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Abstract

Neural network pruning helps discover efficient, high-performing subnetworks within pre-
trained, dense network architectures. More often than not, it involves a three-step
process—pre-training, pruning, and re-training—that is computationally expensive, as the
dense model must be fully pre-trained. While previous work has revealed through exper-
iments the relationship between the amount of pre-training and the performance of the
pruned network, a theoretical characterization of such dependency is still missing. Aiming
to mathematically analyze the amount of dense network pre-training needed for a pruned
network to perform well, we discover a simple theoretical bound in the number of gradient
descent pre-training iterations on a two-layer fully connected network in the NTK regime,
beyond which pruning via greedy forward selection (Ye et al., [2020) yields a subnetwork
that achieves good training error. Interestingly, this threshold is logarithmically dependent
upon the size of the dataset, meaning that experiments with larger datasets require more
pre-training for subnetworks obtained via pruning to perform well. Lastly, we empirically
validate our theoretical results on multi-layer perceptions and residual-based convolutional
networks trained on MNIST, CIFAR, and ImageNet datasets.

1 Introduction

Neural network pruning refers to dropping weights in a large neural network without significantly degrading
the model’s performance. It has been widely applied to model compression (Anwar et al., 2015} |Liang et al.)
2021} [Li et all [2023} Blalock et al) [2020). Neural network pruning usually involves three steps: i) pre-
training, where a large, randomly initialized neural network is trained on a dataset to reach a certain test
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accuracy; i) pruning, where a subset of the neural network weights are dropped; and i) re-training, where
the pruned neural network is trained again to maintain the desired accuracy. While some methods perform
only a subset of these steps, most existing algorithms include at least the pre-training and pruning phases.

The above three-step procedure mainly originates from the prominent line of work of the Lottery Ticket
Hypothesis (Frankle & Carbin, [2018; |Chen et al., [2020; [Frankle et al., [2019; (Gale et all 2019; Liu et al.|
2018; |[Morcos et all [2019; |Zhou et al., 2019; |Zhu & Guptal, 2017) (or LTH): i.e., the idea that a pre-trained
model contains “lottery tickets” (i.e., smaller subnetworks) such that if we select those “tickets” cleverly, those
submodels do not lose much in accuracy while reducing significantly the size of the model. To circumvent
the cost of pre-training, several works explore the possibility of pruning networks directly from initialization
(i.e., the “strong lottery ticket hypothesis”) (Frankle et al. [2020; Ramanujan et al. |2019; [Pensia et al.,
2021; Xiong et al., [2022), but subnetwork performance could suffer. Adopting a hybrid approach, good
subnetworks can also be obtained from models with minimal pre-training (Chen et al.| [2020; |You et al.,
2019) (i.e., “early-bird” tickets): i.e., the pre-training step, though indispensable, needs to be executed for
only a small extent before the pruning step can find a small model that performs well (namely the winning
ticket). This line of work further promoted the application of pruning algorithms to large neural networks.
However, despite its strong support from empirical observation, the relationship between pre-training and
pruning has never been examined theoretically, even for simple neural architectures.

This paper aims to fill this gap by bridging the theory of neural networks trained with gradient descent
and the greedy forward selection pruning algorithm. Our analysis focuses on a two-layer neural network
with initialization and over-parameterization in the NTK regime. From this analysis, we discover a simple
threshold in the number of pre-training iterations—Ilogarithmically dependent upon the size of the dataset—
beyond which subnetworks obtained via greedy forward selection perform well in terms of training error. Such
a finding offers a theoretical insight into the early-bird ticket phenomenon and provides intuition for why
discovering high-performing subnetworks is more difficult in large-scale experiments (You et al.l|2019; Rendal
et al., |2020; [Liu et al}[2018). In particular, our contributions can be summarized as below:

e Based on the analysis of [Ye et al. (2020), our Lemma [I| serves as an improvement over the proof in |Ye
et al.[(2020): Our proof shows that the greedy forward selection error depends on both the initial selection
error, the maximum distance of neuron separation, and the loss of the current dense neural network at

pruning time. In particular, the greedy forward selection error has a O (%) dependency on the first

two terms, where k is the number of neurons selected.

e By analyzing the neural network weight change during training, we find out that the initial selection
error and the maximum distance of neuron separation can be bounded by O (\/N ) throughout training.
This implies that the effect of the two terms can be mitigated as long as the number of selected neurons
satisfies k = Q2 (\/Nlog N).

o Lastly, we connect the training loss of the dense neural network at pruning time with the existing theory
that characterizes the convergence of neural network training loss. We derive that, to choose k neurons in
the greedy forward selection, it is necessary to perform at least O (logk) pre-training steps to guarantee
improvement during the greedy forward selection. Therefore, our result identifies the connection between
the number of pre-training steps required and the target loss after pruning.

2 Background and Problem Setup

Notation. Vectors are represented with bold type (e.g., x), while scalars are represented by normal type
(e.g., z). |||l represents the £3 vector norm. For a function ¢ : R — R, we use ||¢||,, to represent the Hermite
norm of ¢ (see Definition 4 of [Song et al.| (2021))). [IN] is used to represent the set of positive integers from
1to N (ie, [N]={1...N}).

Network Parameterization. We consider a two-layer neural network with N hidden neurons for simplicity.
In particular, given an input vector x € R?, the activation of the i-th hidden neuron, ¢ (+,0;), is given by:

o(x,0;) =N -boy (ax). (1)
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Here, o, is the activation function. The weights associated with the i-th neuron are concatenated into
0; = [b;,a;], where a; € R? is the first layer weight, and b; € R is the second layer weight. Given input x,
the neural network output f (x,®) can be viewed as the average of the hidden neuron’s activation:

1 N
f(X7@)=NZJ(X,0i)7 (2)

i=1

where ® = {60y, ... ,0n]} represents all weights within the two-layer neural network. Two-layer neural
networks with the form in have been studied extensively as a simple yet representative instance of deep
learning models (Du et al., 2019; |Oymak & Soltanolkotabi, [2019; [Song et al., [2021)).

In this paper, we shall consider the scheme of neuron pruning. In particular, a pruned network is defined by
a subset of the hidden neurons S C [N] as:

1
f5(x,0) =5 > 0 (x.0:). (3)

Sl i
As a special case, we note that the whole network can also be written as f(x,®) = fin(x,®). We make
the following assumption about the neural network:
Assumption 1. (Neural Network) There exist 6 > 0 and some ri,r3 € R, such that 01(0) = 0, |o4(-)] <
Lo/ ()] <6 and |0’/(-)] < 6, " oy (a)] < [oy(ra)| < 7720y (a)| for all a € R and 7 € (0,1), and
loglly, < oo for oy defined in . Moreover, before pre-training, the weights of the neural network are
initialized according to by ~ N (O, w%) and a; ~ N (0, ngd), for some wq,wy > 0.

Compared with the assumption on the activation function in (Song et al., 2021), we added the additional
assumption |o4(-)] < 1. An example of the activation function that satisfies Assumption [1] is the tanh(-)
function. While ReLU is also used widely in practice, in this paper we focus on the family of bounded
smooth activation functions for the simplicity of the analysis, as in previous works [Liu et al.| (2021); Song
et al.| (2021)); Liu et al.| (2023)).

Dataset. We assume that our network is modeling a dataset D = {(x;, yj)};.n:l with m input-output pairs,
where x; € R? and y; € R for each j € [m] satisfy the following assumption:

Assumption 2. (Data) The input and label of the dataset are bounded as ||x;|, < 1 for all j € [m] and
Yy <L

For a given network fs (x,®), we consider the ¢3-norm regression loss over the dataset:
1 m
Lfs (O] =5 (fs(x.0) ~y;)*. (4)
j=1
At pre-training, we use gradient descent (GD) over ® to minimize the whole network loss £[f(-, ®)]:

O =0; —nVel [f(y @t)} . (5)

During pruning, we will track how the subnetwork loss £ [fs(-, ®)] changes as we change the hidden neuron
subset §. We will discuss this in more detail in the section below.

3 Pruning with Greedy Forward Selection

In this section, we focus on a specific and straightforward algorithm adopted in the pruning stage, namely
the Greedy Forward Selection proposed by [Ye et al. (2020) (see Algorithm . Since the neural network
weights are fixed in the pruning stage, our discussion in this section will assume a set of given weights ©.
Starting from an empty subnetwork (i.e., S = ), we aim to discover a subset of neurons §* given by:

S* =argmin L[fs (-,0)]; |S*| < N. (6)
SCIN]
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Instead of discovering an exact solution to this challenging combinatorial optimization problem, Algorithm
is used to find an approximate solution. At each iteration k, we select the neuron that yields the most
significant decrease in loss. Since Algorithm [I] is an approximation to the optimal solution by its nature,
instead of focusing on its optimality, we will investigate the property of L[fs (-, ®)] when S is returned by
Algorithm [I]

Similar to|Ye et al.|(2020]), we shall consider the following
interpretation from a geometric perspective to provide an
analysis of Algorithm [1] We define y = [y1,¥2, .-, Ym],
representing a concatenated vector of all labels within the
dataset. Similarly, we define ¢, ; = o(x;,0;) as the out-
put of neuron ¢ for the j-th input vector in the dataset
and construct the vector ®; = [@i 1, Pi2; - - -, Pi.m), Which
is a concatenated vector of output activations for a sin-
gle neuron across the entire dataset. The outputs of a
pruned network § = [fs(x1,0), ..., fs(Xm, ©)] can then
be viewed as a convex combination of ®1,..., ®y. We
use My to denote the convex hull over such activation vectors for all N neurons, and, with a slight abuse
of notation, use Vert(My) to denote the set of neuron outputs ®1,...,®,,. Notice that Vert(My) must
cover the vertices of M y:

Algorithm 1 Greedy Forward Selection
: 80 = @

:for k=1,2,... do

# Select a new neuron

i ;= argmin £ [fsk,lu{z‘}('y ('-))}
i€[N]

5 # Add neuron to the subnetwork

6 S =81 U {’Lk}

7: end for

8 return S

Mpy =Conv{®,; :i € [N]}; Vert(My)={P;:i¢€[N]} (7

Intuitively, My forms a marginal polytope of the feature map for all neurons in the two-layer network across
every data point. Using the construction My, the ¢5 loss can be written as follows:

1
l(z) = 5lz =yl 2 M. (8)

With this geometric interpretation of the neural network output, we can relax the combinatorial problem in
@ to mingeaq, 4(z). Moreover, using this construction, we can write the update rule for Algorithm [1] as:

(Select new neuron): q = argmin £ (3 - (zxk—1 +q)) (9)

q€EvVert(M,,)
(Add neuron to subnetwork): zp =zg_1 + qx (10)
(Uniform average of neuron outputs): ug = 7 - 2. (11)

In words, @D— include the output of a new neuron, given by qg, within the current subnetwork at each
pruning iteration based on a greedy minimization of the loss £(-). Then, the output of the pruned subnetwork
over the dataset at the k-th iteration, given by uy, is computed by taking a uniform average over the activation
vectors of the k active neurons in zj. From this perspective, we have that uy = [fs, (x1,0), ..., fs,(Xm, O)].
Notably, the procedure in @D- can select the same neuron multiple times during successive pruning
iterations. Such selection with replacement can be interpreted as a form of training during pruning—
multiple selections of the same neuron are equivalent to modifying the neuron’s output layer weight b; in .
Nonetheless, we highlight that such “training” does not violate the core purpose of pruning: we still obtain
a smaller subnetwork with performance comparable to the dense network from which it was derived.

4 How Much Pre-training Do We Really Need?

As previously stated, no existing theoretical analysis has quantified the impact of pre-training on the per-
formance of a pruned subnetwork. Here, we consider this problem by extending analysis for pruning via
greedy forward selection to determine the relationship between GD pre-training and subnetwork train-
ing loss. For the convenience of our analysis, for a fixed set of neural network weights ®, we define
Dpy = MaXyveMy [|u— V][, Our first lemma characterizes the training loss convergence during the
pruning phase based on a general neural network state.
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Lemma 1. Fiz the weights © of the two-layer neural network f(-,®) defined in (@ Then, Algom'thm
generates the sequence {Sk}r, satisfying

Foleirco. (12)

1+ logk
o k

2
2% DMN +

Llfs. (,0)) < 1£1fs (- ©)

Proof. The idea is similar to |Ye et al| (2020). To start, we define qj, and u), as follows:
. 1
q), = argmin (V4 (u_1),u); uj = z (z—1 +qy) -
ueMy

Since qj, is the minimizer of a linear objective in a polytope, we must have that q;, € Vert (My). Therefore,
by @ and 7 and due to the optimality of qz, we must have that:

Clug) = (3 (zeo1 + i) < (3 (zro1 +qp)) = £ (uy,).

We further notice that the objective in is quadratic. Therefore, we have:
1
fug) < £(u}) = € () + (V) uf = i) + 5 g = we (13)

Moreover, implies uj, — up—1 = #up_y + +q), — wp—1 = 1 (g} — up—1). Therefore (13) becomes:
1 1
Clug) < Q1) + 2 (VE(@r—1) s @ — 1) + 575 ldk — w3 (14)

Again, since the objective in is quadratic, we must have that ¢ is convex. Therefore:

in ¢(u)> min {¢(u C(upo1) 0 — wye
Join £(u) > min {0 (ug—1) + (V£ (up-1), 0~ up-1)}

>0 (wp—1) +(VE(up—1) , qf — 1) -
Since § = [f(x1,0),..., f(Xm,O)] = & Zf;l P, € My, we must have that:
LIF(0)=¢(9) > min £(u) > L(wp1) + (VL (1), Qg — k1) (15)

ueMy
Plugging into and noticing that [|q; — ug—_1||, < Dagy gives:
1 1 1
o) - £17 (.00 = (1= 1) un) + L1 (@) + 5z Dhay — L1 (O]
1 1
< (17 3) € = L1 (O + g Py

Unrolling the iterates gives:

C(ug) - L[f (-, 0)]

IN
—
oy /N
=

|
El
N~
=
=

|
o
-
o
5 T
o |
z
(]~
~
%
—
/7~
=

|
Sl
N~

t=1 t=1 j=t+1
k 1 9 k k j—1
=l ) -cireon+—5=> 2 [ —
t=1 t=1 j=t+1 J
1 7 P
== (((u) —LIf(-O)) + 223!
k 2%k
1 1+ logk
< ((w) ~ LIf(O)) + — IR,
k 2k
This shows that: ) |+ loek k1
o _
C(w) < pL(w) + =5 5D, + LI (L O).
Plugging in L [fs, (-,0)] = ¢ (ux) and L[fs, (-,®)] = £(uy) gives the desired result. O
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Lemma [I] characterizes the pruned network loss using a combination of three terms. Notably, the first and
second terms decrease as the number of greedy forward selection steps k grows. In the limit of £ — oo, the
pruned network loss L [fs, (-, ®)] decreases to the loss achieved by the dense network L [f (-, ®)]. However,
to guarantee the sparsity of the pruned network, we need the first and second terms in to decrease to
a meaningfully small scale within a moderate number of greedy forward selection steps. This requires us to
provide an upper bound of both L [fs, (+,®)] and Dy, .

Remark. Although our proof takes a similar strategy as in |Ye et al.| (2020), it should be noted that the
proof in [Ye et al|(2020) has an issue that leads to an incorrect resultﬂ Our proof fixes this issue, which
leads to a seemingly worse bound compared with [Ye et al.| (2020).

4.1 Bounding Initial Pruning Loss and the Diameter

In this subsection, we shall focus on the upper bound of L fs, (,®)] and Daq,. Recall that we define
Dy = MaXyveMy [0 — V|, Since My is defined as the convex hull over ®1,...,®y, we can show the
Dy can be controlled by the maximum difference between two vertices. We formulate this idea in the
lemma below.

Lemma 2. Let D' = max; je(n [|®: — @5, Then we have D' > Dpgy, .

Iz-

Since this is a standard result for convex polytope, we defer the proof to Appendix [A] By Lemma [2] to
provide an upper bound on D4, it suffice to bound D’. Applying the triangle inequality, we can upper
bound D’ by

D' < ma D, + |1®,) <2max ||P;

< max (18, + [125]l,) < 2 max [12:],

Recall that ®; is the hidden neuron output over all input vectors. Therefore, ||®;||, depends on the weight
of the neural network. However, to further incorporate the loss dynamic of the pre-training into the analysis,
we have to develop a universal upper bound on [|®;||, for all weights in the trajectory of the gradient
descent. With sufficient over-parameterization, we can bound ||®;||, at any time step of the gradient descent
pre-training.
Lemma 3. Let Assumptz'on and Assumption hold with w, < O (m%N*%). Let ®q,..., PN be the
hidden neuron outputs defined over any neural network weights ©® = @y for t = 1,2,.... If the number
of neurons N = (/\’Q‘_} E[f(-,@o)]2), then with high probability we have that | ®;||, < CsNi for some
constant C3 > 0.

Proof. Let ®; denote the outputs of neuron 4 for the whole dataset at an arbitrary time step ¢ during the

pre-training. That is, for an arbitrary ¢, we consider ®; = [0 (x1,0;4),...,0 (Xm,80;)]. Then we have that:
m 2
[®ill, = ZU (x;,0:4)° | < \/Ené[ax] |0 (x5, 05| - (16)
; j€lm
j=1

Recall that o (x;,0;¢) = Nbiioy (a],x;). By our choice of o, in Assumption [I, we must have that
|0+ (aiT,th)| < 1. Therefore, becomes:

[@ill, < VMmN [bie]. (17)
It boils down to bounding |b; ;|. We use the following decomposition:

|bit] < |bio

+ b — biol -

Since b; o ~ N (0,wp), with high probability we have that |b; 0| < Cyw, for some constant Cy. To bound
|bit — bio|, we use the argument that the weight perturbation is small when the over-parameterization is

n the proof of Proposition 1 in[Ye et al.| (2020), on page 16, the two equations after Equation (16) use an incorrect unrolling
of the iterative upper bound.
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large, as follows. We first need to upper-bound the gradient. To start, the gradient with respect to b; can

be written as: .

ob- f (Xj7 0;) - yj) 0+ (aiT,th) .

j=1

By the choice of our activation function, we have ’J+ (aiT th)| < 1, and further:

N|=

\M“;b@”] <31 (x7.00) —yil < Vimllge — yll, = VL[S (. ©y)]

j=1

This implies that

|bzt ZO| Z|b2 T+1 —

By Theorem [7] we have that:

oL [f

]’<n\ﬁZ£ 0.):.

S LI O] <LIF (O Y (1-CimNAZ,)

Thus we have:

2 /m
C’lN)\Q

min

Nl

1bis — bi.o| < ny/m - LIf(-©))F = LI (- )]

Cl nNAlTlln

When N = Q( ml L[f (-,90)]2)7 we have that 012&/)@. E[f(',@o)]% < Cym™2N~3 for some constant

Cy > 0. Therefore, Wlth high probability, |b; | can be bounded as:

|bi,t| < |b10| -+ |bi,t - bi70| < Cywyp + CgmiéNig < (CQ + 04) miéNi% < Cgmi%Ni%,
by letting C3 = Cs 4+ C4. Plugging the bound of |b; +| into , we have:
@, < V/mN-Csm 3N~T = C3NT.
O
Since each b; ¢ are initialized with zero-mean, we must have that Eg, [f (-, ®¢)] = 0. Therefore, the expected
loss at initialization can be computed as Eg, [L[f (-, ©0)]] = Ee, [||f (X, @0)||§} + |lyll3. Using the inde-
pendence between b; ¢’s and the boundedness of the activation, we can compute that Ee, [Hf (X, @0)\@} <
o S E b7 ] < O(1) when wy, <O (m’%N’%> as assumed in Lomma This implies that with a
high probability £[f (,0¢)] = O(1) and the overparameterization requirement reduces to N = (/\’ZZ—(L)
With an established bound of ||®;]|,, we can provide a bound for both Dpy, and L|[fs, (-, 0¢)].
Theorem 1. Let Assumption[]] and Assumption[q hold. Let /\/lN be the polytope formed by neuron outputs
from the pre-trained network with gradient descent. If N = Q ( m* [f @0)]2) , then with high probability,

we have that:
Dauy =0 (N¥): Llfs, (0] <O (VN).
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Proof. To show the upper bound on Dy, we can directly apply Lemma [3|and Lemma [2] to get that:
Duty < D' < 2max i, < 203N =0 (N%) .
i€
To show the upper bound on L [fs, (-, 04)], we let i* € S be given. Then it holds that:

2 2 2
s lly + Iy ll2)5 < [[@a=ll3 + [yl -

DN =

1
Llfs (@] =5 | —yl5 <

By Assumption we have that ||y|, = 1. Moreover, by Lemmawe have that ||®;-|, < C3Ni. Therefore,
we have:

Lfs, (,0)] <CHWN+1<(C3+1)VN=0 (m) :
O

Under the setting of Theorem [T} the training loss convergence during the pruning phase in Lemmal/[l] becomes:

clfs o)+ B s e e

O (V) + HEEE o (nd) L B e o)

(F25-vw) + S el o)

A

IN

Q =l =+

In this scenario, Lemma (1| shows a O (%) decay of the loss on the pruned neural network, up to the loss

achieved by the dense neural network. Additionally, because Algorithm [T]selects a single neuron during each
iteration, we must have |Si| < k. In order to guarantee that £ [fs, (-,0®)] < e+ L[f (-, 0)] for some ¢ > 0,

we enforce % -v/N < € to obtain that k = O (@ ’Wo (— \/Eﬁ) D where Wy(-) is the Lamber W function.

Further applying that Wy(x) < logz gives that the resulting subnetwork satisfies the sparsity constraint
|Sk] = O (@ log @) This shows that greedy forward selection can obtain an error close to L[f (-, ©)]
in a with a small sparsity. In the next section, we proceed to investigate how L [f (-, ®)] evolves during the
pre-training phase.

4.2 Connecting with Pre-training Loss Convergence

By leveraging the recently developed result of neural network training convergence (Liu et al.| [2021)), we can
extend Lemma [1] with the following upper bound on the dense neural network loss after pre-training. To
state the result, we first define the network-related quantity Apnin and Apax as follows

Definition 1. Consider the first-layer output matriz at initialization ¥ € RN*m

We define Apin = \/Lﬁamin (P) and Amax = ﬁamax (D).

given by W;; = oy (a;':Oxj).

It is hard to provide a precise lower bound on An,, but we can estimate its scale using the following
reasoning. Since a; o ~ N (0,w?I;) are Gaussian random vectors, the pre-activation values a;(x; follows a
Gaussian distribution. Moreover, the activation function o4 (-) further "squeezes" the value into the interval
[-1,1]. Therefore, when w, is large enough, o (a;’r oxj) behaves similar to a Gaussian distribution with

constant variance. Since ¥ € RV*™  standard random matrix theory shows that oy, (¥) = © (\/N ) with
high probability when m is fixed. Therefore, we can estimate that Ay, = © (1). In Appendix [C| we provide
experimental results to verify that oy, (¥) = O (\/N )

Theorem 2. Let Assumption and Assumption@ hold with wawpy < O (¥> where d is the inpu dimension,

VdN
and that a two-layer network of width N = (A”;(_l [f (G, @0)]2) was pre-trained for t iterations with gradient
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descent in (@ over a dataset D of size mE| Let ©q denote the weights at initialization. If we choose the step

1
i (L1 @01E ) 4N
the pre-trained network satisfies:

sizen = O

, then the sequence {Sk}32, generated by applying Algorithm |1| to

Llfs, (0] <O (log’“ - W) (1= N2 LI (- )],

for some constant Cy; > 0.

Since the proof only involves applying the existing characterization of the training convergence in [Song et al.
(2021)) to the bound in Lemma (1} we defer the proof to Appendix Bl Notice that the loss in Theorem [2| only

decreases during successive pruning iterations if the rightmost term does not dominate the expression, i.e., all

other terms decay as O (lol’f k ) . If this term does not decay with increasing k, the upper bound on subnetwork

training loss deteriorates, thus eliminating any guarantees on subnetwork performance. Interestingly, we
discover that the tightness of the upper bound in Theorem [2| depends on the number of dense networks
pre-training iterations.

Theorem 3. Adopting identical assumptions and notation as Theorem[d, assume the dense network is pruned
via greedy forward selection for k iterations. The resulting subnetwork is guaranteed to achieve a training loss

0] <lol§k -V N) if t—the number of gradient descent pre-training iterations on the dense network—satisfies
the following condition:

—logk
tZ 0
~ <log (1—CinN)2?

min

)) ,  where Cy is a positive constant. (18)

Otherwise, the loss of the pruned network is not guaranteed to improve over successive iterations of greedy
forward selection.

Proof. From Theorem one can observe that the term O (1"%’“ VN ) dominates only when:

log k
k

VN > (1-CNAZL) L1F (-, 80)].

Therefore, to guarantee that O (logk VN ) dominates, ¢t must satisfy:

\/Nlogk
. log (7k£[f(u®o)]) o “logk —log L[f ()] _ —logk
a 1Og (1 - ClnN/\rQnin) o log (1 - ClnN)‘?mn) log (1 - ClnNA?mn) ’
since L [f (-, 0)] is independent of k. O

Theorem [3] states that a threshold exists in the number of GD pre-training iterations of a dense network,
beyond which subnetworks derived with greedy selection are guaranteed to achieve good training loss. Denoting
this threshold as t*. Consider the choice of 1 in Theorem When N > m, the step size becomes n =

O (ﬁ) and in this case t* = O (¢> This implies that the threshold of the pre-training

steps depends on %, the condition number of ¥. Since W is close to a random Gaussian matrix, %
increases as the size of the dataset m increases. This implies that larger datasets require more pre—trainlinr‘lng
for discovering high-performing subnetworks. Our finding provides theoretical insight regarding ¢) how much
pre-training is sufficient to discover a well-performing subnetwork and i) the difficulty of discovering high-

performing subnetworks in large-scale experiments (i.e., large datasets require more pre-training).

Remark. The combination of the initialization scale requirement in Lemma [3| and Theorem [2| puts our
training scheme in the so-called NTK regime (Song et al. 2021)), where the first-layer weights change only

2This overparameterization assumption is mild in comparison to previous work (Allen-Zhu et al.} 2018} |Du et al., [2019).
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slightly, resulting in a training dynamic similar to the random feature model. While the training in this regime
prevents the model from learning useful features and thus results in poor generalization, our initialization
is crucial to control the convex hull diameter Day,’s in a reasonable magnitude. However, it should be
expected that this requirement can be relaxed if one assumes additional structure on the training data X: a
sufficiently trained neural network should map the input into one or multiple clusters with small diameters.
Future works can consider performing a more fine-grained analysis of the relationship between the amount
of pre-training, the structure of the data, and the diameter of the hidden output of the pre-trained network.

5 Related work

Many variants have been proposed for both structured (Han et al., [2016} Li et al., 2016; Liu et al., |[2017;
and unstructured (Evci et al., [2019; |2020; Frankle & Carbinl |2018; Han et al., [2015)) pruning.
Generally, structured pruning, which prunes entire channels or neurons of a network instead of individual
weights, is considered more practical, as it can achieve speedups without leveraging specialized libraries for
sparse computation. Existing pruning criterion include the norm of weights (Li et al.,2016; Liu et al., 2017)),
feature reconstruction error (He et al., 2017; Luo et al., 2017; [Ye et al,, 2020; Yu et all [2017), or even
gradient-based sensitivity measures (Baykal et al., 2019;|Wang et al.,2020; Zhuang et al.,|2018). While most
pruning methodologies perform backward elimination of neurons within the network (Frankle & Carbinl
[2018; [Frankle et al., 2019; |Liu et all [2017; 2018; [Yu et all [2017), some recent research has focused on
forward selection structured pruning strategies (Ye et al., [2020; [Ye et al. [2020; |Zhuang et al., [2018)). We
adopt greedy forward selection within this work, as it has been previously shown to yield superior performance
in comparison to greedy backward elimination, and it is a simple algorithm to apply.

Empirical analysis of pruning techniques has inspired associated theoretical developments. Several works
have derived bounds for the performance and size of subnetworks discovered in randomly-initialized networks
(Malach et al., 20205 |Orseau et al. [2020; Pensia et al., [2020). Other theoretical works analyze pruning via
greedy forward selection (Ye et al.l 2020; [Ye et all) 2020). In addition to enabling analysis concerning
subnetwork size, pruning via greedy forward selection was shown to work well in practice for large-scale
architectures and datasets. Some findings from these works apply to randomly-initialized networks given
proper assumptions (Ye et al.| 2020; Malach et al., [2020; |Orseau et al.l [2020; Pensia et al., 2020), but, to the
best of our knowledge, no work yet analyzes how different levels of pre-training impact the performance of
pruned networks from a theoretical perspective.

Our analysis resembles that of the Frank- Wolfe algorithm (Frank et al.,|1956;|Jaggs, |2013), a widely-used and
simple technique for constrained, convexr optimization. Recent work has shown that training deep networks
with Frank-Wolfe can be feasible in certain cases despite the non-convex nature of neural network training
(Bachl [2014} [Pokutta et al. 2020). Instead of training networks from scratch with Frank-Wolfe, we use a
Frank-Wolfe-style approach to greedily select neurons from a pre-trained model. Such a formulation casts
structured pruning as convex optimization over a marginal polytope, which can be analyzed similarly to
Frank-Wolfe (Ye et all [2020; [Ye et al. [2020) and loosely approximates networks trained with standard,
gradient-based techniques (Ye et all 2020)). Several distributed variants of the Frank-Wolfe algorithm have
been analyzed theoretically (Wai et al., 2017; [Xian et al.,|2021; Hou et al., 2022)), though our analysis most
closely resembles that of (Bellet et al.| [2015). Alternative analysis methods for greedy selection algorithms
could also be constructed using sub-modular optimization techniques (Nemhauser et al., 1978).

Much work has been done to analyze the convergence properties of neural networks trained with gradient-
based techniques (Chang et al. 2020} [Hanin & Nical 2019} |Jacot et al. 2018 |Zhang et al., 2019). Such
convergence rates were initially explored for wide, two-layer neural networks using mean-field analysis tech-
niques (Mei et al 2019 [2018). Similar techniques later extended such analysis to deeper models
[2020; Xiong et al.l [2020]). Generally, recent work on neural network training analysis has led to novel analy-
sis techniques (Hanin & Nical, 2019; Jacot et al., 2018), extensions to alternate optimization methodologies
(Jagatap & Hegde, [2018;|Oymak & Soltanolkotabi, 2019)), and even generalizations to different architectural
components (Goel et al.l [2018; [Li & Yuan, 2017} [Zhang et al,[2019). By adopting such an analysis, we aim
to bridge the gap between the theoretical understanding of neural network training and LTH.
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Figure 1: Pruned, two-layer models on MNIST. Sub-plots depict dense network sizes, while the x and y axes
depict the number of pre-training iterations and the sub-dataset size. Color represents training accuracy,
and the red line depicts the point at which subnetworks surpass the performance of the best-pruned model

on the full dataset for different sub-dataset sizes. Dashed lines are the theoretical predicted result computed
based on the condition number of the random Gaussian matrices.

6 Experimental Results

6.1 Empirical Validation on Two-Layer Networks

In this section, we empirically validate our theoretical results. Pruning via greedy forward selection has
already been empirically analyzed in previous work. Therefore, we focus on an in-depth analysis of the
scaling properties of greedy forward selection with respect to the size and complexity of the underlying dataset.
This experimental setup will better support our theoretical result in Section [£:2] which predicts that larger
datasets require more pre-training for subnetworks obtained via greedy forward selection to perform well.
Experiments are run on an internal cluster with two Nvidia RTX 3090 GPUs using the public implementation

of greedy forward selection 2021]).

We perform structured pruning experiments with two-layer networks on MNIST by pruning
hidden neurons via greedy forward selection. To match the single output neuron setup described in Section
we binarize MNIST labels by considering all labels less than five as zero and vice versa. Our model
architecture matches the description in Section [I| with a few minor differences. Namely, we adopt a ReLU
hidden activation and apply a sigmoid output transformation to enable training with binary cross-entropy
loss. Experiments are conducted with several different hidden dimensions (i.e., N € {5K, 10K, 20K}).

To study how dataset size affects subnetwork performance, we construct sub-datasets of sizes 1K to 50K (i.e.,
in increments of 5K) from the original MNIST dataset by uniformly sampling examples from the ten original
classes. The two-layer network is pre-trained for 8K iterations in total and pruned every 1K iterations to a
size of 200 hidden nodes. After pruning, the accuracy of the pruned model over the entire training dataset
is recorded (i.e., no fine-tuning is performed), allowing the impact of dataset size and pre-training length on
subnetwork performance to be observed. Figure [I] shows the results averaged over three trials.

Discussion. The performance of pruned subnetworks in Figure [I| matches the theoretical analysis provided
in Section [ for all different sizes of two-layer networks. Namely, as the dataset size increases, so does the
amount of pre-training required to produce a high-performing subnetwork. To see this, one can track the
trajectory of the red line, which traces the point at which the accuracy of the best-performing subnetwork
for the entire dataset is surpassed at each sub-dataset size. This trajectory clearly illustrates that pre-
training requirements for high-performing subnetworks increase with the size of the dataset. Furthermore,
this increase in the required pre-training is seemingly logarithmic, as the trajectory typically plateaus at
larger dataset sizes.

Interestingly, despite using a small-scale dataset, high-performing subnetworks are never discovered at ini-
tialization, revealing that minimal pre-training is often required to obtain a good subnetwork via greedy
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Pruned Accuracy

20K It. 40K It. 60K It. 80K It.

Model Dataset Size Dense Accuracy

10K 82.32 86.18 86.11 86.09 83.13

MobileNetV2 30K 80.19 87.79 88.38 88.67 87.62
50K 86.71 88.33 91.79 91.77 91.44

10K 75.29 85.47 85.56 85.01 85.23

ResNet34 30K 84.06 91.59 92.31 92.15 92.14
50K 89.79 91.34 94.28 94.23 94.18

Table 1: CIFARI10 test accuracy for subnetworks derived from dense networks with varying pre-training
amounts (i.e., number of training iterations listed in the top row) and sub-dataset sizes. Numbers marked
in bold denote the setting where the pruned network achieves comparable performance to the dense network
in the smallest training iterations.

forward selection. Previous work claims that high-performing subnetworks may exist at initialization in
theory. In contrast, our empirical analysis shows this is not the case even in simple experimental settings.

6.2 Application to Deeper Neural Architectures

We perform structured pruning experiments (i.e., channel-based pruning) using ResNet34 (He et al., [2015)
and MobileNetV2 (Sandler et al., |2018|) architectures on CIFAR10 and ImageNet (Krizhevsky et al.l 2009;
Deng et al., [2009). We adopt the same generalization of greedy forward selection to pruning deep networks
as described in (Ye et all 2020) and use € to denote our stopping criterion. We follow the three-stage
methodology—pre-training, pruning, and fine-tuning—and modify both the size of the underlying dataset
and the amount of pre-training before pruning to examine their impact on subnetwork performance. Standard
data augmentation and splits are adopted for both datasets.

CIFAR10. Three CIFAR10 sub-datasets of size 10K, 30K, and 50K (i.e., full dataset) are created using
uniform sampling across classes. Pre-training is conducted for 80K iterations using SGD with momentum
and a cosine learning rate decay schedule starting at 0.1. We use a batch size of 128 and weight decay of
5 10*4E| The dense model is independently pruned every 20K iterations, and subnetworks are fine-tuned for
2500 iterations with an initial learning rate of 0.01 before being evaluated. We adopt € = 0.02 and ¢ = 0.05
for MobileNet-V2 and ResNet34, respectively, yielding subnetworks with a 40% decrease in FLOPS and 20%
decrease in model parameters in comparison to the dense modelﬁ

The results of these experiments are presented in Table[I[] The amount of training required to discover a high-
performing subnetwork consistently increases with the size of the dataset. For example, with MobileNetV2,
a winning ticket is discovered on the 10K and 30K sub-datasets in only 40K iterations. In comparison, for
the 50K sub-dataset, a winning ticket is not found until 60K iterations of pre-training have been completed.
Furthermore, subnetwork performance often surpasses the fully-trained dense network without completing
the entire pre-training procedure.

ImageNet. We perform experiments on the ILSVRC2012, 1000-class dataset (Deng et al., 2009)) to deter-
mine how pre-training requirements change for subnetworks pruned to different FLOP levelsE| We adopt the
same experimental and hyperparameter settings as Ye et al| (2020]). Models are pre-trained for 150 epochs
using SGD with momentum and cosine learning rate decay with an initial value of 0.1. We use a batch size
of 128 and weight decay of 5-107%. The dense network is independently pruned every 50 epochs, and the
subnetwork is fine-tuned for 80 epochs using a cosine learning rates schedule with an initial value of 0.01
before being evaluated. We first prune models with € = 0.02 and ¢ = 0.05 for MobileNetV2 and ResNet34,

30ur pre-training settings are adopted from a popular repository for the CIFAR10 dataset (Liul [2017).

4These settings are derived using a grid search over values of € and the learning rate with performance measured over a
hold-out validation set; see Appendix

5We do not experiment with different sub-dataset sizes on ImageNet due to limited computational resources.
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Model FLOP (Param) Pruned Accuracy Dense Accuracy
Ratio 50 Epoch 100 Epoch 150 Epoch
. 60% (80%) 70.05 71.14 71.53
MobileNetV2 1507 (65%) 69.23 70.36 71.10 7170
60% (80%) 71.68 72.56 72.65
ResNet34 0% (65%) 69.87 71.44 71.33 73.20

Table 2: Test accuracy on ImageNet of subnetworks with different FLOP levels derived from dense mod-
els with varying amounts of pre-training (i.e., training epochs listed in the top row). We report the
FLOP /parameter ratio after pruning with respect to the FLOPS/parameters of the dense model.

respectively, yielding subnetworks with a 40% reduction in FLOPS and 20% reduction in parameters in
comparison to the dense model. Pruning is also performed with a larger € value (i.e., ¢ = 0.05 and ¢ = 0.08
for MobileNetV2 and ResNet34, respectively) to yield subnetworks with a 60% reduction in FLOPS and
35% reduction in model parameters in comparison to the dense model.

The results are reported in Table 2] Although the dense network is pre-trained for 150 epochs, subnetwork
test accuracy reaches a plateau after only 100 epochs of pre-training in all cases. Furthermore, subnetworks
with only 50 epochs of pre-training still perform well in many cases. For example, the 60% FLOPS ResNet34
subnetwork with 50 epochs of pre-training achieves a testing accuracy within 1% of the pruned model derived
from the fully pre-trained network. Thus, high-performing subnetworks can be discovered with minimal pre-
training even on large-scale datasets like ImageNet.

Discussion. These results demonstrate that the number of dense network pre-training iterations needed to
reach a plateau in subnetwork performance i) consistently increases with the size of the dataset, and i) is
consistent across different architectures given the same dataset. Discovering a high-performing subnetwork
on the ImageNet dataset takes roughly 500K pre-training iterations (i.e., 100 epochs). In comparison,
discovering a subnetwork that performs well on the MNIST and CIFAR10 datasets takes roughly 8K and
60K iterations, respectively. Thus, the amount of required pre-training iterations increases based on the
size of dataset even across significantly different scales and domains. This indicates that the dependence
of pre-training requirements on dataset size may be an underlying property of discovering high-performing
subnetworks no matter the experimental setting.

Interestingly, we observe that dense network size does impact subnetwork performance. In Figure [} sub-
network performance varies based on dense network width, and subnetworks derived from narrower dense
networks seem to achieve better performance. Similarly, in Tables [I] and [2} subnetworks derived from Mo-
bileNetV2 tend to achieve higher relative performance than the dense model. Thus, subnetworks derived
from smaller dense networks seem to achieve better relative performance in comparison to those derived
from larger dense networks, suggesting that pruning via greedy forward selection may demonstrate different
qualities in contrast to more traditional approaches (e.g., iterative magnitude-based pruning (Liu et al.|
2018))). Despite this observation, however, the amount of pre-training epochs required for the emergence of
the best-performing subnetwork is still consistent across architectures and dependent on dataset size.

Connection to Theoretical Results. The experimental result on deep neural networks is consistent with
the intuition that our theoretical results may also generalize to deeper architectures. In particular, notice
that our theory consists of two components: ). an upper bound on the pruning error, and i7).a convergence
guarantee that depends on the minimum eigenvalue of the NTK matrix. For ), we should note that, since
the algorithm for deep neural networks involves a layer-wise pruningYe et al.| (2020), our analysis has the
potential to extend to deeper architecture as long as one controls the error in the output of each intermediate
layer from pruning weights in the previous layers and treat this output as the input to the following layers.
For ii), the emerging analysis on the convergence property of training deep neural networks |Liu et al.| (2023}
2021); Nguyen| (2021) shed light on some theoretical evidence. In particular, it is shown in [Nguyen| (2021);
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Nguyen et al.| (2022) that the condition number of the NTK of the deep ReLLU network also depends on the
number of training samples, which may explain why our theory could also generalize to deeper architectures.

7 Conclusion

In this work, we theoretically analyze the impact of dense network pre-training on the performance of a
pruned subnetwork obtained via greedy forward selection. By expressing pruned network loss in terms of
the number of gradient descent iterations performed on its associated dense network, we discover a threshold
in the number of pre-training iterations beyond which a pruned subnetwork achieves good training loss.
Our theoretical result implies this threshold’s dependency on the dataset’s size, which offers intuition into
the early-bird ticket phenomenon and the difficulty of replicating pruning experiments at scale. We also
empirically verify our theoretical findings over several datasets and network architectures, showing that the
amount of pre-training required to discover a winning ticket is consistently dependent on the size of the
underlying dataset. Beyond the materials in the main text, we also included in Appendix [E] a distributed
version of the greedy forward selection algorithm and its empirical performance evaluation.

Several problems remain, such as extending our analysis beyond two-layer networks, deriving generalization
bounds for subnetworks pruned with greedy forward selection, or even using our theoretical results to discover
new heuristic methods for identifying early-bird tickets in practice. Moreover, future works can consider
extending our theory to deeper architectures. In particular, a generalization of Algorithm [1}is given in (Ye
et al., 2020)). To apply our analysis to a deeper architecture, future work should consider performing a layer-
wise analysis on the convergence of the pruning algorithm and upper-bound the propagation of the errors
through layers. The pruning algorithm we consider also has the potential to extend to other architectures.
For example, we provided Algorithm [2] as a generalization of Algorithm [I] to CNN.
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A Proof of Lemma

Proof. We will proceed with the proof by induction on the scope of ®;’s that u and v are composed of. To

be more specific, we will show that ||u— v||, < D’ for all u,v € Conv{®;;i € [n]} forn=1,..., N. For the
base case, we consider n = 1. We must have that u = ®; = v. Therefore, |[u—v||, = 0 < D’. For the
inductive case, suppose that our claim is true for n = 1,...,n’. We shall prove that it is true for n = n’ + 1.

In this case,
n'+1 n'+1

u= Z 7P, v= Z 7 i
=1 i=1

for some {’yl}f:{l and {fyz’}:f{l satisfying Z:”:lrl vi = Z?:Il vi=1and v > 0,7 > 0 for all i € [n’ + 1].
Without loss of generality, let vnr41 > 7,4 1. If 741 = 1, then we have

n'+1
u— V||2 = || ®n41 — Z %{‘I)i
i=1 9

=D Y (g1 — )
i=1

2

IN

n/
Y vil®an — ®ill,
i=1

n/
<Dy

i=1
<D

Otherwise, we can suppose 7,,, ;1 < Y41 < 1. In this case, we can write u and v as

’
n

o
w = Y1 Rrrgr + (1= ) Z 1_71‘1)1' = Y41 ®nr 1+ (1= 1) o
i—1 Yn'4+1
c 'Yz,' ’

V=" 1P+ (1= 4) Z 1 D=7 1 P+ (1 =) v

=1 77/1’+1
for some u’, v/ € Conv {®, : i € [n']}. Then by the inductive hypothesis, we have ||[u’ — v'||, < D’. Thus we
have
Ju— V||2 = H ('Vn’-&-l - 'V;L'-&-l) (@1 = V) + (1 = yrgr) (0 = V/)Hg
< ('Vn’+1 - ’Y’;Ll+1) @1 — V/||2 + (1= ynrg1) ”ul - V/H2

’
n

i
< (%’+1 - %url) Z 11—~ (@1 = V)| + (1= Y1) D’

i=1 ~ Y1 )
n’ ’
< Ot = V) Yo T @yt =Vl + (1= 1) D'
—= n’+1 11—~ n’+1 2 In/+1
i=1 T +1

’
n

o]
< (g1 = Vo) DD T — 4+ (1 =Y 1) D
i=1 Tn/+1

= (1 - 'Y;l'-i-l) D'
<7

This finishes the inductive step and thus finishes the proof. O
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B Proof of Theorem

Our proof utilizes the result from (Song et al., [2021). We first revisit the scheme and theoretical result
discussed in (Song et al.l 2021). After that, we will interpret their result in the scenario we are consideration.

B.1 Existing Result

(Song et al., 2021) considers using gradient descent to minimize the objective h = £o f where £ : Rt 5 R

is the loss function and f Réin — Rdout is the function of the model defined over m input-output pairs. In
particular, (Song et al. 2021) makes the following assumption to show that gradient descent converges

Assumption 3. (Gradient Descent)
e ( is twice differentiable, satisfies ap-PL condition, and is Bg-smooth.

. f 1s twice differentiable, 5f—smooth.

Building upon Assumption [3] they have the following Theorem
Theorem 4. (Theorem 2 in (Song et all |2021])). Assume that Assumption@ holds. Let wg € Rdin satisfy

i < Omin (Vf(wo)> < Omax (Vf (Wo)) <vj

6
(JluLf

B2
Bf f

and h(wy) = O ( ) Then the sequence {w;},, generated by

1
B[V (o), + 8 (45 +25)

w1 =w—nVh(wy); n=0

satisfies the following convergence property

h(wepr) < (1 - Cnawf) h(we)
for some constant C > 0.

To extend this result to the training of shallow neural networks, they consider the following parameterization
of the two-layer neural network and the mean-squared error loss

7(®) = Vo, (WX): z(?) - % HY—YH?

where X € R4X™ is the matrix consisting of the input vectors, Y & R4 %™ g the matrix consisting of the
label vectors, W € RV*? is the first layer weights, V € R%*N s the second layer weights, @ = {W,V} is
the collection of weights, and o (-) is the entry-wise activation function. Within this setup, they make the
following assumption about the neural network

Assumption 4. (Neural Network)
o At initialization, the entries of the weight satisfies W;j ~ N (O,W%) and V ~ N (0,w§) satisfying
_ 1
Wiy = 0] (\/d—N)
e« 04 (:) is twice differentiable and satisfies max {|o”, ()|, |0 ()|} <&
o There exists r1,79 such that 7' o4 (a)] < |o4 (Ta)| < 772 |0y (a)].

o For all k, it holds that omax (Vi) = O(1) [

6This assumption can be eliminated by assuming a larger overparameterization.
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With Assumption [4] they proved the following result:
Theorem 5. Suppose that Assumptz'on holds. If N = (m%), then with high probability over the initial-

ization, we have
o (Lemma 18 in (Song et all, [2021)) [tf i= Omin (04 (WX)) < 0min (Vf (@0)).

o (Lemma 18 of (Song et al,, |2021)) v; := co00max (X) + Omax (04 (WX)) = omax (Vf (@0)) for
some constant cg > 0.

(Lemma 18 in (Song et al., |2021)) B; = c160max (X) for some constant ¢ > 0.

fe% q
e (Theorem 3 in (Song et al., |2021)) O satisfies h(Og) = O 225 with wi and v; defined above.
( i f

202
ﬁf i

Combining Theorem [5] and Theorem [4 they obtain a training loss convergence for the two-layer neural
network.

B.2 Proving Theorem 2]

Recall that given an input x, our neural network is defined as

n N
f(x,0)= %Za (x,0;) = Zbi‘7+ (a] x)
i=1 i=1

Indeed, generalizing to a fixed matrix of input vectors X and outputs Y, our neural network can be written

as

7(®)=bTo, (AX) € R¥™ L[7(0) =L |7(®) -y
Therefore, our neural network setup is the same as (Song et al.l 2021)) by letting the output dimension
d’ = 1. Moreover, by assuming our Assumption [1|and [2, Assumption [4|is satisfied with w, = m~2N~1 and
wp = %. In this way, we have w,wp, = d":N-% =0 \/ﬁ) Thus, interpreting Theorem [5|in our setting,
we have
Theorem 6. Suppose that Assumption and Assumption@ holds. If N = (m%), then with high probability

over the initialization, we have

15 = VNAmin < Omin (Vf(@g)).

vi = co0y/m + VN Amax > Omax (Vf (@0)) for some constant co > 0.

o By :=ci0y/m for some constant c; > 0.

6
Oy satisfies L[f (-,00)] = O (%) with py and vy defined above.

Proof. To start, notice that

2

Omax (X) < |X[p = | Do lxsll5 | =vm (19)

Jj=1

For Bullet 1, we recall that Apin is defined as Amin = \/#ﬁamin (ApX) in Definition Combining with
the first bullet point in Theorem [5| gives Bullet 1. For Bullet 2, we recall that A,y is defined as Apax =
ﬁgmax (AoX) in Definition |1} Combining with the second bullet point in Theorem |5/ and plugging in
gives the desired result. For Bullet 3, we use the third bullet in Theorem [5| and plug-in . Lastly, the
fourth bullet directly follows from Theorem O
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With Theorem [6] we can guarantee the convergence of training loss in our scenario.

Theorem 7. Suppose that Assumption and Assumption @ holds. If N = (m%) and n =

0] 1 T , then with high probability over the initialization, we have
v (10500 )+ A

LIf(0O41)] < (1 - CnN)‘rQnin) LIf(-,04)]

Proof. We wish to apply Theorem 4 By utilizing Theorem [0} it remains to explicitly check the requirement
of the step size  and compute the convergence rate. Notice that in Theorem [4 7 is given by

1
B IV (Fwo)l + Be (43 +13)

n=0

1

By our choice of £, we have that ||V (f(wo)ll, = L[f (-,®0)]* and B, = 1. Moreover, using uy < vy, we
have

77=O< ! T ):O 1 .
BrLIf (- @0)® +2v7 Vin (14 L[f (5 00)]F ) + NAZ,,

by plugging in the value of 3y and vy from Theorem |§| and omitting the constants. Moreover, for the choice
of ¢ we have ay = 1. Then, the convergence rate was reduced to

Cnagp} = CnNXY,

Notice that a direct consequence of Theorem [7]is that
LIf (0] < (1= CnNAZ)' £[f (- ©0)] (20)

When pruning is performed after ¢ iterations of gradient descent, we can substitute ® with ©; in Lemmal[I]

to get that
Llfs, (-O)) < 1 L1fs. (O + B D 4 o lelr (@)

Then, we use -1 <1 and simply apply the upper bound of L[f (-,©,)] in to get that

D3, +

1+4logk

o Dy + (1= CuNN,) L 1F (-, ©0)]

min

Llfs, (©) < LIs, (O] +

C Numerical Experimental Verification

In Figure [2] we randomly generated ¥ matrix in the following way: we first generating ai,...ay with
a;, ~ N (0, %Id), then, we generate xi,...,X,, with x; ~ A (0,I;) and normalize each x;. After that,
we compute ¥ by ¥;; = o, (a;x;) to simulate the hidden neuron output at initialization. For each N, d,

and m, we generate 10 of such W matrices and record their minimum singular values’ mean and standard
deviation. Figure [2| plots omin (¥) for different N, d, and m. For each d and m, we also plotted the curve

O (\/N ) to compare with the curve o, (). We can observe that the two curves almost overlaps, implying
that omin (¥) indeed scale with O (\/N)

In Figure [3] we conduct a simple experimental verification of the condition number of standard Gaussian

. . . . (M
random matrices of shape N x m, where the condition number x of a matrix M is defined as kK = ‘;’“"‘7((1\/[))
We can observe that £~! decreases as m increases.
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Figure 2: Plotting oy, (¥) versus N with different d,m. For reference, we also plotted O(v/N).
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Figure 3: Inverse of the condition number of a standard Gaussian random matrix with shape N x m

D CNN Experiments

Algorithm 2 Greedy Forward Selection for Deep CNN

Require: Number of layers L; numbers of hidden filters {Cz}ngl; training data D; error tolerance ¢; loss
function Lo (X,y); CNN weights © with O[] = {6, ; }jE[Ce] for £ € [L]

1: @ =0

2: for /=1,2,...,L do

3: O (=2

4: while Lo (X,y) < e do

5: X,y ~D

6: j* = argmin e (o, Lio«[1)....0+[(Jufey,,}....0+Ch]] (X, ¥)
T: O*[(] =0 [Ju{j}

8: end while

9: end for

10: return ©*
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Figure 4: Subnetwork validation accuracy on the CIFARIO0 dataset for different settings of € and initial
learning rate for fine-tuning. All models are pre-trained identically for 200 epochs. Fine-tuning is performed
for 80 epochs, and we report validation accuracy for each subnetwork at the end of fine-tuning.

We begin with an in-depth algorithmic description of the greedy forward selection algorithm used for struc-
tured, channel-based pruning of multi-layer CNN architectures. This algorithm is identical to the greedy
forward selection algorithm adopted in [Ye et al. (2020). In this algorithm, we denote the weights of the
deep network as @, and reference the weights within layer ¢ of the network as ®,. Similarly, we use .
to denote the weights of all layers following layer ¢ and @®., to represent the weights of all layers up to and
including layer ¢. C denotes a list of hidden sizes within the network, where C{ indicates the number of
channels within layer ¢ of the CNN. Again, we use f(©®, X’) to denote the output of a two-layer network
with parameters ® over the mini-batch X’ and fs(©, X’) to denote the same output only considering the
channel indices included within the set S.

Now, we present more details regarding the hyperparameters utilized in large-scale experiments. For Ima-
geNet experiments, we adopt the settings of [Ye et al. (2020)E| For CIFARI10, however, we tune the setting
of € and the initial learning rate for fine-tuning using a grid search for both MobileNetV2 and ResNet34
architectures. This grid search is performed using a validation set on CIFAR10, constructed using a random
80-20 split on the training dataset. Optimal hyperparameters are selected based on their performance on the
validation set. The results of this grid search are shown in Figure[dl As can be seen, for MobileNetV2, the
best results are achieved using a setting of € = 0.02, which results in a subnetwork with 60% of the FLOPS of
the dense model. Furthermore, an initial learning rate of 0.01 yields consistent subnetwork performance for
MobileNetV2. For ResNet34, a setting of € = 0.05 yields the best results and a subnetwork with 60% of the
FLOPS of the dense model. Again, an initial learning rate of 0.01 for fine-tuning yields the best results for
ResNet34. For the rest of the hyperparameters used within CIFAR10 experiments (i.e., those used during
pre-training), we adopt the settings of a widely used, open-source repository that achieves good performance
on CIFAR10

E Distributed Greedy Forward Selection

We propose a distributed variant of greedy forward selection that can parallelize and accelerate the pruning
process across multiple compute sites. Distributed greedy forward selection is shown to achieve identical
theoretical guarantees compared to the centralized variant and is used to accelerate experiments with greedy
forward selection within this work.

"We adopt the same experimental settings but decrease the number of fine-tuning epochs from 150 to 80 because we find
that testing accuracy reaches a plateau well before 150 epochs.
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For the distributed variant of greedy forward selection, we consider local compute nodes V = {v;}Y_;, which
communicate according to an undirected connected graph G = (V,€). Here, £ is a set of edges, where
|€] = E and (v;,v;) € € indicates that nodes v; and v; can communicate with each other. For simplicity,
our analysis assumes synchronous updates, the network has no latency, and each node has an identical copy
of the data D.

Algorithm 3 Distributed Greedy Forward Selection for Two-Layer Networks

1: z§) =0, VjelV]
2: for k:=1,2,... do
3: # Step I. compute a local estimate of the next iterate
4: for v; € V do
5: qu) := argmin / (% (Zp—1 + q))

qEVert(Mg\j))
6: z(i) = Zp_1+ q(i)

k k

7: Broadcast: L) :=¢ (zg))
8: end for
9: # Step II: determine and broadcast the best local iterate
10: for v; € V do
11: ir, := arg min L(®

1€[V]
12: if i, = i then ]
13: Broadcast: z; := z,(;)
14: end if
15: end for

16: # Step III: update the current, global iterate

17: for v; € V do
1

18: Uy = 1z
19: end for
20: end for

21: Stopping Criterion: ¢ (uy) <e

Recall that the set of neurons considered by greedy forward selection is given by Vert(My) = {®; : i € [N]}.
In the distributed setting, we assume that the weights associated with each neuron are uniformly and
disjointly partitioned across compute sites. More formally, for j € [V], we define AU) as the indices of
neurons on v; and eu) = {6;:i ¢ .A(j)} as the neuron weights contained on v;. Going further, we consider

{®;:ic AU} and denote the convex hull over this subset of neuron activations as M%). We assume that
AV NAF) = & for j # k and that U;'/:1 AU = [N].

Algorithm [3| aims to solve the main objective in this work, but in the distributed setting. We maintain
a global set of active neurons throughout pruning that is shared across compute nodes, denoted as Sj at
pruning iteration k. At each pruning iteration k, we perform a local search over the neurons on each v; € V,
then aggregate the results of these local searches and add a single neuron (i.e., the best option found by any
local search) into the global set. Intuitively, Algorithm [3| adopts the same greedy forward selection process
from Algorithm [I] but parallelizes it across compute nodes.

Empirical validation of the distributed implementation. The centralized and distributed variants of
greedy forward selection achieve identical convergence rates with respect to the number of pruning iterations.
Despite its impressive empirical results, one of the significant drawbacks of greedy forward selection is that
it is slow and computationally expensive compared to heuristic techniques. Distributed greedy forward
selection mitigates this problem by parallelizing the pruning process across multiple compute nodes with
minimal communication overhead.
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Figure 5: Pruning time for centralized and distributed greedy forward selection applied to different blocks
of a ResNet34 architecture on ImageNet.

To practically examine the acceleration provided by distributed greedy forward selection, we prune a
ResNet34 architecture on the ImageNet dataset and measure the pruning time for each
layer with different greedy forward selection variants. In particular, we select four blocks from the ResNet34
architecture with different spatial and channel dimensions. The time taken to prune each of these blocks is
shown in Figure [f] All experiments are run on an internal cluster with two Nvidia RTX 3090 GPUs using
the public implementation of greedy forward selection 2021)).

Distributed greedy forward selection (using either two or four GPUs) significantly accelerates the pruning
process for nearly all blocks within the ResNet. Notably, no speedup is observed for the second block
because earlier ResNet layers have fewer channels to be considered by greedy forward selection. As the
channel dimension increases in later layers, distributed greedy forward selection yields a significant speedup
in the pruning process. Given that the convergence guarantees of distributed greedy forward selection are
identical to those of the centralized variant, we adopt the distributed algorithm to improve efficiency in most
of our large-scale pruning experiments.
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