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Abstract

Reward models (RMs) are crucial for align-
ing large language models (LLMs) with human
preferences. However, most RM research is
centered on English and relies heavily on syn-
thetic resources, which leads to limited and less
reliable datasets and benchmarks for Chinese.
To address this gap, we introduce Cheems-
Bench, a fully human-annotated RM evalua-
tion benchmark within Chinese contexts, and
CheemsPreference, a large-scale and diverse
preference dataset annotated through human-
machine collaboration to support Chinese RM
training. We systematically evaluate 20 RMs
on CheemsBench and observe significant limi-
tations in their ability to capture human prefer-
ences in Chinese scenarios. Additionally, based
on CheemsPreference, we construct an RM
that achieves state-of-the-art performance on
CheemsBench, demonstrating the necessity of
human supervision in RM training. Our find-
ings reveal that scaled Al-generated data strug-
gles to fully capture human preferences, empha-
sizing the importance of high-quality human
supervision in RM development.

1 Introduction

With the rapid advancement of large language mod-
els (Yang et al., 2024; Dubey et al., 2024), post-
training has emerged as a critical challenge for en-
suring their safety, reliability, and alignment with
human values (Hou et al., 2024; Lin et al., 2024).
Reward models (Palan et al., 2019; Ouyang et al.,
2022), as core components of LLM post-training,
play a pivotal role in capturing human preferences
and guiding models to adhere more closely to hu-
man needs (Bai et al., 2022). By providing reward
signals, RMs can guide parameter optimization
during training (Ibarz et al., 2018; Ouyang et al.,
2022) or directly intervene outputs during decod-
ing(Khanov et al., 2024; Li et al., 2024a).

Despite the crucial role of RMs in post-training,
current research and resources are mainly focused
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Figure 1: The differences in construction and usage
between CheemsBench and the existing RM resources.

on English. For instance, models such as Skywork-
Reward (Liu et al., 2024a) and UltraRM (Cui et al.,
2023) leverage high-quality English preference
datasets (Zheng et al., 2023; Ji et al., 2024) and
benchmarks (Lambert et al., 2024) to achieve supe-
rior performance. In contrast, the development of
Chinese RMs faces significant challenges due to a
lack of large-scale, high-quality preference datasets
and comprehensive evaluation benchmarks. More-
over, existing RM resources mainly rely on syn-
thetic data, which struggles to accurately reflect
human preferences. Existing Chinese resources are
often small in scale (Huozi-Team, 2024; Yucheng,
2023) and limited to specific domains (Zake, 2023;
Xinlu Lai, 2024; Xu et al., 2023), thus insufficient
for the needs of LLM alignment.

To address this critical gap, this paper con-



Statistics CheemsBench CheemsPreference
Open Prompt Human Instruction GPT Human
# Prompts 1,146 1,346 27,861 3,260
# Responses 5 5 5.29 5.07
# Comparisons 7,838 9,762 332,370 37,618
Avg. Char. of Prompt 186.58 197.04 175.56 164.08
Avg. Char. of Chosen 437.50 436.96 45792  440.18
Avg. Char. of Rejected 454.01 446.43 394.18  432.84

Table 1: Statistics of CheemsBench and CheemsPreference: Number of prompts, average responses per prompt,
comparisons (excluding ties), and average character lengths of prompts, chosen responses, and rejected responses.

structs a comprehensive and human-centric Chi-
nese RM resource from scratch. It consists of two
key datasets: (1) CheemsBench, a fully human-
annotated and extensive Chinese RM evaluation
benchmark that verifies whether RMs accurately
capture and reflect human preferences; and (2)
CheemsPreference, a large-scale, diverse Chinese
preference dataset that provides supervised signals
for training Chinese RMs, enabling them to effec-
tively learn and model human preferences. !

As shown in Figure 1, unlike most RM re-
sources that rely on machine-generated annotations
(Zhou et al., 2024), CheemsBench and CheemsPref-
erence are built on human supervision, thereby
more accurately capturing realistic human values.
Moreover, while traditional RM benchmarks (Lam-
bert et al., 2024) typically rely on pairwise com-
parisons, recent studies (Wen et al., 2024) have
highlighted their limitations in reflecting down-
stream performances. CheemsBench introduces
a multi-response evaluation mechanism, which
aligns closely with downstream tasks.

In CheemsBench, we combine open-source
prompts and real-world human instructions with
a comprehensive taxonomy to evaluate RM per-
formance To better align with downstream tasks
and reduce preference-induced noise (Zhang et al.,
2024a), we sample five responses from various
open- and closed-source LLMs for each prompt and
conduct five rounds of human-driven triple-wise
comparisons. To address potential annotation con-
flicts, we design a graph-based conflict-resolving
algorithm that generates unique and consistent par-
tial rankings. Using CheemsBench, we assess the
progress of reward models and preference datasets
in the Chinese context and identify considerable
room for improvement in Chinese RMs.

For CheemsPreference, we collect 27k human

'CHEEMS stands for Chinese reward model benchmark
and preference dataset.

instructions following a multi-tiered prompt taxon-
omy and sample more than 5 responses per prompt
from various LLMs, ensuring both prompt and re-
sponse diversity. To alleviate inconsistencies and
biases in GPT annotations (Stureborg et al., 2024)
while reducing human effort, we design a distant su-
pervision algorithm to improve data quality. Specif-
ically, human annotators first label a small golden
preference dataset, which is then used to train an
RM to filter a larger GPT-annotated dataset. The
combined human- and GPT-annotated data form
CheemsPreference, achieving state-of-the-art re-
sults on CheemsBench and performing well on the
English RewardBench (Lambert et al., 2024).
Our contributions are summarized as follows:

* We propose CheemsBench, the first large-
scale and comprehensive benchmark designed
specifically for Chinese reward models.

e We construct CheemsPreference, the first
large-scale, diverse, and high-quality Chinese
preference dataset.

* We provide a comprehensive investigation
into Chinese RM training and evaluation. The
code and data will be publicly available at
https://github.com/XXX/XXX.

2 Related Works

Reinforcement Learning from Human Feed-
back. Reinforcement Learning from Human
Feedback has been widely adopted for LLM align-
ment (Ouyang et al., 2022; Bai et al., 2022). Previ-
ous research mostly focuses on specific tasks like
summarization (Stiennon et al., 2022) and question
answering (Nakano et al., 2022). Recent studies
have expanded RLHF applications to broader do-
mains (Hou et al., 2024; Lin et al., 2024; Yu et al.,
2024), improving LLMs to be more helpful, hon-
est, and harmless. RLHF enables models to align
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Figure 2: Chinese RM benchmark construction process. We utilize open-source prompts and human instructions
and sample five responses from various models for each prompt. These responses then undergo five rounds of
triple-wise manual comparisons. Unique partial rankings are generated by conflict resolving algorithm.

with human expectations more closely by integrat-
ing human preferences captured by reward models
(Ng and Russell, 2000; Brown and Niekum, 2019;
Palan et al., 2019). Thus, a reward model that ac-
curately reflects human preferences is fundamental
to the RLHF methodology.

Reward Model Training and Evaluation. De-
veloping a RM that captures human preferences
requires high-quality training datasets. Current
works gather preference data through manual anno-
tation (Bai et al., 2022; Zheng et al., 2023) or dis-
tilling advanced LLMs (Zhu et al., 2023; Cui et al.,
2023). These works mostly focus on English, over-
looking Chinese contexts. Existing Chinese pref-
erence datasets are generally small (Huozi-Team,
2024; Yucheng, 2023) or limited to specific tasks
(Zake, 2023; Xinlu Lai, 2024; Xu et al., 2023).
Beyond the training data, RM evaluation is also
critical for post-training. The typical RM evalu-
ation computes accuracy on a fixed test dataset
(Lambert et al., 2024). Recent studies (Son et al.,
2024; Kim et al., 2024; Zhou et al., 2024; Liu et al.,
2024b; Frick et al., 2024; Gureja et al., 2024) have
attempted to strengthen the correlation with down-
stream performance. However, these benchmarks
focus on English, raising questions about their ap-
plicability to Chinese contexts.

3 Chinese RM Benchmark

In this section, we introduce CheemsBench, a
benchmark designed to comprehensively evaluate
Chinese RMs. Our benchmark is characterized by:
(1) High coverage: We incorporate a wide range of

prompts and sampling models, ensuring broad eval-
uation across diverse scenarios. (2) High-quality
annotation: We derive a reliable preference ranking
through multiple rounds of manual triple-wise com-
parisons and conflict resolving. Figure 2 illustrates
the overall construction process.

3.1 Data Construction

Prompt Collection. We sample Chinese prompts
from various open datasets, including Humaneval-
XL (Peng et al., 2024), MathOctopus (Chen et al.,
2024), GAOKAO-Bench (Zhang et al., 2024b), Hal-
luQA (Cheng et al., 2023), Flames (Huang et al.,
2023), CLiB (Lee, 2023), AlignBench (Liu et al.,
2023), and COIG-CQIA (yuelin bai, 2023). We
manually map their original categories into a uni-
fied system shown in Figure 8. We also include real-
world human instructions for out-of-distribution
evaluation. To ensure thorough converge across
different scenarios, we build a comprehensive cate-
gorization system as illustrated in Figure 9. In total,
we select 1,146 prompts from open-source datasets
and 1,346 from human instructions.

Responses Collection. To ensure a wide range of
response quality and distribution, we sample 5 re-
sponses per prompt from various models. (1) Open-
source models: Qwen2-7B/72B-Instruct (Yang
et al.,, 2024), Meta-Llama-3.1-8B/70B-Instruct
(Dubey et al., 2024), Llama3.1-8B/72B-Chinese-
Chat (Wang et al., 2024), Internlm2-chat-1.8b (Cai
et al., 2024), and GLM-4-9b-chat (GLM et al.,
2024); (2) Proprietary models: GPT-4 (OpenAl
et al., 2024), GPT-3.5-turbo, GPT-4-turbo, and
Claude-3-5-sonnet (Anthropic, 2024). We observe



that some open-source models demonstrate lim-
ited Chinese capabilities and tend to exhibit code-
switching or even significant garbling®. In such
cases, we rely on human annotators to filter these re-
sponses during the annotation process. Specifically,
annotators are instructed to discard responses con-
taining substantial sections of meaningless content,
while retaining those with minor code-switching
that do not compromise semantic meaning. This
procedure allows us to account for LLMs’ code-
switching behavior during RM evaluation.

3.2 Benchmark Labeling

Human Anneotation. To accurately capture hu-
man preferences, CheemsBench relies entirely on
human judgment for its annotation process. Given
a prompt and its corresponding 5 responses, we
pre-design five annotation tasks, each compris-
ing a triple-wise comparison of three adjacent re-
sponses. These tasks are distributed to different
annotators who perform preference comparisons
independently. All annotation results are then used
to construct a ranked list of responses.

Conflict Resolving. However, conflicts may arise
due to the human preferences ambiguity and poten-
tial annotation errors. To derive reliable results, we
develop a dedicated conflict resolving algorithm, as
shown in Algorithm 1. Specifically, we first trans-
form the annotation results into a directed prefer-
ence graph, where responses and preferences repre-
sent nodes and edges respectively. We then employ
depth-first search to identify cycles in the graph,
which indicate conflicts. These cycles are merged
into larger nodes, and this process is repeated until
no cycles remain in the graph. Finally, we perform
topological sorting to obtain a partial ranking. 3

3.3 Evaluation Metrics

Given that we have multiple responses per prompt,
there are many potential metrics for evaluation
(Wen et al., 2024). We first convert a partial ranking
into multiple pair-wise comparisons and evaluate
the accuracy following typical setting (Lambert
et al., 2024):

N
1 . 4
Accuracy = N E I(ry, > rp) (1)
i=1

>The LLaMA series shows a higher tendency for code-
switching and nonsensical output, possibly due to its tokenizer
vocabulary and insufficient training on Chinese corpora.

3Details about the algorithms and annotators are provided
in Appendix C and Appendix D, respectively.

where N is the total number of pair-wise compar-
isons after transformation, and the indicator func-
tion I checks if the reward score for the preferred
response 7, is greater than that of its counterpart rli.
Additionally, the exact match rate can be employed,
which measures the proportion of prompts where
all pair-wise comparisons are correctly sorted:

M
1 ; i
Exact Match = Vi g I (/\(Tfuk > 7"l]k)> (2)
=1 \k

where M is the number of prompts, and the indica-
tor function verifies if all comparisons are ordered
correctly. We obtain the final result by averaging
the metrics from subsets of different categories.

4 Chinese Preference Dataset

In this section, we present the construction of
CheemsPreference, as depicted in Figure 3. Our
dataset is characterized by: (1) Scale and diversity:
We amass 27k real human instructions, featuring
a comprehensive multi-tier categorization system,
and sample multiple responses from a variety of
models for each prompt. (2) High-quality annota-
tion: We employ a distant supervision algorithm,
which integrates both human annotations and GPT-
4o to establish reliable partial preference ranks.

4.1 Data Construction

Prompt Collection. Diverse and high-quality in-
struction data are crucial for ensuring the robust-
ness of RMs. To this end, we collect 27,861 real-
world human instructions. To ensure extensive cov-
erage of downstream scenarios, we develop a com-
prehensive multi-tier categorization system, which
encompasses eight main categories with dozens of
refined subcategories, as illustrated in Figure 10.

Response Collection. We sample responses from
a broad range of models: (1) Open-source mod-
els: Qwen2-7B/72B-Instruct (Yang et al., 2024),
Qwen2.5-7B/14B/32B/72B-Instruct (Team, 2024),
Meta-Llama-3.1-8B/70B-Instruct (Dubey et al.,
2024), Llama3.1-8B/72B-Chinese-Chat (Wang
et al., 2024), Internlm2-chat-1.8b (Cai et al., 2024),
and GLM-4-9b-chat (GLM et al., 2024). (2) Propri-
etary models: GPT-4 (OpenAl et al., 2024), GPT-
3.5-turbo, GPT-4-turbo, GPT-40, and Claude-3-5-
sonnet (Anthropic, 2024). To guarantee the quality
of responses, we implement rule-based methods
to detect responses that are abnormally lengthy or
contain excessive non-Chinese symbols. Finally,
each prompt has more than 5 responses on average.
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Figure 3: Chinese preference dataset construction process. Each prompt’s different responses and their annotation
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4.2 Distant Supervision

The quality of preference data (Gao et al., 2024)
is essential for the training of RM. While human
annotation ensures high quality, it is expensive
and challenging to obtain in large quantities. Con-
versely, GPT-based annotation is scalable but often
inconsistent and biased (Stureborg et al., 2024). To
construct large-scale, high-quality Chinese pref-
erence data, we implement a distant supervision
strategy for annotation. We initially engage human
annotators to label a small subset of data, follow-
ing the protocol detailed in Section 3.2. Subse-
quently, GPT-4o0 is employed to annotate a larger
dataset. For a set of IV responses, GPT-40 per-
forms C’]QV pair-wise comparisons between each
response pairs*. To mitigate positional bias (Li
et al., 2024b), the order of responses in each com-
parison is randomized. Although these GPT-40
annotations can exhibit inconsistencies, i.e., cy-
cles in the preference graph, we employ an RM
trained on human-annotated data to filter these an-
notations and establish a consistent partial order.
Additionally, we propose a length-debias post-hoc
filtering strategy to alleviate length bias (Dubois
et al., 2024). This involves dividing the dataset into
two groups, where the chosen response is longer or
shorter than the rejected one, and downsampling
the larger group to balance the dataset.

5 Chinese Reward Model

In this section, we introduce our reward model
training methodology. In contrast to typical prefer-
ence datasets constructed by pair-wise comparisons

* Annotation prompts can be found in Appendix B.

(Cui et al., 2023; Ji et al., 2024), CheemsPreference
has two distinct characteristics: (1) each prompt is
associated with multiple responses, and (2) these re-
sponses form only a partial preference chain. Thus,
we employ following loss according to Bradley-
Terry Model (Bradley and Terry, 1952):

—r(z,y)))]

3)
where X stands for the distribution of the prompt
x and ), denotes the distribution of responses y
given the prompt . We employ a greedy sample-
based batch logic for calculating this loss. Specif-
ically, during each forward pass, we determine if
all responses for a given prompt can be included
in one batch. If feasible, they are added to the
batch; otherwise, any excess responses are allo-
cated to subsequent batches. This method might
bypass some pair comparisons, but it ensures that
no response is duplicated across batches, thereby
mitigating overfitting risks (Ouyang et al., 2022).
More importantly, this sample-based batch organi-
zation enhances computational efficiency by reduc-
ing redundant forward passes. To further stabilize
training, we integrate an additional regularization
term (Hou et al., 2024), imposing a Gaussian prior
on the distribution of reward scores:

[72 (x, y)} ()

L'=—- E
r~X
ywvyl"/yz

[log (o (7 (z, yw)

L=L'+ E
X Y~V

6 Experiments

We first assess the performance of open-source
RMs and datasets on CheemsBench (see Section
6.1). Next, we examine our benchmark’s corre-
lation with downstream tasks (Section 6.2). For



Open Prompt  Human Instruction

Model Name RewardBench Overall
cc.  Exact. Acc. Exact.
Open-source Reward Models
Skywork-Reward-Gemma-2-27B 0.938 0.754  0.329 0.748 0.311 0.535
Skywork-Reward-Gemma-2-27B-v0.2 0.943 0.751 0.321  0.735 0.294 0.525
Llama-3.1-Nemotron-70B-Reward-HF 0.941 0.750 0317 0.722 0.271 0.515
Llama-3-OffsetBias-RM-8B 0.894 0.734 0.310 0.689 0.239 0.493
RM-Mistral-7B 0.804 0.721  0.285 0.700 0.259 0.491
URM-LLaMa-3-8B 0.899 0.727  0.310  0.688 0.230 0.489
ArmoRM-Llama3-8B-v0.1 0.904 0.715 0.308 0.677 0.246 0.487
Skywork-Reward-Llama-3.1-8B-v0.2 0.931 0.721  0.283  0.701 0.237 0.486
URM-LLaMa-3.1-8B 0.929 0.722  0.292 0.696 0.230 0.485
GRM-Llama3-8B-rewardmodel-ft 0.915 0.728  0.281 0.688 0.229 0.482
Generative Models as Reward Models
Skywork-Critic-Llama-3.1-70B 0.933 0.755 0320 0.731 0.258 0.516
CompassJudger-1-14B-Instruct 0.841 0.745 0327 0.692 0.239 0.501
Qwen2.5-72B-Instruct - 0.734  0.306 0.678 0.229 0.487
Skywork-Critic-Llama-3.1-8B 0.890 0.726  0.288  0.696 0.229 0.485
GPT-40 0.846 0.640 0.163 0.727 0.300 0.457
Doubao-pro-128k - 0.720  0.280  0.662 0.164 0.456
Qwen2.5-7B-Instruct - 0.713  0.262 0.637 0.163 0.444
Llama-3-OffsetBias-8B 0.840 0.690 0.243  0.658 0.180 0.443
Llama-3.1-70B-Instruct 0.840 0.685 0.244 0.610 0.153 0.423
CompassJudger-1-1.5B-Instruct 0.734 0.660 0.210 0.594 0.132 0.399

Table 2: Performance of discriminative and generative RMs on CheemsBench. The Overall metric is the average of
accuracy (Acc.) and exact match (Exact.) across the Open Prompt and Human Instruction subsets.

CheemsPreference, we conduct an ablation study
to demonstrate its effectiveness (Section 6.3) and
test the scaling trend (Section 6.4).

6.1 Benchmark Results

Reward Models Evaluation We thoroughly as-
sess the performance of current RMs in the Chinese
context, including discriminative reward models
and generative models as reward models (Zheng
et al., 2023). Table 2 demonstrates the results of
top-ranked RMs on CheemsBench. We find that (1)
The accuracy of the leading models significantly
drops when applied to CheemsBench. This per-
formance gap indicates considerable room for im-
provement of RMs in Chinese settings. (2) These
RMs perform better on open-source prompts
than on human instructions. This is expected, as
our human instructions are collected from the real
world and thus can be more out-of-distribution than
open-source prompts. (3) For prompts with rela-
tively deterministic answers, RM can assess the
quality of the responses more accurately. Figure
4 details the performance of these RMs on different
subcategories. On the open-source prompt subset,
RMs show competence in "Reasoning" but strug-
gle in other categories. On the human instruction
subset, models excel in "Reasoning" and "Complex

Instructions” but perform poorly in tasks involving
"Understanding". These observations emphasize
the need for targeted enhancements in these tasks.

Preference Datasets Evaluation We evaluate
various Chinese and English preference datasets
on CheemsBench by training RMs> based on
Qwen2.5-72B-Instruct (Team, 2024). The exper-
imental results are presented in Table 3. No-
tably, among the Chinese datasets, "Huozi" (Huozi-
Team, 2024) performs best. Meanwhile, the "Ultra-
feedback" (Cui et al., 2023) leads among English
datasets. Comparisons of the top-performing En-
glish and Chinese preference datasets on Cheems-
Bench reveal a critical gap between English and
Chinese preference datasets, which highlights a
need for better Chinese preference dataset.

6.2 Downstream Correlation

In this section, we explore the correlation of
CheemsBench with various downstream tasks by
employing a Best-of-32 sampling strategy for opti-
mization. We evaluate three downstream tasks: Hu-
man Win-rate, MT-bench-zh (Huozi-Team, 2024),
and MT-bench (Zheng et al., 2023). For the Hu-

SDetails about hyperparameter settings for different exper-
iments are provided in Appendix F.
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Dataset Open Prompt  Human Instruction
Acc.  Exact.  Acc. Exact.
Chinese Preference Datasets
HH-RLHF-cn 0.704 0306 0.646 0.212
Huozi 0.728 0.302 0.682 0.237
Kyara 0.705 0.258 0.664 0.198
Zhihu 0463 0.105 0.487 0.080
English Preference Datasets
ChatbotArena 0.745 0342 0.718 0.288
HH-RLHF 0.753 0351 0.740 0.299
MathPreference 0.566  0.179  0.502 0.103
Nectar 0.716  0.288  0.664 0.222
PKU-SafeRLHF 0.737 0311 0.678 0.240
Skywork 0.757 0.343  0.749 0.271
MathStackExchange 0.749 0340  0.719 0.256
UltraFeedback 0.768 0.356  0.748 0.303

Table 3: Performance results of various datasets. Each
dataset’s performance is evaluated under Open Prompt
and Human Instruction subsets, with results presented
in terms of accuracy (Acc.) and exact match (Exact.).

man Win-rate task, we use 87 unique Chinese in-
structions that are not included in our benchmark.
For each instruction, we obtain a fixed baseline re-
sponse from Qwen2-72B-Instruct. Then, we sam-
ple 32 additional responses from the same model
and have human annotators score each one, assign-

ing 1 if a response exceeds the baseline and -1 if
it doesn’t. This allows us to determine win rates
for each RM using the Best-of-32 strategy. For
MT-bench-zh and MT-bench, responses are sam-
pled from Qwen2-7B-Instruct, with RMs perform-
ing Best-of-32 sampling on two-turn prompts, and
GPT-40 is employed as the judge. We select 26
distinct open reward models, differing in training
data and structures, for correlation assessment. Our
baselines include RewardBench (Lambert et al.,
2024), RMB (Zhou et al., 2024), and alternatives
of our benchmarks annotated by GPT-40, named
as Open Prompt GPT and Human Instruction GPT.
The results in Figure 5 illustrate that: (1) Our
benchmark exhibits significantly stronger cor-
relations with downstream tasks compared to
other baselines, whether in Chinese or English
tasks. (2) The benchmarks annotated by GPT
demonstrate suboptimal correlation, underscor-
ing the necessity of human judgment, which can
achieve better generalization on downstream tasks.

6.3 Dataset Construction Ablation

We conduct an ablation study to assess the effective-
ness of the dataset construction strategies outlined


https://huggingface.co/datasets/dikw/hh_rlhf_cn
https://github.com/HIT-SCIR/huozi
https://huggingface.co/datasets/zake7749/kyara-chinese-preference-rl-dpo-s0-30K
https://huggingface.co/datasets/liyucheng/zhihu_rlhf_3k
https://huggingface.co/datasets/lmsys/chatbot_arena_conversations
https://huggingface.co/datasets/Anthropic/hh-rlhf
https://huggingface.co/datasets/argilla/distilabel-math-preference-dpo
https://huggingface.co/datasets/berkeley-nest/Nectar
https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF
https://huggingface.co/datasets/Skywork/Skywork-Reward-Preference-80K-v0.1
https://huggingface.co/datasets/prhegde/preference-data-math-stack-exchange
https://huggingface.co/datasets/openbmb/UltraFeedback

Open Prompt

Human Instruction

Model RewardBench Overall
Acc. Exact. Acc. Exact.
State-of-the-art Baselines
RewardBench@ 1 0.943 0.751 0321 0.735 0.294 0.525
RewardBench@2 0.941 0.750 0317 0.722 0.271 0.515
Models trained using CheemsPreference
Human subset 0.897 0.852 0.502 0.823 0.412 0.647
GPT subset 0.822 0.778 0373 0.743 0.303 0.549
w/ Length debiasing 0.865 0.790 0.402 0.768 0.322 0.571
w/ Distant supervision 0.909 0.837 0.464 0.821 0.404 0.632
w/ All strategies 0.917 0.837 0.458 0.826 0.416 0.634
CheemsPreference 0.919 0.857 0.508 0.832 0.431 0.657

Table 4: The performance of RMs trained on our datasets, along with ablation studies on different processing
strategies. CheemsPreference represents a combination of the fully processed GPT subset with the human subset.

in Section 4.2. We train RMs based on Qwen2.5-
72b-instruct (Team, 2024) to perform experiments
and report performances in Table 4. The results
reveal several key insights: (1) Neither Human
nor GPT subsets alone are sufficient. The GPT
subset underperforms on our benchmark, indicat-
ing the inability of GPT-40 to fully capture human
preferences. Conversely, the Human subset per-
forms poorly on RewardBench, likely due to its
smaller scale, which limits out-of-distribution per-
formance. (2) Length-debias strategy enhances
performance. We investigate the biases of GPT
and human annotators in Appendix E, highlighting
the necessity of a length-debias strategy. (3) Dis-
tant supervision strategy significantly improves
performance, highlighting the importance of incor-
porating human supervision. (4) The integration
of all strategies performs the best, underscoring
the effectiveness of our approach.

6.4 Scaling Trend

We validate scaling trends on CheemsPreference.
Figure 6 shows that RM performance improves
with increased data volume on Open Prompt and
Human Instruction subsets, indicating that larger
training dataset leads to superior performance.
This phenomenon also highlights the potential of
our distant supervision approach. We then assess
model scaling trending by training RM on differ-
ent sizes of Qwen-2.5 series models (Team, 2024).
Figure 7 illustrates that increasing the model size
from 0.5B to 72B significantly enhances perfor-
mance, demonstrating that larger models capture
complex preference patterns more effectively.
Moreover, there is no significant difference when
starting training from pretrained or instruct models.
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Figure 6: Impact of data size scaling measured by the
number of pairs on accuracy.
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Figure 7: Impact of model size scaling on RM accuracy.

7 Conclusion

In this paper, we address the challenges of develop-
ing Chinese RMs by introducing CheemsBench, a
comprehensive RM benchmark, and CheemsPref-
erence, a high-quality Chinese preference dataset.
Using these resources, we evaluate the progress of
RMs in the Chinese context and validate the effec-
tiveness of our dataset construction strategies. Our
work narrows the gap between English and Chinese
RMs and sets the foundation for future research.



Limitations

This work addresses the resource insufficiency in
Chinese reward models. However, by focusing pri-
marily on the Chinese language, the datasets may
not fully capture all regional variations, potentially
introducing language and cultural biases. Addition-
ally, while the importance of human annotations is
evident, the subjective nature of human judgment
and the particular group of annotators involved can
lead to biased preferences. Moreover, our find-
ings, while tailored to the Chinese context, require
further validation to ensure applicability beyond
Chinese and English languages.

Ethical Considerations

Several ethical considerations are central to this
work. Firstly, by releasing real human instructions
and responses from open-source models, there is
a risk of harmful content being present, necessi-
tating careful filtering. Our annotation process is
largely focused on Chinese contexts, which may
not accurately capture preferences from various
cultures and diverse populations, underscoring the
need for greater inclusivity. Furthermore, the re-
ward models, while designed to align with human
preferences, may not fully capture true human val-
ues, which could lead to unintended consequences
in downstream applications. We acknowledge these
potential issues, noting that they are widespread in
the research community and require careful atten-
tion. By highlighting these concerns, we hope to
foster more robust solutions in the field.
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A Category System

The prompt category taxonomy for CheemsBench
is illustrated in Figure 8 to 9, while the promot cate-
gory taxonomy for CheemsPreference is illustrated
in Figure 10.

B Annotation Prompts

In this work, we leverage GPT-4o for constructing
our preference dataset. We utilize the structured
judge prompt presented in Figure 11 to assess re-
sponse quality, emphasizing an objective and unbi-
ased comparison between different model outputs.
Each prompt is assigned a specific criterion ac-
cording to its category. These criteria ensure that
the evaluations are consistent and comprehensive
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Figure 8: Category system for open-source prompts,
which are selected from various datasets and manually
integrated into this unified framework.

Composite ability
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Figure 9: Category system for human instructions. Due
to the complexity of the full system, only the first two
tiers of classification are displayed.

across different contexts. Figure 13 provides a de-
tailed overview of the criteria in Chinese, covering
linguistic and logical aspects. It also accounts for
the safety and complexity of instructions. ©

C Conlflict Resolving

In this section, we introduce an algorithm designed
to address potential annotation conflicts that arise
from human evaluations. The Conflict Resolving

The English versions of the judge prompt template and
criteria are displayed in Figure 12 and 14.
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Figure 10: Category system for prompts in the Chinese
Preference Dataset. We only plot the first two-tier clas-
sification due to the complexity of the complete system.

Algorithm, as outlined in Algorithm 1, operates
by systematically integrating conflicting responses
into larger nodes, based on the understanding that
these responses exhibit comparable quality. The al-
gorithm begins by constructing a graph with nodes
representing individual responses. Directed edges
are established based on preference relationships
between responses. To handle cycles, which indi-
cate conflicting annotations, the algorithm employs
a depth-first search (DFS) to detect and merge these
cycles into super-nodes iteratively. This merging
process helps conceptualize the similarity in quality
among the involved responses. In the final step, a
topological sorting algorithm is applied to derive a
partial ranking of responses. We report the conflict
rate between human annotations and GPT annota-
tions on the Open Prompts and Human Instruction
subsets in Table 5. The conflict rate is determined
by comparing the consistency between the original
annotation results and the response rankings pro-
cessed by the algorithm. We find that, overall, GPT
is more inconsistent than human annotators. Addi-
tionally, the conflict rate in the Human Instruction
subset is higher than in the Open Prompt subset,
suggesting that prompts in this subset may be more
challenging for preference annotation.

D Human Annotation Details

We employ a team of 29 annotators, each hold-
ing a bachelor’s degree. On average, an annotator
completes approximately 40 triple-wise compar-
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Table 5: Conflict ratio of human annotations and GPT-
40 annotations.

Dataset Conflict Ratio
Open Prompt Human 0.1999
Human Instruction Human 0.2161
Open Prompt GPT 0.2593
Human Instruction GPT 0.3170

isons per day. Annotation tasks are assigned us-
ing a system that guarantees that each annotator
receives unique data. During the process, anno-
tators have the flexibility to re-assign tasks they
find challenging to other team members, thereby
improving the efficiency of data annotation. To en-
sure high-quality results, we have additional quality
assurance personnel and reviewers who assess the

consistency of the data. Data are only finalized

and delivered if the consistency among annotators,
quality assurance personnel, and reviewers exceeds

90%. These procedures are in place to uphold the

integrity and quality of our data.

E Annotation Bias

We also explore the preferences of both human
and GPT annotators in terms of response length
and position, as shown in Figure 15. It can be
observed that GPT-40 generally prefers responses
that are placed later, whereas human annotators
do not exhibit a significant preference for position.
Additionally, when the response length difference
is moderate, both human and GPT annotators tend
to favor longer responses. However, as the length
difference becomes too large, humans tend to prefer
shorter ones. Overall, the specific preferences of
the annotators are not very pronounced.

Hyperparameter Value
Max Sequence Length 2048
Regularization Coefficient 0.1
Gradient Accumulation Steps 4
Micro Batch Size 2
Global Batch Size 256
Epochs 2
Warmup Ratio 0.1
Learning Rate Scheduler Cosine
Learning Rate Se-6

Table 6: Hyperparameter settings.



Algorithm 1 Conflict Resolving Algorithm

1: Input: responses, annotations
2: Output: responseRanks
3: G < InitializeGraph()
4: for each annotation; in annotations do > Build Graph G
5 (chosen_response, reject_response) < annotation;
6 r1 < Computeldentifier(chosen_response)
7: ro <— Computeldentifier(reject_response)
8 if 71 not in G then
9: AddNode(r1, G)
10: end if

11: if 75 not in GG then

12: AddNode(rs, G)

13: end if

14: if IsEqual(annotation;) then > In case chosen and reject is annotated as equal quality
15: AddEdge(ry, ra, G)

16: AddEdge(rg, r1, G)

17: else

18: AddEdge(rl, r9, G)

19: end if

20: end for

21: M < InitializeMapping() > Record mapping bewteen merged node and origin nodes
22: repeat > Detect and Merge Cycles
23: conflict_ids < DetectCycles(G) > Cycles can be detected with Depth-first Search

24: AddNode(r,,,G)
25: if len(con flict_ids) > 0 then

26: Tm, <— CreateRecordldentifier(con flict_ids, M)
27: for r; in con flict_ids do

28: for e in FindEdgesEndswith(r;, G) do
29: DeleteEdge(e)

30: AddEdge(e[0], ry,)

31: end for

32: for e in FindEdgesStartswith(r;, G) do
33: DeleteEdge(e)

34: AddEdge(ry,, e[—1])

35: end for

36: DeleteNode(r;)

37: end for

38: end if

39: until len(con flict_ids) ==

40: Inmitialize an empty list

41: while G is non-empty do > Topological Sort
42: R <+ SelectNodesWithoutInEdges(G)

43: AddRanksWithMapping(response Ranks,M,R)

44: DeleteNodesEdges(G, R)

45: end while

46: Return response Ranks
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Judge Prompt Template

RE—NTEZREFHTR, HERIEEEBHPORE, FLANKE2E - EE
MERBEUAHNERNRE, FEMRERHRESZR . TR, BEAHR—1TK
BAFHIE [query] . %% %R [reference| MMM AFEPIREEZ [answerA] -
[answerB | -
& T query i ~answerZ 4b, FAATRESHRHE [reference | , Bl 2% T 1Z%queryf15 % ¥t
B (EEFREFEENSERE, Wt SR8 EENIRE - 37
FEreferences), VR0 45 Breferencef) N 2% & RHAITIRE 4T - 2 7% Hreferencel
HHR B ORI T AR -
BHRSEL2E - BB BEZBZEL T X T Zqueryll Z Ein i, LZZ A& I
#answerAfllanswerBfY) it & , U1 FanswerA®E IF , M 7E [conclusion] #j HHA; W
FanswerBH L, NIZE [conclusion| H¥itHB; WIREAEFTEX S AHE, MHEHC;
{criteria}
[query] :
{query}
{reference}
[answerA] :
{answer_a}
[answerB | :
{answer_b}
ERRVRIEWERE TG RAE, R AT AR W, 1EFR BB 2T A =
TRRIAWT o AR B Z K B M R B 1Ay, 0k AR Bl I+, ANEfmAE, AT
REHb N - tboh, FATMEREF TR, RPZE EAEAZ T EMMEH 7 3 E
Bxx ARIETEAN I R DA SO #AT R -
RAFTRERHA”, “B’E<C’, NFERHTEEELIE. ETRELS

Figure 11: Template for Al annotation based on detailed criteria and ensuring objective comparison.

F Hyperparameter Settings

We present the key hyperparameters used in our ex-
periments in Table 6. Consistent settings are main-
tained across all experiments except when training
the RM on the Human subset of CheemsPreference,
where we use 2 epochs, as it yields the best results.
We report the experiment results for a single run.

G Use of AI Assistants

We use ChatGPT to assist with grammar checks,
sentence polish and code writing.
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Judge Prompt Template

You are an answer quality assessment expert, skilled in deeply understanding user queries and
thoroughly evaluating the quality of model responses based on that understanding, to output the
best answer after comparison. Below, I will provide you with a user query "query", a reference
answer "reference", and two different model responses "answerA" and "answerB".

Besides the query and the two answers, I may also provide a "reference", which is additional
information related to the query (it might be a reference answer to the question, or solution ideas
or evaluation criteria). When there is a reference, you must perform an in-depth analysis of
the answers using the reference. When there is no reference, analyze them according to your
understanding.

Please assess the following criteria comprehensively, meticulously, and deeply regarding the query,
and compare the quality of answerA and answerB. If answerA is better, output "A" in "conclusion";
if answerB is better, output "B"; if the overall quality difference is not significant, output "C";
{criteria}

"query":

{query}

{reference}

"answerA":

{answer_a}

"answerB":

{answer_b}

Ensure that you clearly understand the assessment process, **avoid any positional bias**, and
make sure the presentation order of the answers does not affect your judgment. Do not let the
length of the answer affect your evaluation, **avoid any length bias**, and remain as objective
as possible without showing favoritism. Furthermore, this is a Chinese context, and you should
consider whether the models have used Chinese appropriately in their responses, and you should
evaluate from a Chinese perspective.

You only need to output "A", "B", or "C", without detailing the reasoning process. Please respond
with the result:

Figure 12: Template for Al annotation translated into English.
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AI Annotation Prompts and Corresponding Criteria in Chinese

Criterion: 155

1. FFEEARENR: FEEemEEHAIAER, HE THAPRHFEMERERAFEK, 2
s ME DO 1 Pbvi = = R O ISR

2. GENE: EIZEGEA QR SR T AN BRI .

3. BEEERHERE: BEREETNY . ZEILTEW . £ R EGEVNAHAE—
& BIKERSH -

4, FIEHAYE: MBEFEEMEERTHERT IR, £0E T ERSHELAETE -

Criterion: 1R/ /%

1. FFEEAREXK. BERTEBHAAERE, WeE THPRE FEPEARHPMEK, &
ik BT (R R A T 2 A B R -

2. LR MEIEFREMEEEDERT SR, 28T ER0SESMETE -

3. [EMTE: EERGRAFEMSE, BOMH TRIEMES M, LUEH ] DU
PR

Criterion: TP/

1. FFEEARENR: FEEemEEHAIAER, HE THAPRHFEMERBRFEK, 2
M DO 11w = = R O ISR

2. WEHEMETE: BEIEESTRE T EMERNEEHITENOEE, S 2BEHMNIER
PR AR A B

3. 5 AN HEBHNSGLRTEMELHAWE RMDMEL -5, XeHEET~E
FIEZUEDYR, TR EIEESEPR N A A2 AT FERY

Criterion: {H5

1. FAERENR: HEEMHEFEAIAERE, WE THARHRENERBWFFER, &
it B Rl R AT 24 BB -

2. RIEBRESWE: XMEMPHERENRERE, EFEES TR (WmaHlie -
TR - BRSTHPNT E . E6FARERESE . FN, HEFEAERHITRL
K W TR EAINGEERE, YNGR A S REMERERE . REREEREEN
BFRERE, TEEELCEKERELFESEEITERN

Criterion: %4>

1. AERBIN N 5 | AR TER R, BFFEARTRS - Bsh BHEBEE, [
M EEERH P RREATTARE -

2. ERMIASNETEE, NG EMERSHMFAGE, FN R 7] GE e
FAEREARZUE LB A REG [ IRERIE R -

3. RIS N RERR L SEPR B, RBE RN BRI HRE R, [R5 R AT GEHH 2
F P )5 SRANHAEE

Criterion: 5 74154

1. R EEWRER THAFNERES, EE THPNERFXK.

2. FRHIAENREEHNEER, HRAPPSFHIT TERES, IRt eH e
3. AIERERAEMWSE, REEH T RGBS MM, LUER P DS REREE C
B Fm K AN a4 7 A2

Figure 13: AI Annotation Prompts and Corresponding Criteria in Chinese.
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AI Annotation Prompts and Corresponding Criteria in English

Criterion: Language

1. Meets Basic Requirements: Does the response follow the user’s intent and fulfill the basic
purpose and needs of the user’s question? Does it attempt to appropriately address the question?
2. Creativity: Is the response innovative or unique? Does it provide novel insights or solutions?
3. Linguistic and Logical Coherence: Is the language used fluent? Is the logic clear? Are all parts
organically integrated, and is there a clear hierarchy?

4. Factual Accuracy: Is the response provide accurate information based on credible facts?

Criterion: Knowledge/Understanding

1. Meets Basic Requirements: Does the response follow the user’s intent and meet the basic
purpose and needs of the user’s question? Does it attempt to appropriately address the question?
2. Factual Accuracy: Is the information provided in the response accurate and based on credible
facts and data?

3. Clarity: Is the response expressed clearly and understandably? Does it use concise language
and structure for easy comprehension by the user?

Criterion: Reasoning/Mathematics

1. Meets Basic Requirements: Does the response follow the user’s intent and meet the basic
purpose and needs of the user’s question? Does it attempt to appropriately address the question?
2. Reasoning Accuracy: Can the response perform effective reasoning based on correctly under-
stood information, including the correct logical structures and the reasoning rules application?

3. Conclusion Reasonableness: Does the conclusion drawn align with common knowledge and
known facts about the real world? This is an important verification step in the reasoning process to
ensure the response is reliable in practical application.

Criterion: Code

1. Meets Basic Requirements: Does the response follow the user’s intent and meet the basic
purpose and needs of the user’s question? Does it attempt to appropriately address the question?
2. Code Quality and Efficiency: This criterion evaluates the quality of the written code, including
readability (e.g., naming conventions, comments), maintainability and extensibility, and adherence
to coding best practices. It also considers the execution efficiency of the code, such as runtime and
memory usage, and the time and space complexity of algorithms. Code efficiency directly impacts
performance, especially when handling large data or requiring high-performance computing.

Criterion: Safety

1. The generated content should avoid causing any harm, including but not limited to misleading,
inciting, discrimination, or insult. It should also respect users’ privacy and personal information.

2. The generated content should be based on facts and should not fabricate, distort, or express
information misleadingly. It should also strive to avoid spreading unverified or potentially mislead-
ing information as much as possible.

3. The generated content should provide practical value, answer queries, or provide useful
information, while striving to meet the user’s needs and expectations.

Criterion: Complex Instructions

1. Does it accurately understand the user’s complex instructions and clarify the user’s needs?

2. The generated content should provide useful information and perform complex tasks according
to the user’s expectations, to the fullest extent possible meet the user’s needs and expectations.

3. Is the response expressed in a clear and understandable manner? Does it use concise language
and structure to help the user easily understand how their complex needs are being met?

Figure 14: Al Annotation Prompts and Corresponding Criteria translated into English.
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Figure 15: Comparison of Human and GPT Annotator Biases. For subfigures (a) and (c), the x-axis represents the
length difference between answer A and answer B, while the y-axis shows the proportion of cases where answer A
is selected.
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