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ABSTRACT

Prior studies investigating the internal workings of LLMs have uncovered sparse
subnetworks, often referred to as circuits, that are responsible for performing spe-
cific tasks. Additionally, it has been shown that model performance improvement
through fine-tuning often results from the strengthening of existing circuits in the
model. Taken together, these findings suggest the possibility of intervening di-
rectly on such circuits to make precise, task-targeted updates. Motivated by these
findings, we propose a novel method called CircuitTuning which identifies piv-
otal tokens from model reasoning traces as well as model components responsi-
ble for the desired task, and updates only those components. Applied to mathe-
matical reasoning, it improves accuracy by up to +11.4% across multiple models
while modifying as little as 1.59% of model components, with minimal impact
on other abilities as measured by MMLU, TriviaQA, and TruthfulQA. These re-
sults demonstrate that targeted capabilities can be reliably enhanced by selectively
updating a sparse set of model components.

1 INTRODUCTION

Large language models (LLMs) have demonstrated impressive general-purpose reasoning abilities,
yet they continue to struggle with mathematical reasoning tasks, where even small logical errors can
derail problem-solving (Shojaee et al., 2025; Marjanović et al., 2025; Ballon et al., 2025). Existing
works have attempted to improve math reasoning through various prompting and fine-tuning strate-
gies, which have led to modest gains (Wang et al., 2022b; Chen et al., 2022; Lewkowycz et al., 2022;
Lightman et al., 2023). In this work, we propose an alternative approach that leverages insights from
mechanistic interpretability to achieve more targeted improvements.

Recent progress in mechanistic interpretability has revealed that model behavior is often governed
by sparse subnetworks, or circuits, consisting of attention heads and MLP neurons that jointly im-
plement specific capabilities (Wang et al., 2022a; Hanna et al., 2023; Merullo et al., 2023; Prakash
et al., 2024; Marks et al., 2025). Jain et al. (2023); Prakash et al. (2024); Chhabra et al. (2025) shows
that fine-tuning frequently strengthens these existing circuits rather than creating entirely new mech-
anisms. Additionally, Rai et al. (2025); Ortu et al. (2024) suggest that there is a competition among
circuits within a model’s internal computation, where some circuits contribute to correct reasoning
while others introduce noise. Together, these findings suggest that targeted interventions on circuits
could enable precise updates that enhance specific skills while minimizing unrelated disruption.

In this work, we introduce CircuitTuning, a mechanistically informed fine-tuning method that per-
forms sparse, targeted updates to improve LLM reasoning. CircuitTuning operates in three stages:
(i) generating reasoning traces to identify pivotal tokens where incorrect solutions diverge from cor-
rect ones, (ii) localizing the attention heads and MLP neurons that promote correct reasoning paths,
and (iii) applying gradient updates exclusively to those components. By amplifying the contribu-
tion of the circuits most responsible for correct reasoning, CircuitTuning strengthens mathematical
reasoning ability while leaving unrelated skills largely intact.

Applied to the GSM-Symbolic benchmark Mirzadeh et al. (2025), CircuitTuning yields accuracy
improvements of up to +11.4% when tested across multiple model families, while modifying as lit-
tle as 1.59% of components (i.e. attention heads and MLP neurons). Importantly, these gains come
with minimal degradation on general benchmarks including MMLU, TriviaQA, and TruthfulQA,
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underscoring that targeted improvements can be achieved without compromising broad capabili-
ties (Hendrycks et al., 2021; Joshi et al., 2017; Lin et al., 2022).

Our results demonstrate that LLM skills can be selectively enhanced by updating only the sparse sub-
network that implements them. Beyond mathematical reasoning, this highlights a broader principle:
mechanistically guided, sparse updates provide a pathway toward interpretable model adaptation.

2 RELATED WORKS

2.1 MECHANISTIC INTERPRETABILITY IN LLMS

The field of mechanistic interpretability seeks to reverse-engineer the internal computations of deep
neural networks (Olah et al., 2020; Mueller et al., 2024; Saphra & Wiegreffe, 2024). A prominent
line of work focuses on uncovering circuits, sparse sets of attention heads and MLP neurons that
collectively drive specific model behaviors, such as indirect object identification, greater-than, and
entity tracking Wang et al. (2022a); Hanna et al. (2023); Prakash et al. (2024). Recent research
has also extended this perspective to the sparse feature space, identifying and editing interpretable
circuits that govern feature-level interactions Marks et al. (2025); Ameisen et al. (2025).

A recurring theme across this line of work is that LM behavior is not uniformly distributed across
parameters, but rather localized within a relatively small subset of components. Jain et al. (2023);
Prakash et al. (2024); Chhabra et al. (2025) show that fine-tuning often strengthens existing circuits
rather than creating entirely new mechanisms, while (Merullo et al., 2023) highlights how subcircuits
are reused across different tasks. These findings motivate our approach of selectively amplifying the
circuits responsible for the target task, while minimizing disruption to unrelated capabilities.

2.2 MATHEMATICAL REASONING WITH LLMS

Improving mathematical reasoning in LLMs has been a central challenge, as even minor logical
mistakes can derail otherwise promising problem-solving attempts (Wang et al., 2025). A line of
research has focused on prompting strategies, such as chain-of-thought prompting, self-consistency,
and program-of-thoughts prompting, which encourage models to externalize intermediate steps and
thereby improve reliability (Wang et al., 2022b; Chen et al., 2022; Lightman et al., 2023). Another
line of work investigates fine-tuning techniques, including supervised fine-tuning on reasoning traces
or parameter-efficient approaches like LoRA, which can adapt models toward stronger mathematical
reasoning (Lewkowycz et al., 2022).

Complementary to behavioral approaches, recent research has also examined the internal mecha-
nisms of LLMs to better understand their mathematical reasoning capabilities. For example, Ye
et al. (2024) analyzed the internal activations of a transformer model trained from scratch on a math
reasoning dataset, using probes to uncover mechanisms underlying the reasoning ability. Similarly,
Sun et al. (2025b) trained probes to predict the correctness of outputs in 3-digit addition, showing
strong generalization to addition-only GSM8K problems. By leveraging these probes, they selec-
tively re-prompted erroneous reasoning steps, thereby improving task accuracy. A closely related
study, Sun et al. (2025a), introduced ThinkEdit, which identifies attention heads responsible for short
reasoning traces and updates their weights to extend these traces, ultimately enhancing model per-
formance. Building on this line of work, we show that localization-informed model update can not
only affect reasoning trace length but also strengthen mathematical capabilities, enabling targeted
interventions to improve overall performance.

3 CIRCUITTUNING

3.1 METHOD OVERVIEW

We propose a novel technique, called CircuitTuning, to improve the mathematical reasoning capa-
bilities of an LM, without affecting other abilities. The underlying premise of this method relies on
two empirical insights from the mechanistic interpretability literature: 1) Specific tasks in LM are
often executed by a sparse subnetwork, which gets augmented during fine-tuning, leading to model
performance improvement (Jain et al., 2023; Prakash et al., 2024; Chhabra et al., 2025). 2) There
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Figure 1: Overview of CircuitTuning: (a) Token Localization: For a given problem, we generate
both correct and incorrect reasoning traces and identify the pivotal token where the incorrect trace
diverges from the correct one. The intervention point is chosen as the token immediately preceding
this divergence. (b) Model Component Localization: Using the Error-Localization dataset con-
structed from these reasoning trace pairs, we apply Desiderata-based Component Masking (DCM)
to learn a sparse binary mask over attention heads and MLP neurons. This identifies the subset of
components that most strongly promote the desired token. (c) Model Update: Gradient updates are
then applied exclusively to the localized components, amplifying constructive computations while
leaving the rest of the network unchanged.

is a competition among various mechanisms within an LM’s internal computation, some of which
are sound for the given task, while others are introducing noise, as suggested in Rai et al. (2025);
Ortu et al. (2024). In addition to existing works in the literature indicating such a phenomenon
inside LM’s internal computation, a good behavioral performance of the models that we investi-
gate suggests that the models have a decent idea of solving the math reasoning tasks; however, on
certain tasks, they deviate towards incorrect reasoning, which leads to an incorrect final answer.
To overcome this shortcoming, CircuitTuning amplifies the signal from model components that are
constructively generating the correct response. The technique consists of three steps: 1) Generation
of Error-Localization dataset, 2) Training binary mask to localize constructive model components,
and 3) Updating only those model components using a few gradient update steps. The following
subsections describe each step in more detail, including its role and the procedure.

3.1.1 LOCALIZING REASONING ERRORS

The first step of CircuitTuning is to identify the point in the reasoning trace where the model begins
to deviate toward an incorrect answer, as illustrated in Figure 1(a). Prior work on circuit discovery
has primarily examined tasks where the output is produced in a single forward pass, such as indirect
object identification, entity tracking, and greater-than comparison (Wang et al., 2022a; Prakash et al.,
2024; Hanna et al., 2023), making it natural to apply circuit discovery methods at the final token
position. In contrast, mathematical reasoning involves multi-step computations, and it is less clear
at which point to apply the circuit discovery algorithm to uncover the circuit that can be enhanced
to improve overall reasoning ability. To address this, we begin circuit localization by identifying the
token in the reasoning trace where an intervention should occur. Specifically, for a GSM-Symbolic
instance where the model produces an incorrect solution through greedy sampling, we aim to locate
the first token in the reasoning trace that drives the model toward this error. We refer to this token
as the pivotal token. Our intervention then targets the token immediately preceding it, to discourage
the model from generating the pivotal token. We refer to this intervention point, where we amplify
signals from constructive model components, as the intervention token.

For each GSM-Symbolic instance, we first sample a reasoning trace and final answer using greedy
decoding. If the answer is incorrect, we generate an alternative reasoning trace that leads to the cor-
rect answer via non-greedy decoding. Conversely, if greedy decoding produces the correct answer,
we instead generate an incorrect reasoning trace using non-greedy decoding. With this paired set of
reasoning traces, we then apply one of the following methods to identify the intervention token.
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Q: There are 67 fourth-graders at Sunny Hill School. 38 of them are girls. On 
Thursday, 6 fourth-grade girls and 6 fourth-grade boys were absent. How many 
fourth grade boys were at Sunny Hill School on Thursday?
A: Let's think step by step. There are 67 fourth graders in total. 38 are girls, 
so 67 – 38 = 29 are boys. 6 girls were absent, but the question asks about the 
number of boys present. So 29 - 6 = 23 boys were at school on Thursday. The final 
answer is 23.

Q: There are 67 fourth-graders at Sunny Hill School. 38 of them are girls. On 
Thursday, 6 fourth-grade girls and 6 fourth-grade boys were absent. How many 
fourth grade boys were at Sunny Hill School on Thursday?
A: Let's think step by step. There are 67 fourth graders total. 38 are girls. That 
means 67 - 38 = 29 are boys. Thursday 6 girls were absent, but no information 
about how many boys were absent. So, all 29 boys were at school.

Incorrect Reasoning Trace

Correct Reasoning Trace

Pivotal token identified by Prefix method Pivotal token identified by Branching method

Figure 2: Example of a GSM-Symbolic math word problem showing both a correct and an incor-
rect reasoning trace produced by the Gemma-2-9b-Instruct model. The correct trace (top) is
obtained through greedy decoding, while the incorrect trace (bottom) is produced by non-greedy
sampling.

Prefix Method: Given a pair of reasoning traces, this method identifies the first token that is
not shared between them as the pivotal token. For instance, in the Figure 2, the first uncommon
token between both the reasoning traces is the “,” and “.” tokens. Consequently, its prior token, i.e.
“girls”, becomes the intervention token.

Although efficient, this method can sometimes identify suboptimal pivotal and intervention tokens.
For example, in Figure 2, the first differing tokens in the two traces are “,” and “.”. However,
these tokens are not the decisive points that steer the model toward a correct or incorrect reason-
ing path. Specifically, when the reasoning trace “There are 67 fourth graders total.
38 are girls.” is provided as input, the model still produces the correct final answer via greedy
sampling. This shows that the “.” token is not a decisive token.

Branching Method: To address this challenge, we propose a method based on iterative greedy
decoding with partial prefixes. Suppose we have a correct reasoning trace (i.e. token sequence)
T corr = (x1, x2, . . . , xn), obtained via greedy decoding, and an incorrect reasoning trace T incorr =
(y1, y2, . . . , ym), obtained via non-greedy decoding. Our goal is to identify the pivotal token in
T incorr that steers the model toward an incorrect final answer. Formally, let f(·) denote the fi-
nal answer of a reasoning trace generated via greedy decoding, and let Acorr and Aincorr denote
the correct and incorrect final answers, respectively. Then a token yk is defined as pivotal if
f(y1, . . . , yk−1) ∈ Acorr and f(y1, . . . , yk) ∈ Aincorr.

Operationally, we construct a prefix of length k from T incorr, i.e., (y1, . . . , yk), and feed it into the
model to complete the reasoning trace using greedy decoding. We then check whether the resulting
final answer is correct. If it is correct, we extend the prefix by adding the next token yk+1 and
repeat the procedure. If the final answer is incorrect, then the newly added token yk is identified
as the pivotal token, since its inclusion causes greedy decoding to lead to an incorrect outcome. In
the example shown in Figure 2, it is the “no” token which pushes the model trajectory towards an
incorrect final answer. Hence, it becomes the pivotal token.

In the opposite case, when greedy decoding yields an incorrect reasoning trace while non-greedy
decoding yields a correct one, we apply the same procedure. The difference is that the pivotal
token is now defined as the first token in the non-greedy trace whose inclusion in the prefix causes
greedy decoding to switch from an incorrect to a correct final answer. In this case, yk is pivotal if
f(y1, . . . , yk−1) ∈ Aincorr and f(y1, . . . , yk) ∈ Acorr.

Finally, after identifying the intervention token and corresponding pair of reasoning traces for a given
GSM-Symbolic instance, we construct the Error-Localization dataset. As illustrated in Figure 3 each
instance in this dataset consists of three components: 1) Prefix: the shared reasoning trace up to and
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Error-Localization Dataset Example

prefix: There are 67 fourth graders in total. 38 are 
girls, so 67 - 38 = 29 are boys. 6 girls were absent, but
desired_token: the
undesired_token: no

Figure 3: The Error-Localization dataset contains three components: prefix: the shared reasoning
trace between the correct and incorrect paths (including intervention token), desired token: the token
the model should generate to produce the correct answer, and undesired token: the token the model
should avoid generating to ensure the correct answer.

including the intervention token, 2) Desired token: the token following the intervention token in the
correct reasoning trace, and 3) Undesired token: the token following the intervention token in the
incorrect reasoning trace.

3.1.2 IDENTIFYING CONSTRUCTIVE CIRCUITS WITH DCM

Using the training dataset generated in the previous step, we can localize errors in an incorrect rea-
soning trace to specific tokens. However, we can go further and identify the model components
responsible for promoting the correct reasoning trace, or more specifically, the generation of the de-
sired token, as shown in Figure 1(b). To achieve this, we leverage the Desiderata-based Component
Masking (DCM) technique (Davies et al., 2023; De Cao et al., 2022; Prakash et al., 2024; 2025).

DCM learns a binary mask over key, query, and value weight matrices of all attention heads and MLP
neurons in the LM by minimizing a tailored loss function. More specifically, it learns n heads +
2 ∗ n key value heads + n mlp neurons parameters for each layer, where n heads represents
the number of attention heads, n key value heads represents the number of key and value heads in
Grouped Attention, and n mlp neurons represents the number of MLP neurons. Each parameter
in the mask represents whether its corresponding model component should be intervened on or left
unchanged during the forward pass. We use the following equation to update a model component’s
output using the mask:

horg = mi ∗ 2 ∗ horg + (1−mi) ∗ horg (1)

where horg represents the original model component output and mi represents the corresponding
mask value. Concretely, if a component’s mask value is 1, its activation is scaled by 2; otherwise, it
remains unchanged. It is implemented using NNsight (Fiotto-Kaufman et al., 2024).

Since our goal is to isolate the components that promote the desired token while suppressing the
undesired one, we use a loss function defined as the logit difference between the undesired and
desired tokens to optimize the binary mask. To encourage sparsity in the mask, we add an L1-
norm regularization term, weighted by the hyperparameter λ. It ensures that only a small subset of
components is identified as influential. Formally, the loss is:

L = −(logitdesired token − logitundesired token) + λ
∑

m (2)

where λ controls the sparsity of the binary mask, and its optimal value is selected by sweeping over
a range of candidate values. We report the percentage of mask components in the results section,
computed as |Mlearned|

|M | , where |Mlearned| denotes the number of components selected by the learned
mask and |M | is the total number of components in the mask.

We train the binary mask using the Adam optimizer for 50 epochs, with a learning rate of 5e-3, batch
size of 8, and tuning the λ via parameter sweeps. Full details are in Appendix C. To prevent unnec-
essary computation, we apply early stopping: if the mask remains unchanged after 20% of batches
in an epoch (i.e., the set of selected components does not vary), training is halted. Additionally, after
each gradient update, we clamp the mask values to the range [0, 1], as values outside this interval are
incompatible with Equation 1.

In summary, after optimization, the learned mask identifies a small set of model components, the
circuit, whose amplified outputs steer the model toward the correct reasoning trace and final answer.
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3.1.3 TARGETED PARAMETER UPDATES

After identifying the model components that promote the desired token, we update only these com-
ponents using gradient descent, as illustrated in Figure 1(c). We use the negative logit difference
between the desired and undesired tokens as the loss function from the Error-Localization dataset.
Gradients are applied exclusively to the previously identified components. Because the training
dataset is small and only a limited number of updates are expected, we compute gradients over the
entire dataset rather than using mini-batches.

We perform a total of 50 gradient update steps, evaluating the model’s exact match accuracy on the
validation set every 2 steps up to step 10, and subsequently every 10 steps. At the end of training,
we select the best-performing updated model and evaluate it on the test set and report the results in
Section 5. The optimal learning rate is determined through a sweep over candidate values1.

4 EXPERIMENTAL SETUP

4.1 DATASETS FOR MATH AND GENERAL ABILITIES

We evaluate the effectiveness of CircuitTuning on improving the mathematical reasoning capabil-
ities of LMs while preserving other skills gained during pretraining. For math reasoning, we use
the GSM-Symbolic (Mirzadeh et al., 2025) benchmark, which provides templates derived from the
GSM8K dataset (Cobbe et al., 2021). The benchmark contains 100 math problem templates across
diverse topics, each with 50 instances. We randomly divide these instances into training, valida-
tion, and test sets in proportions of 0.52, 0.08, and 0.40, respectively. Thus, for each of the 100
templates, there are 26 training, 4 validation, and 20 test instances. We further filter our train split
to only include templates whose mean accuracy is below 0.8 on the target model. A full list of
selected templates is provided in Appendix B. In the rest of this paper, we refer to these splits as
GSym-Train, GSym-Val, and GSym-Test respectively.

It is important to note that the model does not always produce a counterfactual reasoning trace under
non-greedy sampling. Consequently, some GSM-Symbolic instances are absent from the Error-
Localization dataset for the prefix and branching methods. As a result, the size of the training dataset
varies across models and localization generation types, and it is always smaller than the maximum
of 2600. Table 1 reports the training set sizes for all models considered. The validation and test sets
consistently contain 400 and 2000 instances, respectively, from the original GSM-Symbolic dataset.

In addition to mathematical reasoning, we also evaluate the general capabilities of LMs using the
MMLU, TriviaQA, and TruthfulQA benchmarks (Hendrycks et al., 2021; Joshi et al., 2017; Lin
et al., 2022). MMLU includes questions spanning a broad range of topics. To better assess any
unintended effects of enhancing math reasoning, a skill central to many STEM tasks, we evaluate
on two MMLU subsets: “MMLU Stem” and “MMLU Humanities” as defined within MMLU. A
complete list of both STEM and Humanities categories is provided in Appendix D.

4.2 EVALUATED MODEL FAMILIES

We evaluate CircuitTuning across multiple families of open-weight LLMs to assess its robustness
and generality. We focus on the Gemma and OLMo model families (Team et al., 2024; Groeneveld
et al., 2024). Specifically, we analyse Gemma-2-9b-Instruct, Gemma-2-2b-Instruct,
OLMo-2-1124-13B-Instruct, and OLMo-2-1124-7B-Instruct models. Our manual
inspection of erroneous reasoning traces of these models reveals that most errors stem from failures
in logical reasoning steps rather than from arithmetic mistakes. For example, Figure 2 illustrates
how Gemma-2-9b-Instruct produces an incorrect answer to a GSM-Symbolic instance due to
its inability to extract the necessary information from the question, rather than an arithmetic error.

4.3 BASELINE: LORA FINE-TUNING

We compare our method against LoRA fine-tuning, a well-established parameter-efficient fine-
tuning method (Hu et al., 2022) often used for task-adaptation. We use the same GSM-Symbolic

1Candidate learning rates: 1e-2, 5e-3, 1e-3, 5e-4, 1e-4, 5e-5, 1e-5.
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Configuration Dataset Dataset
Size

%
Mask

GSym-Test
Acc

Std ∆ % Acc

Gemma-2-9B-Instruct

Original Model – – – 0.807 – –
CircuitTuning w mask Prefix 510 0.13% 0.848 ±0.006 4.1
CircuitTuning w/o mask Prefix 510 – 0.849 ±0.011 4.2
CircuitTuning w mask Branching 512 0.17% 0.881 ±0.015 7.4
CircuitTuning w/o mask Branching 512 – 0.875 ±0.010 6.8
LoRA Finetuning GSym-Train 676 – 0.850 – 4.3

Gemma-2-2B-Instruct

Original Model – – – 0.411 – –
CircuitTuning w mask Prefix 1,283 0.92% 0.440 ±0.011 2.9
CircuitTuning w/o mask Prefix 1,283 – 0.502 ±0.018 9.1
CircuitTuning w mask Branching 1,244 1.59% 0.525 ±0.010 11.4
CircuitTuning w/o mask Branching 1,244 – 0.532 ±0.009 12.1
LoRA Finetuning GSym-Train 2,028 – 0.579 – 16.8

OLMo-2-1124-13B-Instruct

Original Model – – – 0.742 – –
CircuitTuning w mask Prefix 864 0.37% 0.768 ±0.018 2.6
CircuitTuning w/o mask Prefix 864 – 0.762 ±0.002 2.0
CircuitTuning w mask Branching 845 0.44% 0.786 ±0.005 4.4
CircuitTuning w/o mask Branching 845 – 0.784 ±0.006 4.2
LoRA Finetuning GSym-Train 1,118 – 0.797 – 5.5

OLMo-2-1124-7B-Instruct

Original Model – – – 0.739 – –
CircuitTuning w mask Prefix 974 0.19% 0.772 ±0.018 3.3
CircuitTuning w/o mask Prefix 974 – 0.777 ±0.006 3.8
CircuitTuning w mask Branching 983 0.25% 0.794 ±0.006 5.5
CircuitTuning w/o mask Branching 983 – 0.806 ±0.012 6.7
LoRA Finetuning GSym-Train 1,222 – 0.746 – 0.7

Table 1: Performance comparison of CircuitTuning and LoRA fine-tuning across multiple models
on the GSM-Symbolic benchmark. For each model, we report accuracy on the GSym-Test under
different training configurations: (i) CircuitTuning with a mask (updates restricted to components
identified by the learned mask), (ii) CircuitTuning without a mask (updates applied more broadly),
and (iii) LoRA fine-tuning. Results are shown for both Prefix- and Branching-based localization
datasets. We also report dataset sizes, the percentage of model components updated, mean test
accuracy with standard deviation, and the absolute accuracy improvement (∆% Acc).

data splits used for CircuitTuning as described in 4.1. We apply LoRA to both the attention and MLP
components of each transformer block, and run finetuning with an effective batch size of 32 for two
epochs. We evaluate the model on the validation set every 10 steps with the same exact-match met-
ric used for CircuitTuning and select the best-performing model checkpoint. We also sweep over
a number of learning rates and report the best performing results on the test set (GSym-Test) in
Section 5. Other LoRA hyperparameters, such as rank, learning rate schedule, etc, are fixed for all
models and complete details can be found in E.1.

5 EXPERIMENTAL RESULTS ON MATH REASONING

This section presents the results of the original unmodified models, the models updated with Circuit-
Tuning, and LoRA finetuned models on GSym-Test (CircuitTuning results are averaged over three
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random seeds). For each localization dataset generation type, we report two configurations: (1)
CircuitTuning w/ mask, where only the model components identified by the mask are updated, and
(2) CircuitTuning w/o mask, an ablation where we skip model component localization via DCM and
allow any model component to be updated during the gradient update step. The purpose of report-
ing both configurations is to disentangle the effects of model component localization and reasoning
token localization.

Table 1 presents the results, highlighting a few key observations. First, models updated with Cir-
cuitTuning show substantially better performance than their corresponding base models across mul-
tiple model families. The improvement can be as high as 12.1% (for Gemma-2-2b-Instruct)
using only 1244 samples. Moreover, CircuitTuning surpasses LoRA, a strong baseline, in both
the Gemma-2-9b-Instruct and OLMo-2-1124-7B-Instruct models. These results in-
dicate that CircuitTuning is effective for fine-tuning specific capabilities of LMs, particularly in
data-constrained settings where maximizing performance from limited samples is critical.

Second, we find that models updated with the Branching localization dataset consistently outper-
form those updated with the Prefix method across model families. This suggests that accurately
identifying the pivotal reasoning token that steers the model toward incorrect reasoning is critical
for improving performance. More broadly, it underscores the importance of developing improved
techniques for localizing token(s) within long reasoning traces, as a means of uncovering the under-
lying circuits and mechanisms responsible for different reasoning tasks.

Finally, we observe that the number of attention heads and MLP neuron weights that need to be
updated to improve performance constitutes only a small fraction of the total model components.
For example, achieving a 7.4% performance gain in Gemma-2-9b-Instruct requires updating
only 0.17% of its components. This suggests that a limited subset of model components is primarily
responsible for correct reasoning on the GSM-Symbolic dataset, and amplifying their contribution
can significantly enhance performance. Moreover, since CircuitTuning updates only a small fraction
of the model, we expect minimal interference with other capabilities acquired during pre-training, a
hypothesis we evaluate in the following Section 6.

6 PRESERVING BROADER LM ABILITIES

Results in Table 1 show that CircuitTuning is effective in improving task performance for multiple
models. However, its potential side effects on broader capabilities remain unclear. To address
this, we evaluate the general abilities of updated LMs using widely adopted benchmarks, including
MMLU, TriviaQA, and TruthfulQA (Hendrycks et al., 2021; Joshi et al., 2017; Lin et al., 2022)
using LM-evaluation-harness (Gao et al., 2024). Specifically, we compare the best updated model
with CircuitTuning against the original model as well as LoRA finetuned model to assess the impact
of these updates on overall performance. As described in Section 4.1, we report two values for the
MMLU benchmark: the mean accuracy over STEM topics and over Humanities topics.

As shown in Table 2, models updated with CircuitTuning achieve performance comparable to the
base model on various standard benchmarks, suggesting that they retain most of the capabilities
acquired during pretraining. The combination of targeted accuracy gains with minimal degradation
highlights CircuitTuning as a safe and effective method for fine-tuning, particularly in applications
where retaining broad competencies is essential.

7 DISCUSSION AND CONCLUSION

This work introduced CircuitTuning, a targeted model update method for amplifying specific model
capabilities while preserving general performance. Unlike conventional finetuning strategies that
update a large number of model components, CircuitTuning identifies pivotal reasoning errors and
the circuit responsible for correct reasoning, then applies updates only to those components. Our
experiments demonstrate that CircuitTuning substantially improves mathematical reasoning across
multiple model families, up to +11.4% accuracy gain, while modifying as little as 1.59% of compo-
nents. Importantly, these improvements come with minimal degradation on general-purpose bench-
marks such as MMLU, TriviaQA, and TruthfulQA. These findings suggest that model capabilities

8
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Configuration GSym-
Test

MMLU
Humanities

MMLU
STEM

TriviaQA TruthfulQA

Gemma-2-9B-Instruct
Prefix w mask 4.1 0.1 0.6 -0.4 0.0
Prefix w/o mask 4.2 -0.4 0.6 -4.0 0.1
Branching w mask 7.4 0.2 0.8 2.0 -0.3
Branching w/o mask 6.8 0.2 0.7 0.0 -0.3
LoRA 4.3 0.3 0.5 1.9 -0.1

Gemma-2-2B-Instruct
Prefix w mask 2.9 0.2 0.1 0.8 -0.7
Prefix w/o mask 9.1 -0.6 0.8 -1.3 -1.6
Branching w mask 11.4 0.0 0.3 1.3 0.1
Branching w/o mask 12.1 0.3 0.6 1.6 0.7
LoRA 16.8 -1.0 0.5 0.5 -2.0

OLMo-2-1124-13B-Instruct
Prefix w mask 2.6 0.1 0.1 -0.4 -0.1
Prefix w/o mask 2.0 0.4 0.0 -0.0 -0.3
Branching w mask 4.4 0.1 0.1 -0.6 -0.3
Branching w/o mask 4.2 0.0 -0.2 -0.5 -0.5
LoRA 5.5 0.4 0.2 1.7 0.1

OLMo-2-1124-7B-Instruct
Prefix w mask 3.3 -0.5 -0.4 -0.0 -0.0
Prefix w/o mask 3.8 0.1 -0.3 -0.3 0.8
Branching w mask 5.5 -0.1 -0.1 -0.1 0.1
Branching w/o mask 6.7 0.4 0.2 -0.6 2.0
LoRA 0.7 -0.1 -0.3 0.4 -0.2

Table 2: Absolute percentage difference (in 0–100 scale) between original model and updated model
for four CircuitTuning conditions and LoRA. Results are shown over five benchmarks: GSym-Test,
MMLU Humanities, MMLU STEM, TriviaQA, and TruthfulQA.

are often governed by sparse, localized subnetworks that can be selectively strengthened to achieve
reliable skill amplification.

Beyond improving mathematical reasoning, CircuitTuning highlights a broader principle: mech-
anistically informed, sparse updates provide a pathway to safe and effective model adaptation.
This offers practical benefits for real-world deployment, where users expect improvements in tar-
geted abilities without unexpected trade-offs, and contributes to the growing intersection between
parameter-efficient finetuning and interpretability-guided model editing.

There are, however, limitations. We focused on mathematical reasoning as a testbed, leaving open
whether similar gains can be achieved for other complex domains such as code generation or sci-
entific problem solving. The current approach requires constructing error-localization datasets for
token localization, which may be costly in settings without well-defined correctness signals. Further,
our experiments considered only a single fine-tuning stage, whereas deployed models often undergo
multiple rounds of fine-tuning to enhance different capabilities. However, in such continual learning
settings, conventional techniques may introduce substantial regressions (Scialom et al., 2022; Luo
et al., 2025), making CircuitTuning a promising alternative.

Future work could address these limitations by (i) extending CircuitTuning to other capabilities
and domains, such as code generation, scientific reasoning, or multi-modal tasks, thereby testing
its generality beyond symbolic math; (ii) automating the error-localization process using frontier
LLMs to reduce reliance on multiple generations and improve scalability to datasets with longer
reasoning traces; and (iii) incorporating more sophisticated optimization techniques to refine model
components more efficiently than naive gradient descent.

9
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs as a writing assistant to correct grammatical and typographical errors; beyond this,
they did not contribute to any stage of the research.

B TEMPLATES UTILIZED IN ERROR-LOCALIZATION DATASET GENERATION

Model Template IDs

gemma-2-9b-it 520, 364, 116, 184, 984, 1247, 480, 266, 20, 410,
43, 1207, 456, 989, 357, 1133, 1165, 434, 406, 1239,
858, 1088, 1021, 39, 652, 976

gemma-2-2b-it 520, 1305, 164, 991, 740, 103, 491, 364, 365, 496,
116, 125, 1025, 1031, 1020, 145, 401, 788, 918, 921,
158, 930, 1189, 1063, 184, 440, 458, 718, 728, 984,
473, 1247, 480, 636, 1277, 1026, 265, 266, 11, 20,
410, 1053, 800, 546, 937, 43, 1207, 1084, 320, 456,
982, 989, 99, 357, 1133, 1141, 737, 554, 1165, 1264,
304, 242, 434, 336, 661, 406, 1239, 858, 955, 1088,
459, 1021, 39, 74, 107, 652, 1164, 976

OLMo-2-1124-7B-Instruct 520, 1305, 991, 103, 873, 116, 1031, 1020, 145, 788,
184, 728, 984, 1247, 1275, 636, 1026, 265, 266, 11,
20, 410, 1053, 800, 43, 1207, 320, 989, 99, 357, 1133,
554, 1165, 1264, 304, 242, 434, 336, 406, 1239, 858,
1088, 459, 1021, 39, 652, 976

OLMo-2-1124-13B-Instruct 520, 1305, 300, 991, 740, 103, 364, 116, 184, 728,
984, 473, 1247, 1275, 1026, 265, 266, 11, 20, 410,
1053, 43, 1207, 1084, 320, 989, 99, 357, 1133, 554,
1264, 304, 434, 406, 1239, 858, 1088, 459, 39, 74,
107, 652, 976

Table 3: Template IDs used for training across different models.

C DCM TUNING DETAILS

Category Hyperparameter Value
Training schedule Base learning rate 5e-3

Epochs 50
Effective batch size 8

Optimization Optimizer Adam
β 0.9
λ {1e-2, 1e-3, 5e-3, 1e-4}

Table 4: Hyperparameters used for Desiderata-based Component Masking (DCM) tuning. Values
include training schedule, optimizer settings, and λ sweep for sparsity control.

D MMLU CATEGORIES

D.1 MMLU STEM TASKS

mmlu abstract algebra, mmlu anatomy, mmlu astronomy, mmlu college biology,
mmlu college chemistry, mmlu college computer science, mmlu college mathematics,
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mmlu college physics, mmlu computer security, mmlu conceptual physics,
mmlu electrical engineering, mmlu elementary mathematics, mmlu high school biology,
mmlu high school chemistry, mmlu high school computer science,
mmlu high school mathematics, mmlu high school physics, mmlu high school statistics,
mmlu machine learning

D.2 MMLU HUMANITIES TASKS

mmlu formal logic, mmlu high school european history, mmlu high school us history,
mmlu high school world history, mmlu international law, mmlu jurisprudence,
mmlu logical fallacies, mmlu moral disputes, mmlu moral scenarios, mmlu philosophy,
mmlu prehistory, mmlu professional law, mmlu world religions

E TRAINING DETAILS

E.1 LORA FINETUNING DETAILS

Category Hyperparameter Value
Training schedule Base learning rate {3e-5, 5e-5, 1e-4, 3e-4}

Warmup steps 5
Schedule Linear warmup → cosine decay
Epochs 2
Effective batch size 32

Optimization Optimizer AdamW
(β1, β2) 0.9, 0.999
ϵ 1e-8
Max grad norm 1.0

Regularization Weight decay 0.01
Dropout 0.1

LoRA adapter Rank (r) 16
Alpha (α) 32

Table 5: LoRA fine-tuning hyperparameters. The exact number of optimization steps varies for each
model based on the size of the training data.
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Table 6: LoRA finetuning results across learning rates. The first row for each model is the unmodi-
fied (Original) model.

Model Learning Rate GSym-Test
MMLU
STEM

MMLU
Humanities

Trivia
QA

Truthful
QA

Gemma2 2B

Original 0.411 0.446 0.474 0.409 0.424
3e-6 0.427 0.446 0.474 0.406 0.423
5e-6 0.360 0.450 0.472 0.407 0.419
1e-5 0.342 0.453 0.472 0.412 0.411
2e-5 0.399 0.459 0.468 0.419 0.403
3e-5 0.480 0.462 0.467 0.419 0.401
5e-5 0.579 0.451 0.464 0.414 0.404
1e-4 0.562 0.444 0.467 0.417 0.415
3e-4 0.578 0.454 0.460 0.410 0.397

Gemma2 9B

Original 0.807 0.609 0.620 0.536 0.536
3e-6 0.810 0.609 0.620 0.535 0.537
5e-6 0.808 0.610 0.619 0.536 0.538
1e-5 0.805 0.610 0.619 0.535 0.535
2e-5 0.793 0.612 0.621 0.547 0.547
3e-5 0.850 0.614 0.623 0.555 0.535
5e-5 0.668 0.615 0.623 0.560 0.532
1e-4 0.609 0.617 0.632 0.581 0.528
3e-4 0.601 0.611 0.628 0.573 0.523

Olmo 7B

Original 0.739 0.507 0.557 0.622 0.468
3e-6 0.741 0.507 0.556 0.623 0.467
5e-6 0.745 0.507 0.557 0.622 0.468
1e-5 0.746 0.504 0.556 0.626 0.466
2e-5 0.644 0.505 0.557 0.630 0.465
3e-5 0.660 0.507 0.556 0.630 0.465
5e-5 0.585 0.509 0.559 0.630 0.463
1e-4 0.616 0.514 0.559 0.634 0.461
3e-4 0.442 0.514 0.559 0.638 0.447

Olmo 13B

Original 0.742 0.564 0.601 0.703 0.512
3e-6 0.754 0.565 0.602 0.705 0.512
5e-6 0.772 0.565 0.603 0.712 0.512
1e-5 0.797 0.566 0.605 0.720 0.513
2e-5 0.767 0.567 0.605 0.723 0.509
3e-5 0.775 0.566 0.605 0.724 0.509
5e-5 0.776 0.567 0.606 0.726 0.507
1e-4 0.697 0.569 0.601 0.727 0.504
3e-4 0.540 0.567 0.605 0.737 0.499
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