
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CIRCUITTUNING: IMPROVING MATH REASONING IN
LLMS VIA TARGETED SUB-NETWORK UPDATES

Anonymous authors
Paper under double-blind review

ABSTRACT

Prior studies investigating the internal workings of LLMs have uncovered sparse
subnetworks, often referred to as circuits, that are responsible for performing spe-
cific tasks. Additionally, it has been shown that model performance improvement
through fine-tuning often results from the strengthening of existing circuits in the
model. Taken together, these findings suggest the possibility of intervening di-
rectly on such circuits to make precise, task-targeted updates. Motivated by these
findings, we propose a novel method called CircuitTuning which identifies piv-
otal tokens from model reasoning traces as well as model components responsi-
ble for the desired task, and updates only those components. Applied to mathe-
matical reasoning, it improves accuracy by up to +11.4% across multiple models
while modifying as little as 1.59% of model components, with minimal impact
on other abilities as measured by MMLU, TriviaQA, and TruthfulQA. These re-
sults demonstrate that targeted capabilities can be reliably enhanced by selectively
updating a sparse set of model components.

1 INTRODUCTION

Large language models (LLMs) have demonstrated impressive general-purpose reasoning abilities,
yet they continue to struggle with mathematical reasoning tasks, where even small logical errors can
derail problem-solving (Shojaee et al., 2025; Marjanović et al., 2025; Ballon et al., 2025). Existing
works have attempted to improve math reasoning through various prompting and fine-tuning strate-
gies, which have led to modest gains (Wang et al., 2022b; Chen et al., 2022; Lewkowycz et al., 2022;
Lightman et al., 2023). In this work, we propose an alternative approach that leverages insights from
mechanistic interpretability to achieve more targeted improvements.

Recent progress in mechanistic interpretability has revealed that model behavior is often governed
by sparse subnetworks, or circuits, consisting of attention heads and MLP neurons that jointly im-
plement specific capabilities (Wang et al., 2022a; Hanna et al., 2023; Merullo et al., 2023; Prakash
et al., 2024; Marks et al., 2025). Jain et al. (2023); Prakash et al. (2024); Chhabra et al. (2025) shows
that fine-tuning frequently strengthens these existing circuits rather than creating entirely new mech-
anisms. Additionally, Rai et al. (2025); Ortu et al. (2024) suggest that there is a competition among
circuits within a model’s internal computation, where some circuits contribute to correct reasoning
while others introduce noise. Together, these findings suggest that targeted interventions on circuits
could enable precise updates that enhance specific skills while minimizing unrelated disruption.

In this work, we introduce CircuitTuning, a mechanistically informed fine-tuning method that per-
forms sparse, targeted updates to improve LLM reasoning. CircuitTuning operates in three stages:
(i) generating reasoning traces to identify pivotal tokens where incorrect solutions diverge from cor-
rect ones, (ii) localizing the attention heads and MLP neurons that promote correct reasoning paths,
and (iii) applying gradient updates exclusively to those components. By amplifying the contribu-
tion of the circuits most responsible for correct reasoning, CircuitTuning strengthens mathematical
reasoning ability while leaving unrelated skills largely intact.

Applied to the GSM-Symbolic benchmark Mirzadeh et al. (2025), CircuitTuning yields accuracy
improvements of up to +11.4% when tested across multiple model families, while modifying as lit-
tle as 1.59% of components (i.e. attention heads and MLP neurons). Importantly, these gains come
with minimal degradation on general benchmarks including MMLU, TriviaQA, and TruthfulQA,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

underscoring that targeted improvements can be achieved without compromising broad capabili-
ties (Hendrycks et al., 2021; Joshi et al., 2017; Lin et al., 2022).

Our results demonstrate that LLM skills can be selectively enhanced by updating only the sparse sub-
network that implements them. Beyond mathematical reasoning, this highlights a broader principle:
mechanistically guided, sparse updates provide a pathway toward interpretable model adaptation.

2 RELATED WORKS

2.1 MECHANISTIC INTERPRETABILITY IN LLMS

The field of mechanistic interpretability seeks to reverse-engineer the internal computations of deep
neural networks (Olah et al., 2020; Mueller et al., 2024; Saphra & Wiegreffe, 2024). A prominent
line of work focuses on uncovering circuits, sparse sets of attention heads and MLP neurons that
collectively drive specific model behaviors, such as indirect object identification, greater-than, and
entity tracking Wang et al. (2022a); Hanna et al. (2023); Prakash et al. (2024). Recent research
has also extended this perspective to the sparse feature space, identifying and editing interpretable
circuits that govern feature-level interactions Marks et al. (2025); Ameisen et al. (2025).

A recurring theme across this line of work is that LM behavior is not uniformly distributed across
parameters, but rather localized within a relatively small subset of components. Jain et al. (2023);
Prakash et al. (2024); Chhabra et al. (2025) show that fine-tuning often strengthens existing circuits
rather than creating entirely new mechanisms, while (Merullo et al., 2023) highlights how subcircuits
are reused across different tasks. These findings motivate our approach of selectively amplifying the
circuits responsible for the target task, while minimizing disruption to unrelated capabilities.

2.2 MATHEMATICAL REASONING WITH LLMS

Improving mathematical reasoning in LLMs has been a central challenge, as even minor logical
mistakes can derail otherwise promising problem-solving attempts (Wang et al., 2025). A line of
research has focused on prompting strategies, such as chain-of-thought prompting, self-consistency,
and program-of-thoughts prompting, which encourage models to externalize intermediate steps and
thereby improve reliability (Wang et al., 2022b; Chen et al., 2022; Lightman et al., 2023). Another
line of work investigates fine-tuning techniques, including supervised fine-tuning on reasoning traces
or parameter-efficient approaches like LoRA, which can adapt models toward stronger mathematical
reasoning (Lewkowycz et al., 2022).

Complementary to behavioral approaches, recent research has also examined the internal mecha-
nisms of LLMs to better understand their mathematical reasoning capabilities. For example, Ye
et al. (2024) analyzed the internal activations of a transformer model trained from scratch on a math
reasoning dataset, using probes to uncover mechanisms underlying the reasoning ability. Similarly,
Sun et al. (2025b) trained probes to predict the correctness of outputs in 3-digit addition, showing
strong generalization to addition-only GSM8K problems. By leveraging these probes, they selec-
tively re-prompted erroneous reasoning steps, thereby improving task accuracy. A closely related
study, Sun et al. (2025a), introduced ThinkEdit, which identifies attention heads responsible for short
reasoning traces and updates their weights to extend these traces, ultimately enhancing model per-
formance. Building on this line of work, we show that localization-informed model update can not
only affect reasoning trace length but also strengthen mathematical capabilities, enabling targeted
interventions to improve overall performance.

3 CIRCUITTUNING

3.1 METHOD OVERVIEW

We propose a novel technique, called CircuitTuning, to improve the mathematical reasoning capa-
bilities of an LM, without affecting other abilities. The underlying premise of this method relies on
two empirical insights from the mechanistic interpretability literature: 1) Specific tasks in LM are
often executed by a sparse subnetwork, which gets augmented during fine-tuning, leading to model
performance improvement (Jain et al., 2023; Prakash et al., 2024; Chhabra et al., 2025). 2) There

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

…
Incorrect Reasoning Trace

…
Correct Reasoning Trace

…
Error-Localization Dataset Example

Tokens

Logits

𝐿 = − 𝑙𝑜𝑔𝑖𝑡𝑑𝑒𝑠𝑖𝑟𝑒𝑑  − 𝑙𝑜𝑔𝑖𝑡𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑 + 𝜆∑𝑚

Tokens

Logits

Δ𝐿

Language 
Model

(b)(a) (c)

B
ac

kp
ro

pa
ga

tio
n

Figure 1: Overview of CircuitTuning: (a) Token Localization: For a given problem, we generate
both correct and incorrect reasoning traces and identify the pivotal token where the incorrect trace
diverges from the correct one. The intervention point is chosen as the token immediately preceding
this divergence. (b) Model Component Localization: Using the Error-Localization dataset con-
structed from these reasoning trace pairs, we apply Desiderata-based Component Masking (DCM)
to learn a sparse binary mask over attention heads and MLP neurons. This identifies the subset of
components that most strongly promote the desired token. (c) Model Update: Gradient updates are
then applied exclusively to the localized components, amplifying constructive computations while
leaving the rest of the network unchanged.

is a competition among various mechanisms within an LM’s internal computation, some of which
are sound for the given task, while others are introducing noise, as suggested in Rai et al. (2025);
Ortu et al. (2024). In addition to existing works in the literature indicating such a phenomenon
inside LM’s internal computation, a good behavioral performance of the models that we investi-
gate suggests that the models have a decent idea of solving the math reasoning tasks; however, on
certain tasks, they deviate towards incorrect reasoning, which leads to an incorrect final answer.
To overcome this shortcoming, CircuitTuning amplifies the signal from model components that are
constructively generating the correct response. The technique consists of three steps: 1) Generation
of Error-Localization dataset, 2) Training binary mask to localize constructive model components,
and 3) Updating only those model components using a few gradient update steps. The following
subsections describe each step in more detail, including its role and the procedure.

3.1.1 LOCALIZING REASONING ERRORS

The first step of CircuitTuning is to identify the point in the reasoning trace where the model begins
to deviate toward an incorrect answer, as illustrated in Figure 1(a). Prior work on circuit discovery
has primarily examined tasks where the output is produced in a single forward pass, such as indirect
object identification, entity tracking, and greater-than comparison (Wang et al., 2022a; Prakash et al.,
2024; Hanna et al., 2023), making it natural to apply circuit discovery methods at the final token
position. In contrast, mathematical reasoning involves multi-step computations, and it is less clear
at which point to apply the circuit discovery algorithm to uncover the circuit that can be enhanced
to improve overall reasoning ability. To address this, we begin circuit localization by identifying the
token in the reasoning trace where an intervention should occur. Specifically, for a GSM-Symbolic
instance where the model produces an incorrect solution through greedy sampling, we aim to locate
the first token in the reasoning trace that drives the model toward this error. We refer to this token
as the pivotal token. Our intervention then targets the token immediately preceding it, to discourage
the model from generating the pivotal token. We refer to this intervention point, where we amplify
signals from constructive model components, as the intervention token.

For each GSM-Symbolic instance, we first sample a reasoning trace and final answer using greedy
decoding. If the answer is incorrect, we generate an alternative reasoning trace that leads to the cor-
rect answer via non-greedy decoding. Conversely, if greedy decoding produces the correct answer,
we instead generate an incorrect reasoning trace using non-greedy decoding. With this paired set of
reasoning traces, we then apply one of the following methods to identify the intervention token.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Q: There are 67 fourth-graders at Sunny Hill School. 38 of them are girls. On 
Thursday, 6 fourth-grade girls and 6 fourth-grade boys were absent. How many 
fourth grade boys were at Sunny Hill School on Thursday?
A: Let's think step by step. There are 67 fourth graders in total. 38 are girls, 
so 67 – 38 = 29 are boys. 6 girls were absent, but the question asks about the 
number of boys present. So 29 - 6 = 23 boys were at school on Thursday. The final 
answer is 23.

Q: There are 67 fourth-graders at Sunny Hill School. 38 of them are girls. On 
Thursday, 6 fourth-grade girls and 6 fourth-grade boys were absent. How many 
fourth grade boys were at Sunny Hill School on Thursday?
A: Let's think step by step. There are 67 fourth graders total. 38 are girls. That 
means 67 - 38 = 29 are boys. Thursday 6 girls were absent, but no information 
about how many boys were absent. So, all 29 boys were at school.

Incorrect Reasoning Trace

Correct Reasoning Trace

Pivotal token identified by Prefix method Pivotal token identified by Branching method

Figure 2: Example of a GSM-Symbolic math word problem showing both a correct and an incor-
rect reasoning trace produced by the Gemma-2-9b-Instruct model. The correct trace (top) is
obtained through greedy decoding, while the incorrect trace (bottom) is produced by non-greedy
sampling.

Prefix Method: Given a pair of reasoning traces, this method identifies the first token that is
not shared between them as the pivotal token. For instance, in the Figure 2, the first uncommon
token between both the reasoning traces is the “,” and “.” tokens. Consequently, its prior token, i.e.
“girls”, becomes the intervention token.

Although efficient, this method can sometimes identify suboptimal pivotal and intervention tokens.
For example, in Figure 2, the first differing tokens in the two traces are “,” and “.”. However,
these tokens are not the decisive points that steer the model toward a correct or incorrect reason-
ing path. Specifically, when the reasoning trace “There are 67 fourth graders total.
38 are girls.” is provided as input, the model still produces the correct final answer via greedy
sampling. This shows that the “.” token is not a decisive token.

Branching Method: To address this challenge, we propose a method based on iterative greedy
decoding with partial prefixes. Suppose we have a correct reasoning trace (i.e. token sequence)
T corr = (x1, x2, . . . , xn), obtained via greedy decoding, and an incorrect reasoning trace T incorr =
(y1, y2, . . . , ym), obtained via non-greedy decoding. Our goal is to identify the pivotal token in
T incorr that steers the model toward an incorrect final answer. Formally, let f(·) denote the fi-
nal answer of a reasoning trace generated via greedy decoding, and let Acorr and Aincorr denote
the correct and incorrect final answers, respectively. Then a token yk is defined as pivotal if
f(y1, . . . , yk−1) ∈ Acorr and f(y1, . . . , yk) ∈ Aincorr.

Operationally, we construct a prefix of length k from T incorr, i.e., (y1, . . . , yk), and feed it into the
model to complete the reasoning trace using greedy decoding. We then check whether the resulting
final answer is correct. If it is correct, we extend the prefix by adding the next token yk+1 and
repeat the procedure. If the final answer is incorrect, then the newly added token yk is identified
as the pivotal token, since its inclusion causes greedy decoding to lead to an incorrect outcome. In
the example shown in Figure 2, it is the “no” token which pushes the model trajectory towards an
incorrect final answer. Hence, it becomes the pivotal token.

In the opposite case, when greedy decoding yields an incorrect reasoning trace while non-greedy
decoding yields a correct one, we apply the same procedure. The difference is that the pivotal
token is now defined as the first token in the non-greedy trace whose inclusion in the prefix causes
greedy decoding to switch from an incorrect to a correct final answer. In this case, yk is pivotal if
f(y1, . . . , yk−1) ∈ Aincorr and f(y1, . . . , yk) ∈ Acorr.

Finally, after identifying the intervention token and corresponding pair of reasoning traces for a given
GSM-Symbolic instance, we construct the Error-Localization dataset. As illustrated in Figure 3 each
instance in this dataset consists of three components: 1) Prefix: the shared reasoning trace up to and

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Error-Localization Dataset Example

prefix: There are 67 fourth graders in total. 38 are 
girls, so 67 - 38 = 29 are boys. 6 girls were absent, but
desired_token: the
undesired_token: no

Figure 3: The Error-Localization dataset contains three components: prefix: the shared reasoning
trace between the correct and incorrect paths (including intervention token), desired token: the token
the model should generate to produce the correct answer, and undesired token: the token the model
should avoid generating to ensure the correct answer.

including the intervention token, 2) Desired token: the token following the intervention token in the
correct reasoning trace, and 3) Undesired token: the token following the intervention token in the
incorrect reasoning trace.

3.1.2 IDENTIFYING CONSTRUCTIVE CIRCUITS WITH DCM

Using the training dataset generated in the previous step, we can localize errors in an incorrect rea-
soning trace to specific tokens. However, we can go further and identify the model components
responsible for promoting the correct reasoning trace, or more specifically, the generation of the de-
sired token, as shown in Figure 1(b). To achieve this, we leverage the Desiderata-based Component
Masking (DCM) technique (Davies et al., 2023; De Cao et al., 2022; Prakash et al., 2024; 2025).

DCM learns a binary mask over key, query, and value weight matrices of all attention heads and MLP
neurons in the LM by minimizing a tailored loss function. More specifically, it learns n heads +
2 ∗ n key value heads + n mlp neurons parameters for each layer, where n heads represents
the number of attention heads, n key value heads represents the number of key and value heads in
Grouped Attention, and n mlp neurons represents the number of MLP neurons. Each parameter
in the mask represents whether its corresponding model component should be intervened on or left
unchanged during the forward pass. We use the following equation to update a model component’s
output using the mask:

horg = mi ∗ 2 ∗ horg + (1−mi) ∗ horg (1)

where horg represents the original model component output and mi represents the corresponding
mask value. Concretely, if a component’s mask value is 1, its activation is scaled by 2; otherwise, it
remains unchanged. It is implemented using NNsight (Fiotto-Kaufman et al., 2024).

Since our goal is to isolate the components that promote the desired token while suppressing the
undesired one, we use a loss function defined as the logit difference between the undesired and
desired tokens to optimize the binary mask. To encourage sparsity in the mask, we add an L1-
norm regularization term, weighted by the hyperparameter λ. It ensures that only a small subset of
components is identified as influential. Formally, the loss is:

L = −(logitdesired token − logitundesired token) + λ
∑

m (2)

where λ controls the sparsity of the binary mask, and its optimal value is selected by sweeping over
a range of candidate values. We report the percentage of mask components in the results section,
computed as |Mlearned|

|M | , where |Mlearned| denotes the number of components selected by the learned
mask and |M | is the total number of components in the mask.

We train the binary mask using the Adam optimizer for 50 epochs, with a learning rate of 5e-3, batch
size of 8, and tuning the λ via parameter sweeps. Full details are in Appendix C. To prevent unnec-
essary computation, we apply early stopping: if the mask remains unchanged after 20% of batches
in an epoch (i.e., the set of selected components does not vary), training is halted. Additionally, after
each gradient update, we clamp the mask values to the range [0, 1], as values outside this interval are
incompatible with Equation 1.

In summary, after optimization, the learned mask identifies a small set of model components, the
circuit, whose amplified outputs steer the model toward the correct reasoning trace and final answer.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.1.3 TARGETED PARAMETER UPDATES

After identifying the model components that promote the desired token, we update only these com-
ponents using gradient descent, as illustrated in Figure 1(c). We use the negative logit difference
between the desired and undesired tokens as the loss function from the Error-Localization dataset.
Gradients are applied exclusively to the previously identified components. Because the training
dataset is small and only a limited number of updates are expected, we compute gradients over the
entire dataset rather than using mini-batches.

We perform a total of 50 gradient update steps, evaluating the model’s exact match accuracy on the
validation set every 2 steps up to step 10, and subsequently every 10 steps. At the end of training,
we select the best-performing updated model and evaluate it on the test set and report the results in
Section 5. The optimal learning rate is determined through a sweep over candidate values1.

4 EXPERIMENTAL SETUP

4.1 DATASETS FOR MATH AND GENERAL ABILITIES

We evaluate the effectiveness of CircuitTuning on improving the mathematical reasoning capabil-
ities of LMs while preserving other skills gained during pretraining. For math reasoning, we use
the GSM-Symbolic (Mirzadeh et al., 2025) benchmark, which provides templates derived from the
GSM8K dataset (Cobbe et al., 2021). The benchmark contains 100 math problem templates across
diverse topics, each with 50 instances. We randomly divide these instances into training, valida-
tion, and test sets in proportions of 0.52, 0.08, and 0.40, respectively. Thus, for each of the 100
templates, there are 26 training, 4 validation, and 20 test instances. We further filter our train split
to only include templates whose mean accuracy is below 0.8 on the target model. A full list of
selected templates is provided in Appendix B. In the rest of this paper, we refer to these splits as
GSym-Train, GSym-Val, and GSym-Test respectively.

It is important to note that the model does not always produce a counterfactual reasoning trace under
non-greedy sampling. Consequently, some GSM-Symbolic instances are absent from the Error-
Localization dataset for the prefix and branching methods. As a result, the size of the training dataset
varies across models and localization generation types, and it is always smaller than the maximum
of 2600. Table 1 reports the training set sizes for all models considered. The validation and test sets
consistently contain 400 and 2000 instances, respectively, from the original GSM-Symbolic dataset.

In addition to mathematical reasoning, we also evaluate the general capabilities of LMs using the
MMLU, TriviaQA, and TruthfulQA benchmarks (Hendrycks et al., 2021; Joshi et al., 2017; Lin
et al., 2022). MMLU includes questions spanning a broad range of topics. To better assess any
unintended effects of enhancing math reasoning, a skill central to many STEM tasks, we evaluate
on two MMLU subsets: “MMLU Stem” and “MMLU Humanities” as defined within MMLU. A
complete list of both STEM and Humanities categories is provided in Appendix D.

4.2 EVALUATED MODEL FAMILIES

We evaluate CircuitTuning across multiple families of open-weight LLMs to assess its robustness
and generality. We focus on the Gemma and OLMo model families (Team et al., 2024; Groeneveld
et al., 2024). Specifically, we analyse Gemma-2-9b-Instruct, Gemma-2-2b-Instruct,
OLMo-2-1124-13B-Instruct, and OLMo-2-1124-7B-Instruct models. Our manual
inspection of erroneous reasoning traces of these models reveals that most errors stem from failures
in logical reasoning steps rather than from arithmetic mistakes. For example, Figure 2 illustrates
how Gemma-2-9b-Instruct produces an incorrect answer to a GSM-Symbolic instance due to
its inability to extract the necessary information from the question, rather than an arithmetic error.

4.3 BASELINE: LORA FINE-TUNING

We compare our method against LoRA fine-tuning, a well-established parameter-efficient fine-
tuning method (Hu et al., 2022) often used for task-adaptation. We use the same GSM-Symbolic

1Candidate learning rates: 1e-2, 5e-3, 1e-3, 5e-4, 1e-4, 5e-5, 1e-5.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Configuration Dataset Dataset
Size

%
Mask

GSym-Test
Acc

Std ∆ % Acc

Gemma-2-9B-Instruct

Original Model – – – 0.807 – –
CircuitTuning w mask Prefix 510 0.13% 0.848 ±0.006 4.1
CircuitTuning w/o mask Prefix 510 – 0.849 ±0.011 4.2
CircuitTuning w mask Branching 512 0.17% 0.881 ±0.015 7.4
CircuitTuning w/o mask Branching 512 – 0.875 ±0.010 6.8
LoRA Finetuning GSym-Train 676 – 0.850 – 4.3

Gemma-2-2B-Instruct

Original Model – – – 0.411 – –
CircuitTuning w mask Prefix 1,283 0.92% 0.440 ±0.011 2.9
CircuitTuning w/o mask Prefix 1,283 – 0.502 ±0.018 9.1
CircuitTuning w mask Branching 1,244 1.59% 0.525 ±0.010 11.4
CircuitTuning w/o mask Branching 1,244 – 0.532 ±0.009 12.1
LoRA Finetuning GSym-Train 2,028 – 0.579 – 16.8

OLMo-2-1124-13B-Instruct

Original Model – – – 0.742 – –
CircuitTuning w mask Prefix 864 0.37% 0.768 ±0.018 2.6
CircuitTuning w/o mask Prefix 864 – 0.762 ±0.002 2.0
CircuitTuning w mask Branching 845 0.44% 0.786 ±0.005 4.4
CircuitTuning w/o mask Branching 845 – 0.784 ±0.006 4.2
LoRA Finetuning GSym-Train 1,118 – 0.797 – 5.5

OLMo-2-1124-7B-Instruct

Original Model – – – 0.739 – –
CircuitTuning w mask Prefix 974 0.19% 0.772 ±0.018 3.3
CircuitTuning w/o mask Prefix 974 – 0.777 ±0.006 3.8
CircuitTuning w mask Branching 983 0.25% 0.794 ±0.006 5.5
CircuitTuning w/o mask Branching 983 – 0.806 ±0.012 6.7
LoRA Finetuning GSym-Train 1,222 – 0.746 – 0.7

Table 1: Performance comparison of CircuitTuning and LoRA fine-tuning across multiple models
on the GSM-Symbolic benchmark. For each model, we report accuracy on the GSym-Test under
different training configurations: (i) CircuitTuning with a mask (updates restricted to components
identified by the learned mask), (ii) CircuitTuning without a mask (updates applied more broadly),
and (iii) LoRA fine-tuning. Results are shown for both Prefix- and Branching-based localization
datasets. We also report dataset sizes, the percentage of model components updated, mean test
accuracy with standard deviation, and the absolute accuracy improvement (∆% Acc).

data splits used for CircuitTuning as described in 4.1. We apply LoRA to both the attention and MLP
components of each transformer block, and run finetuning with an effective batch size of 32 for two
epochs. We evaluate the model on the validation set every 10 steps with the same exact-match met-
ric used for CircuitTuning and select the best-performing model checkpoint. We also sweep over
a number of learning rates and report the best performing results on the test set (GSym-Test) in
Section 5. Other LoRA hyperparameters, such as rank, learning rate schedule, etc, are fixed for all
models and complete details can be found in E.1.

5 EXPERIMENTAL RESULTS ON MATH REASONING

This section presents the results of the original unmodified models, the models updated with Circuit-
Tuning, and LoRA finetuned models on GSym-Test (CircuitTuning results are averaged over three

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

random seeds). For each localization dataset generation type, we report two configurations: (1)
CircuitTuning w/ mask, where only the model components identified by the mask are updated, and
(2) CircuitTuning w/o mask, an ablation where we skip model component localization via DCM and
allow any model component to be updated during the gradient update step. The purpose of report-
ing both configurations is to disentangle the effects of model component localization and reasoning
token localization.

Table 1 presents the results, highlighting a few key observations. First, models updated with Cir-
cuitTuning show substantially better performance than their corresponding base models across mul-
tiple model families. The improvement can be as high as 12.1% (for Gemma-2-2b-Instruct)
using only 1244 samples. Moreover, CircuitTuning surpasses LoRA, a strong baseline, in both
the Gemma-2-9b-Instruct and OLMo-2-1124-7B-Instruct models. These results in-
dicate that CircuitTuning is effective for fine-tuning specific capabilities of LMs, particularly in
data-constrained settings where maximizing performance from limited samples is critical.

Second, we find that models updated with the Branching localization dataset consistently outper-
form those updated with the Prefix method across model families. This suggests that accurately
identifying the pivotal reasoning token that steers the model toward incorrect reasoning is critical
for improving performance. More broadly, it underscores the importance of developing improved
techniques for localizing token(s) within long reasoning traces, as a means of uncovering the under-
lying circuits and mechanisms responsible for different reasoning tasks.

Finally, we observe that the number of attention heads and MLP neuron weights that need to be
updated to improve performance constitutes only a small fraction of the total model components.
For example, achieving a 7.4% performance gain in Gemma-2-9b-Instruct requires updating
only 0.17% of its components. This suggests that a limited subset of model components is primarily
responsible for correct reasoning on the GSM-Symbolic dataset, and amplifying their contribution
can significantly enhance performance. Moreover, since CircuitTuning updates only a small fraction
of the model, we expect minimal interference with other capabilities acquired during pre-training, a
hypothesis we evaluate in the following Section 6.

6 PRESERVING BROADER LM ABILITIES

Results in Table 1 show that CircuitTuning is effective in improving task performance for multiple
models. However, its potential side effects on broader capabilities remain unclear. To address
this, we evaluate the general abilities of updated LMs using widely adopted benchmarks, including
MMLU, TriviaQA, and TruthfulQA (Hendrycks et al., 2021; Joshi et al., 2017; Lin et al., 2022)
using LM-evaluation-harness (Gao et al., 2024). Specifically, we compare the best updated model
with CircuitTuning against the original model as well as LoRA finetuned model to assess the impact
of these updates on overall performance. As described in Section 4.1, we report two values for the
MMLU benchmark: the mean accuracy over STEM topics and over Humanities topics.

As shown in Table 2, models updated with CircuitTuning achieve performance comparable to the
base model on various standard benchmarks, suggesting that they retain most of the capabilities
acquired during pretraining. The combination of targeted accuracy gains with minimal degradation
highlights CircuitTuning as a safe and effective method for fine-tuning, particularly in applications
where retaining broad competencies is essential.

7 DISCUSSION AND CONCLUSION

This work introduced CircuitTuning, a targeted model update method for amplifying specific model
capabilities while preserving general performance. Unlike conventional finetuning strategies that
update a large number of model components, CircuitTuning identifies pivotal reasoning errors and
the circuit responsible for correct reasoning, then applies updates only to those components. Our
experiments demonstrate that CircuitTuning substantially improves mathematical reasoning across
multiple model families, up to +11.4% accuracy gain, while modifying as little as 1.59% of compo-
nents. Importantly, these improvements come with minimal degradation on general-purpose bench-
marks such as MMLU, TriviaQA, and TruthfulQA. These findings suggest that model capabilities

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Configuration GSym-
Test

MMLU
Humanities

MMLU
STEM

TriviaQA TruthfulQA

Gemma-2-9B-Instruct
Prefix w mask 4.1 0.1 0.6 -0.4 0.0
Prefix w/o mask 4.2 -0.4 0.6 -4.0 0.1
Branching w mask 7.4 0.2 0.8 2.0 -0.3
Branching w/o mask 6.8 0.2 0.7 0.0 -0.3
LoRA 4.3 0.3 0.5 1.9 -0.1

Gemma-2-2B-Instruct
Prefix w mask 2.9 0.2 0.1 0.8 -0.7
Prefix w/o mask 9.1 -0.6 0.8 -1.3 -1.6
Branching w mask 11.4 0.0 0.3 1.3 0.1
Branching w/o mask 12.1 0.3 0.6 1.6 0.7
LoRA 16.8 -1.0 0.5 0.5 -2.0

OLMo-2-1124-13B-Instruct
Prefix w mask 2.6 0.1 0.1 -0.4 -0.1
Prefix w/o mask 2.0 0.4 0.0 -0.0 -0.3
Branching w mask 4.4 0.1 0.1 -0.6 -0.3
Branching w/o mask 4.2 0.0 -0.2 -0.5 -0.5
LoRA 5.5 0.4 0.2 1.7 0.1

OLMo-2-1124-7B-Instruct
Prefix w mask 3.3 -0.5 -0.4 -0.0 -0.0
Prefix w/o mask 3.8 0.1 -0.3 -0.3 0.8
Branching w mask 5.5 -0.1 -0.1 -0.1 0.1
Branching w/o mask 6.7 0.4 0.2 -0.6 2.0
LoRA 0.7 -0.1 -0.3 0.4 -0.2

Table 2: Absolute percentage difference (in 0–100 scale) between original model and updated model
for four CircuitTuning conditions and LoRA. Results are shown over five benchmarks: GSym-Test,
MMLU Humanities, MMLU STEM, TriviaQA, and TruthfulQA.

are often governed by sparse, localized subnetworks that can be selectively strengthened to achieve
reliable skill amplification.

Beyond improving mathematical reasoning, CircuitTuning highlights a broader principle: mech-
anistically informed, sparse updates provide a pathway to safe and effective model adaptation.
This offers practical benefits for real-world deployment, where users expect improvements in tar-
geted abilities without unexpected trade-offs, and contributes to the growing intersection between
parameter-efficient finetuning and interpretability-guided model editing.

There are, however, limitations. We focused on mathematical reasoning as a testbed, leaving open
whether similar gains can be achieved for other complex domains such as code generation or sci-
entific problem solving. The current approach requires constructing error-localization datasets for
token localization, which may be costly in settings without well-defined correctness signals. Further,
our experiments considered only a single fine-tuning stage, whereas deployed models often undergo
multiple rounds of fine-tuning to enhance different capabilities. However, in such continual learning
settings, conventional techniques may introduce substantial regressions (Scialom et al., 2022; Luo
et al., 2025), making CircuitTuning a promising alternative.

Future work could address these limitations by (i) extending CircuitTuning to other capabilities
and domains, such as code generation, scientific reasoning, or multi-modal tasks, thereby testing
its generality beyond symbolic math; (ii) automating the error-localization process using frontier
LLMs to reduce reliance on multiple generations and improve scalability to datasets with longer
reasoning traces; and (iii) incorporating more sophisticated optimization techniques to refine model
components more efficiently than naive gradient descent.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Emmanuel Ameisen, Jack Lindsey, Adam Pearce, Wes Gurnee, Nicholas L. Turner, Brian Chen,
Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar,
Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan,
Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman,
Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. Circuit tracing: Revealing
computational graphs in language models. Transformer Circuits Thread, 2025. URL https:
//transformer-circuits.pub/2025/attribution-graphs/methods.html.

Marthe Ballon, Andres Algaba, and Vincent Ginis. The relationship between reasoning and per-
formance in large language models – o3 (mini) thinks harder, not longer, 2025. URL https:
//arxiv.org/abs/2502.15631.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588, 2022.

Vishnu Kabir Chhabra, Ding Zhu, and Mohammad Mahdi Khalili. Neuroplasticity and corrup-
tion in model mechanisms: A case study of indirect object identification. In Luis Chiruzzo,
Alan Ritter, and Lu Wang (eds.), Findings of the Association for Computational Linguistics:
NAACL 2025, pp. 3099–3122, Albuquerque, New Mexico, April 2025. Association for Compu-
tational Linguistics. ISBN 979-8-89176-195-7. doi: 10.18653/v1/2025.findings-naacl.170. URL
https://aclanthology.org/2025.findings-naacl.170/.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Xander Davies, Max Nadeau, Nikhil Prakash, Tamar Rott Shaham, and David Bau. Discovering
variable binding circuitry with desiderata. arXiv preprint arXiv:2307.03637, 2023.

Nicola De Cao, Leon Schmid, Dieuwke Hupkes, and Ivan Titov. Sparse interventions in lan-
guage models with differentiable masking. In Jasmijn Bastings, Yonatan Belinkov, Yanai Elazar,
Dieuwke Hupkes, Naomi Saphra, and Sarah Wiegreffe (eds.), Proceedings of the Fifth Black-
boxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pp. 16–27, Abu
Dhabi, United Arab Emirates (Hybrid), December 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.blackboxnlp-1.2. URL https://aclanthology.org/2022.
blackboxnlp-1.2/.

Jaden Fiotto-Kaufman, Alexander R Loftus, Eric Todd, Jannik Brinkmann, Koyena Pal, Dmitrii
Troitskii, Michael Ripa, Adam Belfki, Can Rager, Caden Juang, et al. Nnsight and ndif: De-
mocratizing access to open-weight foundation model internals. arXiv preprint arXiv:2407.14561,
2024.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
evaluation harness, 07 2024. URL https://zenodo.org/records/12608602.

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,
Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, Shane Arora, David Atkin-
son, Russell Authur, Khyathi Raghavi Chandu, Arman Cohan, Jennifer Dumas, Yanai Elazar,
Yuling Gu, Jack Hessel, Tushar Khot, William Merrill, Jacob Morrison, Niklas Muennighoff,
Aakanksha Naik, Crystal Nam, Matthew E. Peters, Valentina Pyatkin, Abhilasha Ravichander,
Dustin Schwenk, Saurabh Shah, Will Smith, Emma Strubell, Nishant Subramani, Mitchell Worts-
man, Pradeep Dasigi, Nathan Lambert, Kyle Richardson, Luke Zettlemoyer, Jesse Dodge, Kyle
Lo, Luca Soldaini, Noah A. Smith, and Hannaneh Hajishirzi. Olmo: Accelerating the science of
language models, 2024. URL https://arxiv.org/abs/2402.00838.

10

https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://arxiv.org/abs/2502.15631
https://arxiv.org/abs/2502.15631
https://aclanthology.org/2025.findings-naacl.170/
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://aclanthology.org/2022.blackboxnlp-1.2/
https://aclanthology.org/2022.blackboxnlp-1.2/
https://zenodo.org/records/12608602
https://arxiv.org/abs/2402.00838


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Michael Hanna, Ollie Liu, and Alexandre Variengien. How does gpt-2 compute greater-than?:
Interpreting mathematical abilities in a pre-trained language model, 2023. URL https:
//arxiv.org/abs/2305.00586.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
cob Steinhardt. Measuring massive multitask language understanding, 2021. URL https:
//arxiv.org/abs/2009.03300.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Samyak Jain, Robert Kirk, Ekdeep Singh Lubana, Robert P Dick, Hidenori Tanaka, Edward Grefen-
stette, Tim Rocktäschel, and David Scott Krueger. Mechanistically analyzing the effects of fine-
tuning on procedurally defined tasks. arXiv preprint arXiv:2311.12786, 2023.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehension. In Regina Barzilay and Min-Yen Kan
(eds.), Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 1601–1611, Vancouver, Canada, July 2017. Association for Com-
putational Linguistics. doi: 10.18653/v1/P17-1147. URL https://aclanthology.org/
P17-1147/.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in neural information processing systems,
35:3843–3857, 2022.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods, 2022. URL https://arxiv.org/abs/2109.07958.

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study
of catastrophic forgetting in large language models during continual fine-tuning, 2025. URL
https://arxiv.org/abs/2308.08747.

Sara Vera Marjanović, Arkil Patel, Vaibhav Adlakha, Milad Aghajohari, Parishad BehnamGhader,
Mehar Bhatia, Aditi Khandelwal, Austin Kraft, Benno Krojer, Xing Han Lù, Nicholas
Meade, Dongchan Shin, Amirhossein Kazemnejad, Gaurav Kamath, Marius Mosbach, Karolina
Stańczak, and Siva Reddy. Deepseek-r1 thoughtology: Let’s think about llm reasoning, 2025.
URL https://arxiv.org/abs/2504.07128.

Samuel Marks, Can Rager, Eric J. Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller.
Sparse feature circuits: Discovering and editing interpretable causal graphs in language models,
2025. URL https://arxiv.org/abs/2403.19647.

Jack Merullo, Carsten Eickhoff, and Ellie Pavlick. Circuit component reuse across tasks in trans-
former language models. arXiv preprint arXiv:2310.08744, 2023.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad
Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in large
language models, 2025. URL https://arxiv.org/abs/2410.05229.

Aaron Mueller, Jannik Brinkmann, Millicent Li, Samuel Marks, Koyena Pal, Nikhil Prakash, Can
Rager, Aruna Sankaranarayanan, Arnab Sen Sharma, Jiuding Sun, et al. The quest for the right
mediator: A history, survey, and theoretical grounding of causal interpretability. arXiv preprint
arXiv:2408.01416, 2024.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 2020. doi: 10.23915/distill.00024.001.
https://distill.pub/2020/circuits/zoom-in.

11

https://arxiv.org/abs/2305.00586
https://arxiv.org/abs/2305.00586
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://aclanthology.org/P17-1147/
https://aclanthology.org/P17-1147/
https://arxiv.org/abs/2109.07958
https://arxiv.org/abs/2308.08747
https://arxiv.org/abs/2504.07128
https://arxiv.org/abs/2403.19647
https://arxiv.org/abs/2410.05229


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Francesco Ortu, Zhijing Jin, Diego Doimo, Mrinmaya Sachan, Alberto Cazzaniga, and Bernhard
Schölkopf. Competition of mechanisms: Tracing how language models handle facts and coun-
terfactuals. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), pp. 8420–8436, Bangkok, Thailand, August 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.acl-long.458. URL https://aclanthology.org/2024.
acl-long.458/.

Nikhil Prakash, Tamar Rott Shaham, Tal Haklay, Yonatan Belinkov, and David Bau. Fine-tuning
enhances existing mechanisms: A case study on entity tracking. In Proceedings of the 2024
International Conference on Learning Representations, 2024. arXiv:2402.14811.

Nikhil Prakash, Natalie Shapira, Arnab Sen Sharma, Christoph Riedl, Yonatan Belinkov, Tamar Rott
Shaham, David Bau, and Atticus Geiger. Language models use lookbacks to track beliefs. arXiv
preprint arXiv:2505.14685, 2025.

Daking Rai, Samuel Miller, Kevin Moran, and Ziyu Yao. Failure by interference: Language models
make balanced parentheses errors when faulty mechanisms overshadow sound ones, 2025. URL
https://arxiv.org/abs/2507.00322.

Naomi Saphra and Sarah Wiegreffe. Mechanistic? arXiv preprint arXiv:2410.09087, 2024.

Thomas Scialom, Tuhin Chakrabarty, and Smaranda Muresan. Fine-tuned language models are
continual learners. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of
the 2022 Conference on Empirical Methods in Natural Language Processing, pp. 6107–6122,
Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.emnlp-main.410. URL https://aclanthology.org/2022.
emnlp-main.410/.

Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh, Maxwell Horton, Samy Bengio, and Mehrdad
Farajtabar. The illusion of thinking: Understanding the strengths and limitations of reasoning
models via the lens of problem complexity, 2025. URL https://arxiv.org/abs/2506.
06941.

Chung-En Sun, Ge Yan, and Tsui-Wei Weng. Thinkedit: Interpretable weight editing to mitigate
overly short thinking in reasoning models. arXiv preprint arXiv:2503.22048, 2025a.

Yucheng Sun, Alessandro Stolfo, and Mrinmaya Sachan. Probing for arithmetic errors in language
models. arXiv preprint arXiv:2507.12379, 2025b.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard
Hussenot, Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam Roberts, Aditya Barua, Alex
Botev, Alex Castro-Ros, Ambrose Slone, Amélie Héliou, Andrea Tacchetti, Anna Bulanova, An-
tonia Paterson, Beth Tsai, Bobak Shahriari, Charline Le Lan, Christopher A. Choquette-Choo,
Clément Crepy, Daniel Cer, Daphne Ippolito, David Reid, Elena Buchatskaya, Eric Ni, Eric
Noland, Geng Yan, George Tucker, George-Christian Muraru, Grigory Rozhdestvenskiy, Hen-
ryk Michalewski, Ian Tenney, Ivan Grishchenko, Jacob Austin, James Keeling, Jane Labanowski,
Jean-Baptiste Lespiau, Jeff Stanway, Jenny Brennan, Jeremy Chen, Johan Ferret, Justin Chiu,
Justin Mao-Jones, Katherine Lee, Kathy Yu, Katie Millican, Lars Lowe Sjoesund, Lisa Lee,
Lucas Dixon, Machel Reid, Maciej Mikuła, Mateo Wirth, Michael Sharman, Nikolai Chinaev,
Nithum Thain, Olivier Bachem, Oscar Chang, Oscar Wahltinez, Paige Bailey, Paul Michel, Petko
Yotov, Rahma Chaabouni, Ramona Comanescu, Reena Jana, Rohan Anil, Ross McIlroy, Ruibo
Liu, Ryan Mullins, Samuel L Smith, Sebastian Borgeaud, Sertan Girgin, Sholto Douglas, Shree
Pandya, Siamak Shakeri, Soham De, Ted Klimenko, Tom Hennigan, Vlad Feinberg, Wojciech
Stokowiec, Yu hui Chen, Zafarali Ahmed, Zhitao Gong, Tris Warkentin, Ludovic Peran, Minh
Giang, Clément Farabet, Oriol Vinyals, Jeff Dean, Koray Kavukcuoglu, Demis Hassabis, Zoubin
Ghahramani, Douglas Eck, Joelle Barral, Fernando Pereira, Eli Collins, Armand Joulin, Noah
Fiedel, Evan Senter, Alek Andreev, and Kathleen Kenealy. Gemma: Open models based on
gemini research and technology, 2024. URL https://arxiv.org/abs/2403.08295.

12

https://aclanthology.org/2024.acl-long.458/
https://aclanthology.org/2024.acl-long.458/
https://arxiv.org/abs/2507.00322
https://aclanthology.org/2022.emnlp-main.410/
https://aclanthology.org/2022.emnlp-main.410/
https://arxiv.org/abs/2506.06941
https://arxiv.org/abs/2506.06941
https://arxiv.org/abs/2403.08295


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
pretability in the wild: a circuit for indirect object identification in gpt-2 small, 2022a. URL
https://arxiv.org/abs/2211.00593.

Peng-Yuan Wang, Tian-Shuo Liu, Chenyang Wang, Yi-Di Wang, Shu Yan, Cheng-Xing Jia, Xu-
Hui Liu, Xin-Wei Chen, Jia-Cheng Xu, Ziniu Li, et al. A survey on large language models for
mathematical reasoning. arXiv preprint arXiv:2506.08446, 2025.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022b.

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part 2.1,
grade-school math and the hidden reasoning process. arXiv preprint arXiv:2407.20311, 2024.

13

https://arxiv.org/abs/2211.00593


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs as a writing assistant to correct grammatical and typographical errors; beyond this,
they did not contribute to any stage of the research.

B TEMPLATES UTILIZED IN ERROR-LOCALIZATION DATASET GENERATION

Model Template IDs

gemma-2-9b-it 520, 364, 116, 184, 984, 1247, 480, 266, 20, 410,
43, 1207, 456, 989, 357, 1133, 1165, 434, 406, 1239,
858, 1088, 1021, 39, 652, 976

gemma-2-2b-it 520, 1305, 164, 991, 740, 103, 491, 364, 365, 496,
116, 125, 1025, 1031, 1020, 145, 401, 788, 918, 921,
158, 930, 1189, 1063, 184, 440, 458, 718, 728, 984,
473, 1247, 480, 636, 1277, 1026, 265, 266, 11, 20,
410, 1053, 800, 546, 937, 43, 1207, 1084, 320, 456,
982, 989, 99, 357, 1133, 1141, 737, 554, 1165, 1264,
304, 242, 434, 336, 661, 406, 1239, 858, 955, 1088,
459, 1021, 39, 74, 107, 652, 1164, 976

OLMo-2-1124-7B-Instruct 520, 1305, 991, 103, 873, 116, 1031, 1020, 145, 788,
184, 728, 984, 1247, 1275, 636, 1026, 265, 266, 11,
20, 410, 1053, 800, 43, 1207, 320, 989, 99, 357, 1133,
554, 1165, 1264, 304, 242, 434, 336, 406, 1239, 858,
1088, 459, 1021, 39, 652, 976

OLMo-2-1124-13B-Instruct 520, 1305, 300, 991, 740, 103, 364, 116, 184, 728,
984, 473, 1247, 1275, 1026, 265, 266, 11, 20, 410,
1053, 43, 1207, 1084, 320, 989, 99, 357, 1133, 554,
1264, 304, 434, 406, 1239, 858, 1088, 459, 39, 74,
107, 652, 976

Table 3: Template IDs used for training across different models.

C DCM TUNING DETAILS

Category Hyperparameter Value
Training schedule Base learning rate 5e-3

Epochs 50
Effective batch size 8

Optimization Optimizer Adam
β 0.9
λ {1e-2, 1e-3, 5e-3, 1e-4}

Table 4: Hyperparameters used for Desiderata-based Component Masking (DCM) tuning. Values
include training schedule, optimizer settings, and λ sweep for sparsity control.

D MMLU CATEGORIES

D.1 MMLU STEM TASKS

mmlu abstract algebra, mmlu anatomy, mmlu astronomy, mmlu college biology,
mmlu college chemistry, mmlu college computer science, mmlu college mathematics,

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

mmlu college physics, mmlu computer security, mmlu conceptual physics,
mmlu electrical engineering, mmlu elementary mathematics, mmlu high school biology,
mmlu high school chemistry, mmlu high school computer science,
mmlu high school mathematics, mmlu high school physics, mmlu high school statistics,
mmlu machine learning

D.2 MMLU HUMANITIES TASKS

mmlu formal logic, mmlu high school european history, mmlu high school us history,
mmlu high school world history, mmlu international law, mmlu jurisprudence,
mmlu logical fallacies, mmlu moral disputes, mmlu moral scenarios, mmlu philosophy,
mmlu prehistory, mmlu professional law, mmlu world religions

E TRAINING DETAILS

E.1 LORA FINETUNING DETAILS

Category Hyperparameter Value
Training schedule Base learning rate {3e-5, 5e-5, 1e-4, 3e-4}

Warmup steps 5
Schedule Linear warmup → cosine decay
Epochs 2
Effective batch size 32

Optimization Optimizer AdamW
(β1, β2) 0.9, 0.999
ϵ 1e-8
Max grad norm 1.0

Regularization Weight decay 0.01
Dropout 0.1

LoRA adapter Rank (r) 16
Alpha (α) 32

Table 5: LoRA fine-tuning hyperparameters. The exact number of optimization steps varies for each
model based on the size of the training data.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 6: LoRA finetuning results across learning rates. The first row for each model is the unmodi-
fied (Original) model.

Model Learning Rate GSym-Test
MMLU
STEM

MMLU
Humanities

Trivia
QA

Truthful
QA

Gemma2 2B

Original 0.411 0.446 0.474 0.409 0.424
3e-6 0.427 0.446 0.474 0.406 0.423
5e-6 0.360 0.450 0.472 0.407 0.419
1e-5 0.342 0.453 0.472 0.412 0.411
2e-5 0.399 0.459 0.468 0.419 0.403
3e-5 0.480 0.462 0.467 0.419 0.401
5e-5 0.579 0.451 0.464 0.414 0.404
1e-4 0.562 0.444 0.467 0.417 0.415
3e-4 0.578 0.454 0.460 0.410 0.397

Gemma2 9B

Original 0.807 0.609 0.620 0.536 0.536
3e-6 0.810 0.609 0.620 0.535 0.537
5e-6 0.808 0.610 0.619 0.536 0.538
1e-5 0.805 0.610 0.619 0.535 0.535
2e-5 0.793 0.612 0.621 0.547 0.547
3e-5 0.850 0.614 0.623 0.555 0.535
5e-5 0.668 0.615 0.623 0.560 0.532
1e-4 0.609 0.617 0.632 0.581 0.528
3e-4 0.601 0.611 0.628 0.573 0.523

Olmo 7B

Original 0.739 0.507 0.557 0.622 0.468
3e-6 0.741 0.507 0.556 0.623 0.467
5e-6 0.745 0.507 0.557 0.622 0.468
1e-5 0.746 0.504 0.556 0.626 0.466
2e-5 0.644 0.505 0.557 0.630 0.465
3e-5 0.660 0.507 0.556 0.630 0.465
5e-5 0.585 0.509 0.559 0.630 0.463
1e-4 0.616 0.514 0.559 0.634 0.461
3e-4 0.442 0.514 0.559 0.638 0.447

Olmo 13B

Original 0.742 0.564 0.601 0.703 0.512
3e-6 0.754 0.565 0.602 0.705 0.512
5e-6 0.772 0.565 0.603 0.712 0.512
1e-5 0.797 0.566 0.605 0.720 0.513
2e-5 0.767 0.567 0.605 0.723 0.509
3e-5 0.775 0.566 0.605 0.724 0.509
5e-5 0.776 0.567 0.606 0.726 0.507
1e-4 0.697 0.569 0.601 0.727 0.504
3e-4 0.540 0.567 0.605 0.737 0.499

16


	Introduction
	Related Works
	Mechanistic Interpretability in LLMs
	Mathematical Reasoning with LLMs

	CircuitTuning
	Method Overview
	Localizing Reasoning Errors
	Identifying Constructive Circuits with DCM
	Targeted Parameter Updates


	Experimental Setup
	Datasets for Math and General Abilities
	Evaluated Model Families
	Baseline: LoRA Fine-Tuning

	Experimental Results on Math Reasoning
	Preserving Broader LM Abilities
	Discussion and Conclusion
	The Use of Large Language Models (LLMs)
	Templates Utilized in Error-Localization Dataset Generation
	DCM Tuning Details
	MMLU Categories
	MMLU STEM Tasks
	MMLU Humanities Tasks

	Training Details
	LoRA FineTuning Details


