
Under review as a conference paper at ICLR 2023

LEARNING LIGHTWEIGHT OBJECT DETECTORS VIA
PROGRESSIVE KNOWLEDGE DISTILLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Resource-constrained perception systems such as edge computing and vision-for-
robotics require vision models to be both accurate and lightweight in computation
and memory usage. Knowledge distillation is one effective strategy to improve the
performance of lightweight classification models, but it is less well-explored for
structured outputs such as object detection and instance segmentation, where the
variable number of outputs and complex internal network modules complicate the
distillation. In this paper, we propose a simple yet surprisingly effective sequen-
tial approach to knowledge distillation that progressively transfers the knowledge
of a set of teachers to a given lightweight student. Our approach is inspired by
curriculum learning: To distill knowledge from a highly accurate but complex
teacher model, we construct a sequence of teachers to help the student gradually
adapt. Our progressive distillation strategy can be easily combined with existing
distillation mechanisms to consistently maximize student performance in various
settings. To the best of our knowledge, we are the first to successfully distill
knowledge from Transformer-based teacher detectors to convolution-based stu-
dents, and unprecedentedly boost the performance of ResNet-50 based RetinaNet
from 36.5% to 42.0% AP and Mask R-CNN from 38.2% to 42.5% AP on the MS
COCO benchmark.

1 INTRODUCTION

The success of recent deep neural network models generally depends on an elaborate design of
architectures with tens or hundreds of millions of model parameters. However, their huge computa-
tional complexity and massive memory/storage requirements make them challenging to be deployed
in safety-critical real-time applications, especially on devices with limited resources, such as self-
driving cars or virtual/augmented reality models. Such concerns have spawned a wide body of
literature on compression and acceleration techniques. Many approaches focus on reducing com-
putation demands by sparsifying/pruning networks (Lebedev & Lempitsky, 2016; Han et al., 2016),
quantization (Rastegari et al., 2016; Wu et al., 2016), or neural architecture search (Zoph & Le, 2017;
Liu et al., 2019), but reduced computation does not always translate into lower latency because of
subtle issues with memory access and caching on GPUs (Tan et al., 2019; Ding et al., 2021).

Rather than searching over new architectures, we seek to better train existing lightweight architec-
tures that have already been carefully engineered for efficient memory access. Instead of relying
on additional data or human supervision, we follow the large body of work on knowledge distilla-
tion (Buciluǎ et al., 2006; Hinton et al., 2014) for compressing the information from a large model
into a small model. While most recent efforts in knowledge distillation focus on image classifica-
tion, relatively less work exists for distilling object detectors. The extension from classification to
object detection and instance segmentation is nontrivial due to the complicated outputs of the tasks.
Most detectors operate with multi-task heads (for classification, and box/mask regression) that can
generate variable-length outputs. In the literature of detector distillation, recent work (Zhang & Ma,
2021; Shu et al., 2021; Yang et al., 2022b) mainly focuses on designing advanced distillation loss
functions for transferring features from teachers to students. However, there are two unsolved chal-
lenges: 1) The capacity gap (Cho & Hariharan, 2019; Mirzadeh et al., 2020) between models can
result in a sub-optimal distilled student even if the strongest teacher has been employed, which is
undesired when optimizing the accuracy-efficiency trade-off of the student. Moreover, when trying
to distill knowledge from Transformer-based teachers (Dosovitskiy et al., 2020; Liu et al., 2021)
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Figure 1: Our proposed progressive distilla-
tion leads to state-of-the-art student perfor-
mance. When switching the teacher model from a
convolution-based detector to a Transformer-based
one with stronger detection performance, the stu-
dent does not become more accurate, due to the ar-
chitectural difference between the teacher-student
pair. Progressively distilling knowledge from mul-
tiple teachers can mitigate the capacity gap and re-
sult in the best student performance.

to classical convolution-based students, this architectural difference can enlarge the teacher-student
gap. 2) Current methods assume that one target teacher has been selected. However, this meta-level
optimization of teacher selection is neglected in the existing literature of detector distillation. In
fact, finding a pool of strong teacher candidates is easy, but trial-and-error may be necessary before
determining one most compatible teacher for a specific student.

To address these challenges, we propose a framework to learn lightweight detectors through progres-
sive knowledge distillation: 1) We find sequential distillation from multiple teachers arranged into
a curriculum significantly improves knowledge distillation and bridges the teacher-student capac-
ity gap. As shown in Figure 1, even with huge architectural difference, our progressive distillation
can effectively transfer knowledge from Transformer-based teachers to convolution-based students,
while previous methods cannot. 2) For the teacher selection problem, we design a heuristic algo-
rithm for a given student and a pool of teacher candidates, to automatically determine the order of
teachers to use. This algorithm is based on the analysis of the representation similarity between
models, which does not require knowledge of the specific distillation mechanism to be used.

Overall, our progressive distillation is a general meta-level strategy that consistently improves both
simple feature-matching distillation and more sophisticated ones. With the help of modern distil-
lation mechanisms and teacher detectors, our progressive distillation learns lightweight RetinaNet
and Mask R-CNN students with state-of-the-art accuracy. Furthermore, by analyzing the training
loss dynamics of the student model, we find the improvement is not due to minimizing the training
loss better. Rather, the knowledge transferred from multiple teachers can lead the student to a flat
minimum, and thus help the student generalize better. To summarize, we transfer knowledge from
multiple teachers to progressively distill a student. Our main contributions include:

• We propose a framework for learning lightweight detectors through progressive knowledge dis-
tillation, which is simple, general, yet effective. We develop a principled way to automatically
design a sequence of teachers appropriate for a given student and progressively distill it.

• Our progressive distillation is a meta-level strategy that can be easily combined with previous ef-
forts in detection distillation. We perform comprehensive empirical evaluation on the challenging
MS COCO dataset and observe consistent gains.

• For the first time, we investigate distillation from Transformer-based teacher detectors to a
convolution-based student, and find progressive distillation is the key to bridge their gap.

• We show the performance gain comes from better generalization rather than better optimization.

2 RELATED WORK

Knowledge Distillation: Knowledge distillation or transfer, an idea of training a shallow student
network with supervision from a deep teacher, was originally proposed by Buciluǎ et al. (2006),
and later formally popularized by Hinton et al. (2014). Different knowledge can be used, such
as response-based knowledge (Hinton et al., 2014), and feature-based knowledge (Romero et al.,
2015; Heo et al., 2019). Several multi-teacher knowledge distillation methods have been pro-
posed (Vongkulbhisal et al., 2019; Sau & Balasubramanian, 2016), which usually use the average of
logits and feature representations as the knowledge (You et al., 2017; Fukuda et al., 2017). Mirzadeh
et al. (2020) find that an intermediate teacher assistant, decided by architectural similarities, can
bridge the gap between the student and the teacher. We find it more effective to use a sequence of
teachers instead of their ensemble, and extend Mirzadeh et al. (2020) to a more general case where
teacher models have diverse architectures and their relative ordering is unknown.
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Object Detection and Instance Segmentation: A variety of convolutional neural network (CNN)
based object detection frameworks have been proposed, and can be generally divided into single-
stage and two-stage detectors. Typical single-stage methods include YOLO (Redmon et al., 2016;
Redmon & Farhadi, 2018) and RetinaNet (Lin et al., 2017b), and two-stage methods include Faster
R-CNN (Ren et al., 2014), and Mask R-CNN (He et al., 2017). Recently, several multi-stage models
are proposed, such as HTC (Chen et al., 2019a) and DetectoRS (Qiao et al., 2021). These detection
frameworks achieve better detection accuracy with better backbone networks as feature extractors
and with more complicated heads, which are more computationally expensive.

Knowledge Distillation for detection and segmentation: To reduce the computational cost, knowl-
edge distillation has been used to develop efficient detectors. Chen et al. (2017) first use knowledge
distillation to enforce the student detector to mimic the teacher’s predictions. More recent efforts
usually focus on learning from the teacher’s features, rather than final predictions. Various distil-
lation mechanisms have been proposed to leverage the impact of foreground and background ob-
jects (Wang et al., 2019; Guo et al., 2021), relation between individual objects (Zhang & Ma, 2021;
Dai et al., 2021), or relation between local and global information (Yang et al., 2022a;b). Different
from these methods that distill from a single teacher, we study distillation from multiple teachers,
where a proper sequence of teachers is required, and we find a very simple feature-matching loss is
adequate to significantly boost student performance.

3 APPROACH

We propose to progressively distill a student model S with a pool of N teachers P = {Ti}Ni=1.
Typical object detectors are composed of four modules: (1) backbone, which extracts visual features,
such as ResNet (He et al., 2016) and ResNeXt (Xie et al., 2017); (2) neck, which extracts multi-level
feature maps from various stages of the backbone, such as FPN (Lin et al., 2017a) and Bi-FPN (Tan
et al., 2020); (3) optional region proposal network (RPN), which is used in two-stage detectors; and
(4) head, which generates final predictions for object detection and segmentation. We denote the
output feature maps of the neck as FNet, where Net can be either the student model S or one of the
teachers Ti ∈ P . With neck modules like FPN, the feature maps can be multi-level.

We propose a meta-strategy for detector distillation that progressively learns a student using a se-
quence of teachers. To examine this meta-strategy without involving sophisticated distillation mech-
anisms, we introduce a simple feature-matching distillation for a single teacher Ti in Section 3.1.
Then we discuss progressive distillation with multiple teachers from P in Section 3.2.

3.1 SINGLE TEACHER DISTILLATION VIA SIMPLE FEATURE MATCHING

In order to learn a efficient student detector S through distillation, we encourage the feature repre-
sentation of a student to be similar to that of the teacher (Chen et al., 2017; Yang et al., 2021). To
this end, we minimize the discrepancy between the feature representations of the teacher and the
student. Without bells and whistles, we simply minimize the L2 distance between FTi and FS :

Ldistill =
∥∥FTi − r(FS)

∥∥2
2
, (1)

where r(·) is a function used to match the feature map dimensions of the teacher and the student.

We define r(·) as follows:

• (Homogeneous case) If the numbers of channels and the spatial resolutions are both the same
between Ti and S, r(·) is an identity function.

• (Heterogeneous case) If the numbers of channels are different but the spatial resolutions are the
same, we use 1 × 1 convolutional filters as r(·). If the spatial resolutions are different but the
numbers of channels are the same, we use an upsampling layer as r(·).

Note that the mapping r(·) is only required at training time and thus not adding any overhead to the
inference. Overall, our loss function can be written as:

L = λLdistill + Ldetect, (2)
where λ is a balancing hyper-parameter and Ldetect is the detection loss based on the ground truth
labels. Compared to state-of-the-art detection distillation approaches (Zhang & Ma, 2021; Shu
et al., 2021; Yang et al., 2022a;b), which introduce more complex designs of the distillation loss,
this feature-matching distillation is simpler and does not require running the heads of the teacher
model. Our distillation loss is illustrated in Figure 2-Left.
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Figure 2: Progressive knowledge distillation for object detectors. Left: For each teacher-student pair, the
training target is composed of two parts: Ldistill minimizes the discrepancy between the neck feature maps of the
student and the current teacher, and Ldetect is the original detection loss based on the ground truth. Right: We
use a sequence of teacher models to distill the lightweight student detector. The sequence of teachers forms a
curriculum. Using a proper sequence of teachers can significantly boost the student model’s performance. The
example performance curve illustrates our method improves the COCO validation AP of ResNet-50 backboned
RetinaNet student first from 36.5% to 37.9% using HTC (Teacher 1), and then from 37.9% to 39.9% using
DetectoRS (Teacher 2).

3.2 PROGRESSIVE DISTILLATION WITH MULTIPLE TEACHERS

The overall aim of knowledge distillation is to make a student mimic a teacher’s output, so that the
student is able to obtain similar performance to teacher’s. However, the capacity of the student model
is limited, making it hard for the student to learn from a highly complex teacher (Cho & Hariharan,
2019). To address this issue, multiple teacher networks are used to provide more supervision to a
student (Sau & Balasubramanian, 2016; You et al., 2017). Unlike previous methods which distill
knowledge from the ensemble of logits or features simultaneously, we propose to distill feature-
based knowledge from multiple teachers sequentially. Our key insight is that instead of mimicking
the ensemble of all feature information together, the student can be distilled more effectively by
the knowledge provided by one proper teacher each time. This progressive knowledge distillation
approach can be considered as designing a curriculum (Bengio et al., 2009) offered by a sequence
of teachers, as illustrated in Figure 2-Right.

The crucial question is: What is the proper order O of the teachers when distilling the student? A
brute-force approach might search over all orders and pick the best (that produces a distilled student
with the highest validation accuracy). However, the space of permutation orders grows exponentially
with the number of teachers, making this impractical to scale. Therefore, we propose a principled
and efficient approach based on a correlation analysis of each model’s learned feature representation.

First, we quantify the dissimilarity between each pair of models’ representations, as a proxy for the
capacity gap between them. Representation (dis)similarity (Raghu et al., 2017; Wang et al., 2018;
Kornblith et al., 2019) has been studied to understand the learning capacity of neural models. In our
setting, we find a linear regression model is adequate for measuring the representation dissimilarity.
Given two pre-trained detectors A and B, we can freeze their parameters, and thus fixing the feature
representations. Then we can learn a linear mapping r(·), implemented by a 1×1 convolutional layer
at each feature level, as specified in the heterogeneous case in Section 3.1. r(·) is trained to minimize
Ldistill, so it can transform A’s features to approximate B’s features. After training r(·), we evaluate
it by Ldistill on the validation set, and denote the validation loss as the adaptation cost C(A,B). This
metric can be a proxy of the capacity gap between a pair of models: When C(A,B) is zero, a linear
mapping can transform A’s features to B’s, and there is no additional knowledge from B. When
C(A,B) is large, it is more difficult to adapt A’s representation to B’s. Note that the adaptation
cost is non-symmetric – it is relatively easier to adapt a high-capacity model’s representations to a
low-capacity model’s representations, than the other way around.

We design a heuristic algorithm to acquire a proper distillation order O automatically (details are
shown in Algorithm 1 in the appendix). Suppose the maximum number of teachers to be selected
is limited by k (which can be arbitrarily decided according to desired training time), and we aim
to find a teacher index sequence α no longer than k. We construct the teacher order backwards:
The best performing teacher is set as the final target Tαk

; before the final teacher, we use another
teacher, which has the smallest adaptation cost C(·, Tαk

) to that final teacher, as the penultimate
teacher Tαk−1

. We repeat this procedure to find preceding teachers, until: (1) when trying to select
Tαj

, we find the transfer costs from remaining teachers to the next teacher C(·, Tαj+1
) are all larger

than the transfer cost from the student to the next teacher C(S, Tαj+1
); or (2) we reach the given

maximum step limit k. Intuitively, the resulting sequence of teachers bridges the gap between the
student model and the teacher, with an increasingly difficult curriculum.
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Model Input Backbone Neck Head AP Runtime
Res. Box Mask (ms)

Teachers

I 1× R50 FPN Mask R-CNN 38.2 34.7 51
II 1× R50 FPN FCOS 38.7 - 36
III 1× R50 FPN HTC 42.3 37.4 181
IV 1× R50+SAC RFP HTC (DetectoRS) 49.1 42.6 223
V 1× R50+SAC RFP Mask R-CNN 45.1 40.1 142

Students

I 1× R50 FPN RetinaNet 36.5 - 43
II 1× R50 FPN Mask R-CNN 38.2 34.7 51
III 1× R18 FPN Mask R-CNN 33.3 30.5 29
IV 0.25× R50 FPN Mask R-CNN 25.8 23.0 17

Table 1: Configuration and COCO performance
of the student and teacher detectors. We inves-
tigate a variety of models with heterogeneous in-
put resolutions, backbones, necks, and head struc-
tures. ‘1×’ input resolution refers to the standard
1333×800 resolution, and ‘0.25×’ means 333×200
resolution. ‘R-’ backbones are ResNets with different
number of layers.

S : RetinaNet
TI : Mask R-CNN
TII : FCOS
TIII : HTC
TIV : DetectoRS
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Figure 3: Adaptation costs among models. The
number on each directed edge is the adaptation cost
metric described in Section 3.2. Some edges are not
shown for visual clarity. The red path is suggested by
our proposed Algorithm 1 when k = 3 teachers are
selected: (1) use the best performing Teacher IV as
the final teacher in the sequence, (2) use the teacher
closest to Teacher IV, which is Teacher III, as the sec-
ond teacher, and (3) use the teacher closest to Teacher
III, which is Teacher I, as the first teacher.

Our algorithm for designing teacher orders is lightweight. In fact, the main computation overhead of
our algorithm is to optimize a set of tiny linear mappings (R256 7→ R256 for FPN-based detectors).
It takes about 3 GPU hours for each student model, which is negligible compared to the distillation
process that takes hundreds of GPU hours.

Since our progressive knowledge distillation is a meta-level strategy, it can be combined with previ-
ous designs of distillation mechanisms, without much efforts. Starting with a student detector and a
pool of candidate teachers, we can first select a subset of teachers and design their distillation order.
In place of the simple feature matching loss, we then apply a more advanced distillation mechanism
with each teacher sequentially to train the student detector.

4 EXPERIMENTS

We study the efficacy of our proposed strategy, progressive knowledge distillation, from multiple
perspectives. First of all in Section 4.1, we use a controlled experiment to demonstrate that our
heuristic Algorithm 1 consistently produces teacher orders that are near-optimal compared to all
possibilities. Then in Section 4.2 and 4.3, we apply the progressive distillation strategy along with
the simple feature-matching loss (Section 3.1) to show this strategy alone brings significant gains to
knowledge distillation. Since our contribution of progressive distillation is orthogonal to previous
efforts in designing distillation mechanisms, in Section 4.4 we then combine it with state-of-the-
art distillation mechanisms to maximize the student performance, and we show our progressive
distillation is the key to the success of distillation from Transformer-based teachers to convolution-
based students. Finally in Section 4.5, we try to understand the performance gain of progressive
distillation by analyzing the training loss dynamics.

Student and teacher models: To investigate the impact of different teacher models and their combi-
nations, as shown in Table 1, we construct a variety of teacher-student pairs from a set of widely-used
object detection and instance segmentation networks, including RetinaNet (Lin et al., 2017b), Mask
R-CNN (He et al., 2017), FCOS (Tian et al., 2019), HTC (Chen et al., 2019a), and DetectoRS (Qiao
et al., 2021). They have a wide range of runtime and detection performance. We select ResNet-50
backboned RetinaNet and Mask R-CNN as the student models (Student I & II), due to their low
latency, simple structure, and wide application, for single-stage and two-stage object detection re-
spectively. More advanced models such as DetectoRS have better detection performance, but require
much more training/inference time, so we use them as teachers. We mainly consider the RetinaNet
and Mask R-CNN as the student models, and lightweight variants with a smaller backbone (Student
III), or reduced input resolution (Student IV).

Datasets and evaluation metrics: We mainly evaluate on the challenging object detection dataset
MS COCO 2017 (Lin et al., 2014), which contains bounding boxes and instance segmentations for
80 common object categories. We train our models on the split of train2017 (118k images) and
report results on val2017 (5k images). We report the standard COCO-style Average Precision
(AP) metric and end-to-end latency (from images to predictions) as the runtime. We also evaluate
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k
Suggested Student All student Ranking in

teacher order AP AP range all orders

1 IV 36.7 [36.2, 36.8] 2 / 4
2 III→IV 37.6 [36.2, 37.6] 1 / 16
3 I→III→IV 37.9 [36.2, 38.0] 2 / 40
4 I→III→IV 37.9 [36.2, 38.2] 7 / 64
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Table 2: Comparison of teacher order suggested by Algorithm 1 with all other orders under limited
training budgets (Li et al., 2020b). k denotes the maximum number of used teachers. Left: We show some
statistics of possible student AP performance and the ranking of the student using our distillation order. Right:
We visualize the comparative advantage of our teacher orders (red dots) over all other orders (black dots). Some
black scatter points overlap due to the same student AP. Our proposed Algorithm 1 can consistently produce
highly competitive distillation orders of teachers.

on another object detection dataset Argoverse-HD (Chang et al., 2019), and a more challenging
evaluation protocol streaming perception (Li et al., 2020a). These results are in Appendix D.

Baselines: Our main contribution is orthogonal to previous methods: We leverage a sequence of
teachers to distill the student, instead of designing a sophisticated distillation loss to better transfer
knowledge from one single teacher. Since we are studying a new setting where multiple teachers are
available, which is missing in previous literature, we mainly focus on the absolute improvements –
the performance of our distilled student models compared with the original student models and with
the performance upper-bound of the teacher models. We find using a sequence of teachers, instead of
their ensemble, is more effective. Due to limited space, we leave this comparison in Appendix B&C.

4.1 SEARCHING FOR THE NEAR-OPTIMAL TEACHER ORDER

As we have discussed in Section 3.2, finding the optimal order of teachers for the progressive knowl-
edge distillation takes factorial time complexity. To acquire a near-optimal teacher order, we propose
the heuristic Algorithm 1. In this section, we will validate that this algorithm is near-optimal. To
achieve this comprehensive comparison, we distill Student I with all orders of teachers from the
pool Teacher I-IV. We use a reduced training budget: For each teacher, we only train the student for
3 epochs on MS COCO. We use the linear learning rate schedule, which has been shown comparably
effective in a limited budget setting by Li et al. (2020b).

We first measure the adaptation costs among the student and teacher models. A visualization of the
cost graph is shown in Figure 3. Following Algorithm 1, we can construct a sequence of teachers.
We compare the teacher orders given by our proposed algorithm against all other orders, via the
performance of the distilled student’s performance. As shown in Table 2, teacher orders suggested
by Algorithm 1 are consistently near-optimal in this setting. In the following sections, we will use
order provided by Algorithm 1, without brute-force iterating over all possible orders. One may
question that the greedy path selection shown in Figure 3 is be inferior to a global optimization
algorithm. However, we find the later teachers impact the student performance more profoundly, so
we need to greedily select teachers from the sequence tail. More details and comparison with other
heuristics are provided in Appendix A.

We start by distilling RetinaNet and Mask R-CNN with a ResNet-50 backbone (Student I & II).
Here we consider homogeneous teachers where the numbers of channels and the spatial resolutions
of feature maps are consistent between the student and teacher. For the RetinaNet student, we
still consider the pool of Teacher I-IV, the same as Section 4.1. For the Mask R-CNN student, we
should no longer use Teacher I (the student itself) or Teacher II (the single-stage teacher does not
outperform the student by a large margin). To compensate for that, we include Teacher V, which
can be considered as a hybrid model of DetectoRS backbone/neck and Mask R-CNN head. Thus,
the teacher pool for Mask R-CNN includes Teacher III-V. To control the total training time, we
limit the number of teachers to be 2. Thus, we initialize from an off-the-shelf (‘OTS’) student,
and sequentially distill it with 2 teachers, in total 24 epochs (equivalent to a 2× training schedule).
Besides the OTS students, we also compare with two other baselines: 1) students trained with a
longer 3× training schedule, and 2) students directly distilled by the final target teacher, using a 2×
training schedule. More architectural details are listed in Table 1.

Following Section 4.1, we use Algorithm 1 to determine the sequence of teachers to use for each
student. For RetinaNet student, our algorithm suggests teacher sequence III→IV. For Mask R-
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ID Model Method Box Mask
AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

1
RetinaNet
(Student I)

OTS 36.5 55.4 39.1 20.4 40.3 48.1 - - - - - -
2 Longer 3× training schedule 39.5 58.8 42.2 23.8 43.2 50.3 - - - - - -
3 Directly distilled by Teacher IV 39.5 58.6 41.9 21.0 42.8 54.0
4 Progressively distilled by Teachers III→IV 39.9 59.2 42.7 21.7 43.3 54.1 - - - - - -

5
Mask R-CNN
(Student II)

OTS 38.2 58.8 41.4 21.9 40.9 49.5 34.7 55.7 37.2 18.3 37.4 47.2
6 Longer 3× training schedule 40.9 61.3 44.8 24.4 44.6 52.3 37.1 58.3 39.9 18.4 39.8 51.9
7 Directly distilled by Teacher IV 41.0 61.6 45.0 23.5 44.5 54.0 37.0 58.5 39.8 17.5 39.9 51.3
8 Progressively distilled by Teachers V→IV 41.4 61.9 45.1 23.3 45.0 55.4 37.3 58.8 39.8 19.4 40.4 52.1

Table 3: Homogeneous distillation of COCO detectors, where students with ResNet-50 backbones are dis-
tilled with teachers with ResNet-50 backbones. We report the detection (‘Box’) and segmentation (‘Mask’)
APs, and we compare our distilled student with off-the-shelf (‘OTS’) student, longer trained student, and the
state-of-the-art distillation baselines. Our distilled student significantly improves the detection AP over the
‘OTS’ student by 3.4% for RetinaNet and 3.2% for Mask R-CNN, and outperforms the baselines.

CNN student, our algorithm suggests teacher sequence V→IV. Table 3 shows the results on COCO.
Additional results, analysis, and ablation studies of Mask R-CNN distillation are in Appendix B.

4.2 DISTILLATION WITH HOMOGENEOUS TEACHERS

Overall performance: Our distilled student models (row 4&8) significantly improves over the
‘OTS’ students (row 1&5). The box AP of RetinaNet is improved from 36.5% to 39.9% (+3.4%).
The box AP of Mask R-CNN is improved from 38.2% to 41.4% (+3.2%) and the mask AP of Mask
R-CNN is improved from 34.7% to 37.3% (+2.6%). After progressive distillation, our resulting
Mask R-CNN detector has comparable performance with HTC teacher, but much less runtime (51ms
vs. 181ms).

Comparison with baselines: First, the performance gain is not merely from a longer training sched-
ule. Our distilled student models (row 4&8) consistently outperform original students trained with a
3× schedule (row 2&6). Second, progressive distillation using a curriculum of teachers (row 4&8)
is better than direct distillation from a strong teacher (row 3&7), even if the total training time is
the same. It is worth noting that our detection performance for large objects receives the most gain
(about 6% APL improvement for both models). The reason why we emphasize APL is that, in
an efficiency-centric real-world application (e.g. autonomous driving, robot navigation), detecting
nearby larger objects is more crucial than others. From a realistic perspective, better APL shows
better applicability of our approach.

4.3 DISTILLATION WITH HETEROGENEOUS TEACHERS

To validate our progressive distillation approach is general, we now consider a more challenging
heterogeneous scenario, where students and teachers have different backbones or input resolutions.
Specifically, Student III, a ResNet-18 Mask R-CNN, is distilled with ResNet-50 teachers; Student
IV, a model with reduced input resolution, is distilled with teachers trained with larger input resolu-
tions. The results are summarized in Table 4, and additional results are included in Appendix C.

Heterogeneous backbones: Student III has a ResNet-18 backbone and about half runtime as its
ResNet-50 counterpart (Teacher I). We find the proper distillation scheme for Student III is to use
the sequence of Teacher I→V→IV, which significantly improves Student III over the ‘OTS’ model.
The box AP of Student III is improved from 33.3% to 37.0% (+3.7%), and especially for large
objects, APL is improved from 43.6% to 50.0% (+6.4%).

Heterogeneous input resolutions: Although inputs with varying resolutions can be fed into most
object detectors without changing the architecture, the performance often degenerates when there
is a resolution mismatch between training and evaluation (Tan et al., 2020; Li et al., 2020a). If ul-
timately we want to apply a detector to low-resolution inputs for fast inference, it is better to use
low-resolution inputs during training. On the other hand, we conjecture that teachers with high-
resolution inputs may provide finer details that can assist the student. With our progressive distilla-
tion approach, we investigate the improvement of a low-resolution student distilled by a sequence
of teachers with high-resolution inputs. We denote the standard input resolution 1333× 800 as 1×,
and a reduced resolution 333 × 200 as 0.25×. We distill Student IV (with 0.25× resolution) by
a sequence of Teacher I variants (0.5× → 0.75× → 1×). From Table 4, we can see substantial
improvement brought by progressive knowledge distillation: the box AP is improved from 25.8% to
31.5% (+5.7%) and the mask AP is improved from 23.0% to 28.2% (+5.2%).
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ID Model Backbone Resolution AP
Box Mask

1 Student III, OTS R18 1× 33.3 30.5
2 Student III, Our distilled R18 1× 37.0 33.7
3 Student IV, OTS R50 0.25× 25.8 23.0
4 Student IV, Our distilled R50 0.25× 31.5 28.2

Table 4: Heterogeneous distillation of COCO
detectors, where students with smaller backbones
(ResNet-18 vs. ResNet-50) or input resolutions
(333×200 vs. 1333×800) are distilled with hetero-
geneous teachers, requiring additional transfer logic
(Sec. 3.1). We report the detection (‘Box’), segmen-
tation (‘Mask’) APs and runtime, and compare our
distilled student with its teachers (see Table 1) and
off-the-shelf (‘OTS’) student. Our progressive distil-
lation significantly improves the ‘OTS’ students by
over 3% AP.

ID Model Distillation AP
Box Mask

1 RetinaNet
(Student I)

Direct RetinaNet/Swin-S 41.0 -
2 Progressive RetinaNet/Swin-T→S 42.0 -

3 Mask R-CNN
(Student II)

Direct MRCNN/Swin-S 42.0 37.7
4 Progressive MRCNN/Swin-T→S 42.5 38.4

Table 5: Distillation from Transformer-based
teachers (Liu et al., 2021) to convolution-based
students. Due to the architectural difference and ca-
pacity gap, directly distilling from a stronger teacher
with Swin-S backbone does not yield better students
than convolution-based teachers in Figure 4. An in-
termediate Swin-T teacher and progressive distilla-
tion solve this issue without increasing training time.
Compared to off-the-shelf models, our RetinaNet and
Mask R-CNN students improve by 5.5% AP and
4.3% box AP, respectively.

4.4 COMBINATION WITH STATE-OF-THE-ART DISTILLATION MECHANISMS

Our meta-level strategy of using a sequence of teachers to progressively distill a student is indepen-
dent of choice of the distillation mechanism for each teacher. We have shown progressive distilla-
tion can boost the simple distillation based on feature matching above, and in this section, we will
combine progressive distillation with state-of-the-art distillation mechanisms for object detection to
further improve student accuracy.

Distillation protocol: We evaluate our progressive distillation with three most recent works on de-
tector distillation: CWD (Shu et al., 2021), FGD (Yang et al., 2022a), and MGD (Yang et al., 2022b).
To ensure fair comparison, we use the same teacher-student pairs as them: RetinaNet/ResNet-50
and RetinaNet/ResNeXt-101 are the single-stage student and final teacher. Mask R-CNN/ResNet-50
and Cascade Mask R-CNN/ResNeXt-101-DCN are the two-stage student and final teacher. Between
them, we insert one medium-capacity teacher to progressively distill the student: RetinaNet/ResNet-
101 for single-stage and Cascade Mask R-CNN/ResNet50-DCN for two-stage. Also for fairness, we
keep the total training epochs the same. We set “1×” training schedule for each teacher, so that the
total training time is equivalent to “2×”, the same as in previous works.

Figure 4 shows our progressive distillation strategy consistently improves students’ final accu-
racy. For example, the performance of FGD-distilled RetinaNet/ResNet-50 improves from 40.7% to
41.5% AP (+0.8%), and this gain is larger than mechanism advance from FGD to MGD (+0.3%).
We bring performance gains to state-of-the-art detection distillation almost for free.

Next, we investigate how to further maximize the student performance. Swin Transformer (Liu
et al., 2021) can act as an even stronger teacher than the convolution-based teachers used in previous
works. However compared to convolution-based teachers, directly distill from such a teacher cannot
improve the student performance, even if we use the state-of-the-art method MGD. For example,
RetinaNet/Swin-Small (47.1% AP) is much stronger than RetinaNet/ResNeXt-101(41.6% AP), but
direct distillation from both yields the same student performance (41.0% AP). To bridge the archi-
tectural difference and capacity gap between the ResNet-50 student and Swin-Small teacher, we can
utilize an intermediate Swin-Tiny teacher. As shown in Table 5, this progressive approach brings
the best students: the performance of ResNet-50 based RetinaNet increases to 42.0% AP and Mask
R-CNN increases to 42.5% AP.

4.5 UNPACKING THE PERFORMANCE GAIN: GENERALIZATION OR OPTIMIZATION?

We have shown that our distilled student significantly improves the accuracy on the validation data
over the off-the-shelf student. As further demonstrated in Figure 5a, the validation accuracy of the
distilled student gradually increases during distillation, and achieves a higher value compared with
the student trained without teachers. A natural question then arises – why is distillation helping?
There are two possible hypotheses: (1) improved optimization: distillation facilitates the optimiza-
tion procedure, leading to a better local minimum, and (2) improved generalization: the distillation
process helps the student generalize to unseen data.

Improved optimization is typically manifested through a better model, a lower training loss and
a higher validation accuracy, which is exactly the case for Mask R-CNN, HTC and DetectoRS.

8



Under review as a conference paper at ICLR 2023

CWD
ICCV 2021

FGD
CVPR 2022

MGD
ECCV 2022

39.5

40.0

40.5

41.0

41.5

42.0

Re
tin

aN
et

/R
50

 S
tu

de
nt

 B
ox

 A
P

Baseline: Direct distillation
Ours: Progressive distillation

CWD
ICCV 2021

FGD
CVPR 2022

MGD
ECCV 2022

40.5

41.0

41.5

42.0

42.5

43.0

M
as

k 
R-

CN
N/

R5
0 

St
ud

en
t B

ox
 A

P

Baseline: Direct distillation
Ours: Progressive distillation

CWD
ICCV 2021

FGD
CVPR 2022

MGD
ECCV 2022

36.5

37.0

37.5

38.0

38.5

39.0

M
as

k 
R-

CN
N/

R5
0 

St
ud

en
t M

as
k 

AP

Baseline: Direct distillation
Ours: Progressive distillation

Figure 4: Our progressive distillation strategy consistently benefits state-of-the-art distillation mech-
anisms. Using an intermediate RetinaNet/ResNet-101 teacher between RetinaNet/ResNet-50 student
and RetinaNet/ResNeXt-101 teacher (Left), or Cascade Mask R-CNN/ResNet50-DCN between Mask R-
CNN/ResNet-50 and Cascade Mask R-CNN/ResNeXt-101-DCN (Middle for Box AP and Right for Mask
AP), we improve the direct distillation baselines by 0.2% to 0.8% AP, without increasing training time.
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Figure 5: Comparisons of student models trained with and without teachers. We train a ResNet-50 back-
boned RetinaNet (Student I) with: (A) a prolonged 3× training schedule (curves in blue); (B) progressive
knowledge distillation from HTC (Teacher III) and then DetectoRS (Teacher IV) (curves in orange-green-red).
We compare the validation AP (Figure 5a) and the training detection loss Ldetect (Figure 5b) of the two students
during the training process. Despite its worse training loss, the distilled student can generalize better on the
validation set. We also compare the loss landscapes (Li et al., 2018) of the original student (Figure 5c) and the
distilled student (Figure 5d). Distillation can guide the student to converge to a flatter local minimum. These
observations suggest distillation helps generalization rather than optimization.

Consequently, one might think that distillation works in the same way. However, our investigation
suggests the opposite – our progressive distillation increases both the validation accuracy and the
training loss, and therefore effectively reduces the generalization gap. In Figure 5, we compare
the original RetinaNet model and the distilled student, which have the same architecture, the same
latency and are trained on the same data, but with different supervision (only ground-truth labels vs.
additional knowledge distillation). To eliminate the influence of learning rate changes, we train the
original student with a 3× schedule and restart the learning rate at the same time with the distilled
student. Interestingly, although distillation can improve the student’s validation performance, the
training detection loss of the distilled student is higher than the original student. This suggests that
distillation does not help the optimization process to find a local minimum with a lower training
loss, but rather strengthen the generalizability of the student model.

To further support this observation, we also visualize the local loss landscape (Li et al., 2018). The
distilled student has a flatter loss landscape (Figure 5d) compared to the original one (Figure 5c). As
widely believed in the machine learning literature, flat minima lead to better generalization (Hochre-
iter & Schmidhuber, 1997; Keskar et al., 2017). The observation shown in Figure 5 is illustrated for
RetinaNet, but we also have similar observation in other students. As a conclusion, knowledge dis-
tillation, which enforces the student to mimic the teachers’ features, can be considered as an implicit
regularization, and helps the student combat overfitting and achieve better generalization.

5 CONCLUSION

We present a simple yet effective approach to knowledge distillation, which progressively transfers
the knowledge of a sequence of teachers to learn a lightweight object detector. Our approach auto-
matically arranges multiple teachers into a curriculum, and thus effectively mitigating the capacity
gap between the teacher and student. We successfully distill knowledge from Transformer-based
teachers to convolution-based students, and achieve state-of-the-art performance on the challenging
COCO dataset. Our analysis also finds distillation improves generalization rather than optimization.
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Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
ICML, 2009. 4
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APPENDIX

We summarize the content of this supplementary document as follows. Section A includes additional
results and analysis of our proposed algorithm for teacher order selection. Sections B and C provide
additional ablation study on distillation with homogeneous teachers and heterogeneous teachers,
respectively. Section D shows the generalizability of our approach, which demonstrate the exper-
imental results of the Argoverse-HD dataset with streaming accuracy metric. Section E compares
our work with prior knowledge distillation methods in detail. Section F provides some additional
experiments on combining our method with state-of-the-art distillation mechanism. Section G lists
our implementation details.

A MORE RESULTS ON SEARCHING FOR THE NEAR-OPTIMAL TEACHER
ORDER

In this section, we show more detailed results about searching a proper teacher order for progressive
knowledge distillation, and validate the approach we propose in the main paper. As described in
Section 3.2, we first quantify the adaptation cost C(·, ·) between every pair of models in our pool,
and then use a heuristic method (Algorithm 1) to construct a sequence of teachers. We have shown
that the teacher order suggested by our algorithm is highly competitive in Table 2. One might think
there should be better choices than a greedy algorithm on a directed graph, such as a shortest-path
algorithm. To validate our algorithm design, we compare our Algorithm 1 against several other
algorithms.

Algorithm 1: Determining the Teacher Order

Input: Student model S, pool of teacher models P = {Ti}Ni=1, teacher models’ performance
{Q(Ti)}Ni=1, maximum number of selected teachers k

Output: Sequence of teachers O, len(O) ≤ k
1 Pick the best performing teacher: Tαk

← argmaxTu∈P Q(Tu), O ← [Tαk
]

2 Exclude from pool: P ← P \ {Tαk
}

3 for j ← k − 1 to 1 do
4 Get candidate sub-pool: Pj = {Tu | Tu ∈ P, C(Tu, Tαj+1) < C(S, Tαj+1)}
5 if Pj ̸= ∅ then
6 Pick the teacher closest to Tαj+1

: Tαj
← argminTu∈Pj

C(Tu, Tαj+1
)

7 Prepend Tαj
to O

8 Exclude from pool: P ← P \ {Tαj}
9 else Break

10 return O

To begin with, we include the detailed adaptation costs C(·, ·) among RetinaNet (Student I) and its
teachers (Teacher I-IV) in Table 6. As described in Section 4.1, we have distilled Student I with all
possible teacher orders in the pool, using a reduced training budget of 3 epochs for each teacher.
The results of these mini-budget distillation are summarized in Table 7.

Table 6: Adaptation costs among Student I (RetinaNet) and Teacher I-IV (Mask R-CNN, FCOS, HTC, De-
tectoRS). The adaptation cost is computed pair-wise as described in Section 3.2 of the main paper. Using this
metric we can construct a directed graph, as illustrated in Figure 3.

From
To Student I Teacher I Teacher II Teacher III Teacher IV

Student I - 0.939 0.060 1.568 1.254
Teacher I 0.183 - 0.070 0.934 0.963
Teacher II 0.339 1.181 - 1.940 1.401
Teacher III 0.191 0.484 0.082 - 0.890
Teacher IV 0.232 0.767 0.077 1.248 -
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Table 7: Performance of Student I (RetinaNet) distilled with different teacher sequences, under reduced training
budgets. For each teacher in the sequence, the student is trained for 3 epochs on COCO. After progressive
knowledge distillation, the student is evaluated on the COCO validation set. The teacher orders suggested by
Algorithm 1 are marked bold.

Length Teacher Student Length Teacher Student Length Teacher Student
Sequence AP Sequence AP Sequence AP

1

III 36.8

3

III→II→IV 38.0

4

III→II→I→IV 38.2
IV 36.7 I→III→IV 37.9 III→I→II→IV 38.1
I 36.4 III→IV→II 37.9 I→III→II→IV 38.1
II 36.2 II→III→IV 37.9 II→III→I→IV 38.0

III→I→IV 37.8 I→III→IV→II 38.0

2

III→IV 37.6 I→II→IV 37.7 II→I→III→IV 37.9
IV→II 37.3 I→IV→II 37.6 III→I→IV→II 37.9
III→II 37.3 IV→II→III 37.5 I→II→III→IV 37.9
I→IV 37.3 IV→III→II 37.5 IV→I→III→II 37.7
IV→III 37.2 II→I→IV 37.5 II→I→IV→III 37.7
I→III 37.1 I→III→II 37.5 I→II→IV→III 37.7
IV→I 37.0 IV→I→III 37.4 IV→III→I→II 37.6
II→IV 37.0 II→IV→III 37.4 IV→I→II→III 37.6
III→I 37.0 III→IV→I 37.4 III→IV→II→I 37.6
II→I 36.9 III→I→II 37.4 III→IV→I→II 37.6
II→III 36.8 I→IV→III 37.4 III→II→IV→I 37.6
I→II 36.8 IV→II→I 37.3 I→IV→III→II 37.6

IV→III→I 37.3 IV→II→I→III 37.5
IV→I→II 37.3 IV→III→II→I 37.5
I→II→III 37.3 II→IV→I→III 37.5
II→IV→I 37.2 II→III→IV→I 37.5
II→I→III 37.2 I→IV→II→III 37.5
III→II→I 37.2 II→IV→III→I 37.4
II→III→I 37.1 IV→II→III→I 37.3

Table 8: Comparison of four algorithms for teacher order selection, in the mini-budget distillation setting. Our
Algorithm 1 can consistently produce a better teacher order than other algorithms.

k Algorithm Suggested Student Ranking in
k Algorithm Suggested Student Ranking in

teacher order AP all orders teacher order AP all orders

1

Shortest-path (sum) IV 36.7 2 / 4

3

Shortest-path (sum) II→I→IV 37.5 9 / 40
Shortest-path (max) IV 36.7 2 / 4 Shortest-path (max) I→III→IV 37.9 2 / 40
Forward construction II 36.2 4 / 4 Forward construction II→I→III 37.2 25 / 40
Our Algorithm 1 IV 36.7 2 / 4 Our Algorithm 1 I→III→IV 37.9 2 / 40

2

Shortest-path (sum) II→IV 37.0 7 / 16

4

Shortest-path (sum) II→I→III→IV 37.9 7 / 64
Shortest-path (max) I→IV 37.3 2 / 16 Shortest-path (max) II→I→III→IV 37.9 7 / 64
Forward construction II→I 36.9 10 / 16 Forward construction II→I→III→IV 37.9 7 / 64
Our Algorithm 1 III→IV 37.6 1 / 16 Our Algorithm 1 I→III→IV 37.9 7 / 64

Given the adaptation costs in Table 6, we can construct a directed graph, part of which has been
illustrated in Figure 3. On the directed graph, we can run several algorithms to select a path. Besides
our Algorithm 1, one may also propose these algorithms:

• Shortest-path (sum): Set the student as the source node, and set the best performing teacher as
the target node Tλk

. Find a path S → Tλ1 → · · · → Tλk
that minimizes the sum of adaptation

costs along the path:
minTλ1

,...,Tλk−1
C(S, Tλ1) +

∑k−1
j=1 C(Tλj , Tλj+1).

• Shortest-path (max): Set the student as the source node, and set the best performing teacher as the
target node Tλk

. Find a path S → Tλ1
→ · · · → Tλk

that minimizes the maximum of adaptation
costs along the path: minTλ1

,...,Tλk−1
max{C(S, Tλ1

), C(Tλ1
, Tλ2

), . . . , C(Tλk−1
, Tλk

)}.
• Forward construction: Contrary to Algorithm 1, we may start from the student and choose the

nearest teacher from the current one, to construct the sequence:
Tλ1
← argminTu∈P C(S, Tu), Tλj+1

← argminTu∈P C(Tλj
, Tu).
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The output teacher sequences and corresponding student performance of these three algorithms are
summarized in Table 8. In this setting, our Algorithm 1 can consistently produce a competitive
teacher order that leads to a good performance of the distilled student. Compared to our Algorithm 1,
shortest-path (max) can achieve a similar performance, and it is only worse than ours when k = 2.
Forward construction performs worst among the four algorithms.

In summary, a greedy backward construction like Algorithm 1 works the best in our setting, rather
than globally optimized shortest-path algorithms. The final target teacher has the most profound
impact on the distilled student’s performance. In order to fully assist the final teacher, we need to
use another teacher with the minimal adaptation cost to the final teacher before it, which is exactly
the behavior of Algorithm 1.

B ABLATION STUDY ON DISTILLATION WITH HOMOGENEOUS TEACHERS

In this section, we provide more details about distillation with homogeneous teachers (Section 4.2).
We investigate (1) the impact of each individual teacher; and (2) distillation with teachers simulta-
neously vs. sequentially.

Table 9: Homogeneous distillation of COCO detectors, where students with ResNet-50 backbones are distilled
with teachers with ResNet-50 backbones. We report the detection (‘Box’) and segmentation (‘Mask’) APs and
runtime, and we compare our distilled student with its teachers, off-the-shelf (‘OTS’) student. Our distilled
student significantly improves the APs over the ‘OTS’ student by around 3%.

ID Model Box Mask Runtime
AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL (ms)

1 Teacher III 42.3 61.1 45.8 23.7 45.6 56.3 37.4 58.4 40.2 19.6 40.4 51.7 181
2 Teacher IV 49.1 67.7 53.4 29.9 53.0 65.2 42.6 65.1 46.0 24.1 46.4 58.6 223
3 Teacher V 45.1 66.3 49.3 27.8 49.0 59.3 40.1 63.1 42.8 22.9 43.8 54.8 142

4 Student II (OTS) 38.2 58.8 41.4 21.9 40.9 49.5 34.7 55.7 37.2 18.3 37.4 47.2 51
5 Student II (distilled) 41.4 61.9 45.1 23.3 45.0 55.4 37.3 58.8 39.8 19.4 40.4 52.1 49

Table 10: Ablation study of homogeneous distillation of COCO detectors (models in Table 9). Our distillation
strategy is consistently effective irrespective of teacher type. Moreover, sequential distillation with two teachers
outperforms both distillation with a single teacher and simultaneous distillation with two teachers. Our best
distilled student is obtained by progressive distillation, where Student II is first distilled with Teacher V (a
weaker, more similar teacher with the same head as Student II) and then distilled with Teacher IV (a stronger
teacher whose architecture is completely different from Student II).

ID Student II Box Mask
AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

1 OTS 38.2 58.8 41.4 21.9 40.9 49.5 34.7 55.7 37.2 18.3 37.4 47.2

2 Distilled by Teacher III 40.2 60.7 43.8 22.5 43.8 53.4 36.3 57.3 38.7 18.9 39.3 50.3
3 Distilled by Teacher IV 40.8 61.5 44.6 23.0 44.3 54.2 36.8 58.3 39.4 19.2 39.9 51.0
4 Distilled by Teacher V 40.8 61.4 44.5 22.9 44.3 54.2 36.6 58.1 39.1 19.2 39.6 51.0

5 Distilled by Teachers IV+V 39.8 60.3 43.4 22.1 43.3 52.9 35.9 57.1 38.1 18.3 39.0 49.8

6 Distilled by Teachers IV→V 41.0 61.7 44. 8 23.0 44.3 54.9 36.8 58.3 39.2 19.5 39.9 51.3
7 Distilled by Teachers V→IV 41.4 61.9 45.1 23.3 45.0 55.4 37.3 58.8 39.8 19.4 40.4 52.1

Impact of individual teachers: We first distill Student II with each of the three teachers individu-
ally: Teacher III has the same backbone and neck but a more advanced head; Teacher IV has more
advanced backbone, neck, and head; Teacher V has the same head but more advanced backbone and
neck. Table 9 provides the performance of the three teachers, where Teacher IV achieves the best
performance (row 1-3). From Table 10, we can see that our distilled students (row 2-7) significantly
and consistently outperform the off-the-shelf student (row 1), demonstrating the effectiveness of our
distillation strategy irrespective of the types of teachers. Moreover, the improvement of the student
distilled with Teacher V (row 2) over that with Teacher III (row 3) shows that a more powerful
teacher generally leads to a better distilled student. Interestingly, although Teacher IV is more pow-
erful than Teacher V, Table 10 shows that their distilled students achieve quite similar AP (row 2 vs.
row 4). This indicates that an even more powerful teacher does not necessarily further improve the
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distilled student; too large a capacity and structure gap between the teacher and student will limit
the effectiveness of distillation. Also, it is easier to distill from teachers with the same head.

Simultaneous vs. progressive distillation: We now distill Student II with the combined teachers,
and we choose the top-performing Teacher IV and Teacher V. We investigate two types of combi-
nation – simultaneous distillation with a feature matching loss between each teacher and the student
(row 5), and sequential distillation with teachers one by one (row 6-7). First, we find that using both
teachers simultaneously (row 5) is even worse than our method using a single teacher (row 2-4).
This shows that integrating different types of knowledge from multiple teachers is not a trivial task
– simultaneously using the features from multiple teachers might provide conflicting supervisions
to the student model and thus hinder its distillation process. By contrast, our sequential distillation
overcomes this issue and improves the performance irrespective of the order of the teachers (row
6-7 vs. row 1-4). Second, the sequential order of the teachers makes a difference. A curriculum-like
progression (row 7), where the teacher with a smaller adaptation cost is used first and that with a
larger adaptation cost & a higher performance is used later, leads to the best performance.

Overall performance: Our best distillation performance is achieved when we first distill Student
II with a curriculum of teachers (Teacher V→IV). Overall, the box AP is improved from 38.2% to
41.4% and the mask AP is improved from 34.7% to 37.3%. Our resulting Mask R-CNN detector
has comparable performance with HTC, but much smaller runtime.

C ABLATION STUDY ON DISTILLATION WITH HETEROGENEOUS TEACHERS

In this section, we provide more details about distillation with heterogeneous teachers (Section 11).
We investigate the heterogeneous cases where the backbones or input resolutions are different be-
tween the teachers and student.

Table 11: Heterogenous distillation of COCO detectors, where students with ResNet-18 backbones are distilled
with teachers with ResNet-50 backbone, requiring additional transfer logic. We report the detection (‘Box’)
and segmentation (‘Mask’) APs and runtime, and we compare our distilled student with its teachers, and off-
the-shelf (‘OTS’) student. Our distilled student significantly improves the APs over the ‘OTS’ student by over
3%.

ID Model Box Mask Runtime
AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL (ms)

1 Teacher I 38.2 58.8 41.4 21.9 40.9 49.5 34.7 55.7 37.2 18.3 37.4 47.2 51
2 Teacher III 42.3 61.1 45.8 23.7 45.6 56.3 37.4 58.4 40.2 19.6 40.4 51.7 181
3 Teacher IV 49.1 67.7 53.4 29.9 53.0 65.2 42.6 65.1 46.0 24.1 46.4 58.6 223
4 Teacher V 45.1 66.3 49.3 27.8 49.0 59.3 40.1 63.1 42.8 22.9 43.8 54.8 142

5 Student III (OTS) 33.3 52.9 35.9 18.2 35.9 43.6 30.5 50.0 32.1 15.5 32.9 41.8 29
6 Student III (Distilled) 37.0 56.8 39.9 20.2 39.8 50.0 33.7 53.6 36.0 17.2 36.0 47.3 29

Overall performance: Again, Tables 11 and 12 show that our distillation strategy is consistently
effective with respect to all the teachers and their combinations, e.g., the box AP improves from
33.3% to 37.0% and the mask AP improves from 30.5% to 33.7%.

Two signature findings in heterogeneous distillation: Compared to the homogeneous case, we
find the capacity gap between models is a more important factor, and to bridge this gap a proper
teacher order plays a more critical role. Details are explained as follows.

The student-teacher capacity gap is more pronounced in heterogeneous distillation. Among the
four teachers, Teacher I shares exactly the same neck and head structure with the student, and has
a similar but larger backbone; Teacher V has the same head with the student as well, but has a
different backbone and neck; Teacher III has similar backbone and neck, but has a different head;
and Teacher IV is the most powerful one with completely different architecture. Table 12 (rows 3-6)
summarizes the distillation results with single teachers. First, directly distilling from the strongest
teacher (Teacher IV) does not yield the largest improvement. Second, a relatively less powerful but
more similar teacher (Teacher I) leads to the best distillation performance, improving the APs by 2%,
although teachers V, III, and IV are all stronger than Teacher I. One possible reason is that Teacher
I has the same neck and head as Student III as well as similar but deeper backbone, so the capacity
gap between Student III and Teacher I is the smallest. Finally, we find that Teacher III is a strong but
not particularly helpful teacher, achieving the worst distillation results. One possible reason is that
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Table 12: Ablation study for heterogeneous COCO detector distillation (models in Table 11). Student III (Mask
R-CNN with a ResNet-18 backbone) is distilled with teachers with different and larger ResNet-50 backbones.
Training Student III for more epochs improves its performance, but not as much as progressive distillation with
teachers. Note that for each distillation we train 12 epochs. Our distillation strategy is consistently effective
irrespective of the types of teachers. Moreover, our sequential distillation with multiple teachers outperforms
simultaneous distillation with multiple teachers. Our best distilled student is obtained by progressive distilla-
tion, where Student III is first distilled with Teacher I (a most similar teacher with the same head and neck as
Student III and a deeper backbone), then distilled with Teacher V (a stronger teacher with the same head as
Student III), and finally distilled with Teacher IV (a strongest teacher whose architecture is completely different
from Student III).

ID Model Box Mask
AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

1 Student III (OTS) 33.3 52.9 35.9 18.2 35.9 43.6 30.5 50.0 32.1 15.5 32.9 41.8

2 +12 epochs 34.6 54.5 37.2 18.8 36.9 46.1 31.6 51.5 33.6 15.8 33.7 44.0
3 +24 epochs 34.5 54.2 37.2 18.8 36.5 45.8 31.5 51.2 33.8 16.0 33.4 43.7
4 +36 epochs 34.6 54.2 37.4 18.6 36.9 46.7 31.6 51.1 33.8 15.7 33.6 44.3

3 Distilled by Teacher I 35.8 55.8 38.8 19.3 38.8 47.9 32.6 52.7 34.8 16.0 35.3 45.5
4 Distilled by Teacher III 35.2 55.2 37.8 19.1 37.8 47.4 32.1 52.0 34.0 16.1 34.5 45.2
5 Distilled by Teacher IV 35.5 55.2 38.2 19.0 37.9 48.0 32.4 51.9 34.5 15.9 34.8 45.6
6 Distilled by Teacher V 35.4 55.2 38.3 19.4 37.9 48.4 32.2 52.2 34.3 15.4 34.4 45.8

7 Distilled by Teachers IV+V 34.8 54.9 37.2 19.0 37.2 47.0 31.6 51.7 33.9 15.7 33.8 44.2
8 Distilled by Teachers I+IV+V 36.0 55.4 39.1 18.2 38.1 48.3 32.1 53.0 34.7 15.8 34.7 46.1
9 Distilled by Teachers I+III+IV+V 36.1 55.2 39.0 18.4 38.2 48.0 31.7 52.9 34.3 15.1 34.2 46.3

10 Distilled by Teachers I→V 36.5 56.3 39.3 19.5 38.8 49.4 33.2 53.2 35.3 16.4 35.4 46.8
11 Distilled by Teachers V→IV 35.2 55.2 37.8 19.1 37.8 47.4 32.1 52.0 34.0 16.1 34.5 45.2
12 Distilled by Teachers I→V→IV 37.0 56.8 39.9 20.2 39.8 50.0 33.7 53.6 36.0 17.2 36.0 47.3

Teacher III has a very different head from Student III, while not as stand-alone accurate as Teacher
IV, making it unable to provide enough guidance to Student III. These observations suggest that a
smaller capacity gap between the student and the teacher may facilities knowledge transfer.

The sequential order of the teachers plays a more critical role in the heterogeneous setting. Table 12
(row 7-12) presents representative results with different orders or combinations of the teachers.
Again, a proper progressive distillation (row 12) outperforms simultaneous distillation (row 7-9).
Notably, it is necessary to start with Teacher I, since the capacity gap between Student III and
Teacher I is minimal, with difference only on the depth of their ResNet backbones. These results
confirm the importance of our curriculum-like progression to best benefit from multiple teachers.

Training a student longer vs. distilling a student: As another sanity check, Table 12 includes
results of training Student III with more epochs without distillation (row 2-4). We can see that the
first 12 additional epochs improve APs by 1%, but there are no significant improvements even if we
train for a longer period. This shows the effectiveness of detector distillation.

Distillation with different model resolutions: In Table 12, we have performed distillation where
the student and teacher models operated on the same input image resolution (e.g., the standard reso-
lution 1, 333× 800 on MS COCO). In practice, one way to further reduce the latency/runtime of the
student is to operate on lower-resolution images. However, this poses additional challenges – with
a teacher of high input resolution and a student of low input resolution, they become even more het-
erogeneous. Moreover, image resolution substantially affects object detection performance (Ashraf
et al., 2016). Here, we are interested in performing distillation with models trained with images of
different resolutions to further investigate the generalizability of our approach. More specifically, we
use high-resolution models as teachers and low-resolution models as students, as shown in Table 13
(row 1-4).

In these experiments, the teacher and student feature maps have different spatial resolution. To
tackle this, we simply upsample the spatial maps of the student and supervise the student with the
teachers’ features. Again, Table 13 shows that our approach is effective in this more challenging
scenario. Our best performance is achieved by progressively distilling the student with its Teacher
I-3, I-2, and I-1.
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Table 13: Detectors trained with different input resolutions on the COCO dataset. We use a series of Teacher
I variants: Teacher I-1 is trained with the standard input resolution of 1, 333× 800; Teacher I-2 is trained with
1, 000×600 input; Teacher I-3 is trained with 666×400 input; and the student is trained with 333×200 input.
We report the detection (‘Box’) and segmentation (‘Mask’) APs and runtime. We compare our distilled student
with its teachers, and off-the-shelf (‘OTS’) student. Our approach is effective with even more heterogeneous
teacher and student models of different input resolutions.

ID Model Input Box Mask Runtime
Resolution AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL (ms)

1 Teacher I-1 1333× 800 38.2 58.8 41.4 21.9 40.9 49.5 34.7 55.7 37.2 18.3 37.4 47.2 31.5
2 Teacher I-2 1000× 600 37.2 57.7 40.5 19.1 40.9 50.4 33.6 54.3 35.9 15.6 37.0 47.7 24.9
3 Teacher I-3 666× 400 34.7 54.0 37.2 15.6 38.1 50.4 31.2 50.5 33.2 12.2 34.4 47.0 19.7

4 Student (OTS) 333× 200 25.8 41.9 27.1 7.0 27.8 44.3 23.0 38.7 23.7 5.0 23.7 41.3 16.9
5 Student (distilled) 333× 200 31.5 49.8 33.3 12.3 34.3 48.9 28.2 46.5 29.0 9.3 30.3 45.4 16.9

D GENERALIZABILITY TO OTHER DATASETS AND EVALUATION PROTOCOLS

In this section, we study the generalizability of our approach. As an extension from the gold-
standard COCO benchmark, we evaluate our distilled student (trained on COCO) on another dataset,
Argoverse-HD, and with another metric, streaming accuracy, and perform distillation on Argoverse-
HD directly.

Table 14: Generalizability on Argoverse-HD. On the left, we report standard detection accuracy. ‘OTS’ and
distilled students are trained on COCO. We observe 2% AP gains through distillation, even on novel testsets. On
the right, we report streaming detection accuracy as defined in Li et al. (2020a), in the detection-only setting
on a Tesla V100 GPU. The second column denotes the optimal input resolution (that maximizes streaming
accuracy). First, we discover that a lighter model and full-resolution input is much more helpful than having an
accurate but complex model that needs to downsize input resolution. Second, our proposed distillation approach
further improves over the lightweight model.

Model box AP AP50 AP75 APS APM APL

Stud. II OTS 32.7 52 34.5 14.7 35.8 52.8
Distilled 34.4 54.2 35.9 15.0 36.8 57.7

Stud. III OTS 28.9 48.8 30.0 12.8 31.3 49.2
Distilled 30.6 49.7 31.8 12.9 32.6 51.9

Detector Input AP AP50 AP75 APS APM APL

Cas. MRCNN50 (Li et al., 2020a) 0.5× 14.0 26.8 12.2 1.0 9.9 28.8
MRCNN18 (Ours) 1.0× 23.7 44.8 22.6 10.4 23.1 37.8
MRCNN18 (+ Distill) 1.0× 25.0 45.8 24.2 10.5 24.1 39.3

Table 15: Heterogenous distillation of Argoverse-HD detectors, where a student with ResNet-18 backbone is
distilled with teachers with ResNet-50 backbones. We report the detection (‘Box’) APs and runtime. We com-
pare our distilled student with its teachers, and off-the-shelf (‘OTS’) student. Our distilled student significantly
improves the APs over the ‘OTS’ student by over 2%. Notably, our distilled student achieves detection accuracy
that is comparable with Teacher A but with only around third of the runtime.

ID Model Backbone Neck Method (Head) Box Runtime
AP AP50 AP75 APS APM APL (ms)

1 Teacher A ResNet-50 FPN Faster R-CNN 29.6 48.2 30.5 16.4 33.1 45.1 79.2
2 Teacher B ResNet-50 FPN Cascade 32.3 50.4 35.0 16.4 37.1 47.7 89.0
3 Teacher C ResNet-50 + SAC RFP Faster R-CNN 32.9 51.0 35.5 17.6 33.7 52.9 230.8
4 Teacher D ResNet-50 + SAC RFP Cascade 34.5 52.0 37.7 17.9 37.0 52.8 241.2

5 Student (OTS) ResNet-18 FPN Faster R-CNN 27.1 48.1 27.5 14.4 31.2 40.0 29.3
6 Student (distilled) ResNet-18 FPN Faster R-CNN 29.2 49 30.9 15 31.7 45.6 29.5

Argoverse-HD is a more challenging dataset than COCO due to higher resolution images and signif-
icantly more small objects. Constructed from the autonomous driving dataset Argoverse 1.1 (Chang
et al., 2019), Argoverse-HD contains RGB video sequences and dense 2D bounding box annotations
(1,260k boxes in total). It consists of 8 object categories, which are a subset of 80 COCO classes
and are directly relevant to autonomous driving: person, bicycle, car, motorcycle, bus, truck, traffic
light, and stop sign. There are 38k training images and 15k validation images. We report results
on the validation images. We test the distilled models trained on COCO on Argoverse-HD without
re-training. Table 14-left shows the generalizability of our approach.

Streaming accuracy is a recently proposed metric that simultaneously evaluates both the accuracy
and latency of algorithms in an online real-time setting (Li et al., 2020a). The evaluator queries
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the state of the world at all time instants, forcing algorithms to consider the amount of streaming
data that must be ignored while processing the last frame. Following the setup proposed in Li
et al. (2020a), we evaluate streaming AP in the context of real-time object detection for autonomous
vehicles. Table 14-right shows our approach outperforming the prior results from Li et al. (2020a) by
a dramatic margin. We find significant wins by using an exceedingly lightweight network (ResNet-
18 based Mask R-CNN) that can process full-resolution images without sacrificing latency. Due
to much higher quantities of small objects, high-reslution processing is more effective than deeper
network structures. In addition, progressive distillation further improves performance.

Direct distillation on Argoverse-HD: After testing the distilled model which is trained on COCO,
on the Argoverse-HD dataset (Li et al., 2020a) without re-training, we have shown the generaliz-
ability of the already-distilled models. Here we directly distill the student model on Argoverse-HD,
using Faster R-CNN with a ResNet-18 backbone as the student model. As shown in Table 15, we
use four teachers with ResNet-50 backbones (row 1-4), including Faster R-CNN (Ren et al., 2014)
(Teacher A), Cascade R-CNN (Cai & Vasconcelos, 2018) (Teacher B), and DetectoRS (Qiao et al.,
2021) (Teachers C & D).

The results are summarized in Table 15. Our best distillation performance is achieved when we
first distill the student with a similar teacher (Teacher A), and then progressively distill with more
powerful teachers (Teachers B, then C, and finally D). Overall, the bbox mAP is improved from
27.1% to 29.2%.

In addition, comparing with Table 14-left, the absolute performance of the teachers and students
in Table 15 is lower. This is because here we use weaker teachers and student models (Faster R-
CNN for fast experiments) than the models used in Table 14-left (Mask R-CNN). However, the
relative improvement (between the distilled and OTS students) of box AP (2.1%) is larger than
that in Table 14-left (1.7%), indicating that learning distillation directly on Argoverse-HD further
improves the performance.

E MORE COMPARISON WITH PRIOR KNOWLEDGE DISTILLATION METHODS

The most profound difference between this work and most of the prior work on knowledge distilla-
tion is that prior work mainly focuses on the image classification task, while we address the object
detection task. The detection task (and the associated model architectures) is much more compli-
cated than the classification task. This makes the distillation methods developed in the context of
classification often not directly applicable to detection. That is why dedicated distillation meth-
ods (Chen et al., 2017; Wang et al., 2019; Guo et al., 2021; Zhang & Ma, 2021; Dai et al., 2021; Guo
et al., 2021; Yang et al., 2022a;b) need to be developed for the detection task in the literature. Here,
we discuss the difference between our method and prior method on knowledge distillation in detail:

Progressive distillation: Mirzadeh et al. (2020) is related to our method, in the sense that this work
progressively distills a student from multiple teachers (one teacher and several additional teacher
assistants (TAs)). With one TA, the distillation process in Mirzadeh et al. (2020) contains three
steps: 1) The TA is first distilled from the teacher; 2) The student is distilled from the TA; and 3)
The student trained by the TA is further distilled from the teacher. When there are multiple TAs,
the shallower TAs are distilled from deeper ones, so that they form a distillation path. However, our
work is different from Mirzadeh et al. (2020) in three important ways:

• As mentioned above, Mirzadeh et al. (2020) focuses on image classification, while we study pro-
gressive distillation in the context of object detection. In our case, the transferred knowledge is no
longer classification logits but intermediate features or structured predictions. This would require
additional consideration and algorithmic designs to extend progressive distillation from image
classification to object detection.

• Our strategy to construct the teacher sequence is a novel contribution and is fundamentally dif-
ferent from Mirzadeh et al. (2020). In our work, we propose a heuristic algorithm (Algorithm 1)
based on the representation similarities between different models (Section 3.2), which automat-
ically generates the teacher order. In Mirzadeh et al. (2020), a series of deep networks with
increasing depths act as the student, the TA(s), and the teacher. One can intuitively determine the
distillation sequence of TA(s) according to their increasing depths (which imply learning capaci-
ties). However in our case, there is a pool of teachers with diverse architectures and their relative
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ordering is unknown. This challenge motivates us to design an algorithm to automatically decide
the teacher order based on their representation similarities; importantly, the strategy in Mirzadeh
et al. (2020) is not applicable in our task.

• Mirzadeh et al. (2020) is more cumbersome and time-consuming. An intermediate TA in Mirzadeh
et al. (2020) needs to be first distilled from the teacher or a deeper TA, so the TAs have to be
trained one by one. By contrast, all of our teachers (including the intermediate teachers and the
final teacher) are trained independently. This makes the generation of our teachers parallelizable.

Multi-teacher distillation: The key difference lies in: These methods (You et al., 2017; Lan et al.,
2018; Guo et al., 2020) use an ensemble of multiple teachers simultaneously to guide the student
learning, while our work distills from multiple teachers sequentially, and we proposed a novel
method to construct the appropriate teacher order. Empirically, we compare these two strategies,
and demonstrate that our sequential progressive strategy outperforms the simultaneous strategy (via
teacher ensemble by taking the average of teacher features) for object detection.

• This comparison is provided in Appendix B (Table 10) and Appendix C (Table 12). For example
in Table 12, if we compare experiments with ID 7-9 (simultaneous distillation from teacher en-
sembles) vs. experiments with ID 10-12 (progressive distillation from teacher sequences), we find
that progressive distillation is a better choice.

• Our performance superiority is because in the object detection task, the teacher’s knowledge is
transferred from intermediate features, rather than from final classification predictions. Thus,
the ensemble of multiple teachers might provide conflicting supervision signals for the student,
leading to performance interior to our progressive distillation.

Online distillation, deep mutual learning: Although the teacher model is also changing during
online distillation (Yang et al., 2019a; Guo et al., 2020; Yao & Sun, 2020; Li et al., 2022), the
principle of our sequential teachers is significantly different from online distillation for the following
reasons:

• Strictly speaking, in online distillation, there is only one teacher – This teacher’s architecture is
fixed, and its weights keep updating in an online manner. By contrast, we have multiple teachers –
These teachers have different architectures, and their weights are first trained independently, and
then frozen in the progressive distillation process; in our progressive distillation, we switch the
whole teacher model.

• The type of discrepancy between the student and the teacher is different for ours and online distil-
lation. Online distillation often uses similar or even the same architecture for both the teacher and
student models. Consequently, their capacities are at the same level, and they can evolve together.
Our study is quite different: The key question we want to address is the capacity gap between the
student and the teacher (the capacity gap is due to the architectural difference between the student
and the teacher); and our solution is to progressively distill using other teachers with intermediate
capacities.

Other general distillation mechanisms: These methods (Romero et al., 2015; Zagoruyko & Ko-
modakis, 2017; Ahn et al., 2019) introduce other types of distillation mechanisms, but still consider
the setting where only one single fixed teacher is involved. Different from these methods, we use
multiple teachers to progressively transfer knowledge from them to the student. Meanwhile, we
share some similarities with Romero et al. (2015); Zagoruyko & Komodakis (2017); Ahn et al.
(2019) in that they are distilling knowledge from the activations of intermediate layers. Our simple
feature-matching loss (Section 3.1) and other recent work in detector distillation (e.g., CWD (Shu
et al., 2021), FGD (Yang et al., 2022a), and MGD (Yang et al., 2022b)) are based on the “hint”
distillation (learning from intermediate layers’ outputs) from Romero et al. (2015).

F MORE RESULTS ON COMBINATION WITH STATE-OF-THE-ART
DISTILLATION MECHANISMS

In this section, we include additional experimental results requested by the reviewers.

Other object detectors: In the main paper, we mainly use RetinaNet and Mask R-CNN as student
detectors for a fair comparison with existing methods, because most of the prior work on detector
distillation has primarily focused on RetinaNet and Mask R-CNN. Being commonly-used in real-
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world applications, RetinaNet and Mask R-CNN represent the two important families of object
detectors (single-stage and two-stage).

In principle, our work is general and applicable to different types of detection models, as our pro-
gressive distillation strategy is designed without assumption on particular types of detector archi-
tectures. To demonstrate this, we have performed an additional experiment on another detection
model, RepPoints (Yang et al., 2019b). RepPoints is an anchor-free detector, with high efficiency-
accuracy trade-off. Meanwhile, RepPoints has been experimented in state-of-the-art detector distil-
lation methods such as MGD (Yang et al., 2022b), so we can provide an informative comparison.
Therefore, we choose RepPoints as the detection model in this additional experiment. The student
model is RepPoints/ResNet-50 (38.6 AP on COCO), and following state-of-the-art method MGD,
we use RepPoints/ResNeXt-101 (44.2 AP) as the final teacher model. The intermediate teacher in
our progressive distillation is RepPoints/ResNet-101 (40.5 AP). The following Table 16 shows the
results obtained.

Table 16: Distillation of RepPoints (Yang et al., 2019b) detector. The student detector is RepPoints/ResNet-50,
and the final teacher detector is RepPoints/ResNeXt-101. By using an intermediate teacher RepPoints/ResNet-
101 for progressive distillation, we improve the student performance to 42.9% AP.

ID Student Distillation Teacher(s) AP APS APM APL

1 RepPoints/ResNet-50 None None 38.6 22.5 42.2 50.4

2
RepPoints/ResNet-50

CWD (Shu et al., 2021) RepPoints/ResNeXt-101 42.0 24.1 46.1 55.0
3 FGD (Yang et al., 2022a) RepPoints/ResNeXt-101 42.0 24.0 45.7 55.6
4 MGD (Yang et al., 2022b) RepPoints/ResNeXt-101 42.3 24.4 46.2 55.9

5 RepPoints/ResNet-50 MGD (Yang et al., 2022b) RepPoints/ResNet-101 42.9 25.6 46.9 56.3+ Progressive distillation (Ours) →RepPoints/ResNeXt-101

Our progressive distillation strategy improves the performance of the student detector by 4.3% AP,
which is also 0.6% AP better than the previous state-of-the-art MGD. This result is achieved by
only introducing an intermediate teacher and without increasing the training cost. This experiment
further demonstrates that our progressive distillation strategy is general and can be applied to various
detectors.

Keep using the intermediate teacher: In the main paper, we have discussed the capacity gap
between the teacher and student and how to mitigate this gap via progressive distillation. One may
question that, since the capacity gap between the intermediate teacher and the student is smaller,
keeping using this intermediate teacher throughout the distillation procedure might also lead to a
good student. Here we provide an exemplary experiment result (in addition to Figure 4-left) as an
answer to this question: Only using the intermediate teacher is still suboptimal as compared with
our proposed progressive distillation.

In this experiment, we use state-of-the-art distillation method MGD as the base method. We use
RetinaNet/ResNet-50 (37.4 AP on COCO) as the student model, RetinaNet/ResNet-101 (38.9 AP)
as the intermediate teacher model, and RetinaNet/ResNeXt-101 (40.8 AP) as the final teacher model.
The capacity gap between the intermediate teacher and the student is smaller than that between the
final teacher and the student. The following Table 17 shows the results.

Table 17: Distillation of RetinaNet detector. The capacity gap between the student (RetinaNet/ResNet-50)
and the intermediate teacher (RetinaNet/ResNet-101) is smaller. Our progressive distillation is better than both
distillation schemes that keep using the intermediate teacher (ID 3) or the final teacher (ID 2).

ID Student Distillation Teacher(s) Training Schedule AP

1 RetinaNet/ResNet-50 None None 2× 37.4

2
RetinaNet/ResNet-50 MGD (Yang et al., 2022b)

RetinaNet/ResNeXt-101 2× 41.0
3 RetinaNet/ResNet-101 2× 40.7
4 RetinaNet/ResNet-101 1× 40.2

5 RetinaNet/ResNet-50 MGD (Yang et al., 2022b) RetinaNet/ResNet-101
1×+1× 41.4+ Progressive distillation (Ours) →RetinaNet/ResNeXt-101

Keeping using the intermediate teacher (RetinaNet/ResNet-101) for a longer 2× training schedule
indeed improves the performance from 40.2% AP to 40.7%, but it is still not better than directly
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using the final teacher (RetinaNet/ResNeXt-101). Our progressive distillation, which first uses the
intermediate teacher and then the final teacher for distillation, outperforms both direct distillation
schemes and achieves 41.4% AP performance. As always, we use the same total training time
(2× training schedule) as direct distillation for a fair comparison. This experiment supports the
conclusions that 1) employing an intermediate teacher throughout the distillation process is not a
good option; and 2) our progressive distillation, which uses both the intermediate teacher and the
best performing teacher sequentially, leads to the best student performance.

G IMPLEMENTATION DETAILS

We implement detectors and their distillation using the MMDetection codebase (Chen et al., 2019b).
We train on 8 GPUs for 12 epochs for each distillation. For MS COCO, we use the standard input
resolution of 1, 333 × 800, with each GPU hosting 2 images. For Argoverse-HD, we use its much
higher native resolution as the input at 1, 920 × 1, 200, with each GPU hosting 1 image. We use
an initial learning rate of 0.01 (for RetinaNet students) or 0.02 (for Mask R-CNN students). We
use stochastic gradient descent and a momentum of 0.9. For the simple feature-matching loss (see
Section 3.1), we perform a grid search over the hyper-parameter λ. While the optimal values are
dependent on the architectures of the teacher and student models, we find the performance is not
very sensitive to λ between 0.3 and 0.8. We set λ = 0.5 for RetinaNet students and λ = 0.8 for
Mask R-CNN students.

When we combine our progressive distillation with state-of-the-art distillation mechanisms includ-
ing CWD (Shu et al., 2021), FGD (Yang et al., 2022a), and MGD (Yang et al., 2022b) (Section 4.4),
we strictly follow the publicly available implementation from their authors, and use an intermediate
teacher (RetinaNet/ResNet-101 or Cascade Mask R-CNN/ResNet50-DCN) for progressive distilla-
tion. In the original implementation of FGD and MGD, an inheriting strategy (Kang et al., 2021) is
utilized, which initializes the student with the teacher’s neck and head parameters to train the stu-
dent when they have the same head structure. In our progressive distillation, we adopt this inheriting
strategy only once for the first teacher.

For the Transformer-based teachers, we use Swin Transformer backbone, which has a hierarchical
architecture and shares the “same feature map resolutions as those of typical convolutional networks
(e.g., ResNet-50)” (Liu et al., 2021). Following the original implementation of the Swin Trans-
former, the backbone is equipped with an FPN neck, so the number of neck feature channels is the
same as the student. As a result, Swin Transformer based teachers can be used like some other
convolution-based teachers without the feature map matching function (r(·) in Section 3.1).
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