Under review as a conference paper at ICLR 2026

CIRCUITTUNING: IMPROVING MATH REASONING IN
LILMS VIA TARGETED SUB-NETWORK UPDATES

Anonymous authors
Paper under double-blind review

ABSTRACT

Prior studies investigating the internal workings of LLMs have uncovered sparse
subnetworks, often referred to as circuits, that are responsible for performing spe-
cific tasks. Additionally, it has been shown that model performance improvement
through fine-tuning often results from the strengthening of existing circuits in the
model. Taken together, these findings suggest the possibility of intervening di-
rectly on such circuits to make precise, task-targeted updates. Motivated by these
findings, we propose a novel method called CircuitTuning which identifies piv-
otal tokens from model reasoning traces as well as model components responsi-
ble for the desired task, and updates only those components. Applied to mathe-
matical reasoning, it improves accuracy by up to +11.4% across multiple models
while modifying as little as 1.59% of model components, with minimal impact
on other abilities as measured by MMLU, TriviaQA, and TruthfulQA. These re-
sults demonstrate that targeted capabilities can be reliably enhanced by selectively
updating a sparse set of model components.

1 INTRODUCTION

Large language models (LLMs) have demonstrated impressive general-purpose reasoning abilities,
yet they continue to struggle with mathematical reasoning tasks, where even small logical errors can
derail problem-solving (Shojaee et al., 2025} [Marjanovic et al.| 2025} Ballon et al., 2025)). Existing
works have attempted to improve math reasoning through various prompting and fine-tuning strate-
gies, which have led to modest gains (Wang et al.,|2022b}; (Chen et al., 2022} |Lewkowycz et al., 2022
Lightman et al.|[2023). In this work, we propose an alternative approach that leverages insights from
mechanistic interpretability to achieve more targeted improvements.

Recent progress in mechanistic interpretability has revealed that model behavior is often governed
by sparse subnetworks, or circuits, consisting of attention heads and MLP neurons that jointly im-
plement specific capabilities (Wang et al., |2022a; Hanna et al., [2023; Merullo et al.| 2023} |Prakash
et al., [2024; Marks et al.,[2025)). Jain et al.|(2023)); [Prakash et al.| (2024)); (Chhabra et al. (2025)) shows
that fine-tuning frequently strengthens these existing circuits rather than creating entirely new mech-
anisms. Additionally, Rai et al.| (2025)); |Ortu et al.|(2024) suggest that there is a competition among
circuits within a model’s internal computation, where some circuits contribute to correct reasoning
while others introduce noise. Together, these findings suggest that targeted interventions on circuits
could enable precise updates that enhance specific skills while minimizing unrelated disruption.

In this work, we introduce CircuitTuning, a mechanistically informed fine-tuning method that per-
forms sparse, targeted updates to improve LLM reasoning. CircuitTuning operates in three stages:
(i) generating reasoning traces to identify pivotal tokens where incorrect solutions diverge from cor-
rect ones, (ii) localizing the attention heads and MLP neurons that promote correct reasoning paths,
and (iii) applying gradient updates exclusively to those components. By amplifying the contribu-
tion of the circuits most responsible for correct reasoning, CircuitTuning strengthens mathematical
reasoning ability while leaving unrelated skills largely intact.

Applied to the GSM-Symbolic benchmark Mirzadeh et al.| (2025)), CircuitTuning yields accuracy
improvements of up to +11.4% when tested across multiple model families, while modifying as lit-
tle as 1.59% of components (i.e. attention heads and MLP neurons). Importantly, these gains come
with minimal degradation on general benchmarks including MMLU, TriviaQA, and TruthfulQA,

Under review as a conference paper at ICLR 2026

underscoring that targeted improvements can be achieved without compromising broad capabili-
ties (Hendrycks et al.| 2021; Joshi et al.,[2017} |Lin et al., [2022).

Our results demonstrate that LLM skills can be selectively enhanced by updating only the sparse sub-
network that implements them. Beyond mathematical reasoning, this highlights a broader principle:
mechanistically guided, sparse updates provide a pathway toward interpretable model adaptation.

2 RELATED WORKS

2.1 MECHANISTIC INTERPRETABILITY IN LLMS

The field of mechanistic interpretability seeks to reverse-engineer the internal computations of deep
neural networks (Olah et al.| [2020; Mueller et al., 2024; [Saphra & Wiegreffe, 2024). A prominent
line of work focuses on uncovering circuits, sparse sets of attention heads and MLP neurons that
collectively drive specific model behaviors, such as indirect object identification, greater-than, and
entity tracking Wang et al. (2022a); [Hanna et al.| (2023); |Prakash et al.[| (2024). Recent research
has also extended this perspective to the sparse feature space, identifying and editing interpretable
circuits that govern feature-level interactions Marks et al.[(2025); |Ameisen et al.| (2025).

A recurring theme across this line of work is that LM behavior is not uniformly distributed across
parameters, but rather localized within a relatively small subset of components. Jain et al.| (2023));
Prakash et al.|(2024); |Chhabra et al.[(2025) show that fine-tuning often strengthens existing circuits
rather than creating entirely new mechanisms, while (Merullo et al.,[2023)) highlights how subcircuits
are reused across different tasks. These findings motivate our approach of selectively amplifying the
circuits responsible for the target task, while minimizing disruption to unrelated capabilities.

2.2 MATHEMATICAL REASONING WITH LLMS

Improving mathematical reasoning in LLMs has been a central challenge, as even minor logical
mistakes can derail otherwise promising problem-solving attempts (Wang et al., [2025). A line of
research has focused on prompting strategies, such as chain-of-thought prompting, self-consistency,
and program-of-thoughts prompting, which encourage models to externalize intermediate steps and
thereby improve reliability (Wang et al.| 2022b; (Chen et al.,|2022; |Lightman et al.} [2023)). Another
line of work investigates fine-tuning techniques, including supervised fine-tuning on reasoning traces
or parameter-efficient approaches like LoRA, which can adapt models toward stronger mathematical
reasoning (Lewkowycz et al.,[2022).

Complementary to behavioral approaches, recent research has also examined the internal mecha-
nisms of LLMs to better understand their mathematical reasoning capabilities. For example, |Ye
et al.| (2024) analyzed the internal activations of a transformer model trained from scratch on a math
reasoning dataset, using probes to uncover mechanisms underlying the reasoning ability. Similarly,
Sun et al| (2025b)) trained probes to predict the correctness of outputs in 3-digit addition, showing
strong generalization to addition-only GSM8K problems. By leveraging these probes, they selec-
tively re-prompted erroneous reasoning steps, thereby improving task accuracy. A closely related
study, Sun et al.|(2025a)), introduced ThinkEdit, which identifies attention heads responsible for short
reasoning traces and updates their weights to extend these traces, ultimately enhancing model per-
formance. Building on this line of work, we show that localization-informed model update can not
only affect reasoning trace length but also strengthen mathematical capabilities, enabling targeted
interventions to improve overall performance.

3 CIRCUITTUNING

3.1 METHOD OVERVIEW

We propose a novel technique, called CircuitTuning, to improve the mathematical reasoning capa-
bilities of an LM, without affecting other abilities. The underlying premise of this method relies on
two empirical insights from the mechanistic interpretability literature: 1) Specific tasks in LM are
often executed by a sparse subnetwork, which gets augmented during fine-tuning, leading to model
performance improvement (Jain et al., 2023; |Prakash et al., 2024} |(Chhabra et al., |2025)). 2) There

Under review as a conference paper at ICLR 2026

- _ i —loai AL
L = —(logitgesirea ioyltundesired) +xm

c
Correct Reasoning Trace Logits o
’ b=
@
a0
oﬁo Error-Localization Dataset Example §
=
g
Incorrect Reasoning Trace 9
— S
7 o

Language 4

Model Tokons Tokens

(a) (b) (c)

Figure 1: Overview of CircuitTuning: (a) Token Localization: For a given problem, we generate
both correct and incorrect reasoning traces and identify the pivotal token where the incorrect trace
diverges from the correct one. The intervention point is chosen as the token immediately preceding
this divergence. (b) Model Component Localization: Using the Error-Localization dataset con-
structed from these reasoning trace pairs, we apply Desiderata-based Component Masking (DCM)
to learn a sparse binary mask over attention heads and MLP neurons. This identifies the subset of
components that most strongly promote the desired token. (c) Model Update: Gradient updates are
then applied exclusively to the localized components, amplifying constructive computations while
leaving the rest of the network unchanged.

is a competition among various mechanisms within an LM’s internal computation, some of which
are sound for the given task, while others are introducing noise, as suggested in [Rai et al.| (2025);
Ortu et al.| (2024). In addition to existing works in the literature indicating such a phenomenon
inside LM’s internal computation, a good behavioral performance of the models that we investi-
gate suggests that the models have a decent idea of solving the math reasoning tasks; however, on
certain tasks, they deviate towards incorrect reasoning, which leads to an incorrect final answer.
To overcome this shortcoming, CircuitTuning amplifies the signal from model components that are
constructively generating the correct response. The technique consists of three steps: 1) Generation
of Error-Localization dataset, 2) Training binary mask to localize constructive model components,
and 3) Updating only those model components using a few gradient update steps. The following
subsections describe each step in more detail, including its role and the procedure.

3.1.1 LOCALIZING REASONING ERRORS

The first step of CircuitTuning is to identify the point in the reasoning trace where the model begins
to deviate toward an incorrect answer, as illustrated in a). Prior work on circuit discovery
has primarily examined tasks where the output is produced in a single forward pass, such as indirect
object identification, entity tracking, and greater-than comparison (Wang et al.,2022a; |Prakash et al.,
2024; |Hanna et al.| [2023), making it natural to apply circuit discovery methods at the final token
position. In contrast, mathematical reasoning involves multi-step computations, and it is less clear
at which point to apply the circuit discovery algorithm to uncover the circuit that can be enhanced
to improve overall reasoning ability. To address this, we begin circuit localization by identifying the
token in the reasoning trace where an intervention should occur. Specifically, for a GSM-Symbolic
instance where the model produces an incorrect solution through greedy sampling, we aim to locate
the first token in the reasoning trace that drives the model toward this error. We refer to this token
as the pivotal token. Our intervention then targets the token immediately preceding it, to discourage
the model from generating the pivotal token. We refer to this intervention point, where we amplify
signals from constructive model components, as the intervention token.

For each GSM-Symbolic instance, we first sample a reasoning trace and final answer using greedy
decoding. If the answer is incorrect, we generate an alternative reasoning trace that leads to the cor-
rect answer via non-greedy decoding. Conversely, if greedy decoding produces the correct answer,
we instead generate an incorrect reasoning trace using non-greedy decoding. With this paired set of
reasoning traces, we then apply one of the following methods to identify the intervention token.

Under review as a conference paper at ICLR 2026

Correct Reasoning Trace

Q: There are 67 fourth-graders at Sunny Hill School. 38 of them are girls. On
Thursday, 6 fourth-grade girls and 6 fourth-grade boys were absent. How many
fourth grade boys were at Sunny Hill School on Thursday?

A: Let's think step by step. There are 67 fourth graders in total. 38 are girls,
so 67 - 38 = 29 are boys. 6 girls were absent, but the question asks about the
number of boys present. So 29 - 6 = 23 boys were at school on Thursday. The final

\answer is 23. /
Incorrect Reasoning Trace

Q: There are 67 fourth-graders at Sunny Hill School. 38 of them are girls. On
Thursday, 6 fourth-grade girls and 6 fourth-grade boys were absent. How many
fourth grade boys were at Sunny Hill School on Thursday?

A: Let's think step by step. There are 67 fourth graders total. 38 are girls. That

means 67 - 38 = 29 are boys. Thursday 6 girls were absent, but no information
\about how many boys were absent. So, all 29 boys were at school.)
Pivotal token identified by Prefix method Pivotal token identified by Branching method

Figure 2: Example of a GSM-Symbolic math word problem showing both a correct and an incor-
rect reasoning trace produced by the Gemma-2-9b-Instruct model. The correct trace (top) is
obtained through greedy decoding, while the incorrect trace (bottom) is produced by non-greedy
sampling.

Prefix Method: Given a pair of reasoning traces, this method identifies the first token that is
not shared between them as the pivotal token. For instance, in the the first uncommon
token between both the reasoning traces is the “,” and “.” tokens. Consequently, its prior token, i.e.
“girls”, becomes the intervention token.

Although efficient, this method can sometimes identify suboptimal pivotal and intervention tokens.
For example, in the first differing tokens in the two traces are “,” and “.”. However,
these tokens are not the decisive points that steer the model toward a correct or incorrect reason-
ing path. Specifically, when the reasoning trace “There are 67 fourth graders total.
38 are girls.”isprovided as input, the model still produces the correct final answer via greedy

@ 9

sampling. This shows that the “.” token is not a decisive token.

Branching Method: To address this challenge, we propose a method based on iterative greedy
decoding with partial prefixes. Suppose we have a correct reasoning trace (i.e. token sequence)
T = (21, %3,...,%,), obtained via greedy decoding, and an incorrect reasoning trace 7" =
(y1,Y2,---,Ym), obtained via non-greedy decoding. Our goal is to identify the pivotal token in
Tneo that steers the model toward an incorrect final answer. Formally, let f(-) denote the fi-
nal answer of a reasoning trace generated via greedy decoding, and let A o, and Ao denote
the correct and incorrect final answers, respectively. Then a token y; is defined as pivotal if
f(yla s 7yk71) € Acorr and f(yla s 7ylc) € Aincorr-

Operationally, we construct a prefix of length k from T ‘ie., (y1,...,yx), and feed it into the
model to complete the reasoning trace using greedy decoding. We then check whether the resulting
final answer is correct. If it is correct, we extend the prefix by adding the next token yi1; and
repeat the procedure. If the final answer is incorrect, then the newly added token yy, is identified
as the pivotal token, since its inclusion causes greedy decoding to lead to an incorrect outcome. In
the example shown in [Figure 2} it is the “no” token which pushes the model trajectory towards an
incorrect final answer. Hence, it becomes the pivotal token.

In the opposite case, when greedy decoding yields an incorrect reasoning trace while non-greedy
decoding yields a correct one, we apply the same procedure. The difference is that the pivotal
token is now defined as the first token in the non-greedy trace whose inclusion in the prefix causes
greedy decoding to switch from an incorrect to a correct final answer. In this case, y; is pivotal if

f(yh o ,yk_l) (S Aincorr and f(yl, A ,yk) S Ac(m.

Finally, after identifying the intervention token and corresponding pair of reasoning traces for a given
GSM-Symbolic instance, we construct the Error-Localization dataset. As illustrated in[Figure 3|each
instance in this dataset consists of three components: 1) Prefix: the shared reasoning trace up to and

Under review as a conference paper at ICLR 2026

Error-Localization Dataset Example

prefix: There are 67 fourth graders in total. 38 are
girls, so 67 - 38 = 29 are boys. 6 girls were absent, but
desired_token: the

undesired token: no

Figure 3: The Error-Localization dataset contains three components: prefix: the shared reasoning
trace between the correct and incorrect paths (including intervention token), desired_token: the token
the model should generate to produce the correct answer, and undesired_token: the token the model
should avoid generating to ensure the correct answer.

including the intervention token, 2) Desired token: the token following the intervention token in the
correct reasoning trace, and 3) Undesired token: the token following the intervention token in the
incorrect reasoning trace.

3.1.2 IDENTIFYING CONSTRUCTIVE CIRCUITS WITH DCM

Using the training dataset generated in the previous step, we can localize errors in an incorrect rea-
soning trace to specific tokens. However, we can go further and identify the model components
responsible for promoting the correct reasoning trace, or more specifically, the generation of the de-
sired token, as shown in[Figure T(b). To achieve this, we leverage the Desiderata-based Component
Masking (DCM) technique (Davies et al., 2023; De Cao et al., [2022} |Prakash et al., 2024} 2025)).

DCM learns a binary mask over key, query, and value weight matrices of all attention heads and MLP
neurons in the LM by minimizing a tailored loss function. More specifically, it learns n_heads +
2 x n_key_value_heads + n_mlp_neurons parameters for each layer, where n_heads represents
the number of attention heads, n_key_value_heads represents the number of key and value heads in
Grouped Attention, and n_mlp_neurons represents the number of MLP neurons. Each parameter
in the mask represents whether its corresponding model component should be intervened on or left
unchanged during the forward pass. We use the following equation to update a model component’s
output using the mask:

horg =m; * 2 % horg + (1 - mi) * horg (1

where h,,4 represents the original model component output and m; represents the corresponding
mask value. Concretely, if a component’s mask value is 1, its activation is scaled by 2; otherwise, it
remains unchanged. It is implemented using NNsight (Fiotto-Kaufman et al.| 2024)).

Since our goal is to isolate the components that promote the desired token while suppressing the
undesired one, we use a loss function defined as the logit difference between the undesired and
desired tokens to optimize the binary mask. To encourage sparsity in the mask, we add an L-
norm regularization term, weighted by the hyperparameter A. It ensures that only a small subset of
components is identified as influential. Formally, the loss is:

L= _(Iogitdesired,token - |0gitundesired,token) + A Z m (2)

where A controls the sparsity of the binary mask, and its optimal value is selected by sweeping over
a range of candidate values. We report the percentage of mask components in the results section,

computed as %, where | Mieamed| denotes the number of components selected by the learned

mask and | M| is the total number of components in the mask.

We train the binary mask using the Adam optimizer for 50 epochs, with a learning rate of 5e-3, batch
size of 8, and tuning the \ via parameter sweeps. Full details are in Appendix [C] To prevent unnec-
essary computation, we apply early stopping: if the mask remains unchanged after 20% of batches
in an epoch (i.e., the set of selected components does not vary), training is halted. Additionally, after
each gradient update, we clamp the mask values to the range [0, 1], as values outside this interval are
incompatible with Equation|[I]

In summary, after optimization, the learned mask identifies a small set of model components, the
circuit, whose amplified outputs steer the model toward the correct reasoning trace and final answer.

Under review as a conference paper at ICLR 2026

3.1.3 TARGETED PARAMETER UPDATES

After identifying the model components that promote the desired token, we update only these com-
ponents using gradient descent, as illustrated in [Figure T[c). We use the negative logit difference
between the desired and undesired tokens as the loss function from the Error-Localization dataset.
Gradients are applied exclusively to the previously identified components. Because the training
dataset is small and only a limited number of updates are expected, we compute gradients over the
entire dataset rather than using mini-batches.

We perform a total of 50 gradient update steps, evaluating the model’s exact match accuracy on the
validation set every 2 steps up to step 10, and subsequently every 10 steps. At the end of training,
we select the best-performing updated model and evaluate it on the test set and report the results in
Section The optimal learning rate is determined through a sweep over candidate Value

4 EXPERIMENTAL SETUP

4.1 DATASETS FOR MATH AND GENERAL ABILITIES

We evaluate the effectiveness of CircuitTuning on improving the mathematical reasoning capabil-
ities of LMs while preserving other skills gained during pretraining. For math reasoning, we use
the GSM-Symbolic (Mirzadeh et al., [2025) benchmark, which provides templates derived from the
GSMBSK dataset (Cobbe et al.,[2021). The benchmark contains 100 math problem templates across
diverse topics, each with 50 instances. We randomly divide these instances into training, valida-
tion, and test sets in proportions of 0.52, 0.08, and 0.40, respectively. Thus, for each of the 100
templates, there are 26 training, 4 validation, and 20 test instances. We further filter our train split
to only include templates whose mean accuracy is below 0.8 on the target model. A full list of
selected templates is provided in Appendix |B| In the rest of this paper, we refer to these splits as
GSym-Train, GSym-Val, and GSym-Test respectively.

It is important to note that the model does not always produce a counterfactual reasoning trace under
non-greedy sampling. Consequently, some GSM-Symbolic instances are absent from the Error-
Localization dataset for the prefix and branching methods. As a result, the size of the training dataset
varies across models and localization generation types, and it is always smaller than the maximum
of 2600. [Table T|reports the training set sizes for all models considered. The validation and test sets
consistently contain 400 and 2000 instances, respectively, from the original GSM-Symbolic dataset.

In addition to mathematical reasoning, we also evaluate the general capabilities of LMs using the
MMLU, TriviaQA, and TruthfulQA benchmarks (Hendrycks et al., |2021; Joshi et al.l 2017} |[Lin
et all 2022). MMLU includes questions spanning a broad range of topics. To better assess any
unintended effects of enhancing math reasoning, a skill central to many STEM tasks, we evaluate
on two MMLU subsets: “MMLU Stem” and “MMLU Humanities” as defined within MMLU. A
complete list of both STEM and Humanities categories is provided in Appendix

4.2 EVALUATED MODEL FAMILIES

We evaluate CircuitTuning across multiple families of open-weight LLMs to assess its robustness
and generality. We focus on the Gemma and OLMo model families (Team et al.,|2024; |Groeneveld
et al.l 2024). Specifically, we analyse Gemma-2-9b-Instruct, Gemma-2-2b-Instruct,
OLMo-2-1124-13B-Instruct, and OLMo-2-1124-7B-Instruct models. Our manual
inspection of erroneous reasoning traces of these models reveals that most errors stem from failures
in logical reasoning steps rather than from arithmetic mistakes. For example, Figure [2] illustrates
how Gemma-2-9b—-Instruct produces an incorrect answer to a GSM-Symbolic instance due to
its inability to extract the necessary information from the question, rather than an arithmetic error.

4.3 BASELINE: LORA FINE-TUNING

We compare our method against LoRA fine-tuning, a well-established parameter-efficient fine-
tuning method (Hu et al 2022) often used for task-adaptation. We use the same GSM-Symbolic

'Candidate learning rates: le-2, Se-3, le-3, Se-4, le-4, 5e-5, le-5.

Under review as a conference paper at ICLR 2026

Configuration Dataset Dataset % GSym-Test Std A % Acc
Size Mask Acc
Gemma-2-9B-Instruct
Original Model - - - 0.807 - -
CircuitTuning w mask Prefix 510 0.13% 0.848 +0.006 4.1
CircuitTuning w/o mask Prefix 510 - 0.849 +0.011 4.2
CircuitTuning w mask Branching 512 0.17% 0.881 +0.015 7.4
CircuitTuning w/o mask Branching 512 - 0.875 +0.010 6.8
LoRA Finetuning GSym-Train 676 - 0.850 - 4.3
Gemma-2-2B-Instruct
Original Model - - - 0.411 - -
CircuitTuning w mask Prefix 1,283 0.92% 0.440 +0.011 29
CircuitTuning w/o mask Prefix 1,283 - 0.502 +0.018 9.1
CircuitTuning w mask Branching 1,244 1.59% 0.525 +0.010 11.4
CircuitTuning w/o mask Branching 1,244 - 0.532 +0.009 12.1
LoRA Finetuning GSym-Train 2,028 - 0.579 - 16.8
OLMo-2-1124-13B-Instruct
Original Model - - - 0.742 - -
CircuitTuning w mask Prefix 864 0.37% 0.768 +0.018 2.6
CircuitTuning w/o mask Prefix 864 - 0.762 +0.002 2.0
CircuitTuning w mask Branching 845 0.44% 0.786 +0.005 4.4
CircuitTuning w/o mask Branching 845 - 0.784 +0.006 4.2
LoRA Finetuning GSym-Train 1,118 - 0.797 - 5.5
OLMo-2-1124-7B-Instruct
Original Model - - - 0.739 - -
CircuitTuning w mask Prefix 974 0.19% 0.772 +0.018 33
CircuitTuning w/o mask Prefix 974 - 0.777 +0.006 3.8
CircuitTuning w mask Branching 983 0.25% 0.794 +0.006 5.5
CircuitTuning w/o mask Branching 983 - 0.806 +0.012 6.7
LoRA Finetuning GSym-Train 1,222 - 0.746 - 0.7

Table 1: Performance comparison of CircuitTuning and LoRA fine-tuning across multiple models
on the GSM-Symbolic benchmark. For each model, we report accuracy on the GSym-Test under
different training configurations: (i) CircuitTuning with a mask (updates restricted to components
identified by the learned mask), (ii) CircuitTuning without a mask (updates applied more broadly),
and (iii) LoRA fine-tuning. Results are shown for both Prefix- and Branching-based localization
datasets. We also report dataset sizes, the percentage of model components updated, mean test
accuracy with standard deviation, and the absolute accuracy improvement (A% Acc).

data splits used for CircuitTuning as described in[d.I] We apply LoRA to both the attention and MLP
components of each transformer block, and run finetuning with an effective batch size of 32 for two
epochs. We evaluate the model on the validation set every 10 steps with the same exact-match met-
ric used for CircuitTuning and select the best-performing model checkpoint. We also sweep over
a number of learning rates and report the best performing results on the test set (GSym-Test) in
Section[5] Other LoRA hyperparameters, such as rank, learning rate schedule, etc, are fixed for all
models and complete details can be found in[E.1]

5 EXPERIMENTAL RESULTS ON MATH REASONING

This section presents the results of the original unmodified models, the models updated with Circuit-
Tuning, and LoRA finetuned models on GSym-Test (CircuitTuning results are averaged over three

Under review as a conference paper at ICLR 2026

random seeds). For each localization dataset generation type, we report two configurations: (1)
CircuitTuning w/ mask, where only the model components identified by the mask are updated, and
(2) CircuitTuning w/o mask, an ablation where we skip model component localization via DCM and
allow any model component to be updated during the gradient update step. The purpose of report-
ing both configurations is to disentangle the effects of model component localization and reasoning
token localization.

presents the results, highlighting a few key observations. First, models updated with Cir-
cuitTuning show substantially better performance than their corresponding base models across mul-
tiple model families. The improvement can be as high as 12.1% (for Gemma—-2-2b-Instruct)
using only 1244 samples. Moreover, CircuitTuning surpasses LoRA, a strong baseline, in both
the Gemma-2-9b-Instruct and OLMo-2-1124-7B-Instruct models. These results in-
dicate that CircuitTuning is effective for fine-tuning specific capabilities of LMs, particularly in
data-constrained settings where maximizing performance from limited samples is critical.

Second, we find that models updated with the Branching localization dataset consistently outper-
form those updated with the Prefix method across model families. This suggests that accurately
identifying the pivotal reasoning token that steers the model toward incorrect reasoning is critical
for improving performance. More broadly, it underscores the importance of developing improved
techniques for localizing token(s) within long reasoning traces, as a means of uncovering the under-
lying circuits and mechanisms responsible for different reasoning tasks.

Finally, we observe that the number of attention heads and MLP neuron weights that need to be
updated to improve performance constitutes only a small fraction of the total model components.
For example, achieving a 7.4% performance gain in Gemma—2-9b—Inst ruct requires updating
only 0.17% of its components. This suggests that a limited subset of model components is primarily
responsible for correct reasoning on the GSM-Symbolic dataset, and amplifying their contribution
can significantly enhance performance. Moreover, since CircuitTuning updates only a small fraction
of the model, we expect minimal interference with other capabilities acquired during pre-training, a
hypothesis we evaluate in the following Section [6]

6 PRESERVING BROADER LM ABILITIES

Results in Table [T| show that CircuitTuning is effective in improving task performance for multiple
models. However, its potential side effects on broader capabilities remain unclear. To address
this, we evaluate the general abilities of updated LMs using widely adopted benchmarks, including
MMLU, TriviaQA, and TruthfulQA (Hendrycks et al. 2021} [Joshi et al., |2017; [Lin et al., [2022)
using LM-evaluation-harness (Gao et al., 2024)). Specifically, we compare the best updated model
with CircuitTuning against the original model as well as LoRA finetuned model to assess the impact
of these updates on overall performance. As described in Section [d.1I] we report two values for the
MMLU benchmark: the mean accuracy over STEM topics and over Humanities topics.

As shown in Table 2] models updated with CircuitTuning achieve performance comparable to the
base model on various standard benchmarks, suggesting that they retain most of the capabilities
acquired during pretraining. The combination of targeted accuracy gains with minimal degradation
highlights CircuitTuning as a safe and effective method for fine-tuning, particularly in applications
where retaining broad competencies is essential.

7 DISCUSSION AND CONCLUSION

This work introduced CircuitTuning, a targeted model update method for amplifying specific model
capabilities while preserving general performance. Unlike conventional finetuning strategies that
update a large number of model components, CircuitTuning identifies pivotal reasoning errors and
the circuit responsible for correct reasoning, then applies updates only to those components. Our
experiments demonstrate that CircuitTuning substantially improves mathematical reasoning across
multiple model families, up to +11.4% accuracy gain, while modifying as little as 1.59% of compo-
nents. Importantly, these improvements come with minimal degradation on general-purpose bench-
marks such as MMLU, TriviaQA, and Truthful QA. These findings suggest that model capabilities

Under review as a conference paper at ICLR 2026

Configuration GSym- MMLU MMLU TriviaQA TruthfulQA
Test Humanities STEM

Gemma-2-9B-Instruct

Prefix w mask 4.1 0.1 0.6 -0.4 0.0
Prefix w/o mask 4.2 -0.4 0.6 -4.0 0.1
Branching w mask 7.4 0.2 0.8 2.0 -0.3
Branching w/o mask 6.8 0.2 0.7 0.0 -0.3
LoRA 4.3 0.3 0.5 1.9 -0.1
Gemma-2-2B-Instruct

Prefix w mask 29 0.2 0.1 0.8 -0.7
Prefix w/o mask 9.1 -0.6 0.8 -1.3 -1.6
Branching w mask 11.4 0.0 0.3 1.3 0.1
Branching w/o mask 12.1 0.3 0.6 1.6 0.7
LoRA 16.8 -1.0 0.5 0.5 -2.0
OLMo-2-1124-13B-Instruct

Prefix w mask 2.6 0.1 0.1 -04 -0.1
Prefix w/o mask 2.0 0.4 0.0 -0.0 -0.3
Branching w mask 4.4 0.1 0.1 -0.6 -0.3
Branching w/o mask 4.2 0.0 -0.2 -0.5 -0.5
LoRA 5.5 0.4 0.2 1.7 0.1
OLMo-2-1124-7B-Instruct

Prefix w mask 33 -0.5 -0.4 -0.0 -0.0
Prefix w/o mask 3.8 0.1 -0.3 -0.3 0.8
Branching w mask 55 -0.1 -0.1 -0.1 0.1
Branching w/o mask 6.7 0.4 0.2 -0.6 2.0
LoRA 0.7 -0.1 -0.3 0.4 -0.2

Table 2: Absolute percentage difference (in 0—100 scale) between original model and updated model
for four CircuitTuning conditions and LoRA. Results are shown over five benchmarks: GSym-Test,
MMLU Humanities, MMLU STEM, TriviaQA, and Truthful QA.

are often governed by sparse, localized subnetworks that can be selectively strengthened to achieve
reliable skill amplification.

Beyond improving mathematical reasoning, CircuitTuning highlights a broader principle: mech-
anistically informed, sparse updates provide a pathway to safe and effective model adaptation.
This offers practical benefits for real-world deployment, where users expect improvements in tar-
geted abilities without unexpected trade-offs, and contributes to the growing intersection between
parameter-efficient finetuning and interpretability-guided model editing.

There are, however, limitations. We focused on mathematical reasoning as a testbed, leaving open
whether similar gains can be achieved for other complex domains such as code generation or sci-
entific problem solving. The current approach requires constructing error-localization datasets for
token localization, which may be costly in settings without well-defined correctness signals. Further,
our experiments considered only a single fine-tuning stage, whereas deployed models often undergo
multiple rounds of fine-tuning to enhance different capabilities. However, in such continual learning
settings, conventional techniques may introduce substantial regressions (Scialom et al., 2022} [Luo
et al.| 2025), making CircuitTuning a promising alternative.

Future work could address these limitations by (i) extending CircuitTuning to other capabilities
and domains, such as code generation, scientific reasoning, or multi-modal tasks, thereby testing
its generality beyond symbolic math; (ii) automating the error-localization process using frontier
LLMs to reduce reliance on multiple generations and improve scalability to datasets with longer
reasoning traces; and (iii) incorporating more sophisticated optimization techniques to refine model
components more efficiently than naive gradient descent.

Under review as a conference paper at ICLR 2026

REFERENCES

Emmanuel Ameisen, Jack Lindsey, Adam Pearce, Wes Gurnee, Nicholas L. Turner, Brian Chen,
Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar,
Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan,
Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman,
Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. Circuit tracing: Revealing
computational graphs in language models. Transformer Circuits Thread, 2025. URL https:
//transformer-circuits.pub/2025/attribution-graphs/methods.htmll

Marthe Ballon, Andres Algaba, and Vincent Ginis. The relationship between reasoning and per-
formance in large language models — 03 (mini) thinks harder, not longer, 2025. URL https:
//arxiv.orqg/abs/2502.15631.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588, 2022.

Vishnu Kabir Chhabra, Ding Zhu, and Mohammad Mahdi Khalili. Neuroplasticity and corrup-
tion in model mechanisms: A case study of indirect object identification. In Luis Chiruzzo,
Alan Ritter, and Lu Wang (eds.), Findings of the Association for Computational Linguistics:
NAACL 2025, pp. 3099-3122, Albuquerque, New Mexico, April 2025. Association for Compu-
tational Linguistics. ISBN 979-8-89176-195-7. doi: 10.18653/v1/2025 findings-naacl.170. URL
https://aclanthology.org/2025.findings-naacl.170/.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Xander Davies, Max Nadeau, Nikhil Prakash, Tamar Rott Shaham, and David Bau. Discovering
variable binding circuitry with desiderata. arXiv preprint arXiv:2307.03637, 2023.

Nicola De Cao, Leon Schmid, Dieuwke Hupkes, and Ivan Titov. Sparse interventions in lan-
guage models with differentiable masking. In Jasmijn Bastings, Yonatan Belinkov, Yanai Elazar,
Dieuwke Hupkes, Naomi Saphra, and Sarah Wiegreffe (eds.), Proceedings of the Fifth Black-
boxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pp. 16-27, Abu
Dhabi, United Arab Emirates (Hybrid), December 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.blackboxnlp-1.2. URL https://aclanthology.org/2022.
blackboxnlp-1.2/.

Jaden Fiotto-Kaufman, Alexander R Loftus, Eric Todd, Jannik Brinkmann, Koyena Pal, Dmitrii
Troitskii, Michael Ripa, Adam Belfki, Can Rager, Caden Juang, et al. Nnsight and ndif: De-
mocratizing access to open-weight foundation model internals. arXiv preprint arXiv:2407.14561,
2024.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
evaluation harness, 07 2024. URL https://zenodo.org/records/12608602.

Dirk Groeneveld, 1z Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,
Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, Shane Arora, David Atkin-
son, Russell Authur, Khyathi Raghavi Chandu, Arman Cohan, Jennifer Dumas, Yanai Elazar,
Yuling Gu, Jack Hessel, Tushar Khot, William Merrill, Jacob Morrison, Niklas Muennighoff,
Aakanksha Naik, Crystal Nam, Matthew E. Peters, Valentina Pyatkin, Abhilasha Ravichander,
Dustin Schwenk, Saurabh Shah, Will Smith, Emma Strubell, Nishant Subramani, Mitchell Worts-
man, Pradeep Dasigi, Nathan Lambert, Kyle Richardson, Luke Zettlemoyer, Jesse Dodge, Kyle
Lo, Luca Soldaini, Noah A. Smith, and Hannaneh Hajishirzi. Olmo: Accelerating the science of
language models, 2024. URL https://arxiv.org/abs/2402.00838,

10

https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://arxiv.org/abs/2502.15631
https://arxiv.org/abs/2502.15631
https://aclanthology.org/2025.findings-naacl.170/
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://aclanthology.org/2022.blackboxnlp-1.2/
https://aclanthology.org/2022.blackboxnlp-1.2/
https://zenodo.org/records/12608602
https://arxiv.org/abs/2402.00838

Under review as a conference paper at ICLR 2026

Michael Hanna, Ollie Liu, and Alexandre Variengien. How does gpt-2 compute greater-than?:
Interpreting mathematical abilities in a pre-trained language model, 2023. URL https:
//arxiv.org/abs/2305.00586.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
cob Steinhardt. Measuring massive multitask language understanding, 2021. URL https:
//arxiv.org/abs/2009.03300.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Samyak Jain, Robert Kirk, Ekdeep Singh Lubana, Robert P Dick, Hidenori Tanaka, Edward Grefen-
stette, Tim Rocktidschel, and David Scott Krueger. Mechanistically analyzing the effects of fine-
tuning on procedurally defined tasks. arXiv preprint arXiv:2311.12786, 2023.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehension. In Regina Barzilay and Min-Yen Kan
(eds.), Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 1601-1611, Vancouver, Canada, July 2017. Association for Com-
putational Linguistics. doi: 10.18653/v1/P17-1147. URL https://aclanthology.org/
P17-1147/\

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in neural information processing systems,

35:3843-3857, 2022.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods, 2022. URL https://arxiv.org/abs/2109.07958.

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study
of catastrophic forgetting in large language models during continual fine-tuning, 2025. URL
https://arxiv.org/abs/2308.08747.

Sara Vera Marjanovié, Arkil Patel, Vaibhav Adlakha, Milad Aghajohari, Parishad BehnamGhader,
Mehar Bhatia, Aditi Khandelwal, Austin Kraft, Benno Krojer, Xing Han Lu, Nicholas
Meade, Dongchan Shin, Amirhossein Kazemnejad, Gaurav Kamath, Marius Mosbach, Karolina
Stariczak, and Siva Reddy. Deepseek-rl thoughtology: Let’s think about 1lm reasoning, 2025.
URLhttps://arxiv.org/abs/2504.07128.

Samuel Marks, Can Rager, Eric J. Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller.
Sparse feature circuits: Discovering and editing interpretable causal graphs in language models,
2025. URL https://arxiv.org/abs/2403.19647.

Jack Merullo, Carsten Eickhoff, and Ellie Pavlick. Circuit component reuse across tasks in trans-
former language models. arXiv preprint arXiv:2310.08744, 2023.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad
Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in large
language models, 2025. URL https://arxiv.org/abs/2410.05229.

Aaron Mueller, Jannik Brinkmann, Millicent Li, Samuel Marks, Koyena Pal, Nikhil Prakash, Can
Rager, Aruna Sankaranarayanan, Arnab Sen Sharma, Jiuding Sun, et al. The quest for the right
mediator: A history, survey, and theoretical grounding of causal interpretability. arXiv preprint
arXiv:2408.01416, 2024.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 2020. doi: 10.23915/distill.00024.001.
https://distill.pub/2020/circuits/zoom-in.

11

https://arxiv.org/abs/2305.00586
https://arxiv.org/abs/2305.00586
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://aclanthology.org/P17-1147/
https://aclanthology.org/P17-1147/
https://arxiv.org/abs/2109.07958
https://arxiv.org/abs/2308.08747
https://arxiv.org/abs/2504.07128
https://arxiv.org/abs/2403.19647
https://arxiv.org/abs/2410.05229

Under review as a conference paper at ICLR 2026

Francesco Ortu, Zhijing Jin, Diego Doimo, Mrinmaya Sachan, Alberto Cazzaniga, and Bernhard
Scholkopf. Competition of mechanisms: Tracing how language models handle facts and coun-
terfactuals. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), pp. 8420-8436, Bangkok, Thailand, August 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.acl-long.458. URL https://aclanthology.org/2024.
acl-long.458/.

Nikhil Prakash, Tamar Rott Shaham, Tal Haklay, Yonatan Belinkov, and David Bau. Fine-tuning
enhances existing mechanisms: A case study on entity tracking. In Proceedings of the 2024
International Conference on Learning Representations, 2024. arXiv:2402.14811.

Nikhil Prakash, Natalie Shapira, Arnab Sen Sharma, Christoph Riedl, Yonatan Belinkov, Tamar Rott
Shaham, David Bau, and Atticus Geiger. Language models use lookbacks to track beliefs. arXiv
preprint arXiv:2505.14685, 2025.

Daking Rai, Samuel Miller, Kevin Moran, and Ziyu Yao. Failure by interference: Language models
make balanced parentheses errors when faulty mechanisms overshadow sound ones, 2025. URL
https://arxiv.org/abs/2507.00322.

Naomi Saphra and Sarah Wiegreffe. Mechanistic? arXiv preprint arXiv:2410.09087, 2024.

Thomas Scialom, Tuhin Chakrabarty, and Smaranda Muresan. Fine-tuned language models are
continual learners. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of
the 2022 Conference on Empirical Methods in Natural Language Processing, pp. 6107-6122,
Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.emnlp-main.410. URL https://aclanthology.org/2022.
emnlp-main.410/.

Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh, Maxwell Horton, Samy Bengio, and Mehrdad
Farajtabar. The illusion of thinking: Understanding the strengths and limitations of reasoning
models via the lens of problem complexity, 2025. URL https://arxiv.org/abs/2506.
06941.

Chung-En Sun, Ge Yan, and Tsui-Wei Weng. Thinkedit: Interpretable weight editing to mitigate
overly short thinking in reasoning models. arXiv preprint arXiv:2503.22048, 2025a.

Yucheng Sun, Alessandro Stolfo, and Mrinmaya Sachan. Probing for arithmetic errors in language
models. arXiv preprint arXiv:2507.12379, 2025b.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Riviere, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard
Hussenot, Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam Roberts, Aditya Barua, Alex
Botev, Alex Castro-Ros, Ambrose Slone, Amélie Héliou, Andrea Tacchetti, Anna Bulanova, An-
tonia Paterson, Beth Tsai, Bobak Shahriari, Charline Le Lan, Christopher A. Choquette-Choo,
Clément Crepy, Daniel Cer, Daphne Ippolito, David Reid, Elena Buchatskaya, Eric Ni, Eric
Noland, Geng Yan, George Tucker, George-Christian Muraru, Grigory Rozhdestvenskiy, Hen-
ryk Michalewski, Ian Tenney, Ivan Grishchenko, Jacob Austin, James Keeling, Jane Labanowski,
Jean-Baptiste Lespiau, Jeff Stanway, Jenny Brennan, Jeremy Chen, Johan Ferret, Justin Chiu,
Justin Mao-Jones, Katherine Lee, Kathy Yu, Katie Millican, Lars Lowe Sjoesund, Lisa Lee,
Lucas Dixon, Machel Reid, Maciej Mikula, Mateo Wirth, Michael Sharman, Nikolai Chinaev,
Nithum Thain, Olivier Bachem, Oscar Chang, Oscar Wahltinez, Paige Bailey, Paul Michel, Petko
Yotov, Rahma Chaabouni, Ramona Comanescu, Reena Jana, Rohan Anil, Ross Mcllroy, Ruibo
Liu, Ryan Mullins, Samuel L Smith, Sebastian Borgeaud, Sertan Girgin, Sholto Douglas, Shree
Pandya, Siamak Shakeri, Soham De, Ted Klimenko, Tom Hennigan, Vlad Feinberg, Wojciech
Stokowiec, Yu hui Chen, Zafarali Ahmed, Zhitao Gong, Tris Warkentin, Ludovic Peran, Minh
Giang, Clément Farabet, Oriol Vinyals, Jeff Dean, Koray Kavukcuoglu, Demis Hassabis, Zoubin
Ghahramani, Douglas Eck, Joelle Barral, Fernando Pereira, Eli Collins, Armand Joulin, Noah
Fiedel, Evan Senter, Alek Andreev, and Kathleen Kenealy. Gemma: Open models based on
gemini research and technology, 2024. URL https://arxiv.org/abs/2403.08295,

12

https://aclanthology.org/2024.acl-long.458/
https://aclanthology.org/2024.acl-long.458/
https://arxiv.org/abs/2507.00322
https://aclanthology.org/2022.emnlp-main.410/
https://aclanthology.org/2022.emnlp-main.410/
https://arxiv.org/abs/2506.06941
https://arxiv.org/abs/2506.06941
https://arxiv.org/abs/2403.08295

Under review as a conference paper at ICLR 2026

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
pretability in the wild: a circuit for indirect object identification in gpt-2 small, 2022a. URL
https://arxiv.org/abs/2211.00593.

Peng-Yuan Wang, Tian-Shuo Liu, Chenyang Wang, Yi-Di Wang, Shu Yan, Cheng-Xing Jia, Xu-
Hui Liu, Xin-Wei Chen, Jia-Cheng Xu, Ziniu Li, et al. A survey on large language models for
mathematical reasoning. arXiv preprint arXiv:2506.08446, 2025.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022b.

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part 2.1,
grade-school math and the hidden reasoning process. arXiv preprint arXiv:2407.20311, 2024.

13

https://arxiv.org/abs/2211.00593

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs as a writing assistant to correct grammatical and typographical errors; beyond this,
they did not contribute to any stage of the research.

B TEMPLATES UTILIZED IN ERROR-LOCALIZATION DATASET GENERATION

Model Template IDs

gemma-2-9b-it 520, 364, 116, 184, 984, 1247, 480, 266, 20, 410,
43,1207, 456,989, 357, 1133, 1165, 434, 406, 1239,
858, 1088, 1021, 39, 652, 976

gemma-2-2b-it 520, 1305, 164, 991, 740, 103, 491, 364, 365, 496,
116, 125, 1025, 1031, 1020, 145, 401, 788, 918, 921,
158,930, 1189, 1063, 184, 440, 458, 718, 728, 984,
473,1247, 480, 636, 1277, 1026, 265, 266, 11, 20,
410,1053, 800, 546, 937, 43, 1207, 1084, 320, 456,
982,989, 99, 357, 1133, 1141, 737, 554, 1165, 1264,
304,242,434, 336, 661, 406, 1239, 858, 955, 1088,
459,1021, 39, 74,107, 652, 1164, 976

OLMo-2-1124-7B-Instruct 520, 1305, 991, 103, 873, 116, 1031, 1020, 145, 788,
184,728,984, 1247, 1275, 636, 1026, 265, 266, 11,
20,410, 1053, 800, 43, 1207, 320, 989, 99, 357, 1133,
554, 1165, 1264, 304, 242, 434, 336, 406, 1239, 858,
1088, 459, 1021, 39, 652, 976

OLMo-2-1124-13B-Instruct 520, 1305, 300, 991, 740, 103, 364, 116, 184, 728,
984, 473, 1247, 1275, 1026, 265, 266, 11, 20, 410,
1053, 43,1207, 1084, 320, 989, 99, 357, 1133, 554,
1264, 304, 434, 406, 1239, 858, 1088, 459, 39, 74,
107,652,976

Table 3: Template IDs used for training across different models.

C DCM TUNING DETAILS

Category Hyperparameter Value

Training schedule Base learning rate Se-3
Epochs 50
Effective batch size 8

Optimization Optimizer Adam
B 0.9
A {le-2, le-3, 5e-3, le-4}

Table 4: Hyperparameters used for Desiderata-based Component Masking (DCM) tuning. Values
include training schedule, optimizer settings, and A sweep for sparsity control.

D MMLU CATEGORIES

D.1 MMLU STEM TASKS

mmlu_abstract_algebra, mmlu_anatomy, mmlu_astronomy, mmlu_college_biology,
mmlu_college_chemistry, mmlu_college_computer_science, mmlu_college_mathematics,

14

Under review as a conference paper at ICLR 2026

mmlu_college_physics, mmlu_computer_security, mmlu_conceptual physics,
mmlu_electrical_engineering, mmlu_elementary_mathematics, mmlu_high_school_biology,
mmlu_high_school_chemistry, mmlu_high_school_computer_science,
mmlu_high_school_mathematics, mmlu_high_school_physics, mmlu_high_school_statistics,

mmlu_machine_learning

D.2 MMLU HUMANITIES TASKS

mmlu_formal_logic, mmlu_high_school_european_history, mmlu_high_school us_history,
mmlu_high_school_world_history, mmlu_international law, mmlu_jurisprudence,
mmlu_logical _fallacies, mmlu_moral_disputes, mmlu_moral_scenarios, mmlu_philosophy,
mmlu_prehistory, mmlu_professional law, mmlu_world religions

E TRAINING DETAILS

E.1 LoORA FINETUNING DETAILS

Category Hyperparameter

Value

Training schedule Base learning rate
Warmup steps
Schedule
Epochs
Effective batch size

Optimization Optimizer
(B1,B2)
€
Max grad norm

Regularization Weight decay
Dropout

LoRA adapter Rank (r)
Alpha (@)

{3e-5, 5e-5, le-4, 3e-4}
5

Linear warmup — cosine decay
2
32

AdamW
0.9, 0.999
le-8

1.0

0.01
0.1

16
32

Table 5: LoRA fine-tuning hyperparameters. The exact number of optimization steps varies for each

model based on the size of the training data.

15

Under review as a conference paper at ICLR 2026

Table 6: LoRA finetuning results across learning rates. The first row for each model is the unmodi-
fied (Original) model.

MMLU MMLU Trivia Truthful

Model Learning Rate GSym-Test STEM Humanities QA QA
Original 0.411 0.446 0.474 0.409 0.424
3e-6 0.427 0.446 0.474 0.406 0.423
Se-6 0.360 0.450 0.472 0.407 0.419
le-5 0.342 0.453 0.472 0412 0.411
Gemma2 2B 2e-5 0.399 0.459 0.468 0.419 0.403
3e-5 0.480 0.462 0.467 0.419 0.401
Se-5 0.579 0.451 0.464 0414 0.404
le-4 0.562 0.444 0.467 0.417 0.415
3e-4 0.578 0.454 0.460 0.410 0.397
Original 0.807 0.609 0.620 0.536 0.536
3e-6 0.810 0.609 0.620 0.535 0.537
Se-6 0.808 0.610 0.619 0.536 0.538
le-5 0.805 0.610 0.619 0.535 0.535
Gemma2 9B 2e-5 0.793 0.612 0.621 0.547 0.547
3e-5 0.850 0.614 0.623 0.555 0.535
Se-5 0.668 0.615 0.623 0.560 0.532
le-4 0.609 0.617 0.632 0.581 0.528
3e-4 0.601 0.611 0.628 0.573 0.523
Original 0.739 0.507 0.557 0.622 0.468
3e-6 0.741 0.507 0.556 0.623 0.467
Se-6 0.745 0.507 0.557 0.622 0.468
le-5 0.746 0.504 0.556 0.626 0.466
Olmo 7B 2e-5 0.644 0.505 0.557 0.630 0.465
3e-5 0.660 0.507 0.556 0.630 0.465
Se-5 0.585 0.509 0.559 0.630 0.463
le-4 0.616 0.514 0.559 0.634 0.461
3e-4 0.442 0.514 0.559 0.638 0.447
Original 0.742 0.564 0.601 0.703 0.512
3e-6 0.754 0.565 0.602 0.705 0.512
Se-6 0.772 0.565 0.603 0.712 0.512
le-5 0.797 0.566 0.605 0.720 0.513
Olmo 13B 2e-5 0.767 0.567 0.605 0.723 0.509
3e-5 0.775 0.566 0.605 0.724 0.509
Se-5 0.776 0.567 0.606 0.726 0.507
le-4 0.697 0.569 0.601 0.727 0.504
3e-4 0.540 0.567 0.605 0.737 0.499

16

	Introduction
	Related Works
	Mechanistic Interpretability in LLMs
	Mathematical Reasoning with LLMs

	CircuitTuning
	Method Overview
	Localizing Reasoning Errors
	Identifying Constructive Circuits with DCM
	Targeted Parameter Updates

	Experimental Setup
	Datasets for Math and General Abilities
	Evaluated Model Families
	Baseline: LoRA Fine-Tuning

	Experimental Results on Math Reasoning
	Preserving Broader LM Abilities
	Discussion and Conclusion
	The Use of Large Language Models (LLMs)
	Templates Utilized in Error-Localization Dataset Generation
	DCM Tuning Details
	MMLU Categories
	MMLU STEM Tasks
	MMLU Humanities Tasks

	Training Details
	LoRA FineTuning Details

