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Abstract
Traditional multi-task learning (MTL) methods001
use dense networks that use the same set of002
shared weights across several different tasks.003
This often creates interference where two or004
more tasks compete to pull model parameters005
in different directions. In this work, we study006
whether sparsely activated Mixture-of-Experts007
(MoE) improve multi-task learning by special-008
izing some weights for learning shared rep-009
resentations and using the others for learning010
task-specific information. To this end, we de-011
vise task-aware gating functions to route exam-012
ples from different tasks to specialized experts013
which share subsets of network weights condi-014
tioned on the task. This results in a sparsely015
activated multi-task model with a large number016
of parameters, but with the same computational017
cost as that of a dense model. We demonstrate018
such sparse networks to improve multi-task019
learning along three key dimensions: (i) trans-020
fer to low-resource tasks from related tasks in021
the training mixture; (ii) sample-efficient gen-022
eralization to tasks not seen during training by023
making use of task-aware routing from seen024
related tasks; (iii) robustness to the addition of025
unrelated tasks by avoiding catastrophic forget-026
ting of existing tasks.027

1 Introduction028

The traditional mechanism of using large-scale029

pre-trained language models PLMs (Devlin et al.,030

2019; He et al., 2021) involve fine-tuning them031

for each task individually. This approach fails to032

benefit from interactions between tasks that could033

be related to each other. For instance, the task034

of predicting if one text entails or contradicts an-035

other can benefit from tasks that predict whether036

two texts are semantically similar or not. To ad-037

dress these limitations, Multi-Task Learning (MTL)038

methods like MT-DNN (Liu et al., 2019) and Mup-039

pet (Aghajanyan et al., 2021a) instead train a sin-040

gle model jointly on a multi-task mixture consist-041

ing of multiple tasks. The typical mechanism is042

to facilitate transfer between the tasks by encod- 043

ing the examples using a task-agnostic network 044

shared between all the tasks, and then using task- 045

specific layers on top to optimize individual task 046

objectives. The dominant choice for the network 047

is a Transformer-based PLM such as BERT (De- 048

vlin et al., 2019). However, such dense (fully- 049

connected) task-agnostic networks have the limita- 050

tion that they use all the weights of the network for 051

every example, including those coming from very 052

different tasks. This creates interference among dif- 053

ferent tasks, e.g., the tug-of-war phenomenon (Had- 054

sell et al., 2020) where two or more tasks pull the 055

model parameters in different directions, thus im- 056

pacting the multi-task learning performance. 057

A possible mechanism to alleviate this problem 058

is to devise a task-aware network that can cap- 059

ture specialized information about individual tasks, 060

as well as information that can be shared among 061

multiple tasks. Mixture-of-Experts (MoE) frame- 062

work (Shazeer et al., 2017; Fedus et al., 2021; Lep- 063

ikhin et al., 2021) provides a way to model this 064

mechanism. Such architectures are designed to 065

support conditional computation in which only cer- 066

tain weights of the network are activated per input 067

as governed by a gating mechanism. This sparse 068

design has an additional advantage of providing 069

additional capacity in terms of model parameters 070

while keeping overall computational cost constant. 071

The above sparse MoE models have been typi- 072

cally trained from scratch using language modeling 073

objectives for tasks like neural machine translation; 074

or fine-tuned on NLU tasks in a single-task setting. 075

In contrast, in this work we study multi-task adap- 076

tation (as opposed to pre-training from scratch) of 077

sparse MoE models on diverse NLU tasks when 078

judiciously initialized with the weights of a pre- 079

trained language model. Our motivation for using 080

MoEs is that the sparsity and conditional compu- 081

tation within MoEs will help to alleviate inter-task 082

interference by specializing some weights for learn- 083
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ing shared representations and using the others for084

learning task-specific information.085

Multi-task adaptation for sparse MoE models086

that have been traditionally used in single-task087

settings require rethinking the gating mechanism.088

Existing sparse models use a single task-agnostic089

shared gate that learns to route inputs from all090

the tasks, leading to interference wherein differ-091

ent tasks compete for the shared gate.092

Contributions: We (Contribution 1) first ad-093

dress this limitation by devising a task-aware gat-094

ing mechanism within sparse MoEs to route the095

input (tokens from different tasks) to specialized096

experts conditioned on the task to support MTL.097

Thereafter, (Contribution 2.1) we perform an ex-098

tensive empirical study of the robustness of dense099

and sparse models to inter-task interference for100

multi-task learning on three key dimensions, (i)101

transfer to low-resource tasks from related tasks102

in the training mixture; (ii) sample-efficient gen-103

eralization to tasks not seen during training from104

related seen tasks; (iii) robustness to the addition of105

unrelated tasks by avoiding catastrophic forgetting106

of existing tasks. We (Contribution 2.2) empirically107

demonstrate sparse MoE models with task-aware108

gating and routing to be more robust multi-task109

learners than their non-MoE dense counterparts on110

the above dimensions.111

2 Sparse Mixture-of-Experts:112

Background113

We adopt the popularly used Transformer architec-114

ture (Vaswani et al., 2017) as the basic encoder con-115

sisting of L repeated Transformer blocks, where116

each block consists of a self-attention sub-layer, a117

fully connected feed-forward network (FFN) and118

residual connections around the sub-layers fol-119

lowed by layer normalization.120

The objective of sparse design of the above121

Transformer blocks is to support conditional com-122

putation and increase the parameter count while123

keeping the floating point operations (FLOPs) for124

each input example constant. Mixture-of-Experts125

(MoE) Transformer models (Shazeer et al., 2017;126

Fedus et al., 2021; Lepikhin et al., 2021; Zuo et al.,127

2021) achieve this by using N feed-forward net-128

works (FFN), namely “experts" denoted as EN
i=1,129

each with its own set of learnable weights. In order130

to sparsify the network to keep the FLOPs constant,131

there is an additional gating network G whose out-132

put is a sparse N -dimensional vector to route each133

token via a few of these experts. Note that, a sparse 134

model with N = 1 corresponding to only one FFN 135

layer in each Transformer block collapses to the 136

traditional dense model. 137

Consider xs as the input token representation in 138

the sth position to the MOE layer comprising of 139

the {E}Ni=1 expert FFNs. Also, consider win
i and 140

wout
i to be the input and output projection matrices 141

for ith expert. Expert output Ei(xs) is given by: 142

Ei(xs) = wout
i ·GeLU(win

i · xs) (1) 143

Consider G(xs) to be output of the gating network. 144

Output of the sparse MoE layer is given by: 145

h(xs) =
∑
i

G(xs)i Ei(xs) (2) 146

where G(xs)i denotes the probability of selecting 147

expert Ei for xs. 148

3 Sparse Multi-task Learning with 149

Mixture-of-Experts 150

We first highlight the shortcoming of existing 151

sparse MoE models for multi-task learning and 152

our architectural modifications to support the same 153

along with an analysis of its impact on the model 154

size and task scalability. We then present some 155

details on the task formulation and optimization 156

objectives to train sparse multi-task models. 157

3.1 Task-aware Sparse Routing to Experts 158

The sparse MoE design outlined in the previous 159

section does not consider the underlying task (Fig- 160

ure 1(a)). Given the same input from different 161

tasks, the task-agnostic gating mechanism routes 162

tokens to the same experts, thereby generating sim- 163

ilar hidden-state representations. This is an issue 164

during multi-task learning, where it is beneficial to 165

learn task-specific contextualized representation of 166

the input. To address this shortcoming, we mod- 167

ify the gating function to be task-aware, such that 168

inputs from a given task are routed to specialized 169

experts that also share weights across related tasks. 170

Consider a set of T diverse tasks in the multi- 171

task mixture and xs,t to be the token representation 172

in the sth position of the input sequence from task 173

t ∈ T , where each task is equipped with its own 174

loss function. Consider trainable weight matrices 175

Wg,t ∈ RN×d corresponding to each task t ∈ T 176

where, N is the number of experts and d is the 177

hidden state dimension. To incorporate task infor- 178

mation in the gating mechanism, we multiply the 179
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Figure 1: Sparse MoE layer with 3 Experts, 2 Tasks, and top-1 expert routing with (a) Shared Gating, and (b)
Task-aware Gating. xs,1 and xs,2 are tokens from Task 1 and 2 respectively. They share the same gate G in
sub-figure (a), and routed to respective task-specific gates in sub-figure (b). For simplicity, we only show the
pathway for xs,2 with a solid line, and show the gating behavior for xs,1 with a dashed red line

input xs,t with the task-specific weight matrix Wg,t180

to obtain the routing logits:181

lt(xs,t) = xs,t ·Wg,t (3)182

We can further normalize them via a softmax183

distribution over the N experts in each MoE layer184

to obtain the corresponding routing probabilities.185

The gate-value for the ith expert is given by:186

Gt(xs,t)i =
elt(xs,t)i∑N
j=1 e

lt(xs,t)j
(4)187

We can now select the top-k gate values for188

routing the token. In order to keep the number189

of FLOPs in the sparse Transformer to be the same190

as that of a dense one, the gating mechanism is191

constrained to route each token to only the top-1192

expert FFN selected as:193

g∗t (xs,t) = maxi Gt(xs,t)i (5)194

The output of the sparse MOE layer in Equa-195

tion 2 can be modified with the task-specific gating196

function by linearly combining the selected top-1197

expert’s (E∗) computation on xs,t and the probabil-198

ity of selecting the expert as:199

h(xs,t) = g∗t (xs,t) E∗(xs,t) (6)200

where h denotes the task-specific representation201

of input xs,t.202

In the above formulation, the task-specific gat-203

ing function Gt learns to route tokens from the204

input to specialized experts. Note that the experts205

themselves do not have explicit relationship with206

the task and are only dependent on input context207

so as to encourage information sharing among all208

experts. The expert selection is implicitly condi-209

tioned on the task id t (provided with the input)210

via task-aware gating function Gt. We refer our 211

framework as MT-TaG, short for Multi-Task Task- 212

aware Gating (Figure 1(b)). 213

3.2 Analysis of Sparsity and Task-scalability 214

We introduce the feed-forward networks (FFN) as 215

experts in every layer of the Transformer. Consider 216

N experts, L layers and Pf to be the number of pa- 217

rameters in each FFN expert. The number of expert 218

parameters in the model is L×N × Pf . Since the 219

experts are shared among all tasks, increasing the 220

number of tasks does not impact expert parameters. 221

On the other hand, the gating network is task- 222

aware which increases the number of parameters 223

with more tasks. Considering H to be the hidden 224

state dimension and T to be the number of tasks, 225

the number of gating parameters is L×N×H×T . 226

Since the hidden state dimension and number of 227

tasks are much less than the number of FFN param- 228

eters (i.e., H × T ≪ Pf ) in most practical settings, 229

increasing tasks contribute very less parameters as 230

compared to the parameters already contained in 231

the standard feed-forward Transformer networks. 232

Consider the following as an illustration. Con- 233

sider a 6-layer Transformer with 384 hidden dimen- 234

sion and 22M encoder parameters corresponding 235

to a standard dense Transformer. Consider 4 ex- 236

perts and 8 tasks for MTL, where we introduce 237

these experts in each Transformer layer. MT-TaG 238

contains only 74K gating parameters in the task- 239

specific gating networks for expert selection as 240

compared to 21M expert parameters. In total, the 241

sparse MT-TaG model doubles the number of pa- 242

rameters as compared to the dense model although 243

incurring the same number of FLOPs with top-1 244

expert selection. This capacity coupled with task- 245

awareness improves model performance in MTL 246

as demonstrated in experiments. 247
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3.3 Multi-task Training248

We now outline multi-task objectives and protocol249

for training the MT-TaG model.250

Task objectives: For a classification task t, we use251

a task-specific projection layer on top of the MTL252

encoder to obtain the class probability distribution253

for the contextualized representation of an input254

example xt
1 from task t as:255

P (c|xt) = Softmax(Ut · h(xt)) (7)256

where, Ut ∈ RCt×d is the task-specific param-257

eter matrix with Ct representing the number of258

classes and d as the hidden state dimension.259

For a regression task t (e.g., textual similarity),260

we obtain the output score for the contextualized261

representation of the input xt as:262

S(xt) = Vt · h(xt) (8)263

where, Vt ∈ R1×d is the task-specific parameter264

matrix and S(xt) ∈ R(−∞,∞).265

For classification tasks, we use cross-entropy266

loss, where we train the network to minimize the267

following objective in the MTL setup:268

−
∑
t∈T

∑
xt∈Xt

∑
c∈Ct

1(xt, c) log P (c|xt) (9)269

where, Xt is the set of examples from task t,270

1(x, c) is the binary indicator which is 1 if c is the271

correct class label for x and 0 otherwise.272

For regression tasks, we use mean-squared error273

loss, where we train the network to minimize the274

following objective in the MTL setup:275 ∑
t∈T

∑
⟨xt,yt⟩∈⟨Xt,Yt⟩

(yt − S(xt))
2 (10)276

where, ⟨Xt, Yt⟩ is the set of examples from task277

t with corresponding ground-truth scores.278

Joint optimization: We jointly optimize Equa-279

tions 9 and 10 to train the entire model including280

the gating network by back-propagation, where the281

gradients back-propagate through the gating net-282

work to the inputs.283

Loss scaling: In the MTL setup, the number of284

classes per task can vary. To ensure stability in285

the training, we leverage loss scaling to normalize286

the task-specific loss function in Equation 9 with287

respect to the number of classes in the task t as288

1For inputs with sequence pairs (x1, x2), we consider
x = x1 ⊕ x2, with ⊕ representing concatenation operation.

(∑
c∈Ct

1(xt, c) log P (c|xt)
)
/log(|Ct|), where 289

|.| denotes the cardinality of the set of classes. 290

Batching and sampling: The MTL training pro- 291

cess optimizes several objectives which are often at 292

loggerheads with each other. Recent work (Agha- 293

janyan et al., 2021b) demonstrates heterogeneous 294

batching to work better for MTL, where batches 295

from different tasks are sampled to construct a 296

super-batch, which is then used for jointly opti- 297

mizing corresponding task-objectives. We follow 298

similar principles along with employing a natural 299

sampling of tasks, wherein we sample batches from 300

tasks in proportion to their dataset sizes to reflect 301

the complexity of the corresponding tasks. 302

4 Experimental Setup 303

4.1 Datasets 304

We use 8 diverse NLU datasets from the GLUE 305

benchmark (Wang et al., 2018) for MTL training 306

consisting of single-text classification tasks such as 307

COLA and SST-2; paired-text classification tasks 308

such as RTE, MRPC, QNLI, QQP, and MNLI; and 309

paired-text regression tasks such as STS-B. These 310

evaluate various NLU capabilities such as senti- 311

ment classification in SST-2; textual entailment in 312

RTE, QNLI, and MNLI; paraphrase detection in 313

MRPC and QQP; text similarity in STS-B; and text 314

acceptability in CoLA. There are varying number 315

of examples per dataset ranging from 2.5K exam- 316

ples in the smallest one (RTE) to 393K examples in 317

the largest one (MNLI). This allows us to study the 318

efficacy of MTL models in terms of transfer to low- 319

resource tasks. The task mixture also consists of 320

tasks like COLA and SST-2 that have low similarity 321

with the rest, enabling us to study the robustness 322

of MTL models in the presence of unrelated tasks. 323

We provide more details about these datasets and 324

their sizes in Appendix A.2 and Table 9. 325

4.2 Models for Comparison 326

We consider several models that are all FLOPs 327

matched per token for comparison as follows. 328

(a) Single-Task: This baseline trains a dense 329

model directly on individual end-tasks without 330

MTL. Since there is no interaction across tasks, 331

this baseline helps us evaluate the impact of MTL. 332

(b) MT-Dense: This baseline is created by train- 333

ing a dense MTL model. Note that this baseline is 334

similar in flavor to the multi-task learning methods 335

like MT-DNN (Liu et al., 2019) and Muppet (Agha- 336

janyan et al., 2021b). 337
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(c) MT-Switch: This is a sparse MTL Mixture-338

of-Experts model using a single shared gate for339

all tasks as depicted in Figure 1(a). Note that340

MT-Switch differs with MT-TaG only in its usage341

of a single task-agnostic shared gate, helping us342

evaluate the impact of task-aware gating.343

(d) MT-TaG: This is the sparse MTL Mixture-of-344

Experts model outlined in Section 3.1 (depicted in345

Figure 1(b)) that uses task-aware gating.346

All the models have similar FLOPs per token347

and all the MTL models are trained using the pro-348

cedure outlined in Section 3.3. We use top-1 expert349

routing for both sparse MTL models.350

4.3 Model Initialization and Setup351

Dense models: As in prior multi-task learning352

works (Liu et al., 2019), we initialize the dense353

model using weights from pre-trained language354

models. In addition to using BERTBase (12 layers,355

768 hidden size, 110M params) and BERTLarge356

(24 layers, 1024 hidden size, 345M params) pre-357

trained models, we also consider MiniLM (Wang358

et al., 2021) (6 layers, 384 hidden size, 22M359

params) distilled from BERTLarge as its com-360

pressed variant. Unless otherwise stated, we use361

MiniLM as our default encoder to carry out an ex-362

tensive study with limited compute resources.363

Sparse models: For a fair comparison with the364

dense models, we create FLOPs matched sparse365

models, and initialize them using the weights of366

dense pre-trained language models. To this end,367

we replace the feed-forward layers (FFNs) in each368

transformer layer of the dense model with a MoE369

layer containing N experts and T gates (T = 1370

for MT-Switch; T = num. of tasks for MT-TaG).371

This results in as many MoE layers as the number372

of Transformer layers of the corresponding dense373

pre-trained language model used for initialization.374

To initialize the FFN weights of experts in any375

MoE layer, we simply make N copies of the FFN376

weights of the corresponding layer from the dense377

pre-trained language model2.378

4.4 Implementation Details379

We use standard wordpiece tokenization (30K vo-380

cabulary) and segmentation for the input sequences.381

We use N = 4 experts in all layers for our experi-382

ments3, giving us sparse models with 44M , 280M ,383

and 940M parameters that are FLOPs matched to384

2Experiments with initializing expert weights differently
by adding a small random noise did not show improvements.

3We provide results with varying #experts in Appendix.

MiniLM, BERTBase, and BERTLarge encoders, re- 385

spectively. We initialize all gating weights using 386

a normal distribution with 0 mean and 0.001 stan- 387

dard deviation. Similarly, we initialize task-specific 388

parameter matrices Ut,Vt using a normal distribu- 389

tion with 0 mean and 0.02 standard deviation. We 390

initialize all layer normalization weights with 1, 391

bias weights with 0, and use a dropout of 0.1. 392

We use Adam Optimizer (Kingma and Ba, 2015) 393

with a linear learning rate decay schedule and 394

warm-up. We use mixed-precision training, clip 395

the norms of gradients to 1, and use 4 Nvidia V100 396

GPUs for distributed training. We utilize PyTorch 397

and HuggingFace Transformers (Wolf et al., 2019) 398

for our implementation4. 399

4.5 Evaluation 400

MTL Training protocol: We follow a two-stage 401

training protocol for MTL models. We first train 402

the dense or sparse model (initialized from a pre- 403

trained language model as outlined in Section 4.3) 404

on a multitask mixture such as the GLUE dataset 405

following the MTL training procedure (as outlined 406

in Section 3.3) for a fixed number of steps, which 407

gives us the corresponding MTL model. We then 408

further fine-tune the MTL model on individual tar- 409

get datasets. This additional fine-tuning step has 410

been shown to be beneficial for the model perfor- 411

mance (Liu et al., 2019). Note that we use the same 412

training protocol for all the MTL models. 413

Metrics: We use the standard train and dev splits 414

for all GLUE datasets for training and evaluation. 415

For the MTL models, we report the numbers ob- 416

tained from the fine-tuning stage. We use Spear- 417

man correlation as our evaluation metric for STS-B, 418

Matthews correlation coefficient (MCC) for COLA, 419

and accuracy for the rest. For MNLI, we report the 420

average accuracy on the matched (in-domain) and 421

mismatched (cross-domain) splits. We addition- 422

ally report two aggregate statistics: All Tasks, and 423

Small Tasks, capturing the average performance 424

on all tasks and just the small tasks respectively. 425

We define Small Tasks as the tasks with ≤ 10k 426

examples, which for GLUE includes RTE, MRPC, 427

STS-B, and COLA. We provide more experimen- 428

tal details, including hyper-parameter tuning and 429

values in Appendix A.3.2. 430

4Our code and model checkpoints will be made public.
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Model
RTE
(2.5k)

MRPC
(3.7k)

STS-B
(5.7k)

CoLA
(8.5k)

SST-2
(67.3k)

QNLI
(105k)

QQP
(364k)

MNLI
(393k)

Small Tasks
(Avg.)

All Tasks
(Avg.)

Single-Task 70.7 88.7 88.9 41.8 92.4 90.4 90.6 83.9 72.5 80.9

MT-Dense 77.9 89.0 90.5 42.1 92.0 90.3 90.8 83.8 74.9 82.1
MT-Switch 78.9 90.0 90.5 40.7 92.0 90.3 90.9 83.6 75.0 82.1

MT-TaG 81.1 90.7 90.6 41.1 92.1 90.2 90.8 83.6 75.9 82.5

Table 1: Comparison of dense and sparse models on GLUE. Best task numbers are boldfaced, and second-best
underlined. Sparse MoE with task-specific gating (MT-TaG) outperforms Single-Task and FLOPs matched dense
and sparse MTL models with significant improvements for low-resource tasks. All models use MiniLM encoder.

5 Robustness Analysis431

We perform an extensive empirical study of the432

robustness of sparse and dense MTL models along433

key dimensions with the following desiderata:434

1 Transfer to low-resource tasks: A robust435

model should be able to alleviate task interference436

in the training mixture and improve performance437

on the low-resource tasks through transfer from438

other related tasks.439

2 Sample-efficient generalization to unseen re-440

lated tasks: A robust model should be able to re-441

tain information from individual tasks in its training442

mix, and generalize in a sample-efficient manner to443

new related tasks that are not seen during training.444

3 Robustness to the addition of unrelated tasks:445

A robust model should be better at weathering the446

interference introduced by the addition of unrelated447

tasks in its training mixture, and avoid catastrophic448

forgetting of existing tasks.449

5.1 Low-resource Task Transfer450

We first evaluate the ability of MTL models to lever-451

age task-level similarities in the multitask mixture452

to improve performance on low-resource tasks. To453

this end, we train and evaluate all models on GLUE.454

Table 1 shows that all MTL models obtain im-455

provements on low-resource tasks over Single-Task456

baseline, while maintaining similar performance457

on relatively high-resource tasks. This demon-458

strates the benefit of multi-task learning in utiliz-459

ing inherent similarities between tasks. Further-460

more, we observe that both the sparse MoE mod-461

els (MT-Switch and MT-TaG) outperform the non-462

MoE dense one (MT-Dense), demonstrating the463

benefit of inducing sparsity for MTL. Finally, we464

observe the sparse MoE model with task-aware gat-465

ing (MT-TaG) to outperform all baselines, includ-466

ing single-gate sparse MoE (MT-Switch), demon-467

strating improved ability to mitigate interference468

between tasks during multi-task learning.469

Model SciTail IMDB

1%
(235)

10%
(2.4k)

1%
(250)

10%
(2.5k)

Single-Task 81.9 90.6 86.1 90.6

MT-Dense 86.8 93.3 89.8 91.2
MT-Switch 89.3 92.9 89.8 91.1

MT-TaG 90.0 92.9 90.3 91.2

Table 2: Generalization performance on low-resource
unseen related tasks. MT-TaG delivers large gains over
Single-Task, and outperforms other MTL models in ex-
tremely low-resource settings demonstrating superior
sample-efficiency. All models use MiniLM encoder.

5.2 Sample-efficient Generalization to Unseen 470

Related Tasks 471

Section 5.1 demonstrates the benefit of sparse mod- 472

els on improving the MTL model performance on 473

low-resource tasks. In this experiment, we want to 474

evaluate their ability to generalize to related tasks 475

that were not encountered during MTL training in 476

a sample-efficient manner. 477

To study this generalization ability, we lever- 478

age SciTail and IMDB as the unseen tasks for the 479

GLUE-trained MTL models. Note that these tasks 480

have some similarity to a subset of the GLUE tasks. 481

For instance, SciTail is an NLI dataset with similar- 482

ities to RTE, QNLI, and MNLI in GLUE; whereas 483

IMDB is a sentiment classification dataset with 484

similarities only to SST-2. This variation in sim- 485

ilarity helps us study the degree of transferability 486

from the multi-task training mixture to the new un- 487

seen tasks. We simulate low-resource settings by 488

creating 1% and 10% samples from these datasets 489

to study sample-efficiency, yielding datasets with 490

roughly 250 and 2.5k examples respectively. We 491

use accuracy as the metric for both datasets. We 492

provide more details about these datasets and their 493

task formulation in Appendix A.2 and Table 9. 494

We only fine-tune the GLUE-trained MTL mod- 495

els on these datasets, and compare against corre- 496
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sponding Single-Task baselines. For fine-tuning497

MT-TaG, we exploit task-specific gates, and re-use498

the gate corresponding to SST-2 for IMDB, and499

the gate corresponding to MNLI for SciTail due to500

their task-level similarities.501

Table 2 shows that all MTL models obtain im-502

provements over the Single-Task baselines, demon-503

strating generalization ability of the MTL models.504

Furthermore, we observe that MT-TaG outperforms505

all baselines on extremely low-resource settings on506

unseen datasets demonstrating superior sample-507

efficiency of sparse models. MT-TaG shows im-508

provements even on IMDB which has only one509

related dataset in GLUE demonstrating improved510

task transfer from related tasks. We attribute these511

capabilities to the re-use of MT-TaG’s task-specific512

gates and routing that help it to better transfer in-513

formation from related tasks in a sample-efficient514

manner. We further found re-using unrelated task515

gates and randomly initializing the gates to perform516

significantly worse (results in Appendix A.1.1).517

5.3 Robustness to Unrelated Tasks518

Section 5.2 demonstrates the improved perfor-519

mance of sparse MTL models to transfer informa-520

tion from even a single task of its kind (referred521

to as singleton tasks henceforth) in the multi-task522

mixture. In this section, we further evaluate the ro-523

bustness of MTL models on adding several diverse524

singleton tasks. Specifically, we evaluate if the sin-525

gleton task addition has an adversarial affect on526

the performance of existing tasks in the multi-task527

mixture due to catastrophic forgetting.528

To study this, we remove CoLA and SST-2 sin-529

gleton datasets from the GLUE multi-task mixture,530

and refer to this new clean multi-task mixture as531

C-GLUE (short for Clean-GLUE). We evaluate the532

robustness by training all MTL models on both533

GLUE and C-GLUE, and comparing their perfor-534

mance on the common tasks: RTE, MRPC, STS-B,535

QNLI, QQP, and MNLI. We report the average536

performance on the common Small Tasks and All537

Tasks in Table 3, and provide the corresponding538

task-level results in Table 10 of Appendix A.5.1.539

We observe performance of dense MTL model540

(MT-Dense) to decrease from C-GLUE to GLUE,541

demonstrating its lack of robustness to unrelated542

datasets in the multi-task mixture. Both sparse543

MTL models show better robustness because of544

their capability to specialize experts for unrelated545

tasks. MT-TaG performs the best, further demon-546

Dataset Small Tasks All Tasks

MT-Dense

C-GLUE 86.27 87.18
GLUE 85.80 (-0.47) 87.05

MT-Switch

C-GLUE 86.27 87.22
GLUE 86.47 (+0.20) 87.37

MT-TaG

C-GLUE 86.50 87.32
GLUE 87.47 (+0.97) 87.83

Table 3: Model performance on GLUE (containing sev-
eral diverse tasks) and C-GLUE (as a subset of GLUE
containing only related tasks) evaluated on the common
tasks in both. Sparse MTL models demonstrate robust-
ness in the presence of unrelated tasks in GLUE, with
MT-TaG with task-specific routing being the most ro-
bust. All models use MiniLM encoder.

strating the usefulness of combining expert special- 547

ization in sparse MoE with task-specific routing. 548

This result, combined with the findings in Sec- 549

tion 5.2 demonstrate that MT-TaG is not only better 550

at transfer from singleton tasks, but is also more 551

robust to their presence in the multi-task mixture. 552

This motivates scaling MT-TaG to a large number 553

of diverse tasks as demonstrated in Section 6.2. 554

6 Scaling Analysis 555

6.1 Encoder Size Scaling 556

We study the sensitivity of the MT-TaG model 557

performance with change in the encoder size. 558

To this end, we train MT-TaG using MiniLM, 559

BERTBase and BERTLarge encoders of varying 560

number of parameters. From Table 4, we observe 561

that MT-TaG significantly outperforms single-task 562

baselines across different encoder sizes. 563

We also compare against the multi-task MT- 564

DNN model from Liu et al., 2019, which is simi- 565

lar in flavor to our MT-Dense model. Our sparse 566

MTL MoE model MT-TaG shows impressive gains 567

over the dense MT-DNN model5, especially on low- 568

resource tasks. We provide task-level results for 569

comparison in Table 11 of Appendix A.5.2. 570

6.2 Number of Tasks Scaling 571

In this experiment, we evaluate if MT-TaG can con- 572

tinue to leverage similarities between tasks in the 573

presence of a large number of tasks in its multi- 574

task mixture. To this end, we expand our GLUE 575

5MT-DNN only provides numbers for BERTLarge.
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Model Small Tasks All Tasks

MiniLM

Single-Task 72.53 80.93
MT-TaG 75.88 82.53

BERTBase

Single-Task 76.53 83.34
MT-TaG 80.73 85.45

BERTLarge

Single-Task 78.85 84.93
MT-TaG 82.73 86.94

MT-DNN 81.25 86.04

Table 4: Performance of models with different encoder
sizes. MT-TaG shows consistent gains across encoders
of different sizes. MT-TaG also outperforms the dense
MTL baseline MT-DNN (Liu et al., 2019).

Model Small Tasks All Tasks

Single-Task 81.28 85.00
MT-TaG 83.56 86.46

Table 5: Performance comparison on GLUE++ using
BERTLarge. MT-TaG demonstrates impressive gains
on scaling to a large number of diverse tasks.

multi-task mixture to 16 tasks with the addition576

of NLI datasets such as CB; QA datasets such as577

COPA, MultiRC, and BoolQ; Sentiment datasets578

such as IMDB, Rotten Tomatoes, and Yelp Polar-579

ity; and Word-sense disambiguation datasets such580

as WiC. For simplicity, we refer to this multitask581

mixture as GLUE++. We provide more details582

about these datasets in Appendix A.2 and Table 9.583

We train and evaluate MT-TaG on this dataset using584

BERTLarge encoder, and compare with correspond-585

ing Single-Task baselines on aggregate average per-586

formance metrics, Small Tasks and All Tasks. For587

GLUE++, Small Tasks includes RTE, MRPC, STS-588

B, COLA, Rotten Tomatoes, WiC, CB, BoolQ, and589

COPA. Table 5 shows that MT-TaG obtains impres-590

sive gains, demonstrating the model’s ability in591

scaling to a large number of diverse tasks.592

7 Related Work593

Mixture-of-Experts models have recently achieved594

promising results by introducing an outrageously595

large number of parameters while keeping a fixed596

computation cost via gating mechanism. Shazeer597

et al., 2017 first proposed the MoE layer with a598

single gating network with Top-k routing and load599

balancing across experts. Fedus et al., 2021 pro-600

pose initialization and training schemes for Top-1601

routing. Zuo et al., 2021 propose a consistency reg-602

ularizer loss for random routing; Yang et al., 2021 603

propose k Top-1 routing with expert-prototypes, 604

and Roller et al., 2021; Lewis et al., 2021 address 605

other load balancing issues. All the above works 606

study sparse MoE with pre-training from scratch 607

in single-task settings. In contrast, we study multi- 608

task adaptation of such sparse models and devise 609

task-aware gating networks to support MTL. A con- 610

temporary work (Kudugunta et al., 2021) studies 611

routing for multi-task sequence-to-sequence train- 612

ing for machine translation, where they route all 613

tokens from a task to the same experts with a shared 614

gate. In contrast, we study multi-task adaptation 615

for NLU tasks where we make routing decisions 616

at token-level using task-specific gates. In the non- 617

Transformer space, an earlier work Ma et al., 2018 618

studied MTL for tabular classification and content 619

recommendation. In contrast to all above works, 620

we study multi-task adaptation of sparse MoE and 621

analyze its robustness for diverse NLU tasks. 622

Multi-task learning and adaptation has been stud- 623

ied extensively for dense models (Caruana, 1997; 624

Crawshaw, 2020), with recent works like Uni- 625

fiedQA (Khashabi et al., 2020), MT-DNN (Liu 626

et al., 2019) and Muppet (Aghajanyan et al., 2021a) 627

showing impressive transfer and low-resource gen- 628

eralization ability. MT-DNN with BERT encoder 629

performs multi-task adaptation on a mixture of 630

GLUE tasks and is used as our baseline. While 631

Muppet also follows similar principles, it uses 632

RoBERTa and much larger number of tasks (50). 633

For a fair comparison, with limited compute, we 634

only compare against MT-DNN with the same en- 635

coder and same set of MTL tasks. We contrast 636

our MTL setup against the above dense MTL mod- 637

els and demonstrate our sparse design to be more 638

robust on three key transferability aspects. 639

8 Conclusion 640

In this work, we studied multi-task adaptation of 641

sparse MoE models on diverse NLU tasks when ini- 642

tialized with the weights of a pre-trained language 643

model. To support multi-task learning with sparse 644

MoE, we devised task-aware gating networks to 645

route input tokens from different tasks to special- 646

ized experts conditioned on the task. We demon- 647

strated such sparse design to be more robust multi- 648

task learners than their non-MOE dense counter- 649

parts on several key dimensions including transfer- 650

ability, sample-efficient generalizability, and avoid- 651

ing catastrophic forgetting. 652
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Ethical Considerations and Broader653

Impact654

In this work, we develop an efficient multi-task655

deep neural network model that performs well656

across several diverse natural language understand-657

ing tasks. One of the benefits of a multi-task model658

is parameter efficiency, where the same model can659

be used across several different tasks, thereby, sav-660

ing storage cost and memory footprint. We also661

demonstrate improved robustness of the multi-task662

model that further reduces risks of deploying such663

models in the wild. Furthermore, improved gen-664

eralization, transferability and sample-efficiency665

of our model is beneficial for sensitive application666

domains including finance, legal and healthcare.667

However, our model also has the risk of echoing668

the biases from the pre-trained language model it669

is based on. Furthermore, a considerable risk with670

multi-task learning is that it can facilitate the prop-671

agation of biases from individual datasets from its672

training mixture to the rest. Sparse models like673

MT-TaG with their increased capability to trans-674

fer information from just a single task from its675

training mixture poses increased risk of retaining676

and transferring such biases to the unseen tasks.677

Sparse models also massively increase the number678

of parameters, which can lead to significant storage679

cost in the absence of customized hardware and680

optimized implementations, leading to a negative681

impact on the carbon footprint from training and682

deploying such models.683
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A Appendix898

A.1 Analysis899

A.1.1 Re-using task gates for generalization900

In Table 6, we provide results for fine-tuning the901

GLUE-trained MT-TaG model on unseen SciTail902

dataset with different task gates. We observe that903

re-using the gates corresponding to the related904

tasks (RTE, MNLI) outperforms the random ini-905

tialization of the gate, as well as re-using the gate906

from an unrelated task (SST-2). This demonstrates907

MT-TaG’s ability in learning task-specific routing908

in its gates, and efficiently re-using it for general-909

izing to unseen related tasks in a sample efficient910

manner.

Task Gate Accuracy

Random 91.2

SST-2 91.8
RTE 92.6

MNLI 92.9

Table 6: Performance of MT-TaG when fine-tuned with
different task gates on the 10% sample of the unseen
SciTail dataset. Gates corresponding to tasks with simi-
larity to SciTail (RTE and MNLI) perform superior to
random and unrelated task gates (SST-2). All results are
with the MiniLM encoder.

911

A.1.2 Task Sampling912

In Table 7, we provide results for using different913

task sampling strategies while training MT-TaG914

with heterogeneous batches. We observe that main-915

taining the natural distributions of tasks during916

MTL training outperforms uniformly sampling all917

tasks. We thus use natural sampling of tasks for the918

MTL models in our experiments.

Sampling Small Tasks All Tasks

Uniform 80.60 85.75
Natural 82.73 86.94

Table 7: Comparison of task sampling strategies in
MT-TaG with the BERTLarge encoder on GLUE. Main-
taining the natural distribution of tasks (Natural Sam-
pling) outperforms uniformly sampling tasks (Uniform
Sampling).

919

A.1.3 Number of Experts 920

In Table 8, we provide results for using different 921

number of experts in MT-TaG. We observe 4 ex- 922

perts to perform the best, and thus use 4 experts for 923

all sparse model experiments.

#experts Small Tasks All Tasks

2 experts 80.78 85.79
4 experts 82.73 86.94
6 experts 80.60 85.76

Table 8: MT-TaG’s performance comparison on GLUE
with different number of experts (#experts) using the
BERTLarge encoder. 4 experts performs the best.

924

A.2 Datasets 925

Below, we provide details about all the datasets that 926

we used. We also summarize the key information 927

about these datasets in Table 9. 928

RTE: Recognizing Textual Entailment are datasets 929

collected from a series of annual textual entail- 930

ment challenges. The authors combine the data 931

from RTE1 (Dagan et al., 2006), RTE2 (Bar Haim 932

et al., 2006), RTE3 (Giampiccolo et al., 2007), and 933

RTE5 (Bentivogli et al., 2009). All datasets are 934

converted to two-class classification: entailment 935

and not entailment. 936

MRPC: Microsoft Research Paraphrase Cor- 937

pus (Dolan and Brockett, 2005) is a corpus of 938

sentence pairs automatically extracted from online 939

news sources, with human annotations for whether 940

the sentences in the pair are semantically equiva- 941

lent. 942

STS-B: Semantic Textual Similarity Bench- 943

mark (Cer et al., 2017) is a collection of sentence 944

pairs drawn from news headlines, video and image 945

captions, and natural language inference data. Each 946

pair is human-annotated with a similarity score 947

from 1 to 5. 948

CoLA: Corpus of Linguistic Acceptabil- 949

ity (Warstadt et al., 2019) consists of English 950

acceptability judgments drawn from books and 951

journal articles on linguistic theory. Each example 952

is a sequence of words annotated with whether it is 953

a grammatical English sentence. 954

SST-2: Stanford Sentiment Treebank (Socher et al., 955

2013) consists of sentences from movie reviews 956

and human annotations of their sentiment. The 957

task is to predict the sentiment of a given sentence. 958

It uses the two-way (positive/negative) class split, 959
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with only sentence-level labels.960

QNLI: Stanford Question Answering961

Dataset (Wang et al., 2018; Rajpurkar et al.,962

2016) is a question-answering dataset consisting963

of question-paragraph pairs, where one of the964

sentences in the paragraph (drawn from Wikipedia)965

contains the answer to the corresponding question966

(written by an annotator). The authors of the967

benchmark convert the task into sentence pair968

classification by forming a pair between each969

question and each sentence in the corresponding970

context, and filtering out pairs with low lexical971

overlap between the question and the context972

sentence. The task is to determine whether the973

context sentence contains the answer to the974

question. This modified version of the original975

task removes the requirement that the model select976

the exact answer, but also removes the simplifying977

assumptions that the answer is always present in978

the input and that lexical overlap is a reliable cue.979

QQP: Quora Question Pairs2 dataset (Iyer et al.,980

2017) is a collection of question pairs from the com-981

munity question-answering website Quora. The982

task is to determine whether a pair of questions are983

semantically equivalent.984

MNLI: Multi-Genre Natural Language Inference985

Corpus (Williams et al., 2018) is a crowdsourced986

collection of sentence pairs with textual entailment987

annotations. Given a premise sentence and a hy-988

pothesis sentence, the task is to predict whether the989

premise entails the hypothesis (entailment), con-990

tradicts the hypothesis (contradiction), or neither991

(neutral). The premise sentences are gathered from992

ten different sources, including transcribed speech,993

fiction, and government reports. The authors of994

the benchmark use the standard test set, for which995

they obtained private labels from the RTE authors,996

and evaluate on both the matched (in-domain) and997

mismatched (cross-domain) section.998

CB: Commitment Bank (De Marneffe et al., 2019)999

is a corpus of short texts in which at least one sen-1000

tence contains an embedded clause. Each of these1001

embedded clauses is annotated with the degree to1002

which it appears the person who wrote the text is1003

committed to the truth of the clause. The resulting1004

task framed as three-class textual entailment on1005

examples that are drawn from the Wall Street Jour-1006

nal, fiction from the British National Corpus, and1007

Switchboard. Each example consists of a premise1008

containing an embedded clause and the correspond-1009

ing hypothesis is the extraction of that clause.1010

BoolQ: Boolean Questions (Clark et al., 2019) is 1011

a QA task where each example consists of a short 1012

passage and a yes/no question about the passage. 1013

The questions are provided anonymously and unso- 1014

licited by users of the Google search engine, and af- 1015

terwards paired with a paragraph from a Wikipedia 1016

article containing the answer. 1017

MultiRC: Multi-Sentence Reading Comprehen- 1018

sion (Khashabi et al., 2018) is a QA task where 1019

each example consists of a context paragraph, a 1020

question about that paragraph, and a list of possible 1021

answers. The system must predict which answers 1022

are true and which are false. Each question can 1023

have multiple possible correct answers, so each 1024

question-answer pair must be evaluated indepen- 1025

dent of other pairs. The questions are also designed 1026

such that answering each question requires drawing 1027

facts from multiple context sentences. The para- 1028

graphs are drawn from seven domains including 1029

news, fiction, and historical text. 1030

WiC: Word-in-Context (Pilehvar and Camacho- 1031

Collados, 2019) is a word sense disambiguation 1032

task cast as binary classification of sentence pairs. 1033

Given two text snippets and a polysemous word 1034

that appears in both sentences, the task is to deter- 1035

mine whether the word is used with the same sense 1036

in both sentences. 1037

COPA: Choice of Plausible Alternatives (Roem- 1038

mele et al., 2011) is a causal reasoning task in 1039

which a system is given a premise sentence and 1040

must determine either the cause or effect of the 1041

premise from two possible choices. All examples 1042

are handcrafted and focus on topics from blogs and 1043

a photography-related encyclopedia. 1044

IMDB: Large Movie Review Dataset (Maas et al., 1045

2011) built from reviews from IMDb (Internet 1046

Movie Database). This is a dataset for binary senti- 1047

ment classification containing highly polar movie 1048

reviews. 1049

Yelp Polarity: Large Yelp Review Dataset (Zhang 1050

et al., 2015). This is a dataset for binary sentiment 1051

classification constructed from highly polar Yelp 1052

reviews. 1053

Rotten Tomatoes: Movie Review Dataset (Pang 1054

and Lee, 2005). This is a dataset of containing pos- 1055

itive and negative processed sentences from Rotten 1056

Tomatoes movie reviews. 1057

SciTail: SciTail (Khot et al., 2018) dataset is an 1058

entailment dataset created from multiple-choice 1059

science exams and web sentences. Each question 1060

and the correct answer choice are converted into an 1061
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Dataset #Train #Dev #Labels Formulation Metrics

WSD

WiC 5.4k 638 2
Pairwise-text
Classification

Accuracy

Similarity

STS-B 5.7k 1.5k 1
Pairwise-text
Regression

Spearman corr

Acceptability

CoLA 8.5k 1k 2
Single-text

Classification
Matthews corr

Sentiment

Rotten
Tomatoes

8.5k 1k 2
Single-text

Classification
Accuracy

IMDB 25k 25k 2
Single-text

Classification
Accuracy

SST-2 67.3k 872 2
Single-text

Classification
Accuracy

Yelp
Polarity

560k 38k 2
Single-text

Classification
Accuracy

Paraphrase

MRPC 3.7k 408 2
Pairwise-text
Classification

Accuracy

QQP 364k 40k 2
Pairwise-text
Classification

Accuracy

NLI

CB 250 56 3
Pairwise-text
Classification

Accuracy

RTE 2.5k 277 2
Pairwise-text
Classification

Accuracy

SciTail 23.6k 1.3k 2
Pairwise-text
Classification

Accuracy

QNLI 105k 5.5k 2
Pairwise-text
Classification

Accuracy

MNLI 393k 9.8k 3
Pairwise-text
Classification

Accuracy

QA

COPA 400 100 2
Pairwise-text

Ranking
Accuracy

MultiRC 27k 4.8k 2
Pairwise-text
Classification

F1a

BoolQ 9.4k 3.3k 2
Pairwise-text
Classification

Accuracy

Table 9: Key information about all the datasets used.

14



assertive statement to form the hypothesis. Infor-1062

mation retrieval is used to obtain relevant text from1063

a large text corpus of web sentences, and use these1064

sentences as a premise. Premise-hypothesis pair1065

are annotated as supports (entails) or not (neutral).1066

We obtained all of these datasets from Hugging-1067

Face’s datasets library (Lhoest et al., 2021).1068

A.3 Implementation Details1069

A.3.1 Task formulations1070

In this section, we group all the tasks into different1071

categories, and provide details about their formula-1072

tion. All model variants followed BERT-like archi-1073

tectures (Devlin et al., 2019) with a [CLS] token1074

added to the beginning of the input.1075

Single-text Classification1076

CoLA, SST-2, IMDB, Yelp Polarity, and Rotten1077

Tomatoes belong to this category. The task is to1078

perform binary classification based on a single se-1079

quence of concatenated sentences. A classifier1080

head is used on top of the output representation1081

of the [CLS] token for the classification. We use1082

Matthews correlation coefficient (Matthews, 1975)1083

as the evaluation metric for CoLA, and use accu-1084

racy for the rest.1085

Pairwise-text Classification1086

RTE, MRPC, QNLI, QQP, MNLI, CB, BoolQ,1087

MultiRC, WiC, and SciTail belong to this cate-1088

gory. The task is to perform binary or multi-class1089

classification based on a pair of sequence inputs.1090

We concatenate the input sequence pairs separated1091

by a [SEP] token following (Devlin et al., 2019),1092

and feed the fused sequence to the model. In the1093

case of MultiRC, which contains three sequences1094

(paragraph, question, and answer), the paragraph1095

and question are concatenated to form the first se-1096

quence, and the answer is used as the second se-1097

quence. For all tasks except WiC, a classifier head1098

which sees the output representation corresponding1099

to the [CLS] token is used to select the predicted1100

class. For WiC a span classification head is used,1101

which extracts the output representations of the1102

word of interest (from both input sentences) and1103

concatenates them with the representation of the1104

[CLS] token. This fused representation is then fed1105

to a classifier head to predict the binary output.1106

Following the authors, we use F1a as the metric1107

for MultiRC, which evaluates binary decisions on1108

all the answer-options in the dataset independently.1109

F1a is the harmonic mean of precision and recall1110

across all answer-option pairs, without grouping by 1111

question or paragraph. For all other tasks, accuracy 1112

is used as the evaluation metric. 1113

Pairwise-text Ranking 1114

COPA belongs to this category. The task is 1115

to choose between a pair of sequences given a 1116

premise-question context. We join the premise- 1117

question sequence pair into a single context se- 1118

quence, and evaluate each pair of choice alter- 1119

natives independently by concatenating context, 1120

[SEP] token, and answer choice to form a pair of 1121

input sequences for the model. The task is then 1122

cast as a binary classification task for each input 1123

pair, for which we feed the output representation 1124

to a classifier head, and retrieve the positive (True) 1125

class logits for each input. Whichever input returns 1126

the largest positive-class logit is then taken as the 1127

answer choice, and we calculate accuracy as the 1128

evaluation metric. 1129

Pairwise-text Regression 1130

STS-B belongs to this category. The task is to 1131

perform regression from a pair of input sequences. 1132

The input sequences are concatenated together with 1133

a [SEP] token and fed to the model. A regression 1134

head is used to learn the similarity score and we 1135

calculate Spearman’s rank correlation as the evalu- 1136

ation metric. 1137

A.3.2 Model details 1138

We use a Wordpiece Tokenizer (Wu et al., 2016) 1139

with 30k vocabulary size to tokenize all the exam- 1140

ples. We truncate the examples on the right using 1141

a maximum length of 512 for QNLI and MNLI, 1142

and 128 for the rest of GLUE datasets. We use 1143

a batch size of 128 for MTL Training, and 32 for 1144

fine-tuning. 1145

For training of Sparse models, we do not add 1146

any additional load balancing loss, input jitter, or 1147

additional dropout in the experts6. Unlike existing 1148

work, we did not encounter a load-imbalance in 1149

the utilization of the experts, potentially due to 1150

the multi-task objective that pushes the network to 1151

specialize weights in different experts. 1152

Model selection 1153

For MTL training, we train the model for a fixed 1154

number of steps, and select the checkpoint at the 1155

end of training. For fine-tuning, we use early stop- 1156

ping using the dev set. We tune the learning rate, 1157

6Early experiments resulted in a drop in the performance.
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warmup proportion, and the number of training1158

steps for both MTL Training and fine-tuning. For1159

fine-tuning, tuning is only done for the small tasks1160

(< 10k examples)7. For every task, we run 3 fine-1161

tuning experimental runs for each model with dif-1162

ferent seeds, and report the max number obtained1163

across runs for the model.1164

Hyper-parameters and Tuning1165

For the Adam optimizer, we used β1 and β21166

values of 0.9 and 0.999 respectively, and an ϵ1167

of 1e − 8. For MTL Training, we ran tuning1168

runs with a grid search of the learning rate in1169

[5e − 06, 1e − 05, 2e − 05, 5e − 05, 1e − 04],1170

warmup rate in [0.1, 0.2], and number of steps in1171

[30k, 50k]. For fine-tuning, we tuned the learning1172

rate in [5e−06, 1e−05, 2e−05, 5e−05, 1e−04],1173

used a warmup of 0.1, and tuned the number of1174

epochs in [5, 10, 15, 20, 25, 30].1175

A.4 Limitations and Future Work1176

Using a separate gate for each task allows us to1177

learn task-specific routing in the gates, however,1178

it has the limitation that individual gates are only1179

updated via the examples corresponding to their tar-1180

get task. This can lead to the gates for the smallest1181

tasks being under-trained under a natural sampling1182

of tasks. In the future, we will experiment with1183

a training schedule in which we use uniform sam-1184

pling at the beginning of training to allow all gates1185

to train sufficiently, and then revert back to natural1186

sampling. Our method also has the limitation that1187

gates of related tasks only share information via the1188

experts. To tackle this, we will experiment with in-1189

corporating task embeddings to allow the network1190

to share routing information by learning similar1191

task embeddings for related tasks. Lastly, we will1192

experiment with further scaling up the number and1193

diversity of tasks in our multitask mixture to obtain1194

a general model for a wide-range of downstream1195

tasks.1196

A.5 Task-level Results1197

A.5.1 Robustness to unrelated tasks1198

We provide the task-level results corresponding1199

to the robustness experiments from Section 5.3 in1200

Table 10.1201

7Bigger tasks showed indifference to the choice of hyper-
parameters.

A.5.2 Encoder Scaling 1202

We provide the task-level results corresponding to 1203

the encoder scaling experiments from Section 6.1 1204

in Table 11. 1205
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Dataset RTE
(2.5k)

MRPC
(3.7k)

STS-B
(5.7k)

QNLI
(105k)

QQP
(364k)

MNLI
(393k)

Small Tasks
(Avg.)

All Tasks
(Avg.)

MT-Dense

C-GLUE 78.6 89.7 90.5 89.8 90.9 83.6 86.27 87.18
GLUE 77.9 89 90.5 90.3 90.8 83.8 85.80 87.05

MT-Switch

C-GLUE 78.9 89.5 90.4 90.1 90.9 83.5 86.27 87.22
GLUE 78.9 90 90.5 90.3 90.9 83.6 86.47 87.37

MT-TaG

C-GLUE 78.2 90.9 90.4 90 90.8 83.6 86.50 87.32
GLUE 81.1 90.7 90.6 90.2 90.8 83.6 87.47 87.83

Table 10: Task-level model performance on GLUE (containing several diverse tasks) and C-GLUE (as a subset of
GLUE containing only related tasks) evaluated on the common tasks in both. Sparse MTL models demonstrate
robustness in the presence of unrelated tasks in GLUE, with MT-TaG with task-specific routing being the most
robust. All models use MiniLM encoder.

Model RTE
(2.5k)

MRPC
(3.7k)

STS-B
(5.7k)

CoLA
(8.5k)

SST-2
(67.3k)

QNLI
(105k)

QQP
(364k)

MNLI
(393k)

Small Tasks
(Avg.)

All tasks
(Avg.)

BERTBase

Single-Task 71.4 84.8 89.1 60.8 92.9 91.9 91.4 84.4 76.53 83.34
MT-TaG 81.1 90.7 90.4 60.7 92.9 91.8 91.4 84.6 80.73 85.45

BERTLarge

Single-Task 74.6 88.2 89.9 62.7 93.3 92.7 91.7 86.3 78.85 84.93
MT-TaG 86.4 89.2 90.8 64.5 94.2 92.3 91.7 86.4 82.73 86.94

MT-DNN 83.4 87.5 90.6 63.5 94.3 92.9 89.2 86.9 81.25 86.04

Table 11: Task-level performance of models with different BERT encoder sizes. MT-TaG shows consistent gains
across encoders of different sizes. MT-TaG also outperforms the dense MTL baseline MT-DNN (Liu et al., 2019).
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