 520

devices. 521

5.4 Study on Various Backbone LLMs 522

To verify whether our data is also effective for other 523

LLMs, we selected two other models that are sim- 524

ilar in size to Qwen2.5-7B and widely followed 525

by the community (i.e., Llama3.1-8B-Instruct and 526

GLM4-9B-Chat (GLM et al., 2024)) for experimen- 527

tation. The performance of these models before and 528

after fine-tuning on T-Eval is displayed in Figure 4. 529

It can be seen that for different types of LLMs, 530

our ToolKG data is always effective, and the per- 531

formance improvements of the SFT models are sig- 532

7

0.5b 1.5b 3b 7b 14b
Model size

50

55

60

65

70

75

80

85

90
Ov

er
al

l A
cc

ur
ac

y
(%

)

SFT
Raw

Figure 3: Performance scaling laws for the parameters
of training models, from 0.5B to 14B.

Qwen2-7B Qwen2.5-7B Llama3.1-8B GLM4-9B
50

60

70

80

90

100

Ov
er

al
l A

cc
ur

ac
y

(%
) +8.6 +7.0 +8.3

+10.2

Raw
SFT

Figure 4: Performance of various backbone LLMs fine-
tuned with ToolKG.

nificant. Among the raw models, the performance533

of Llama3.1-8B and GLM4-9B is inferior to that534

of Qwen2-7B and Qwen2.5-7B, which may be due535

to differences in model architecture. However, af-536

ter fine-tuning with our data, their performance537

gains are very significant, especially for GLM4-538

9B, which improved from 75.4 to 85.6, surpass-539

ing Qwen2.5-ToolKG-7B. This result demonstrates540

that smaller language models below the 10B size541

can also perform excellent tool utilization compa-542

rable to LLMs like GPT-4.543

5.5 Study on General Capabilities544

The results above indicate that LLMs fine-tuned545

with our constructed instruction data possess su-546

perior tool usage capabilities. However, whether547

their abilities in other aspects are affected also548

needs further evaluation. To assess the impact of549

SFT with ToolKG on the broader capabilities of550

LLMs, we conduct experiments using Qwen-2.5-551

7B-Instruct across various benchmarks evaluating552

general ability (MMLU (Hendrycks et al., 2021),553

T-Eval MMLU BBH HumanEval GSM8K
Benchmark

50

60

70

80

90

100

Sc
or

e

+7.0

+0.4
+4.0

+0.6

+1.2

Raw
SFT

Figure 5: General performance of Qwen2.5-7B-Instruct
fine-tuned with ToolKG.

BBH (Suzgun et al., 2023)), coding (HumanEval 554

(Chen et al., 2021)), mathematics (GSM8K (Cobbe 555

et al., 2021)), and tool utilization (T-Eval). 556

Figure 5 presents the performance metrics for 557

both raw and SFT models across these benchmark 558

evaluations. It can be seen from the figure that 559

the SFT model outperforms the RAW model in all 560

benchmarks, indicating that fine-tuning with our 561

ToolKG data not only fails to weaken the perfor- 562

mance of the original model but can even have a 563

positive impact. Notably, the SFT model scored 564

4.0 points higher than the Raw model on the BBH 565

benchmark, indicating that our data is also signifi- 566

cantly effective for the BBH task. Since the BBH 567

task requires multi-step reasoning, it aligns well 568

with how we construct our ToolKG data. This re- 569

sult suggests that our data can potentially improve 570

the complex reasoning abilities of LLMs. 571

6 Conclusion 572

This paper proposes a novel data synthesis method 573

that utilizes knowledge graphs to generate high- 574

quality instruction data to enhance the tool uti- 575

lization performance of LLMs. By leveraging the 576

structural and semantic information of knowledge 577

graphs, we generated API tool sets, queries, and 578

their corresponding solution path sets, thereby con- 579

structing the instruction dataset ToolKG. Through 580

extensive experiments, we demonstrate that smaller 581

language models fine-tuned with our ToolKG data 582

can achieve state-of-the-art tool utilization perfor- 583

mance surpassing GPT-4 while maintaining good 584

general capabilities. Our results show that the high 585

quality of data synthesized from KGs can poten- 586

tially enhance the general capabilities of LLMs. 587

8

Limitations588

We have demonstrated that synthesizing a small589

amount of data using knowledge graphs can signif-590

icantly enhance the tool-use capabilities of LLMs.591

The used knowledge graph should contain many di-592

verse entities and relationships. Small-scale knowl-593

edge graphs with limited entities and relationships594

may not achieve such significant effects.595

References596

Stephen H Bach, Victor Sanh, Zheng-Xin Yong, Al-597
bert Webson, Colin Raffel, Nihal V Nayak, Abheesht598
Sharma, Taewoon Kim, M Saiful Bari, Thibault599
Fevry, et al. 2022. Promptsource: An integrated600
development environment and repository for natural601
language prompts. arXiv preprint arXiv:2202.01279.602

Antoine Bordes, Nicolas Usunier, Alberto Garcia-603
Duran, Jason Weston, and Oksana Yakhnenko.604
2013. Translating embeddings for modeling multi-605
relational data. Advances in neural information pro-606
cessing systems, 26.607

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming608
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-609
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,610
Greg Brockman, et al. 2021. Evaluating large611
language models trained on code. arXiv preprint612
arXiv:2107.03374.613

Zehui Chen, Weihua Du, Wenwei Zhang, Kuikun614
Liu, Jiangning Liu, Miao Zheng, Jingming Zhuo,615
Songyang Zhang, Dahua Lin, Kai Chen, et al. 2023.616
T-eval: Evaluating the tool utilization capability step617
by step. arXiv preprint arXiv:2312.14033.618

Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei619
Zhang, Jiangning Liu, Dahua Lin, Kai Chen, and620
Feng Zhao. 2024. Agent-flan: Designing data and621
methods of effective agent tuning for large language622
models. arXiv preprint arXiv:2403.12881.623

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,624
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias625
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro626
Nakano, et al. 2021. Training verifiers to solve math627
word problems. arXiv preprint arXiv:2110.14168.628

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,629
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,630
Akhil Mathur, Alan Schelten, Amy Yang, Angela631
Fan, et al. 2024. The llama 3 herd of models. arXiv632
preprint arXiv:2407.21783.633

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,634
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-635
ham Neubig. 2023. Pal: Program-aided language636
models. In International Conference on Machine637
Learning, pages 10764–10799. PMLR.638

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chen- 639
hui Zhang, Da Yin, Diego Rojas, Guanyu Feng, Han- 640
lin Zhao, Hanyu Lai, et al. 2024. Chatglm: A family 641
of large language models from glm-130b to glm-4 all 642
tools. arXiv preprint arXiv:2406.12793. 643

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio 644
César Teodoro Mendes, Allie Del Giorno, Sivakanth 645
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo 646
de Rosa, Olli Saarikivi, et al. 2023. Textbooks are all 647
you need. arXiv preprint arXiv:2306.11644. 648

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, 649
Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 650
2021. Measuring massive multitask language under- 651
standing. In International Conference on Learning 652
Representations. 653

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 654
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 655
and Weizhu Chen. 2021. Lora: Low-rank adap- 656
tation of large language models. arXiv preprint 657
arXiv:2106.09685. 658

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, 659
Wayne Xin Zhao, and Ji-Rong Wen. 2023. Struct- 660
gpt: A general framework for large language model 661
to reason over structured data. arXiv preprint 662
arXiv:2305.09645. 663

Rudolf Kadlec, Ondrej Bajgar, and Jan Kleindienst. 664
2017. Knowledge base completion: Baselines strike 665
back. arXiv preprint arXiv:1705.10744. 666

Omar Khattab, Keshav Santhanam, Xiang Lisa 667
Li, David Hall, Percy Liang, Christopher Potts, 668
and Matei Zaharia. 2022. Demonstrate-search- 669
predict: Composing retrieval and language mod- 670
els for knowledge-intensive nlp. arXiv preprint 671
arXiv:2212.14024. 672

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying 673
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. 674
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi- 675
cient memory management for large language model 676
serving with pagedattention. In Proceedings of the 677
ACM SIGOPS 29th Symposium on Operating Systems 678
Principles. 679

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio 680
Petroni, Vladimir Karpukhin, Naman Goyal, Hein- 681
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock- 682
täschel, et al. 2020. Retrieval-augmented generation 683
for knowledge-intensive nlp tasks. Advances in Neu- 684
ral Information Processing Systems, 33:9459–9474. 685

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao, 686
Shuai Yu, Dexun Li, Shuai Wang, Weinan Gan, 687
Zhengying Liu, Yuanqing Yu, et al. 2024. Toolace: 688
Winning the points of llm function calling. arXiv 689
preprint arXiv:2409.00920. 690

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai- 691
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and 692

9

Jianfeng Gao. 2024. Chameleon: Plug-and-play com-693
positional reasoning with large language models. Ad-694
vances in Neural Information Processing Systems,695
36.696

Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and697
Shirui Pan. 2023. Reasoning on graphs: Faithful and698
interpretable large language model reasoning. arXiv699
preprint arXiv:2310.01061.700

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,701
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,702
Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su,703
Huadong Wang, Cheng Qian, Runchu Tian, Kunlun704
Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen705
Zhang, Yining Ye, Bowen Li, Ziwei Tang, Jing Yi,706
Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong,707
Yaxi Lu, Weilin Zhao, Yuxiang Huang, Junxi Yan,708
Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng709
Yang, Tongshuang Wu, Heng Ji, Zhiyuan Liu, and710
Maosong Sun. 2024. Tool learning with foundation711
models. Preprint, arXiv:2304.08354.712

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan713
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,714
Bill Qian, et al. 2023. Toolllm: Facilitating large715
language models to master 16000+ real-world apis.716
arXiv preprint arXiv:2307.16789.717

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta718
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-719
moyer, Nicola Cancedda, and Thomas Scialom. 2024.720
Toolformer: Language models can teach themselves721
to use tools. Advances in Neural Information Pro-722
cessing Systems, 36.723

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,724
Weiming Lu, and Yueting Zhuang. 2024. Hugging-725
gpt: Solving ai tasks with chatgpt and its friends726
in hugging face. Advances in Neural Information727
Processing Systems, 36.728

Venkat Krishna Srinivasan, Zhen Dong, Banghua Zhu,729
Brian Yu, Damon Mosk-Aoyama, Kurt Keutzer,730
Jiantao Jiao, and Jian Zhang. 2023. Nexusraven:731
a commercially-permissive language model for func-732
tion calling. In NeurIPS 2023 Foundation Models for733
Decision Making Workshop.734

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-735
bastian Gehrmann, Yi Tay, Hyung Won Chung,736
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny737
Zhou, et al. 2023. Challenging big-bench tasks and738
whether chain-of-thought can solve them. In Find-739
ings of the Association for Computational Linguistics:740
ACL 2023, pages 13003–13051.741

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei742
Han, Qiao Liang, Boxi Cao, and Le Sun. 2023.743
Toolalpaca: Generalized tool learning for language744
models with 3000 simulated cases. arXiv preprint745
arXiv:2306.05301.746

Qwen Team. 2024. Qwen2.5: A party of foundation747
models.748

Junjie Wang, Mingyang Chen, Binbin Hu, Dan 749
Yang, Ziqi Liu, Yue Shen, Peng Wei, Zhiqiang 750
Zhang, Jinjie Gu, Jun Zhou, et al. 2024. Learn- 751
ing to plan for retrieval-augmented large language 752
models from knowledge graphs. arXiv preprint 753
arXiv:2406.14282. 754

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin 755
Guu, Adams Wei Yu, Brian Lester, Nan Du, An- 756
drew M Dai, and Quoc V Le. 2021. Finetuned lan- 757
guage models are zero-shot learners. arXiv preprint 758
arXiv:2109.01652. 759

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak 760
Shafran, Karthik Narasimhan, and Yuan Cao. 2022. 761
React: Synergizing reasoning and acting in language 762
models. arXiv preprint arXiv:2210.03629. 763

Lifan Yuan, Yangyi Chen, Xingyao Wang, Yi R Fung, 764
Hao Peng, and Heng Ji. 2023. Craft: Customiz- 765
ing llms by creating and retrieving from specialized 766
toolsets. arXiv preprint arXiv:2309.17428. 767

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, 768
Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping 769
Yu, Lili Yu, et al. 2024a. Lima: Less is more for 770
alignment. Advances in Neural Information Process- 771
ing Systems, 36. 772

Jiaming Zhou, Abbas Ghaddar, Ge Zhang, Liheng Ma, 773
Yaochen Hu, Soumyasundar Pal, Mark Coates, Bin 774
Wang, Yingxue Zhang, and Jianye Hao. 2024b. En- 775
hancing logical reasoning in large language models 776
through graph-based synthetic data. arXiv preprint 777
arXiv:2409.12437. 778

Zhaocheng Zhu, Mikhail Galkin, Zuobai Zhang, and 779
Jian Tang. 2022. Neural-symbolic models for logical 780
queries on knowledge graphs. In International con- 781
ference on machine learning, pages 27454–27478. 782
PMLR. 783

A Appendix 784

A.1 FOL Query Patterns 785

Tables 2 and 3 depict all the 14 FOL query patterns 786

and their corresponding FOL Subgraphs in detail. 787

In each row, we provide an instantiated query exam- 788

ple in FOL form and its translated query in natural 789

language form for each FOL query pattern. 790

10

https://arxiv.org/abs/2304.08354
https://arxiv.org/abs/2304.08354
https://arxiv.org/abs/2304.08354
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/

Table 2: Illustration of FOL Query Patterns and FOL Subgraphs with Query Examples in FOL and Natural Language
Form (Part 1)

Query
Type

FOL
Subgraph

FOL Query Pattern
Instantiated Query

Example in FOL Form
Query Example in Natural

Language Form

1p q =?a : Rel_1(A, a)
q =?a : Star(Amy Irving,

a)
What film did Amy Irving

star in?

2p
q =?b : Rel_1(A, a)

∧ Rel_2(a, b)
q =?b : Nominated(Lee
Grant, a) ∧ Winner(a, b)

Who is the winner of the
award that Lee Grant was

nominated for?

3p

q =?c : ∃ a, b :
Rel_1(A, a) ∧
Rel_2(a, b) ∧
Rel_3(b, c)

q =?c : ∃ a, b :
MemberStates(WTO, a) ∧
JurisdicationOfOffice(b,
a) ∧ Organization(b, c)

What is the organization that
a politician of a WTO

member state came from?

2i
q =?c : Rel_1(A, c)

∧ Rel_2(B, c)

q =?c : Genre(c, Science
Fiction) ∧

DistributeFilm(Warner
Bros., c)

Which science fiction film is
distributed by Warner Bros.?

3i
q =?e : Rel_1(A, e)
∧ Rel_2(B, e) ∧

Rel_3(C, e)

q =?e : Profession(e,
songwriter) ∧

WinnerOfSameAward(e,
BeBe Winans) ∧
NominatedFor-

SameAward(Babyface, e)

Which songwriter won the
same award as BeBeWinans,
and was nominated for the
same award as Babyface?

pi

q =?d : ∃ a :
Rel_1(A, a) ∧
Rel_2(a, d) ∧
Rel_3(B, d)

q =?d : ∃ a : Student(West
Point, a) ∧ Found(a, d) ∧
Company(Buzz Aldrin, d)

What is contained by both
the administrative division of

Columbia and South
Carolina?

ip

q =?d : ∃ c :
Rel_1(A, c) ∧
Rel_2(B, c) ∧

Rel_3(c, d)

q =?d : ∃ c :
Award(Freddy Got

Fingered, c) ∧
Nominated(Peter Hyams,
c) ∧ NominatedFor(d, c)

What film is nominated for
the award that Freddy Got
Fingered won and Peter

Hyams was nominated for?

2u
u

u

q =?c : Rel_1(A, c)
∨ Rel_2(B, c)

q =?c : Student(Bucknell
University, c) ∨

Nominated(c, National
Book Award for Fiction)

What genre is played by
Chick Corea or Keith Jarrett?

up
u

u

q =?d : ∃ c :
(Rel_1(A, c) ∨
Rel_2(B, c)) ∧

Rel_3(c, d)

q =?d : ∃ c :
(Award(David Kirschner,
c) ∨ Ceremony(c, 39th

Daytime Emmy Awards))
∧ Award(d, c)

Who wins the award that
David Kirschner winned or is
given at 39th Daytime Emmy

Awards?

11

Table 3: Illustration of FOL Query Patterns and FOL Subgraphs with Query Examples in FOL and Natural Language
Form (Part 2)

Query
Type

FOL
Subgraph

FOL Query Pattern
Instantiated Query

Example in FOL Form
Query Example in Natural

Language Form

2in n
q =?d : Rel_1(A, d)
∧ ¬Rel_2(B, d)

q =?d :
MortgageSource(d, US
Department of HUD) ∧
¬PlaceLive(Allison

Janney, d)

Which city takes mortgage
from US Department of

Housing and Urban
Development, but Allison

Janney hasn’t lived in?

3in n

q =?f : Rel_1(A, f)
∧ Rel_2(B, f) ∧
¬Rel_3(C, f)

q =?f : ReleaseMedium(f,
DVD) ∧ ReleaseRegion(f,

New Zealand) ∧
¬Language(f, English)

Which film has a DVD
version and is released in
New Zealand, but doesn’t
have an English version?

inp n

q =?e : ∃ d :
Rel_1(A, d) ∧
¬Rel_2(B, d) ∧

Rel_1(d, e)

q =?e : ∃ d :
FieldOfStudy(McGill

University, d) ∧
¬Language(Nico, d) ∧

FieldOfStudy(e, d)

Who studies the field that is
studied by McGill University,

but is not spoken by Nico?

pin n

q =?e : ∃ a :
Rel_1(A, a) ∧
Rel_2(a, e) ∧
¬Rel_3(B, e)

q =?e : ∃ a : Country(a,
USA) ∧ Student(a, e) ∧
¬Film(e, Malcolm X)

Who was a student of a
university in United States,

but did not film Malcolm X?

pni
n

q =?e : ∃ a :
Rel_1(A, a) ∧
¬Rel_2(a, e) ∧

Rel_3(B, e)

q =?e : ∃ a :
SymptomOf(dyspnea, a)
∧ ¬CauseOfDeath(e, a) ∧
Religion(e, Catholicism)

Who believed in Catholicism
and did not die from the

disease that has the symptom
of dyspnea?

791

12

A.2 Prompt Content792

Figures 6 and 7 show the prompt for API gener-793

ation using triple relations in knowledge graphs.794

Tables 8, 9 and 10 show the prompt to translate an795

instantiated FOL query of a specific pattern into796

its natural language form. We use a single prompt797

to convert FOL queries of all patterns into natural798

language questions. This prompt includes typical799

examples for each pattern for the LLM to reference.800

It is worth noting that, to avoid redundancy, only801

the conversion examples for 1p and ip patterns are802

shown here. The detailed prompt can be accessed803

in our later-released project repository after review.804

13

Toolset Construction Prompt

Role
You are a senior programmer responsible for writing APIs based on my
instructions and examples.

API Generation Instructions
I will provide the following relations as input, along with corresponding
examples of triples (head, relation, tail). You need to convert the relation
into an API format so that after passing the head as an input parameter and
executing the API converted by the relation, you obtain the tail.
Note that you need to observe and summarize the functionality of the triples to
ensure they can be executed successfully by passing in the head to obtain the
tail.

Relation Representation
The relation in triples (head, relation, tail) can be either a basic relation
or a composite relation.

Basic Relation Representation
The basic representation of a single relation in the form of
`/film/film/written_by` includes:
- The topic domain: `film`
- The head type: `film`
- The tail type: `written_by`

Composite Relation Representation
Some relations are composite, formed by two basic relations connected by a '.',
with the intermediate entity omitted.
`/film/film/distributors./film/film_film_distributor_relationship/region`, for
example, indicates the relationship from head to mid combined with mid to tail,
where the mid entity is omitted to form a composite relation. Therefore, by
omitting the intermediate, this relation represents the relationship from a
film to its distributed region.

Task
Your task is to generate API documentation based on the provided relation.
You need to think thoroughly and understand the function of the relation that
transforms head to tail based on the above Relation Representation.

Please generate API documentation that conforms to a specified JSON format.
This documentation should clearly define the API name, function description,
input parameter properties, required parameters, and additional properties.
Pay careful attention to the structure and formatting as outlined in the
examples below.

API Naming Conventions
1. **API Naming Format**:
- Form the API name by combining the domain category and the function name,
following the format: 'domain.function_name'.
2. **Domain Classification**:
- Classify each API into a specific domains, such as "education", "film",
"sports", etc.
- If a common topic arises, classify it under an additional "common" category.

Figure 6: Prompt for API Generation using Relations (Part1).

14

Toolset Construction Prompt

Example Inputs and Expected Outputs
Given the input example:
```json
{

"relations": 
"/award/award_nominee/award_nominations./award/award_nomination/award_nomin
ee",

"triples": [
[

"Danny_DeVito",

"/award/award_nominee/award_nominations./award/award_nomination/award_nomin
ee",

"Guy_Pearce"
]

]
}
```
Expected Output:
```json
{

"name": "award.get_award_nominees_of_the_same_award",
"description": "Get the nominees who were nominated alongside the given 

award nominee",
"parameters": {

"type": "object",
"properties": {

"award_nominee": {
"type": "string",
"description": "The name of the award nominee"

}
},
"required": [

"award_nominee"
],
"additionalProperties": false

}
}
```

Let's get started!
Given input:
```json
__INPUT_JSON__
```

Please analyze the given input carefully and provide the output after
"Expected Output:". Attention!! The output should only present results
conforming to the required JSON format, and it is forbidden to give
reasoning processes or other explanations.

Figure 7: Prompt for API Generation using Relations (Part2).

15

Query Generation Prompt
Role
You are a translator responsible for converting First-order Logical (FOL)
queries into natural language questions based on the provided examples and
guidelines.

Translation Instructions from FOL query to natural language question
I will provide you with a First-order Logical (FOL) query, and your task is to
translate it into a clear and unambiguous natural language question.

An FOL query is structured in the format like `q =?b: pred1(A,a) ∧ pred2(B,a)
∧ pred3(a,b)`, where `A` and `B` are constants that will be instantiated by
specific entities, `a` is an existential variable, and `pred1`, `pred2`,
`pred3` will be replaced by specific predicate names.

Following `predicate_domain.get_predefined_property_of_subject(subject,
object)` format, each predicate retrieves a specific property of the subject to
yield objects. E.g., the predicate `film.get_language_of_film("The Tourist",
"Russian Language")` indicates that the language of the film "The Tourist" is
"Russian Language". To help you understand, each predicate name is accompanied
by its corresponding predicate description and a subject description.

The queried value is the variable that follows the question mark `?`, such as
`b` in `?b`. In the FOL pattern `q =?b: pred1(A,a) ∧ pred2(B,a) ∧ pred3(a,b)`,
the expression is used to find the variable `b`, such that there exists a
variable `a` for which the predicate `pred1` applied to constant `A` and the
predicate `pred2` applied to constant `B` both result in `a`. For every `a`
meeting these conditions, the goal is to query the objects of predicate `pred3`
using each `a` as the subject.

There are several FOL patterns. The FOL structure mentioned earlier is one of
these patterns. I will provide examples for each pattern. You need to
understand these examples and complete the translation accordingly.

Instructions for Generating Questions:
1. Ensure the generated question is grammatically correct and follows standard
English conventions.
2. Use clear and concise language to make the question easy to understand. Keep
the question straightforward and coherent.
3. Avoid complex structures; but ensure not to omit any steps or critical
information. Use multiple clauses for longer questions to enhance clarity and
flow.
4. Write in a style that aligns with natural human reading habits, ensuring the
question is both accurate and fluent.
5. Your question must be clear and unambiguous, especially for reference.
6. Please avoid directly copying text from the predicate name and description
into the questions. Instead, only use them to understand the predicate meaning.
Rephrase the predicates using more concise and natural language to express the
concepts where possible.
7. Ensure that you follow the logical flow of the questions in a multi-step
question. Pay special attention to maintaining coherence and alignment in your
translated question when the object of a predicate is used as the subject for
the next step.

Figure 8: Prompt for Translating Instantiated FOL Queries into Natural Language Form (Part1).

16

Query Generation Prompt
Example Inputs and Expected Outputs

Examples in FOL_pattern: 1p
Given the FOL Query example:
```json
{

"FOL_pattern": "q =?a: pred1(A,a)",
"FOL_query": "q =?a: people.get_profession_of_person(Fred Willard,a)",
"predicates": [

{
"predicate_name": "people.get_profession_of_person",
"predicate_description": "Get the profession of the given person.",
"subject": {

"person": "The name of the person."
}

}
]

}
```
Expected Output:
```json
{

"Natural Language Question": "What is the profession of Fred Willard?"
}
```

Examples in FOL_pattern: ip
Given the FOL Query example:
```json
{

"FOL_pattern": "q =?b: pred1(A,a) ∧ pred2(B,a) ∧ pred3(a,b)",
"FOL_query": "q =?b: people.get_places_lived_of_person(Tanikella Bharani,a) 

∧ sports.get_countries_winning_olympic_medal(Silver medal,a) ∧
people.get_persons_of_nationality(a,b)",

"predicates": [
{

"predicate_name": "people.get_places_lived_of_person",
"predicate_description": "Get the locations where the given person 

has lived",
"subject": {

"person": "The name of the person"
}

},
{

"predicate_name": "sports.get_countries_winning_olympic_medal",
"predicate_description": "Get the countries that have won a 

specific Olympic medal",
"subject": {

"medal": "The type of Olympic medal (e.g., Bronze, Silver, 
Gold)"

}
},

Figure 9: Prompt for Translating Instantiated FOL Queries into Natural Language Form (Part2).

17



Query Generation Prompt

{
"predicate_name": "people.get_persons_of_nationality",
"predicate_description": "Get the persons who are nationals of the 

given country",
"subject": {

"nationality": "The name of the country"
}

}
]

}
```
Expected Output:
```json
{

"Natural Language Question": "Whose country has been inhabited by Tanikella
Bharani and also has won silver medals at the Olympics?"
}
```

Examples in other FOL_pattern
Given the FOL Query example:
…
Expected Output:
…

Let's get started!

Given the FOL Query:
```json
__INPUT_JSON__
```
Please analyze the given input carefully and provide the output after "Expected
Output:". Attention!! The output should only present results conforming to the
required JSON format. You have only one chance to give the JSON output and
Post-hoc explanations or refinements in ANY Form are NOT allowed!!

Figure 10: Prompt for Translating Instantiated FOL Queries into Natural Language Form (Part3).

18

	Introduction
	Related Work
	Tool Use of LLMs
	Tool-use Instruction Dataset
	KG for LLMs

	Preliminary
	Data Construction
	API Generation
	FOL Instantiation and Query Generation
	Solution Path Generation
	Instruction Data Construction

	Evaluation and Results
	Experimental Setup
	Overall Performance
	Scaling Performance of Model Size
	Study on Various Backbone LLMs
	Study on General Capabilities

	Conclusion
	Appendix
	FOL Query Patterns
	Prompt Content

