Sparsely Activated Mixture-of-Experts are Robust Multi-Task Learners

Anonymous ACL submission

Abstract

Traditional multi-task learning (MTL) methods
use dense networks that use the same set of
shared weights across several different tasks.
This often creates interference where two or
more tasks compete to pull model parameters
in different directions. In this work, we study
whether sparsely activated Mixture-of-Experts
(MoE) improve multi-task learning by special-
izing some weights for learning shared rep-
resentations and using the others for learning
task-specific information. To this end, we de-
vise task-aware gating functions to route exam-
ples from different tasks to specialized experts
which share subsets of network weights condi-
tioned on the task. This results in a sparsely
activated multi-task model with a large number
of parameters, but with the same computational
cost as that of a dense model. We demonstrate
such sparse networks to improve multi-task
learning along three key dimensions: (i) trans-
fer to low-resource tasks from related tasks in
the training mixture; (ii) sample-efficient gen-
eralization to tasks not seen during training by
making use of task-aware routing from seen
related tasks; (iii) robustness to the addition of
unrelated tasks by avoiding catastrophic forget-
ting of existing tasks.

1 Introduction

The traditional mechanism of using large-scale
pre-trained language models PLMs (Devlin et al.,
2019; He et al., 2021) involve fine-tuning them
for each task individually. This approach fails to
benefit from interactions between tasks that could
be related to each other. For instance, the task
of predicting if one text entails or contradicts an-
other can benefit from tasks that predict whether
two texts are semantically similar or not. To ad-
dress these limitations, Multi-Task Learning (MTL)
methods like MT-DNN (Liu et al., 2019) and Mup-
pet (Aghajanyan et al., 2021a) instead train a sin-
gle model jointly on a multi-task mixture consist-
ing of multiple tasks. The typical mechanism is

to facilitate transfer between the tasks by encod-
ing the examples using a task-agnostic network
shared between all the tasks, and then using task-
specific layers on top to optimize individual task
objectives. The dominant choice for the network
is a Transformer-based PLM such as BERT (De-
vlin et al., 2019). However, such dense (fully-
connected) task-agnostic networks have the limita-
tion that they use all the weights of the network for
every example, including those coming from very
different tasks. This creates interference among dif-
ferent tasks, e.g., the tug-of-war phenomenon (Had-
sell et al., 2020) where two or more tasks pull the
model parameters in different directions, thus im-
pacting the multi-task learning performance.

A possible mechanism to alleviate this problem
is to devise a task-aware network that can cap-
ture specialized information about individual tasks,
as well as information that can be shared among
multiple tasks. Mixture-of-Experts (MoE) frame-
work (Shazeer et al., 2017; Fedus et al., 2021; Lep-
ikhin et al., 2021) provides a way to model this
mechanism. Such architectures are designed to
support conditional computation in which only cer-
tain weights of the network are activated per input
as governed by a gating mechanism. This sparse
design has an additional advantage of providing
additional capacity in terms of model parameters
while keeping overall computational cost constant.

The above sparse MoE models have been typi-
cally trained from scratch using language modeling
objectives for tasks like neural machine translation;
or fine-tuned on NLU tasks in a single-task setting.
In contrast, in this work we study multi-task adap-
tation (as opposed to pre-training from scratch) of
sparse MoE models on diverse NLU tasks when
Jjudiciously initialized with the weights of a pre-
trained language model. Our motivation for using
MoEs is that the sparsity and conditional compu-
tation within MoEs will help to alleviate inter-task
interference by specializing some weights for learn-

ing shared representations and using the others for
learning task-specific information.

Multi-task adaptation for sparse MoE models
that have been traditionally used in single-task
settings require rethinking the gating mechanism.
Existing sparse models use a single task-agnostic
shared gate that learns to route inputs from all
the tasks, leading to interference wherein differ-
ent tasks compete for the shared gate.

Contributions: We (Contribution 1) first ad-
dress this limitation by devising a task-aware gat-
ing mechanism within sparse MoEs to route the
input (tokens from different tasks) to specialized
experts conditioned on the task to support MTL.

Thereafter, (Contribution 2.1) we perform an ex-
tensive empirical study of the robustness of dense
and sparse models to inter-task interference for
multi-task learning on three key dimensions, (i)
transfer to low-resource tasks from related tasks
in the training mixture; (ii) sample-efficient gen-
eralization to tasks not seen during training from
related seen tasks; (iii) robustness to the addition of
unrelated tasks by avoiding catastrophic forgetting
of existing tasks. We (Contribution 2.2) empirically
demonstrate sparse MoE models with task-aware
gating and routing to be more robust multi-task
learners than their non-MoE dense counterparts on
the above dimensions.

2 Sparse Mixture-of-Experts:
Background

We adopt the popularly used Transformer architec-
ture (Vaswani et al., 2017) as the basic encoder con-
sisting of L repeated Transformer blocks, where
each block consists of a self-attention sub-layer, a
fully connected feed-forward network (FFN) and
residual connections around the sub-layers fol-
lowed by layer normalization.

The objective of sparse design of the above
Transformer blocks is to support conditional com-
putation and increase the parameter count while
keeping the floating point operations (FLOPs) for
each input example constant. Mixture-of-Experts
(MoE) Transformer models (Shazeer et al., 2017,
Fedus et al., 2021; Lepikhin et al., 2021; Zuo et al.,
2021) achieve this by using N feed-forward net-
works (FFN), namely “experts" denoted as Efil,
each with its own set of learnable weights. In order
to sparsify the network to keep the FLOPs constant,
there is an additional gating network G whose out-
put is a sparse /N-dimensional vector to route each

token via a few of these experts. Note that, a sparse
model with NV = 1 corresponding to only one FFN
layer in each Transformer block collapses to the
traditional dense model.

Consider x5 as the input token representation in
the s'" position to the MOE layer comprising of
the {E}YY, expert FFNs. Also, consider w" and
w to be the input and output projection matrices
for i expert. Expert output E; () is given by:

Ei(zs) = w?™ - GeLU (w!™ - x) (1)

Consider G(z) to be output of the gating network.
Output of the sparse MoE layer is given by:

h(xs) = Z G(xs); Bilxs))

where G(z;); denotes the probability of selecting
expert E; for x;.

3 Sparse Multi-task Learning with
Mixture-of-Experts

We first highlight the shortcoming of existing
sparse MoE models for multi-task learning and
our architectural modifications to support the same
along with an analysis of its impact on the model
size and task scalability. We then present some
details on the task formulation and optimization
objectives to train sparse multi-task models.

3.1 Task-aware Sparse Routing to Experts

The sparse MoE design outlined in the previous
section does not consider the underlying task (Fig-
ure 1(a)). Given the same input from different
tasks, the task-agnostic gating mechanism routes
tokens to the same experts, thereby generating sim-
ilar hidden-state representations. This is an issue
during multi-task learning, where it is beneficial to
learn task-specific contextualized representation of
the input. To address this shortcoming, we mod-
ify the gating function to be task-aware, such that
inputs from a given task are routed to specialized
experts that also share weights across related tasks.

Consider a set of T" diverse tasks in the multi-
task mixture and x ; to be the token representation
in the s*" position of the input sequence from task
t € T, where each task is equipped with its own
loss function. Consider trainable weight matrices
Wyt € RN*d corresponding to each task t € T
where, N is the number of experts and d is the
hidden state dimension. To incorporate task infor-
mation in the gating mechanism, we multiply the

Add + Normalize .

,2)

!
[Expert1 J [Expert 2 ,’
’

?
=

(xs,

Expert 3 }

Expert1

MOoE Layer
Add + Normalize
Self-Attention Layer

Task 1
61

Input for Task

(a) Shared Gating

(b) Task-aware Gating

Figure 1: Sparse MoE layer with 3 Experts, 2 Tasks, and top-1 expert routing with (a) Shared Gating, and (b)
Task-aware Gating. ,; and x, 2 are tokens from Task 1 and 2 respectively. They share the same gate G in
sub-figure (a), and routed to respective task-specific gates in sub-figure (b). For simplicity, we only show the
pathway for x, o with a solid line, and show the gating behavior for x5 ; with a dashed red line

input x5 ; with the task-specific weight matrix W, ;
to obtain the routing logits:

lt(xs,t) = st Wg,t 3)

We can further normalize them via a softmax
distribution over the IV experts in each MoE layer
to obtain the corresponding routing probabilities.
The gate-value for the i expert is given by:

elt(zs,t)i
Z;.V:l elt(@s,1);

We can now select the top-k gate values for
routing the token. In order to keep the number
of FLOPs in the sparse Transformer to be the same
as that of a dense one, the gating mechanism is
constrained to route each token to only the top-1
expert FEN selected as:

Gi(zs)i = “4)

(&)

The output of the sparse MOE layer in Equa-
tion 2 can be modified with the task-specific gating
function by linearly combining the selected top-1
expert’s (E*) computation on x5 ; and the probabil-
ity of selecting the expert as:

9t (vs51) = maz; Gy(wsy);

h(zst) = g¢ (Ts1) B (2s) (6)

where h denotes the task-specific representation
of input ;.

In the above formulation, the task-specific gat-
ing function G; learns to route tokens from the
input to specialized experts. Note that the experts
themselves do not have explicit relationship with
the task and are only dependent on input context
so0 as to encourage information sharing among all
experts. The expert selection is implicitly condi-
tioned on the task id ¢ (provided with the input)

via task-aware gating function G;. We refer our
framework as MT-TaG, short for Multi-Task Task-
aware Gating (Figure 1(b)).

3.2 Analysis of Sparsity and Task-scalability

We introduce the feed-forward networks (FFN) as
experts in every layer of the Transformer. Consider
N experts, L layers and Py to be the number of pa-
rameters in each FFN expert. The number of expert
parameters in the model is L X N x Py. Since the
experts are shared among all tasks, increasing the
number of tasks does not impact expert parameters.

On the other hand, the gating network is task-
aware which increases the number of parameters
with more tasks. Considering H to be the hidden
state dimension and 7' to be the number of tasks,
the number of gating parameters is L X N x H x T

Since the hidden state dimension and number of
tasks are much less than the number of FFN param-
eters (i.e., H x T' < Py) in most practical settings,
increasing tasks contribute very less parameters as
compared to the parameters already contained in
the standard feed-forward Transformer networks.

Consider the following as an illustration. Con-
sider a 6-layer Transformer with 384 hidden dimen-
sion and 22M encoder parameters corresponding
to a standard dense Transformer. Consider 4 ex-
perts and 8 tasks for MTL, where we introduce
these experts in each Transformer layer. MT-TaG
contains only 74K gating parameters in the task-
specific gating networks for expert selection as
compared to 21 M expert parameters. In total, the
sparse MT-TaG model doubles the number of pa-
rameters as compared to the dense model although
incurring the same number of FLOPs with top-1
expert selection. This capacity coupled with task-
awareness improves model performance in MTL
as demonstrated in experiments.

3.3 Multi-task Training

We now outline multi-task objectives and protocol
for training the MT-TaG model.

Task objectives: For a classification task ¢, we use
a task-specific projection layer on top of the MTL
encoder to obtain the class probability distribution
for the contextualized representation of an input
example z;' from task ¢ as:

P(c|z) = Softmax(Uy; - h(xy)) (7)

where, U; € R4 is the task-specific param-
eter matrix with C; representing the number of
classes and d as the hidden state dimension.

For a regression task ¢ (e.g., textual similarity),
we obtain the output score for the contextualized
representation of the input z; as:

where, V; € R1*9 is the task-specific parameter
matrix and S(z;) € R(—00, 00).

For classification tasks, we use cross-entropy
loss, where we train the network to minimize the
following objective in the MTL setup:

_ Z Z Z 1(zy,c) log P(c|lxy) (9)

teT e Xt ceCt

where, X, is the set of examples from task ¢,
1(z, c) is the binary indicator which is 1 if ¢ is the
correct class label for z and 0 otherwise.

For regression tasks, we use mean-squared error
loss, where we train the network to minimize the
following objective in the MTL setup:

IOEEDD

t€T (z4,y:)€(X¢,Yr)

(ye — S(ze))* (10)

where, (X;, Y;) is the set of examples from task
t with corresponding ground-truth scores.
Joint optimization: We jointly optimize Equa-
tions 9 and 10 to train the entire model including
the gating network by back-propagation, where the
gradients back-propagate through the gating net-
work to the inputs.
Loss scaling: In the MTL setup, the number of
classes per task can vary. To ensure stability in
the training, we leverage loss scaling to normalize
the task-specific loss function in Equation 9 with
respect to the number of classes in the task ¢ as

"For inputs with sequence pairs (z*, z%), we consider
z = z' ® x®, with @ representing concatenation operation.

(ZceCt 1(z,¢) log P(clzy))/log(|Cy|), where
|.| denotes the cardinality of the set of classes.
Batching and sampling: The MTL training pro-
cess optimizes several objectives which are often at
loggerheads with each other. Recent work (Agha-
janyan et al., 2021b) demonstrates heterogeneous
batching to work better for MTL, where batches
from different tasks are sampled to construct a
super-batch, which is then used for jointly opti-
mizing corresponding task-objectives. We follow
similar principles along with employing a natural
sampling of tasks, wherein we sample batches from
tasks in proportion to their dataset sizes to reflect
the complexity of the corresponding tasks.

4 Experimental Setup

4.1 Datasets

We use 8 diverse NLU datasets from the GLUE
benchmark (Wang et al., 2018) for MTL training
consisting of single-text classification tasks such as
COLA and SST-2; paired-text classification tasks
such as RTE, MRPC, QNLI, QQP, and MNLI; and
paired-text regression tasks such as STS-B. These
evaluate various NLU capabilities such as senti-
ment classification in SST-2; textual entailment in
RTE, QNLI, and MNLI; paraphrase detection in
MRPC and QQP; text similarity in STS-B; and text
acceptability in CoLA. There are varying number
of examples per dataset ranging from 2.5 K exam-
ples in the smallest one (RTE) to 393 K examples in
the largest one (MNLI). This allows us to study the
efficacy of MTL models in terms of transfer to low-
resource tasks. The task mixture also consists of
tasks like COLA and SST-2 that have low similarity
with the rest, enabling us to study the robustness
of MTL models in the presence of unrelated tasks.
We provide more details about these datasets and
their sizes in Appendix A.2 and Table 9.

4.2 Models for Comparison

We consider several models that are all FLOPs
matched per token for comparison as follows.

(a) Single-Task: This baseline trains a dense
model directly on individual end-tasks without
MTL. Since there is no interaction across tasks,
this baseline helps us evaluate the impact of MTL.
(b) MT-Dense: This baseline is created by train-
ing a dense MTL model. Note that this baseline is
similar in flavor to the multi-task learning methods
like MT-DNN (Liu et al., 2019) and Muppet (Agha-
janyan et al., 2021b).

(c) MT-Switch: This is a sparse MTL Mixture-
of-Experts model using a single shared gate for
all tasks as depicted in Figure 1(a). Note that
MT-Switch differs with MT-TaG only in its usage
of a single task-agnostic shared gate, helping us
evaluate the impact of task-aware gating.

(d) MT-TaG: This is the sparse MTL Mixture-of-
Experts model outlined in Section 3.1 (depicted in
Figure 1(b)) that uses task-aware gating.

All the models have similar FLOPs per token
and all the MTL models are trained using the pro-
cedure outlined in Section 3.3. We use top-1 expert
routing for both sparse MTL models.

4.3 Model Initialization and Setup

Dense models: As in prior multi-task learning
works (Liu et al., 2019), we initialize the dense
model using weights from pre-trained language
models. In addition to using BERT g4 (12 layers,
768 hidden size, 110M params) and BERT 44¢
(24 layers, 1024 hidden size, 345M params) pre-
trained models, we also consider MiniLM (Wang
et al., 2021) (6 layers, 384 hidden size, 22M
params) distilled from BERT44c as its com-
pressed variant. Unless otherwise stated, we use
MinilLM as our default encoder to carry out an ex-
tensive study with limited compute resources.
Sparse models: For a fair comparison with the
dense models, we create FLOPs matched sparse
models, and initialize them using the weights of
dense pre-trained language models. To this end,
we replace the feed-forward layers (FFNs) in each
transformer layer of the dense model with a MoE
layer containing N experts and 1" gates (T' = 1
for MT-Switch; T" = num. of tasks for MT-TaG).
This results in as many MoE layers as the number
of Transformer layers of the corresponding dense
pre-trained language model used for initialization.
To initialize the FFN weights of experts in any
MOoE layer, we simply make N copies of the FFN
weights of the corresponding layer from the dense
pre-trained language model?.

4.4 Implementation Details

We use standard wordpiece tokenization (30K vo-
cabulary) and segmentation for the input sequences.
We use N = 4 experts in all layers for our experi-
ments?®, giving us sparse models with 44 M, 280M,
and 940M parameters that are FLOPs matched to

2Experiments with initializing expert weights differently

by adding a small random noise did not show improvements.
3We provide results with varying #experts in Appendix.

MiniLM, BERT ¢, and BERT 4.4 €ncoders, re-
spectively. We initialize all gating weights using
a normal distribution with 0 mean and 0.001 stan-
dard deviation. Similarly, we initialize task-specific
parameter matrices U, V; using a normal distribu-
tion with 0 mean and 0.02 standard deviation. We
initialize all layer normalization weights with 1,
bias weights with 0, and use a dropout of 0.1.

We use Adam Optimizer (Kingma and Ba, 2015)
with a linear learning rate decay schedule and
warm-up. We use mixed-precision training, clip
the norms of gradients to 1, and use 4 Nvidia V100
GPUs for distributed training. We utilize Py Torch
and HuggingFace Transformers (Wolf et al., 2019)
for our implementation®.

4.5 Evaluation

MTL Training protocol: We follow a two-stage
training protocol for MTL models. We first train
the dense or sparse model (initialized from a pre-
trained language model as outlined in Section 4.3)
on a multitask mixture such as the GLUE dataset
following the MTL training procedure (as outlined
in Section 3.3) for a fixed number of steps, which
gives us the corresponding MTL model. We then
further fine-tune the MTL model on individual tar-
get datasets. This additional fine-tuning step has
been shown to be beneficial for the model perfor-
mance (Liu et al., 2019). Note that we use the same
training protocol for all the MTL models.

Metrics: We use the standard train and dev splits
for all GLUE datasets for training and evaluation.
For the MTL models, we report the numbers ob-
tained from the fine-tuning stage. We use Spear-
man correlation as our evaluation metric for STS-B,
Matthews correlation coefficient (MCC) for COLA,
and accuracy for the rest. For MNLI, we report the
average accuracy on the matched (in-domain) and
mismatched (cross-domain) splits. We addition-
ally report two aggregate statistics: All Tasks, and
Small Tasks, capturing the average performance
on all tasks and just the small tasks respectively.
We define Small Tasks as the tasks with < 10k
examples, which for GLUE includes RTE, MRPC,
STS-B, and COLA. We provide more experimen-
tal details, including hyper-parameter tuning and
values in Appendix A.3.2.

*Our code and model checkpoints will be made public.

Model RTE MRPC STS-B CoLA SST-2 QNLI QQP MNLI Small Tasks All Tasks
(2.5k) (3.7k) (5.7k) (8.5k) (67.3k) (105k) (364k) (393k) (Avg.) (Avg.)
Single-Task 70.7 88.7 88.9 41.8 924 904 90.6 839 72.5 80.9
MT-Dense 77.9 89.0 90.5 42.1 92.0 90.3 90.8 83.8 74.9 82.1
MT-Switch 78.9 90.0 90.5 40.7 92.0 90.3 909 83.6 75.0 82.1
MT-TaG 81.1 90.7 90.6 41.1 92.1 90.2 90.8 83.6 75.9 82.5

Table 1: Comparison of dense and sparse models on GLUE. Best task numbers are boldfaced, and second-best
underlined. Sparse MoE with task-specific gating (MT-TaG) outperforms Single-Task and FLOPs matched dense
and sparse MTL models with significant improvements for low-resource tasks. All models use MiniLM encoder.

5 Robustness Analysis

We perform an extensive empirical study of the
robustness of sparse and dense MTL models along
key dimensions with the following desiderata:

@ Transfer to low-resource tasks: A robust
model should be able to alleviate task interference
in the training mixture and improve performance
on the low-resource tasks through transfer from
other related tasks.

@ Sample-efficient generalization to unseen re-
lated tasks: A robust model should be able to re-
tain information from individual tasks in its training
mix, and generalize in a sample-efficient manner to
new related tasks that are not seen during training.
© Robustness to the addition of unrelated tasks:
A robust model should be better at weathering the
interference introduced by the addition of unrelated
tasks in its training mixture, and avoid catastrophic
forgetting of existing tasks.

5.1 Low-resource Task Transfer

We first evaluate the ability of MTL models to lever-
age task-level similarities in the multitask mixture
to improve performance on low-resource tasks. To
this end, we train and evaluate all models on GLUE.
Table 1 shows that all MTL models obtain im-
provements on low-resource tasks over Single-Task
baseline, while maintaining similar performance
on relatively high-resource tasks. This demon-
strates the benefit of multi-task learning in utiliz-
ing inherent similarities between tasks. Further-
more, we observe that both the sparse MoE mod-
els MMT-Switch and MT-TaG) outperform the non-
MOoE dense one (MT-Dense), demonstrating the
benefit of inducing sparsity for MTL. Finally, we
observe the sparse MoE model with task-aware gat-
ing (MT-TaG) to outperform all baselines, includ-
ing single-gate sparse MoE (MT-Switch), demon-
strating improved ability to mitigate interference
between tasks during multi-task learning.

Model SciTail IMDB
1% 10% 1% 10%
(235) (2.4k) (250) (2.5k)
Single-Task 819 90.6 86.1 90.6
MT-Dense 86.8 93.3 89.8 91.2
MT-Switch 89.3 929 898 9l1.1
MT-TaG 90.0 929 90.3 91.2

Table 2: Generalization performance on low-resource
unseen related tasks. MT-TaG delivers large gains over
Single-Task, and outperforms other MTL models in ex-
tremely low-resource settings demonstrating superior
sample-efficiency. All models use MiniLM encoder.

5.2 Sample-efficient Generalization to Unseen
Related Tasks

Section 5.1 demonstrates the benefit of sparse mod-
els on improving the MTL model performance on
low-resource tasks. In this experiment, we want to
evaluate their ability to generalize to related tasks
that were not encountered during MTL training in
a sample-efficient manner.

To study this generalization ability, we lever-
age SciTail and IMDB as the unseen tasks for the
GLUE-trained MTL models. Note that these tasks
have some similarity to a subset of the GLUE tasks.
For instance, SciTail is an NLI dataset with similar-
ities to RTE, QNLI, and MNLI in GLUE; whereas
IMDB is a sentiment classification dataset with
similarities only to SST-2. This variation in sim-
ilarity helps us study the degree of transferability
from the multi-task training mixture to the new un-
seen tasks. We simulate low-resource settings by
creating 1% and 10% samples from these datasets
to study sample-efficiency, yielding datasets with
roughly 250 and 2.5k examples respectively. We
use accuracy as the metric for both datasets. We
provide more details about these datasets and their
task formulation in Appendix A.2 and Table 9.

We only fine-tune the GLUE-trained MTL mod-
els on these datasets, and compare against corre-

sponding Single-Task baselines. For fine-tuning
MT-TaG, we exploit task-specific gates, and re-use
the gate corresponding to SST-2 for IMDB, and
the gate corresponding to MNLI for SciTail due to
their task-level similarities.

Table 2 shows that all MTL models obtain im-
provements over the Single-Task baselines, demon-
strating generalization ability of the MTL models.
Furthermore, we observe that MT-TaG outperforms
all baselines on extremely low-resource settings on
unseen datasets demonstrating superior sample-
efficiency of sparse models. MT-TaG shows im-
provements even on IMDB which has only one
related dataset in GLUE demonstrating improved
task transfer from related tasks. We attribute these
capabilities to the re-use of MT-TaG’’s task-specific
gates and routing that help it to better transfer in-
formation from related tasks in a sample-efficient
manner. We further found re-using unrelated task
gates and randomly initializing the gates to perform
significantly worse (results in Appendix A.1.1).

5.3 Robustness to Unrelated Tasks

Section 5.2 demonstrates the improved perfor-
mance of sparse MTL models to transfer informa-
tion from even a single task of its kind (referred
to as singleton tasks henceforth) in the multi-task
mixture. In this section, we further evaluate the ro-
bustness of MTL models on adding several diverse
singleton tasks. Specifically, we evaluate if the sin-
gleton task addition has an adversarial affect on
the performance of existing tasks in the multi-task
mixture due to catastrophic forgetting.

To study this, we remove CoLA and SST-2 sin-
gleton datasets from the GLUE multi-task mixture,
and refer to this new clean multi-task mixture as
C-GLUE (short for Clean-GLUE). We evaluate the
robustness by training all MTL models on both
GLUE and C-GLUE, and comparing their perfor-
mance on the common tasks: RTE, MRPC, STS-B,
QNLI, QQP, and MNLI. We report the average
performance on the common Small Tasks and All
Tasks in Table 3, and provide the corresponding
task-level results in Table 10 of Appendix A.5.1.

We observe performance of dense MTL model
(MT-Dense) to decrease from C-GLUE to GLUE,
demonstrating its lack of robustness to unrelated
datasets in the multi-task mixture. Both sparse
MTL models show better robustness because of
their capability to specialize experts for unrelated
tasks. MT-TaG performs the best, further demon-

Dataset Small Tasks All Tasks
MT-Dense
C-GLUE 86.27 87.18
GLUE 85.80 (-0.47) 87.05
MT-Switch
C-GLUE 86.27 87.22
GLUE 86.47 (+0.20) 87.37
MT-TaG
C-GLUE 86.50 87.32
GLUE 87.47 (+0.97) 87.83

Table 3: Model performance on GLUE (containing sev-
eral diverse tasks) and C-GLUE (as a subset of GLUE
containing only related tasks) evaluated on the common
tasks in both. Sparse MTL models demonstrate robust-
ness in the presence of unrelated tasks in GLUE, with
MT-TaG with task-specific routing being the most ro-
bust. All models use MiniLM encoder.

strating the usefulness of combining expert special-
ization in sparse MoE with task-specific routing.

This result, combined with the findings in Sec-
tion 5.2 demonstrate that MT-TaG is not only better
at transfer from singleton tasks, but is also more
robust to their presence in the multi-task mixture.
This motivates scaling MT-TaG to a large number
of diverse tasks as demonstrated in Section 6.2.

6 Scaling Analysis

6.1 Encoder Size Scaling

We study the sensitivity of the MT-TaG model
performance with change in the encoder size.
To this end, we train MT-TaG using MinilLM,
BERT g4se and BERT4,4c €ncoders of varying
number of parameters. From Table 4, we observe
that MT-TaG significantly outperforms single-task
baselines across different encoder sizes.

We also compare against the multi-task MT-
DNN model from Liu et al., 2019, which is simi-
lar in flavor to our MT-Dense model. Our sparse
MTL MoE model MT-TaG shows impressive gains
over the dense MT-DNN model®, especially on low-
resource tasks. We provide task-level results for
comparison in Table 11 of Appendix A.5.2.

6.2 Number of Tasks Scaling

In this experiment, we evaluate if MT-TaG can con-
tinue to leverage similarities between tasks in the
presence of a large number of tasks in its multi-
task mixture. To this end, we expand our GLUE

SMT-DNN only provides numbers for BERT 1.qge.

Model Small Tasks All Tasks
MiniLM

Single-Task 72.53 80.93

MT-TaG 75.88 82.53
B ERTB ase

Single-Task 76.53 83.34

MT-TaG 80.73 85.45
BERT Large

Single-Task 78.85 84.93

MT-TaG 82.73 86.94

MT-DNN 81.25 86.04

Table 4: Performance of models with different encoder
sizes. MT-TaG shows consistent gains across encoders
of different sizes. MT-TaG also outperforms the dense
MTL baseline MT-DNN (Liu et al., 2019).

Model Small Tasks All Tasks
Single-Task 81.28 85.00
MT-TaG 83.56 86.46

Table 5: Performance comparison on GLUE++ using
BERT 14rge. MT-TaG demonstrates impressive gains
on scaling to a large number of diverse tasks.

multi-task mixture to 16 tasks with the addition
of NLI datasets such as CB; QA datasets such as
COPA, MultiRC, and BoolQ; Sentiment datasets
such as IMDB, Rotten Tomatoes, and Yelp Polar-
ity; and Word-sense disambiguation datasets such
as WiC. For simplicity, we refer to this multitask
mixture as GLUE++. We provide more details
about these datasets in Appendix A.2 and Table 9.
We train and evaluate MT-TaG on this dataset using
BERT,4,4e €ncoder, and compare with correspond-
ing Single-Task baselines on aggregate average per-
formance metrics, Small Tasks and All Tasks. For
GLUE++, Small Tasks includes RTE, MRPC, STS-
B, COLA, Rotten Tomatoes, WiC, CB, BoolQ, and
COPA. Table 5 shows that MT-TaG obtains impres-
sive gains, demonstrating the model’s ability in
scaling to a large number of diverse tasks.

7 Related Work

Mixture-of-Experts models have recently achieved
promising results by introducing an outrageously
large number of parameters while keeping a fixed
computation cost via gating mechanism. Shazeer
et al., 2017 first proposed the MoE layer with a
single gating network with Top-k routing and load
balancing across experts. Fedus et al., 2021 pro-
pose initialization and training schemes for T'op-1
routing. Zuo et al., 2021 propose a consistency reg-

ularizer loss for random routing; Yang et al., 2021
propose k Top-1 routing with expert-prototypes,
and Roller et al., 2021; Lewis et al., 2021 address
other load balancing issues. All the above works
study sparse MoE with pre-training from scratch
in single-task settings. In contrast, we study multi-
task adaptation of such sparse models and devise
task-aware gating networks to support MTL. A con-
temporary work (Kudugunta et al., 2021) studies
routing for multi-task sequence-to-sequence train-
ing for machine translation, where they route all
tokens from a task to the same experts with a shared
gate. In contrast, we study multi-task adaptation
for NLU tasks where we make routing decisions
at token-level using task-specific gates. In the non-
Transformer space, an earlier work Ma et al., 2018
studied MTL for tabular classification and content
recommendation. In contrast to all above works,
we study multi-task adaptation of sparse MoE and
analyze its robustness for diverse NLU tasks.

Multi-task learning and adaptation has been stud-
ied extensively for dense models (Caruana, 1997;
Crawshaw, 2020), with recent works like Uni-
fiedQA (Khashabi et al., 2020), MT-DNN (Liu
et al., 2019) and Muppet (Aghajanyan et al., 2021a)
showing impressive transfer and low-resource gen-
eralization ability. MT-DNN with BERT encoder
performs multi-task adaptation on a mixture of
GLUE tasks and is used as our baseline. While
Muppet also follows similar principles, it uses
RoBERTa and much larger number of tasks (50).
For a fair comparison, with limited compute, we
only compare against MT-DNN with the same en-
coder and same set of MTL tasks. We contrast
our MTL setup against the above dense MTL mod-
els and demonstrate our sparse design to be more
robust on three key transferability aspects.

8 Conclusion

In this work, we studied multi-task adaptation of
sparse MoE models on diverse NLU tasks when ini-
tialized with the weights of a pre-trained language
model. To support multi-task learning with sparse
MOoE, we devised task-aware gating networks to
route input tokens from different tasks to special-
ized experts conditioned on the task. We demon-
strated such sparse design to be more robust multi-
task learners than their non-MOE dense counter-
parts on several key dimensions including transfer-
ability, sample-efficient generalizability, and avoid-
ing catastrophic forgetting.

Ethical Considerations and Broader
Impact

In this work, we develop an efficient multi-task
deep neural network model that performs well
across several diverse natural language understand-
ing tasks. One of the benefits of a multi-task model
is parameter efficiency, where the same model can
be used across several different tasks, thereby, sav-
ing storage cost and memory footprint. We also
demonstrate improved robustness of the multi-task
model that further reduces risks of deploying such
models in the wild. Furthermore, improved gen-
eralization, transferability and sample-efficiency
of our model is beneficial for sensitive application
domains including finance, legal and healthcare.

However, our model also has the risk of echoing
the biases from the pre-trained language model it
is based on. Furthermore, a considerable risk with
multi-task learning is that it can facilitate the prop-
agation of biases from individual datasets from its
training mixture to the rest. Sparse models like
MT-TaG with their increased capability to trans-
fer information from just a single task from its
training mixture poses increased risk of retaining
and transferring such biases to the unseen tasks.
Sparse models also massively increase the number
of parameters, which can lead to significant storage
cost in the absence of customized hardware and
optimized implementations, leading to a negative
impact on the carbon footprint from training and
deploying such models.

References

Armen Aghajanyan, Anchit Gupta, Akshat Shrivastava,
Xilun Chen, Luke Zettlemoyer, and Sonal Gupta.
2021a. Muppet: Massive multi-task representations
with pre-finetuning. ArXiv, abs/2101.11038.

Armen Aghajanyan, Anchit Gupta, Akshat Shrivastava,
Xilun Chen, Luke Zettlemoyer, and Sonal Gupta.
2021b. Muppet: Massive multi-task representations
with pre-finetuning. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 5799-5811, Online and Punta
Cana, Dominican Republic. Association for Com-
putational Linguistics.

Roy Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro,
Danilo Giampiccolo, Bernardo Magnini, and Idan
Szpektor. 2006. The second pascal recognising tex-
tual entailment challenge. In Proceedings of the Sec-
ond PASCAL Challenges Workshop on Recognising
Textual Entailment.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo
Giampiccolo. 2009. The fifth pascal recognizing
textual entailment challenge. In TAC.

Rich Caruana. 1997. Multitask learning. Machine
learning, 28(1):41-75.

Daniel Matthew Cer, Mona T. Diab, Eneko Agirre, Ifiigo
Lopez-Gazpio, and Lucia Specia. 2017. Semeval-
2017 task 1: Semantic textual similarity multilin-
gual and crosslingual focused evaluation. In Se-
mEval@ACL.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surpris-
ing difficulty of natural yes/no questions. ArXiv,
abs/1905.10044.

Michael Crawshaw. 2020.
with deep neural networks:
abs/2009.09796.

Multi-task learning
A survey. ArXiv,

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The pascal recognising textual entailment chal-
lenge. In Machine Learning Challenges. Evaluating
Predictive Uncertainty, Visual Object Classification,
and Recognising Tectual Entailment, pages 177-190.
Springer.

Marie-Catherine De Marneffe, Mandy Simons, and Ju-
dith Tonhauser. 2019. The commitmentbank: Inves-
tigating projection in naturally occurring discourse.
In proceedings of Sinn und Bedeutung, volume 23,
pages 107-124.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. ArXiv, abs/1810.04805.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In IJCNLP.

William Fedus, Barret Zoph, and Noam M. Shazeer.
2021. Switch transformers: Scaling to trillion param-
eter models with simple and efficient sparsity. ArXiv,
abs/2101.03961.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan,
and Bill Dolan. 2007. The third pascal recognizing
textual entailment challenge. In Proceedings of the
ACL-PASCAL Workshop on Textual Entailment and
Paraphrasing.

Raia Hadsell, Dushyant Rao, Andrei A. Rusu, and Raz-
van Pascanu. 2020. Embracing change: Continual
learning in deep neural networks. Trends in Cogni-
tive Sciences, 24:1028-1040.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: Decoding-
enhanced bert with disentangled attention. ArXiv,
abs/2006.03654.

https://arxiv.org/pdf/2101.11038.pdf
https://arxiv.org/pdf/2101.11038.pdf
https://arxiv.org/pdf/2101.11038.pdf
https://aclanthology.org/2021.emnlp-main.468
https://aclanthology.org/2021.emnlp-main.468
https://aclanthology.org/2021.emnlp-main.468
http://u.cs.biu.ac.il/~nlp/RTE2/Proceedings/01.pdf
http://u.cs.biu.ac.il/~nlp/RTE2/Proceedings/01.pdf
http://u.cs.biu.ac.il/~nlp/RTE2/Proceedings/01.pdf
https://tac.nist.gov/publications/2010/additional.papers/RTE6_overview.proceedings.pdf
https://tac.nist.gov/publications/2010/additional.papers/RTE6_overview.proceedings.pdf
https://tac.nist.gov/publications/2010/additional.papers/RTE6_overview.proceedings.pdf
https://link.springer.com/content/pdf/10.1023/A:1007379606734.pdf
https://aclanthology.org/S17-2001.pdf
https://aclanthology.org/S17-2001.pdf
https://aclanthology.org/S17-2001.pdf
https://aclanthology.org/S17-2001.pdf
https://aclanthology.org/S17-2001.pdf
https://aclanthology.org/N19-1300.pdf
https://aclanthology.org/N19-1300.pdf
https://aclanthology.org/N19-1300.pdf
https://arxiv.org/pdf/2009.09796.pdf
https://arxiv.org/pdf/2009.09796.pdf
https://arxiv.org/pdf/2009.09796.pdf
https://link.springer.com/chapter/10.1007/11736790_9
https://link.springer.com/chapter/10.1007/11736790_9
https://link.springer.com/chapter/10.1007/11736790_9
https://semanticsarchive.net/Archive/Tg3ZGI2M/Marneffe.pdf
https://semanticsarchive.net/Archive/Tg3ZGI2M/Marneffe.pdf
https://semanticsarchive.net/Archive/Tg3ZGI2M/Marneffe.pdf
https://aclanthology.org/N19-1423.pdf
https://aclanthology.org/N19-1423.pdf
https://aclanthology.org/N19-1423.pdf
https://aclanthology.org/N19-1423.pdf
https://aclanthology.org/N19-1423.pdf
https://aclanthology.org/I05-5002.pdf
https://aclanthology.org/I05-5002.pdf
https://aclanthology.org/I05-5002.pdf
https://arxiv.org/pdf/2101.03961.pdf
https://arxiv.org/pdf/2101.03961.pdf
https://arxiv.org/pdf/2101.03961.pdf
https://dl.acm.org/doi/pdf/10.5555/1654536.1654538
https://dl.acm.org/doi/pdf/10.5555/1654536.1654538
https://dl.acm.org/doi/pdf/10.5555/1654536.1654538
https://www.cell.com/trends/cognitive-sciences/pdf/S1364-6613(20)30219-9.pdf
https://www.cell.com/trends/cognitive-sciences/pdf/S1364-6613(20)30219-9.pdf
https://www.cell.com/trends/cognitive-sciences/pdf/S1364-6613(20)30219-9.pdf
https://arxiv.org/pdf/2006.03654.pdf
https://arxiv.org/pdf/2006.03654.pdf
https://arxiv.org/pdf/2006.03654.pdf

Shankar Iyer, Nikhil Dandekar, and Kornel Csernai.
2017. First quora dataset release: Question pairs.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth,
Shyam Upadhyay, and Dan Roth. 2018. Looking
beyond the surface: A challenge set for reading com-
prehension over multiple sentences. In NAACL.

Daniel Khashabi, Sewon Min, Tushar Khot, Ashish
Sabharwal, Oyvind Tafjord, Peter Clark, and Han-
naneh Hajishirzi. 2020. UNIFIEDQA: Crossing for-
mat boundaries with a single QA system. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pages 1896—1907, Online. Association
for Computational Linguistics.

Tushar Khot, Ashish Sabharwal, and Peter Clark. 2018.
Scitail: A textual entailment dataset from science
question answering. In AAAL

Diederik P. Kingma and Jimmy Ba. 2015.
A method for stochastic optimization.
abs/1412.6980.

Adam:
CoRR,

Sneha Kudugunta, Yanping Huang, Ankur Bapna,
Maxim Krikun, Dmitry Lepikhin, Minh-Thang Lu-
ong, and Orhan Firat. 2021. Beyond distillation:
Task-level mixture-of-experts for efficient inference.
ArXiv, abs/2110.03742.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,
Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. 2021.
Gshard: Scaling giant models with conditional com-
putation and automatic sharding. In International
Conference on Learning Representations.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman
Goyal, and Luke Zettlemoyer. 2021. Base layers:
Simplifying training of large, sparse models. In
ICML.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien
Plu, Lewis Tunstall, Joe Davison, Mario vSavsko,
Gunjan Chhablani, Bhavitvya Malik, Simon Bran-
deis, Teven Le Scao, Victor Sanh, Canwen Xu,
Nicolas Patry, Angelina McMillan-Major, Philipp
Schmid, Sylvain Gugger, Clement Delangue, Th’eo
Matussiere, Lysandre Debut, Stas Bekman, Pierric
Cistac, Thibault Goehringer, Victor Mustar, Franc-
cois Lagunas, Alexander M. Rush, and Thomas Wolf.
2021. Datasets: A community library for natural
language processing. In EMNLP.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019. Multi-task deep neural networks for
natural language understanding. In ACL.

Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan
Hong, and Ed H. Chi. 2018. Modeling task relation-
ships in multi-task learning with multi-gate mixture-
of-experts. Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery
& Data Mining.

10

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan
Huang, A. Ng, and Christopher Potts. 2011. Learning
word vectors for sentiment analysis. In ACL.

Brian W Matthews. 1975. Comparison of the pre-
dicted and observed secondary structure of t4 phage
lysozyme. Biochimica et Biophysica Acta (BBA)-
Protein Structure, 405(2):442-451.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting
class relationships for sentiment categorization with
respect to rating scales. In ACL.

Mohammad Taher Pilehvar and José Camacho-Collados.
2019. Wic: the word-in-context dataset for evaluat-

ing context-sensitive meaning representations. In
NAACL.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In EMNLP.

Melissa Roemmele, Cosmin Adrian Bejan, and An-
drew S Gordon. 2011. Choice of plausible alter-
natives: An evaluation of commonsense causal rea-
soning. In 2011 AAAI Spring Symposium Series.

Stephen Roller, Sainbayar Sukhbaatar, Arthur D. Szlam,
and Jason Weston. 2021. Hash layers for large sparse
models. ArXiv, abs/2106.04426.

Noam M. Shazeer, Azalia Mirhoseini, Krzysztof
Maziarz, Andy Davis, Quoc V. Le, Geoffrey E. Hin-
ton, and Jeff Dean. 2017. Outrageously large neu-
ral networks: The sparsely-gated mixture-of-experts
layer. ArXiv, abs/1701.06538.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, A. Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In EMNLP.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998—6008.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2018.
Glue: A multi-task benchmark and analysis plat-
form for natural language understanding. ArXiv,
abs/1804.07461.

Wenhui Wang, Hangbo Bao, Shaohan Huang, Li Dong,
and Furu Wei. 2021. Minilmv2: Multi-head self-
attention relation distillation for compressing pre-
trained transformers. In FINDINGS.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural network acceptability judgments.

Transactions of the Association for Computational
Linguistics, 7:625-641.

https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://aclanthology.org/N18-1023.pdf
https://aclanthology.org/N18-1023.pdf
https://aclanthology.org/N18-1023.pdf
https://aclanthology.org/N18-1023.pdf
https://aclanthology.org/N18-1023.pdf
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://doi.org/10.18653/v1/2020.findings-emnlp.171
http://ai2-website.s3.amazonaws.com/team/ashishs/scitail-aaai2018.pdf
http://ai2-website.s3.amazonaws.com/team/ashishs/scitail-aaai2018.pdf
http://ai2-website.s3.amazonaws.com/team/ashishs/scitail-aaai2018.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/2110.03742.pdf
https://arxiv.org/pdf/2110.03742.pdf
https://arxiv.org/pdf/2110.03742.pdf
https://openreview.net/forum?id=qrwe7XHTmYb
https://openreview.net/forum?id=qrwe7XHTmYb
https://openreview.net/forum?id=qrwe7XHTmYb
https://arxiv.org/pdf/2103.16716.pdf
https://arxiv.org/pdf/2103.16716.pdf
https://arxiv.org/pdf/2103.16716.pdf
https://arxiv.org/pdf/2109.02846.pdf
https://arxiv.org/pdf/2109.02846.pdf
https://arxiv.org/pdf/2109.02846.pdf
https://aclanthology.org/P19-1441.pdf
https://aclanthology.org/P19-1441.pdf
https://aclanthology.org/P19-1441.pdf
https://dl.acm.org/doi/pdf/10.1145/3219819.3220007
https://dl.acm.org/doi/pdf/10.1145/3219819.3220007
https://dl.acm.org/doi/pdf/10.1145/3219819.3220007
https://dl.acm.org/doi/pdf/10.1145/3219819.3220007
https://dl.acm.org/doi/pdf/10.1145/3219819.3220007
https://aclanthology.org/P11-1015.pdf
https://aclanthology.org/P11-1015.pdf
https://aclanthology.org/P11-1015.pdf
https://pubmed.ncbi.nlm.nih.gov/1180967/
https://pubmed.ncbi.nlm.nih.gov/1180967/
https://pubmed.ncbi.nlm.nih.gov/1180967/
https://pubmed.ncbi.nlm.nih.gov/1180967/
https://pubmed.ncbi.nlm.nih.gov/1180967/
https://aclanthology.org/P05-1015.pdf
https://aclanthology.org/P05-1015.pdf
https://aclanthology.org/P05-1015.pdf
https://aclanthology.org/P05-1015.pdf
https://aclanthology.org/P05-1015.pdf
https://aclanthology.org/N19-1128.pdf
https://aclanthology.org/N19-1128.pdf
https://aclanthology.org/N19-1128.pdf
https://aclanthology.org/D16-1264.pdf
https://aclanthology.org/D16-1264.pdf
https://aclanthology.org/D16-1264.pdf
http://commonsensereasoning.org/2011/papers/Roemmele.pdf
http://commonsensereasoning.org/2011/papers/Roemmele.pdf
http://commonsensereasoning.org/2011/papers/Roemmele.pdf
http://commonsensereasoning.org/2011/papers/Roemmele.pdf
http://commonsensereasoning.org/2011/papers/Roemmele.pdf
https://arxiv.org/pdf/2106.04426.pdf
https://arxiv.org/pdf/2106.04426.pdf
https://arxiv.org/pdf/2106.04426.pdf
https://arxiv.org/pdf/1701.06538.pdf
https://arxiv.org/pdf/1701.06538.pdf
https://arxiv.org/pdf/1701.06538.pdf
https://arxiv.org/pdf/1701.06538.pdf
https://arxiv.org/pdf/1701.06538.pdf
https://aclanthology.org/D13-1170.pdf
https://aclanthology.org/D13-1170.pdf
https://aclanthology.org/D13-1170.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/W18-5446.pdf
https://aclanthology.org/W18-5446.pdf
https://aclanthology.org/W18-5446.pdf
https://aclanthology.org/2021.findings-acl.188.pdf
https://aclanthology.org/2021.findings-acl.188.pdf
https://aclanthology.org/2021.findings-acl.188.pdf
https://aclanthology.org/2021.findings-acl.188.pdf
https://aclanthology.org/2021.findings-acl.188.pdf
https://aclanthology.org/Q19-1040.pdf

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2018. A broad-coverage challenge corpus

for sentence understanding through inference. In
NAACL.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. Huggingface’s transformers:

State-of-the-art natural language processing. ArXiv,
abs/1910.03771.

Yonghui Wu, Mike Schuster, Z. Chen, Quoc V. Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing
Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,
Taku Kudo, Hideto Kazawa, Keith Stevens, George
Kurian, Nishant Patil, Wei Wang, Cliff Young, Ja-
son R. Smith, Jason Riesa, Alex Rudnick, Oriol
Vinyals, Gregory S. Corrado, Macduff Hughes, and
Jeffrey Dean. 2016. Google’s neural machine trans-
lation system: Bridging the gap between human and
machine translation. ArXiv, abs/1609.08144.

An Yang, Junyang Lin, Rui Men, Chang Zhou,
Le Jiang, Xianyan Jia, Ang Wang, Jie Zhang, Jia-
mang Wang, Yong Li, et al. 2021. M6-t: Exploring
sparse expert models and beyond. arXiv preprint
arXiv:2105.15082.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. ArXiv, abs/1509.01626.

Simiao Zuo, Xiaodong Liu, Jian Jiao, Young Jin Kim,
Hany Hassan, Ruofei Zhang, Tuo Zhao, and Jianfeng
Gao. 2021. Taming sparsely activated transformer
with stochastic experts. ArXiv, abs/2110.04260.

11

https://aclanthology.org/N18-1101.pdf
https://aclanthology.org/N18-1101.pdf
https://aclanthology.org/N18-1101.pdf
https://arxiv.org/pdf/1910.03771.pdf
https://arxiv.org/pdf/1910.03771.pdf
https://arxiv.org/pdf/1910.03771.pdf
https://arxiv.org/pdf/1609.08144.pdf
https://arxiv.org/pdf/1609.08144.pdf
https://arxiv.org/pdf/1609.08144.pdf
https://arxiv.org/pdf/1609.08144.pdf
https://arxiv.org/pdf/1609.08144.pdf
https://arxiv.org/pdf/2105.15082.pdf
https://arxiv.org/pdf/2105.15082.pdf
https://arxiv.org/pdf/2105.15082.pdf
https://arxiv.org/pdf/1509.01626.pdf
https://arxiv.org/pdf/1509.01626.pdf
https://arxiv.org/pdf/1509.01626.pdf
https://arxiv.org/pdf/2110.04260.pdf
https://arxiv.org/pdf/2110.04260.pdf
https://arxiv.org/pdf/2110.04260.pdf

A Appendix

A.1 Analysis
A.1.1 Re-using task gates for generalization

In Table 6, we provide results for fine-tuning the
GLUE-trained MT-TaG model on unseen SciTail
dataset with different task gates. We observe that
re-using the gates corresponding to the related
tasks (RTE, MNLI) outperforms the random ini-
tialization of the gate, as well as re-using the gate
from an unrelated task (SST-2). This demonstrates
MT-TaG’s ability in learning task-specific routing
in its gates, and efficiently re-using it for general-
izing to unseen related tasks in a sample efficient
manner.

Task Gate Accuracy

Random 91.2
SST-2 91.8
RTE 92.6
MNLI 92.9

Table 6: Performance of MT-TaG when fine-tuned with
different task gates on the 10% sample of the unseen
SciTail dataset. Gates corresponding to tasks with simi-
larity to SciTail (RTE and MNLI) perform superior to
random and unrelated task gates (SST-2). All results are
with the MiniLM encoder.

A.1.2 Task Sampling

In Table 7, we provide results for using different
task sampling strategies while training MT-TaG
with heterogeneous batches. We observe that main-
taining the natural distributions of tasks during
MTL training outperforms uniformly sampling all
tasks. We thus use natural sampling of tasks for the
MTL models in our experiments.

Sampling Small Tasks All Tasks
Uniform 80.60 85.75
Natural 82.73 86.94

Table 7: Comparison of task sampling strategies in
MT-TaG with the BERT 14,4, €ncoder on GLUE. Main-
taining the natural distribution of tasks (Natural Sam-
pling) outperforms uniformly sampling tasks (Uniform
Sampling).

12

A.1.3 Number of Experts

In Table 8, we provide results for using different
number of experts in MT-TaG. We observe 4 ex-
perts to perform the best, and thus use 4 experts for
all sparse model experiments.

#experts Small Tasks All Tasks
2 experts 80.78 85.79
4 experts 82.73 86.94
6 experts 80.60 85.76

Table 8: MT-TaG’s performance comparison on GLUE
with different number of experts (#experts) using the
BERT 4, ge €ncoder. 4 experts performs the best.

A.2 Datasets

Below, we provide details about all the datasets that
we used. We also summarize the key information
about these datasets in Table 9.

RTE: Recognizing Textual Entailment are datasets
collected from a series of annual textual entail-
ment challenges. The authors combine the data
from RTE1 (Dagan et al., 2006), RTE2 (Bar Haim
et al., 2006), RTE3 (Giampiccolo et al., 2007), and
RTES (Bentivogli et al., 2009). All datasets are
converted to two-class classification: entailment
and not entailment.

MRPC: Microsoft Research Paraphrase Cor-
pus (Dolan and Brockett, 2005) is a corpus of
sentence pairs automatically extracted from online
news sources, with human annotations for whether
the sentences in the pair are semantically equiva-
lent.

STS-B: Semantic Textual Similarity Bench-
mark (Cer et al., 2017) is a collection of sentence
pairs drawn from news headlines, video and image
captions, and natural language inference data. Each
pair is human-annotated with a similarity score
from 1 to 5.

CoLA: Corpus of Linguistic Acceptabil-
ity (Warstadt et al., 2019) consists of English
acceptability judgments drawn from books and
journal articles on linguistic theory. Each example
is a sequence of words annotated with whether it is
a grammatical English sentence.

SST-2: Stanford Sentiment Treebank (Socher et al.,
2013) consists of sentences from movie reviews
and human annotations of their sentiment. The
task is to predict the sentiment of a given sentence.
It uses the two-way (positive/negative) class split,

with only sentence-level labels.

QNLI: Stanford Question Answering
Dataset (Wang et al., 2018; Rajpurkar et al.,
2016) is a question-answering dataset consisting
of question-paragraph pairs, where one of the
sentences in the paragraph (drawn from Wikipedia)
contains the answer to the corresponding question
(written by an annotator). The authors of the
benchmark convert the task into sentence pair
classification by forming a pair between each
question and each sentence in the corresponding
context, and filtering out pairs with low lexical
overlap between the question and the context
sentence. The task is to determine whether the
context sentence contains the answer to the
question. This modified version of the original
task removes the requirement that the model select
the exact answer, but also removes the simplifying
assumptions that the answer is always present in
the input and that lexical overlap is a reliable cue.

QQP: Quora Question Pairs2 dataset (Iyer et al.,
2017) is a collection of question pairs from the com-
munity question-answering website Quora. The
task is to determine whether a pair of questions are
semantically equivalent.

MNLI: Multi-Genre Natural Language Inference
Corpus (Williams et al., 2018) is a crowdsourced
collection of sentence pairs with textual entailment
annotations. Given a premise sentence and a hy-
pothesis sentence, the task is to predict whether the
premise entails the hypothesis (entailment), con-
tradicts the hypothesis (contradiction), or neither
(neutral). The premise sentences are gathered from
ten different sources, including transcribed speech,
fiction, and government reports. The authors of
the benchmark use the standard test set, for which
they obtained private labels from the RTE authors,
and evaluate on both the matched (in-domain) and
mismatched (cross-domain) section.

CB: Commitment Bank (De Marneffe et al., 2019)
is a corpus of short texts in which at least one sen-
tence contains an embedded clause. Each of these
embedded clauses is annotated with the degree to
which it appears the person who wrote the text is
committed to the truth of the clause. The resulting
task framed as three-class textual entailment on
examples that are drawn from the Wall Street Jour-
nal, fiction from the British National Corpus, and
Switchboard. Each example consists of a premise
containing an embedded clause and the correspond-
ing hypothesis is the extraction of that clause.

13

BoolQ: Boolean Questions (Clark et al., 2019) is
a QA task where each example consists of a short
passage and a yes/no question about the passage.
The questions are provided anonymously and unso-
licited by users of the Google search engine, and af-
terwards paired with a paragraph from a Wikipedia
article containing the answer.

MultiRC: Multi-Sentence Reading Comprehen-
sion (Khashabi et al., 2018) is a QA task where
each example consists of a context paragraph, a
question about that paragraph, and a list of possible
answers. The system must predict which answers
are true and which are false. Each question can
have multiple possible correct answers, so each
question-answer pair must be evaluated indepen-
dent of other pairs. The questions are also designed
such that answering each question requires drawing
facts from multiple context sentences. The para-
graphs are drawn from seven domains including
news, fiction, and historical text.

WiC: Word-in-Context (Pilehvar and Camacho-
Collados, 2019) is a word sense disambiguation
task cast as binary classification of sentence pairs.
Given two text snippets and a polysemous word
that appears in both sentences, the task is to deter-
mine whether the word is used with the same sense
in both sentences.

COPA: Choice of Plausible Alternatives (Roem-
mele et al., 2011) is a causal reasoning task in
which a system is given a premise sentence and
must determine either the cause or effect of the
premise from two possible choices. All examples
are handcrafted and focus on topics from blogs and
a photography-related encyclopedia.

IMDB: Large Movie Review Dataset (Maas et al.,
2011) built from reviews from IMDb (Internet
Movie Database). This is a dataset for binary senti-
ment classification containing highly polar movie
reviews.

Yelp Polarity: Large Yelp Review Dataset (Zhang
et al., 2015). This is a dataset for binary sentiment
classification constructed from highly polar Yelp
reviews.

Rotten Tomatoes: Movie Review Dataset (Pang
and Lee, 2005). This is a dataset of containing pos-
itive and negative processed sentences from Rotten
Tomatoes movie reviews.

SciTail: SciTail (Khot et al., 2018) dataset is an
entailment dataset created from multiple-choice
science exams and web sentences. Each question
and the correct answer choice are converted into an

Dataset #Train #Dev #Labels Formulation Metrics
WSD
WiC 54k 638 o palrwisedlext o racy
Classification
Similarity
STS-B 5.7k 1.5k 1 Pa1rw1se—.text Spearman corr
Regression
Acceptability
CoLA 85k Ik 2 Single-text 1 thews corr
Classification
Sentiment
Rotten Single-text
Tomatoes 8.3k 1k 2 Classification Accuracy
IMDB 25k 25k 2 Single-text -\ iracy
Classification
SST2 673k 872 2 Single-text — iracy
Classification
Yelp Single-text
Polarity 560k 38k 2 Classification Accuracy
Paraphrase
MRPC 37k 408 o Calrwisedlexto o racy
Classification
QQP 364k 40k , Pairwisetext e
Classification y
NLI
Pairwise-text
CB 250 56 3 Classification Accuracy
RTE 2.5k 277 2 Palr\ylse-tf:xt Accuracy
Classification
SciTail 236k 13k 2 Calrwisedlextoo o racy
Classification
QNLI 105k 55k 2 pairwisedext o rac
' Classification uracy
MNLI 393k 98k 3 Lalrwisedlext o acy
Classification
QA
COPA 400 100 o TAlIwisestext o iracy
Ranking
MuliRC 27k 48k 2 Lairwise-text Fla
Classification
BoolQ 94k 33k 2 Calrwisetext o iracy

Classification

Table 9: Key information about all the datasets used.

14

assertive statement to form the hypothesis. Infor-
mation retrieval is used to obtain relevant text from
a large text corpus of web sentences, and use these
sentences as a premise. Premise-hypothesis pair
are annotated as supports (entails) or not (neutral).
We obtained all of these datasets from Hugging-
Face’s datasets library (Lhoest et al., 2021).

A.3 Implementation Details
A.3.1 Task formulations

In this section, we group all the tasks into different
categories, and provide details about their formula-
tion. All model variants followed BERT-like archi-
tectures (Devlin et al., 2019) with a [CLS] token
added to the beginning of the input.

Single-text Classification

CoLA, SST-2, IMDB, Yelp Polarity, and Rotten
Tomatoes belong to this category. The task is to
perform binary classification based on a single se-
quence of concatenated sentences. A classifier
head is used on top of the output representation
of the [CLS] token for the classification. We use
Matthews correlation coefficient (Matthews, 1975)
as the evaluation metric for CoLA, and use accu-
racy for the rest.

Pairwise-text Classification

RTE, MRPC, QNLI, QQP, MNLI, CB, BoolQ,
MultiRC, WiC, and SciTail belong to this cate-
gory. The task is to perform binary or multi-class
classification based on a pair of sequence inputs.
We concatenate the input sequence pairs separated
by a [SEP] token following (Devlin et al., 2019),
and feed the fused sequence to the model. In the
case of MultiRC, which contains three sequences
(paragraph, question, and answer), the paragraph
and question are concatenated to form the first se-
quence, and the answer is used as the second se-
quence. For all tasks except WiC, a classifier head
which sees the output representation corresponding
to the [CLS] token is used to select the predicted
class. For WiC a span classification head is used,
which extracts the output representations of the
word of interest (from both input sentences) and
concatenates them with the representation of the
[CLS] token. This fused representation is then fed
to a classifier head to predict the binary output.
Following the authors, we use F1, as the metric
for MultiRC, which evaluates binary decisions on
all the answer-options in the dataset independently.
F1, is the harmonic mean of precision and recall

15

across all answer-option pairs, without grouping by
question or paragraph. For all other tasks, accuracy
is used as the evaluation metric.

Pairwise-text Ranking

COPA belongs to this category. The task is
to choose between a pair of sequences given a
premise-question context. We join the premise-
question sequence pair into a single context se-
quence, and evaluate each pair of choice alter-
natives independently by concatenating context,
[SEP] token, and answer choice to form a pair of
input sequences for the model. The task is then
cast as a binary classification task for each input
pair, for which we feed the output representation
to a classifier head, and retrieve the positive (True)
class logits for each input. Whichever input returns
the largest positive-class logit is then taken as the
answer choice, and we calculate accuracy as the
evaluation metric.

Pairwise-text Regression

STS-B belongs to this category. The task is to
perform regression from a pair of input sequences.
The input sequences are concatenated together with
a [SEP] token and fed to the model. A regression
head is used to learn the similarity score and we
calculate Spearman’s rank correlation as the evalu-
ation metric.

A.3.2 Model details

We use a Wordpiece Tokenizer (Wu et al., 2016)
with 30k vocabulary size to tokenize all the exam-
ples. We truncate the examples on the right using
a maximum length of 512 for QNLI and MNLI,
and 128 for the rest of GLUE datasets. We use
a batch size of 128 for MTL Training, and 32 for
fine-tuning.

For training of Sparse models, we do not add
any additional load balancing loss, input jitter, or
additional dropout in the experts®. Unlike existing
work, we did not encounter a load-imbalance in
the utilization of the experts, potentially due to
the multi-task objective that pushes the network to
specialize weights in different experts.

Model selection

For MTL training, we train the model for a fixed
number of steps, and select the checkpoint at the
end of training. For fine-tuning, we use early stop-
ping using the dev set. We tune the learning rate,

®Early experiments resulted in a drop in the performance.

warmup proportion, and the number of training
steps for both MTL Training and fine-tuning. For
fine-tuning, tuning is only done for the small tasks
(< 10k examples)’. For every task, we run 3 fine-
tuning experimental runs for each model with dif-
ferent seeds, and report the max number obtained
across runs for the model.

Hyper-parameters and Tuning

For the Adam optimizer, we used (; and s
values of 0.9 and 0.999 respectively, and an €
of le — 8. For MTL Training, we ran tuning
runs with a grid search of the learning rate in
[be — 06,1e — 05,2e — 05,5e — 05,1e — 04],
warmup rate in [0.1,0.2], and number of steps in
[30k, 50k]. For fine-tuning, we tuned the learning
rate in [5e — 06, 1le — 05, 2e — 05, 5e — 05, 1e — 04],
used a warmup of 0.1, and tuned the number of
epochs in [5, 10, 15, 20, 25, 30].

A.4 Limitations and Future Work

Using a separate gate for each task allows us to
learn task-specific routing in the gates, however,
it has the limitation that individual gates are only
updated via the examples corresponding to their tar-
get task. This can lead to the gates for the smallest
tasks being under-trained under a natural sampling
of tasks. In the future, we will experiment with
a training schedule in which we use uniform sam-
pling at the beginning of training to allow all gates
to train sufficiently, and then revert back to natural
sampling. Our method also has the limitation that
gates of related tasks only share information via the
experts. To tackle this, we will experiment with in-
corporating task embeddings to allow the network
to share routing information by learning similar
task embeddings for related tasks. Lastly, we will
experiment with further scaling up the number and
diversity of tasks in our multitask mixture to obtain
a general model for a wide-range of downstream
tasks.

A.5 Task-level Results

A.5.1 Robustness to unrelated tasks

We provide the task-level results corresponding
to the robustness experiments from Section 5.3 in
Table 10.

"Bigger tasks showed indifference to the choice of hyper-
parameters.

16

A.5.2 Encoder Scaling

We provide the task-level results corresponding to
the encoder scaling experiments from Section 6.1
in Table 11.

Dataset KTE MRPC STS-B QNLI QQP MNLI Small Tasks ~ All Tasks

awset 25k 3.7k (5.7k) (105k) (364k) (393K) (Avg.) (Avg.)
MT-Dense

C-GLUE 786 897 905 898 909 836 86.27 87.18

GLUE 779 89 90.5 903 908 83.8 85.80 87.05
MT-Switch

C-GLUE 789 895 904 90.1 909 835 86.27 87.22

GLUE 789 90 90.5 903 909 83.6 86.47 87.37
MT-TaG

C-GLUE 782 909 904 90 90.8 83.6 86.50 87.32

GLUE 811 907 906 902 908 836 87.47 87.83

Table 10: Task-level model performance on GLUE (containing several diverse tasks) and C-GLUE (as a subset of
GLUE containing only related tasks) evaluated on the common tasks in both. Sparse MTL models demonstrate
robustness in the presence of unrelated tasks in GLUE, with MT-TaG with task-specific routing being the most

robust. All models use MiniLM encoder.

Model RTE MRPC STS-B CoLA SST-2 QNLI QQP MNLI Small Tasks All tasks
ode (2.5k) (3.7k) (5.7k) (8.5k) (67.3k) (105k) (364k) (393k) (Avg.) (Avg.)
BERTBase
Single-Task 71.4 84.8 89.1 60.8 92.9 91.9 914 84.4 76.53 83.34
MT-TaG 81.1 90.7 90.4 60.7 92.9 91.8 914 84.6 80.73 85.45
BERTLarge
Single-Task ~ 74.6 88.2 89.9 62.7 93.3 92.7 91.7 86.3 78.85 84.93
MT-TaG 86.4 89.2 90.8 64.5 94.2 92.3 91.7 86.4 82.73 86.94
MT-DNN 83.4 87.5 90.6 63.5 94.3 92.9 89.2 86.9 81.25 86.04

Table 11: Task-level performance of models with different BERT encoder sizes. MT-TaG shows consistent gains
across encoders of different sizes. MT-TaG also outperforms the dense MTL baseline MT-DNN (Liu et al., 2019).

17

