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Abstract

Response selector, as an essential component of001
dialogue systems, aims to pick out an optimal002
response in a candidate pool to continue the dia-003
logue. The current state-of-the-art methods are004
mainly based on an encoding paradigm called005
Cross-Encoder (Urbanek et al., 2019), which006
separately encodes each context-response pair007
and ranks the responses according to their fit-008
ness scores. However, such a paradigm is009
both inefficient and ineffective. Specifically,010
it has to repeatedly encode the same context for011
each response, which results in heavy inference012
cost. Also, without considering the relation-013
ship among the candidates, it is difficult to tell014
which one is the best candidate purely based015
on the fitness score of each candidate. To ad-016
dress this problem, we propose a new model017
called Panoramic-Encoder, which accepts all018
candidates and the context as inputs at once and019
allows them to interact with each other through020
a specially designed attention mechanism. Our021
method also allows us to naturally integrate022
some of the effective training techniques, such023
as the in-batch negative training. Extensive ex-024
periments across four benchmark datasets show025
that our new method significantly outperforms026
the current state-of-the-art while achieving ap-027
proximately 3× speed-up at inference time.028

1 Introduction029

Nowadays, dialogue systems have gained increas-030

ing attention in the natural language processing031

community. Depending on the implementation,032

they can be categorized as retrieval-based (Lowe033

et al., 2015; Tao et al., 2019; Yuan et al., 2019) or034

generation-based (Vinyals and Le, 2015; Serban035

et al., 2016). The former one proceeds the con-036

versation by selecting an optimal response from a037

candidate pool, while the latter continues the con-038

versation using a proper response generated by a039

sequence-to-sequence model. Recent studies have040

shown that the generated-based solution can be a041

preferable choice in a dialogue system due to its042

What do you like to do for a living?

You hiring? I'm forty, a car salesman and 
unhappily married.

😎

😩
I have my own online business. I am 27 and 
single.

Wow! My divorce is final tomorrow. Wife is 
a big spender but doesn't work.

😎

😩
Wow! That must sucks. I love to make and save 
money.

Great! You need a car? I wish I had a business. 
You happy?

😎

😩
Yes, I need a new vehicle and yes I'm very happy.

That's good! What kind of business are you in? 
You hiring?

😎

😩
I do marketing and drop shipping, and yes of 
course I am always hiring!😎

Existing Methods:

(A) Hello! How are you this fine 
day?
- Is it a proper response?     NO

(B) Is 40 old? My wife takes my 
money. Help!
- Is it a proper response?     YES

(C) Haha, you sound like a great kid.
- Is it a proper response?     NO

(D) A good movie is always good.
- Is it a proper response?     NO

Panoramic-Encoder:

(A) Hello! How are you this fine 
day?

(B) Is 40 old? My wife takes my 
money. Help!

(C) Haha, you sound like a great 
kid.

(D) A good movie is always good.

- Which one is the BEST 
response?     B !

Figure 1: In the training phase, existing methods treat
the response selection task as a binary classification
problem while the Panoramic-Encoder views it as a
multiple-choice selection problem.

intriguing property to generate more diverse and 043

coherent responses (Roller et al., 2021). In such a 044

solution, selecting an optimal response in the can- 045

didate pool also plays a vital role with the rise of an 046

approach, called “sample-and-rank” (Adiwardana 047

et al., 2020) in advanced generation-based chatbots 048

(Zhang et al., 2020; Roller et al., 2021; Bao et al., 049

2021). The pipeline of this approach consists of 050

first generating multiple response candidates from 051

the generator and then selecting the best candidate 052

as the response to the user by a selector. In this 053

paper, we are particularly interested in improving 054

the response selection part in the pipeline. 055

An increasing research efforts shows that the ad- 056
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vent of Transformer (Vaswani et al., 2017) and pre-057

trained models (Devlin et al., 2019; Liu et al., 2019;058

Lan et al., 2020) has led to remarkable progress059

in various natural language understanding tasks,060

including the dialogue response selection in our061

interest. Built on top of BERT(Devlin et al., 2019),062

Cross-Encoder (Urbanek et al., 2019) has become063

the workhorse in response selection task for its su-064

perior performance compared to other paradigm.065

It jointly encodes the historical context with every066

single candidate response, and gives a matching067

score per candidate. Despite its great performance,068

it still remains an open problem with its obvious069

defects. Having such issues in mind, we propose070

a new paradigm, called Panoramic-Encoder, inte-071

grated with a novel Candidates Attention Mech-072

anism (CAM), for the task. The defects and our073

solutions can be summarized as follows:074

1. The prevalent paradigm of the response selec-075

tion task is modeled as a binary classification076

problem. That is, a network produces a match-077

ing score for each dialogue pair, concatenated078

by a given context and a response. Accord-079

ingly, selecting a response from a pool with080

such processing causes frequent recomputa-081

tion of the lengthy context, which significantly082

increases the inference cost. In this paper, the083

proposing Panoramic-Encoder re-formulates084

the process as a “multiple-choice” problem,085

where all candidates can be assessed simulta-086

neously. As shown in Figure 1, the proposing087

paradigm can select an optimal response with088

a one-shot prediction, thereby vastly boosting089

the inference efficiency.090

2. The existing methods only consider the re-091

latedness between the historical context and092

per every response, without interacting with093

different candidates. Thus, it cannot separate094

the ground truth from some hard distractors,095

as suggested in Figure 2. Our Panoramic-096

Encoder can mitigate this issue in a subtle097

way. In our design, the context and all can-098

didates are concatenated and then fed to the099

encoder. With the proposing attention mecha-100

nism, relationships among all candidates can101

be perceived, and the optimal response can be102

highlighted.103

3. Several practical techniques have been dis-104

covered to train a powerful response selec-105

tor in recent studies (Gu et al., 2020; Li106

Cross-Encoder:

Ground Truth:
B: Is 40 old? My wife takes 
my money. Help!

Score: 0.9913

Strong Distractor:
B: Please help me after my 
divorce.

Score: 0.9983

Panoramic-Encoder:

Ground Truth:
B: Is 40 old? My wife takes 
my money. Help!

Score: 0.9915

Strong Distractor:
B: Please help me after my 
divorce.

Score: 0.0085

A: What do you like to do for a living?
B: You hiring? I'm forty, a car salesman and unhappily married.
A: I have my own online business. I am 27 and single.
B: Wow! My divorce is final tomorrow. Wife is a big spender 

but doesn't work.
A: Wow! That must sucks. I love to make and save money.
B: Great! You need a car? I wish I had a business. You happy?
A: Yes, I need a new vehicle and yes I'm very happy.
B: That's good! What kind of business are you in? You hiring?
A: I do marketing and drop shipping, and yes of course I am 

always hiring!

Figure 2: Example of how the Panoramic-Encoder dis-
tinguishes strong distractors. The bold value represents
a correction in prediction confidence.

et al., 2021; Xu et al., 2020). However, some 107

useful tricks, e.g., in-batch negative train- 108

ing, cannot be naturally integrated into the 109

Cross-Encoders (Humeau et al., 2019). Our 110

Panoramic-Encoder does the rescue of the 111

compatibility issue by its novel architecture. 112

We conduct experiments on four benchmark 113

datasets: PersonaChat (Zhang et al., 2018), Ubuntu 114

Dialogue Corpus V1 (Lowe et al., 2015), Ubuntu 115

Dialogue Corpus V2 (Lowe et al., 2017), and 116

Douban Conversation Corpus (Wu et al., 2017). 117

Results show our work achieves new state-of-the- 118

art and accelerates the inference speed by a large 119

margin. For instance, one of our models achieves 120

an absolute improvement in R10@1 by 2.9% with 121

approximately 3× faster inference speed on the 122

Ubuntu Dialogue Corpus V2 dataset. 123

2 Related Work 124

In this section, we discuss various works that have 125

been proposed to progress the dialogue response 126

selection task. Besides improvements on model ar- 127

chitectures, researchers also proposed some impor- 128

tant training techniques such as in-batch negative 129

training, domain post-training, etc. We will also in- 130

troduce some of these important techniques in this 131

section and briefly describe how our new method 132

seamlessly integrate them into the new paradigm. 133
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2.1 Model Architecture134

Cross-Encoder (Urbanek et al., 2019) is the current135

state-of-the-art dialogue response selection method136

and widely used in many advanced chatbots (Bao137

et al., 2020). Like the typical BERT design (De-138

vlin et al., 2019), such an architecture jointly en-139

codes the concatenated context and response to140

make a prediction. Another popular architecture141

called Bi-Encoder (Reimers and Gurevych, 2019)142

encodes the context and the candidate separately,143

then scores the relatedness between their represen-144

tations. Due to its simplicity, Bi-Encoder often145

serves as a baseline method when a new dataset146

was introduced (Lowe et al., 2015; Dinan et al.,147

2018). It is also computationally more efficient148

because candidate representations can be cached149

and reused once they are created. However, in150

generation-based chatbots, all the context and re-151

sponses are newly generated, and because of that,152

people nowadays prefer Cross-Encoder over Bi-153

Encoder as the former one yields better results154

(Urbanek et al., 2019; Humeau et al., 2019). Cross-155

Encoder gets better results because it allows con-156

text and response to interact with each other in157

the feature space. That is to say, all the response158

representations are context-aware. However, this159

context-aware characteristic does not come for160

free, it requires Cross-Encoder to separately en-161

code context for each candidate responses, which162

makes it much slower in inference. By encoding all163

the response candidates together with the context164

through a specifically designed attention method,165

our Panoramic-Encoder kills two birds with one166

stone. It does not only take a context-aware concept167

a step forward to become context-other-responses-168

aware, but also removes the necessity of computing169

context representation multiple times.170

2.2 In-batch Negative Training171

In contrastive learning, in-batch negative training is172

a standard recipe to generate representations with173

better uniformity and alignment (Fang et al., 2020;174

Gao et al., 2021). However, as stated in Humeau175

et al. (2019), despite the effectiveness of in-batch176

negative training for response selection, the Cross-177

Encoder architecture is problematic to recycle the178

in-batch negative representations because the con-179

text and the response are jointly processed. Li et al.180

(2021) attempt to adapt contrastive learning to this181

task with a specially designed strategy and obtain182

a significant performance gain. Our work differs183

from previous works in that it provides a seamless 184

usage of in-batch negative training. Since the can- 185

didates are concatenated in the Panoramic-Encoder, 186

it is natural to use the other labels in the same batch 187

as negatives. Our study demonstrates that in-batch 188

negative training is an essential technique for re- 189

sponse selection. 190

2.3 Adding Speaker Change Information 191

Being aware of the speaker change information 192

proves to be important for training a good model 193

on dialogue data. There are two commonly used 194

strategies to achieve this: adding speaker-aware 195

embedding to the token representation and adding 196

special tokens to segment utterances from different 197

speakers. Wolf et al. (2019) and Wang et al. (2020) 198

equip dialogue generation with these approaches 199

while Lu et al. (2020) and Gu et al. (2020) verify 200

their necessities for the response selection task. We 201

adopt the special tokens strategy for its simplicity. 202

2.4 Domain Post-training 203

Post-training targets on improving the domain adap- 204

tion of pre-trained models in a self-supervised 205

manner. It leverages additional domain-specific 206

data through a second stage of pre-training. This 207

method is compatible with all architectures since it 208

is in an independent step. Whang et al. (2020) and 209

Han et al. (2021) validate the usefulness of post- 210

training on response selection. We also demon- 211

strates that combining this method further improves 212

the effectiveness of the Panoramic-Encoder. 213

2.5 Auxiliary Training Tasks 214

To further utilize target data, Xu et al. (2020) 215

and Whang et al. (2021) investigate some self- 216

supervised learning objectives such as next session 217

prediction, utterance restoration, incoherence de- 218

tection, masked language modeling, etc., as a aux- 219

iliary tasks that jointly trained with the response 220

selection task. To keep the simplicity of our work, 221

we only take masked language model(MLM) as 222

our auxiliary task. 223

3 Method 224

This section first proposes a new paradigm for the 225

dialogue response selection task. This fresh view 226

inspires us to develop a Panoramic-Encoder archi- 227

tecture with three novel candidate attention mech- 228

anism. We also integrate some existing effective 229

techniques, e.g., in-batch negative training, into our 230

Panoramic-Encoder seamlessly. 231
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Figure 3: Comparison of the Cross-Encoder and Panoramic-Encoder in terms of the model architecture.

Figure 4: Input embeddings of the Panoramic-Encoder.

3.1 Binary Classification vs. Multi-choice232

Selection233

The multi-turn response selection has long been234

modeled as a binary classification task. Given235

a dialogue context c = {u1, u2, ..., uN}, where236

uk, k = 1, . . . , N denotes a single utterance from237

either speaker, the response selection task is re-238

quired to choose an optimal response from a can-239

didate pool, denoted by p = {r1, r2, ..., rM}. Ev-240

ery candidate ri is paired with the context c, e.g.,241

m(c, ri). A non-linear function is optimized to242

predict the value of 1 for a proper match and 0243

otherwise.244

To improve its effectiveness and efficiency, we245

propose a new paradigm for the response se-246

lection task. With the dialogue context c =247

{u1, u2, ..., uN} and a candidate pool p =248

{r1, r2, ..., rM}, the selector model is trained to249

identify the optimal choice rci by fitting the objec-250

tive s(c, p) = i. That is, our paradigm can select251

the globally optimal response in a one-shot infer-252

ence, thereby greatly saving the inference costs. In253

addition, since all candidates are concatenated as254

input, the context can simultaneously attend to all255

candidates and highlight the most proper one, thus256

improving accuracy. 257

3.2 Panoramic-Encoder 258

The innovation of paradigm inspires this design of 259

the Panoramic-Encoder. It exploits a pre-trained 260

transformer encoder (Vaswani et al., 2017) as a ba- 261

sis. As depicted in Figure 3(b) and Figure 4, it re- 262

sembles the Cross-Encoder architecture (Humeau 263

et al., 2019) but has several crucial distinctions: 264

1. The candidates are concatenated and jointly 265

encoded with the input context. 266

2. We reuse the positional embeddings for dif- 267

ferent candidates to comply with the length 268

limit. 269

3. To incorporate speaker change information, 270

each candidate is surrounded by [CLS] and 271

[SEP] tokens, and two special [SPK] to- 272

kens are used to segment the sentences from 273

alternating speakers. 274

4. We develop and compare several candidates 275

attention mechanisms that allow candidate re- 276

sponses to interact at different level of granu- 277

larity. 278

4



c  

r1  

r2

…rM

c r1 r2 …rM

c  

r1  

r2

…rM

c r1 r2 …rM

c  

r1  

r2

…rM

c r1 r2 …rM

(a) All-to-All (c) CLS-to-CLS(b) Context-to-Response

Figure 5: Three types of the candidates attention mechanisms, where attention is prohibited in the unfilled areas.
The light-colored areas denote that attention is available between [ CLS ] heads only.

We analyze three different types of candidate at-279

tention mechanisms, as exhibited in Figure 5. Type280

(a) is identical to the all-to-all attention in Trans-281

formers. However, it has two problems. First, it282

has a position confusion problem . For illustration,283

the first token in candidate i cannot distinguish its284

own second token from the other candidates’ be-285

cause they share the same positional embeddings.286

Second, attention has an averaging effect, hence287

too much interaction make different candidates dif-288

ficult to distinguish from each other. To address289

this problem, we forbid explicit attention between290

candidates and only allow context response atten-291

tion(type (b)), but they can still exchange informa-292

tion indirectly through common connections with293

the context. In third type, we further enhance the294

interaction on the basis of context-to-response at-295

tention by allowing the attention between [CLS]296

heads in responses. We study the effects of these297

three attention mechanisms on PersonaChat and list298

the results in Table 1. As can be seem, the ALL-to-299

ALL attention gets significantly worse results than300

the other two. But both Context-to-Response and301

CLS-to-CLS attention get similar results, which302

indicate that a small amount of interactions among303

candidates should be enough to get good perfor-304

mance. In the subsequent experiments, we will305

use context-to-response (type (b)) attention as our306

default setting.307

In the Panoramic-Encoder, as mentioned in sec-
tion 3.1, instead of assessing each response respec-
tively, it compares all candidates simultaneously to
find the global optimum in one shot. The given di-
alogue context c = {u1, u2, ..., uN} and the candi-
date pool p = {r1, r2, ..., rM} are jointly encoded
to yield output representations H . As discussed
earlier, the candidate pool in our implementation
consists of the gold response and the other in-batch

CAM
PersonaChat

R20@1 R20@5 MRR

Type (a) 0.809 ± 0.004 0.975 ± 0.002 0.882 ± 0.002
Type (b) 0.869 ± 0.001 0.989 ± 0.000 0.922 ± 0.000
Type (c) 0.870 ± 0.001 0.988 ± 0.001 0.922 ± 0.000

Table 1: Performance of three types of Candidates At-
tention Mechanisms (CAM) on PersonaChat. Average
and standard deviation are calculated on three runs with
different seeds.

negative samples.

H = encode(c, p).

We then obtain an aggregated embedding Ei for
each candidate by averaging all token represen-
tations belonging to it in H . After aggregation,
every Ei is reduced to a single logit, which is later
merged and fed into a softmax operation.

Ypred = softmax({w(E1), . . . ,w(Em)}).

A ground truth label is one-hot at the index of the
only positive candidate. Then the model is op-
timized by minimizing the cross-entropy loss be-
tween the prediction and ground truth. We also plus
an auxiliary MLM loss to the original classification
objective as

ℓ = ℓce + ℓmlm,

where ℓce is defined as:

ℓce = cross_entropy(Ypred, Ylabel).

4 Experiments 308

4.1 Dataset 309

• PersonaChat (Zhang et al., 2018) is a crowd- 310

sourced dataset with two-speaker talks condi- 311

tioned on their given persona, containing short 312

descriptions of characters they will imitate in 313

the dialogue. 314
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Dataset Train Valid Test

PersonaChat
Turns 65719 7801 7512

Positive:Negative 1:19 1:19 1:19

Ubuntu V1
Pairs 1M 0.5M 0.5M

Positive:Negative 1:1 1:9 1:9

Ubuntu V2
Pairs 1M 195.6k 189.2k

Positive:Negative 1:1 1:9 1:9

Douban
Pairs 1M 50k 6670

Positive:Negative 1:1 1:1 1.2:8.8

Table 2: Statistics of four benchmark datasets.

Model
Peak

Memory
/ GB

# Cands
Inference
Time / s

BERT (baseline)
1.02 189200

213.27
Panoramic-Encoder 74.62

Table 3: Comparison of the efficiency of the Panoramic-
Encoder and baseline method on Ubuntu V2.

• Ubuntu Dialogue Corpus V1 (Lowe et al.,315

2015) contains 1 million conversations about316

technical support for the Ubuntu system. We317

use the clean version proposed by Xu et al.318

(2017), which has numbers, URLs, and sys-319

tem paths replaced by special placeholders.320

• Ubuntu Dialogue Corpus V2 (Lowe et al.,321

2017) has several updates and bug fixes com-322

pared to V1. The major one is that the training,323

validation, and test sets are split into different324

time periods.325

• Douban Conversation Corpus (Wu et al.,326

2017) consists of web-crawled dialogs from327

a Chinese social networking website called328

Douban. Topics in this dataset are open-329

domain.330

The statistics of four benchmark datasets are331

shown in Table 2. They vary greatly in volume,332

language, and topic. Several metrics are used to333

evaluate our model following previous works. We334

measure Rc@k on four benchmark datasets. Mean335

reciprocal rank (MRR) on PersonChat is addition-336

ally calculated to conduct comparisons. P@1 and337

mean average precision (MAP) are also employed338

for the Douban Conversation Corpus because it339

contains multiple positive candidates for a given340

context. We also note a significant difference in341

the proportion of positive and negative samples be-342

tween the validation and test sets in the Douban343

Conversation Corpus. To alleviate this discrepancy,344

Models Ubuntu V2

R10@1 MRR

Panoramic-Encoder 85.92* 91.51*
w/o. auxiliary MLM Loss 82.00 (-3.92) 88.89 (-2.62)
w/o. Speaker Segmentation 84.45 (-1.47) 90.40 (-1.11)
w/o. Concatenation & In-batch 79.92 (-6.00) 88.10 (-3.41)

Table 4: Ablation studies on Ubuntu V2 with different
techniques. * represents the full effect of a Panoramic-
Encoder model. Bold values are the most significant
drops in performance. The last component is innovative
in our work, where the response concatenation allows
the application of in-batch negative training.

we also utilize the in-batch negative labels during 345

validation to determine a more applicable check- 346

point at inference time. 347

4.2 Inference Speed 348

One of the major improvements brought by the 349

new paradigm is that Panoramic-Encoder has a 350

significant advantage over the baseline in terms of 351

efficiency. It is evidently because the Panoramic- 352

Encoder can find the optimal response among can- 353

didates in one shot rather than rank each candidate 354

in turn. This feature remarkably reduces the num- 355

ber of inferences the Panoramic-Encoder requires 356

during evaluation. However, the concatenated can- 357

didates also requires more memory allocation when 358

computing. Therefore, for the sake of fair compari- 359

son, we control the peak GPU memory usages of 360

all models to the same value by assigning them 361

different batch sizes. We run experiments on a sin- 362

gle NVIDIA A100-SXM4-40GB with CUDA 11.1. 363

The results in Table 3 verify that our model is able 364

to complete inference for all test cases in Ubuntu 365

Dialogue Corpus V2 with approximately 3X speed 366

up. 367

4.3 Effectiveness of Each Component 368

As mentioned earlier, the novel architecture change 369

in Panoramic-Encoder addresses the compatibil- 370

ity issue of in-batch negative training and seam- 371

lessly incorporates some other effective techniques. 372

Therefore, before we present the full experimental 373

results of the Panoramic Encoder, we would like 374

to decompose it and analyze the effectiveness of 375

each component. 376

Table 4 contains ablation studies conducted on 377

the Ubuntu Dialogue Corpus V2. We can see that 378

the auxiliary MLM task acts as a powerful tech- 379

nique and contributes 3.92% in R10@1 and 2.62% 380

in MRR. Adding speaker segmentation achieves 381
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Models
Ubuntu Corpus V2 PersonaChat

R10@1 R10@2 R10@5 R20@1 MRR

BERT (Devlin et al., 2019) 0.781 0.890 0.980 0.707 0.808
SA-BERT (Gu et al., 2020) 0.830 0.919 0.985 - -
BERT-CRA (Gu et al., 2021) - - - 0.843 0.903

Panoramic-Encoder (Ours)
0.859

±0.000
0.938

±0.001
0.990

±0.000
0.869

±0.001
0.922

±0.000

Ubuntu Corpus V1 Douban Conversation Corpus
R10@1 R10@2 R10@5 MAP MRR P@1 R10@1 R10@2 R10@5

BERT (Devlin et al., 2019) 0.808 0.897 0.975 0.591 0.633 0.454 0.280 0.470 0.828
SA-BERT (Gu et al., 2020) 0.855 0.928 0.983 0.619 0.659 0.496 0.313 0.481 0.847
BERT-SL (Xu et al., 2020) 0.884 0.946 0.990 - - - - - -
UMSBERT (Whang et al., 2021) 0.843 0.920 0.982 0.597 0.639 0.466 0.285 0.471 0.829
BERT+FGC (Li et al., 2021) 0.829 0.910 0.980 0.614 0.653 0.495 0.312 0.495 0.850

Panoramic-Encoder (Ours)
0.886

±0.001
0.946

±0.001
0.989

±0.000
0.622

±0.007
0.662

±0.006
0.481

±0.010
0.303

±0.011
0.514

±0.006
0.852

±0.002

Table 5: Evaluation on four benchmark datasets. All results reported in the table are fine-tuned on the naive
BERT-base (Devlin et al., 2019) model without any post-training. Average and standard deviation are calculated on
three runs with different seeds.

Models Ubuntu Dialogue Corpus V1

R10@1 R10@2 R10@5

BERT (Devlin et al., 2019) 0.808 0.897 0.975
Panoramic-Encoder 0.886 0.946 0.989

UMSBERT+ (Whang et al., 2021) 0.875 0.942 0.988
UMSBERT+ + Panoramic-Encoder 0.896 0.951 0.991

BERT-FP (Han et al., 2021) 0.911 0.962 0.994
BERT-FP + Panoramic-Encoder 0.916 0.965 0.994

Table 6: Panoramic-Encoder further boosts the perfor-
mance of the state-of-the-art post-trained models on
Ubuntu Dialogue Corpus V1.

moderate performance gains in both metrics. As382

described in Section 2.2, in-batch negative train-383

ing has to be applied together with the architec-384

ture change (response concatenation). Unsurpris-385

ingly, they perform as the most prominent improve-386

ment and jointly augment the R10@1 by 6.00% and387

MRR by 3.41%. This innovation has also led to388

remarkable results in the subsequent comparisons389

with previous state-of-the-art models.390

4.4 Comparison to State-of-the-art391

To fully demonstrate the superiority of the392

Panoramic-Encoder against the other state-of-the-393

art methods. We first initialize our implementation394

with the naive BERT checkpoint provided by Hug-395

gingface1. All the reported results in Table 5 are396

fine-tuned on the BERT-base model (Devlin et al.,397

2019) without any post-training.398

As we can see, the Panoramic-Encoder achieves399

1https://huggingface.co/models

better average performances with relatively small 400

standard deviations in almost every single metric on 401

PersonaChat, Ubuntu V1, and Ubuntu V2 datasets. 402

Our models also outperform previous works in four 403

of the six metrics on the Douban Conversation Cor- 404

pus, demonstrating its overall superiority. However, 405

on this dataset, they possess larger variances dur- 406

ing evaluation and have weaknesses in P@1 and 407

R10@1. We believe one conceivable explanation 408

is as follows: First, the discrepancy between its 409

validation and test sets (refer to Section 4.1) makes 410

this task more challenging. Second, the Panoramic- 411

Encoder leverages response concatenation and in- 412

batch negative training to help the only positive 413

sample stay distantly from the other negative sam- 414

ples in the semantic space. However, the presence 415

of multiple positive candidates at inference time 416

(but not in training) makes it confusing to rank the 417

top one response. 418

Next, we build the Panoramic-Encoder upon the 419

most advanced post-trained models UMSBERT+ 420

(Whang et al., 2021) and BERT-FP (Han et al., 421

2021) to explore the upper bound of our method’s 422

capability. Table 6 indicates the Panoramic- 423

Encoder can further boost their performance. Our 424

best model achieves 0.916 in R10@1 on the Ubuntu 425

Dialogue Corpus V1, which is the universal high- 426

est result as far as we know. Our source code 427

and model checkpoints will be released for repro- 428

ducibility and future research. Please refer to them 429

for more training details. 430
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# Examples

1

A: so now i’m going to try it with the snapshot version of the PPA instead and see if it crashes again.
B: Are you looking at your computer’s CPU temperature?
A: no but i havent ever had any trouble with temp before .... where do i go to see its temp rypervenche ?
Cross: i do not know. Panoramic: That depends on your hardware and kernel. The Ubuntu guys can help you with that.

2

A: I’m trying to backup a computer using grsync.
A: There is one file in a directory I’ve excluded, that I like to backup.
A: I listed that file and it’s path in the include file, but it doesn’t over ride the exclude file, is it possibly to do this?
B: dont exclude it..?
Cross: cheers Panoramic: example?

3
A: nobody know Jin.. :(
B: i guess not. try contacting the programs developers. you can find their contact info in the software centre
Cross: Thanks Panoramic: thx unfortunately the program isn’t installed from the repositories

4

A: Any vim experts around?
B: you may want a vim chatroom
A: yes, trying my luck in #vim as well
Cross: cheers. Panoramic: also google is your friend :-P

5
A: i am stuck on the loading screen for xubuntu, is there a hotkey to leave it to see what it does in text?
B: ctrl+f1
Cross: ok Panoramic: doesn’t work :p\

6
A: Any way to disable that?
B: Open it up and clean out the heatsink and fan!
Cross: thanks Panoramic: Sometimes it just heats up, it’s not consistent but it suggests a fan/controllr type issue

Table 7: Cherry-picked examples from the Ubuntu Corpus V2 for comparing Cross- and Panoramic- Encoder

5 Analysis and Discussion431

This section provides a qualitative analysis to un-432

derstand the Panoramic-Encoder further. We also433

discuss some limitations of our design and feasible434

solutions to address them.435

5.1 Qualitative Analysis436

We have cherry-picked some test cases from the437

Ubuntu Corpus V2 to analyze the advantages of438

our work over the Cross-Encoder. The best Cross-439

Encoder implementation, as presented in Section440

4.3, is used for comparison, which has no response441

concatenation and in-batch negative training but442

with all other techniques. Results in Table 7 sug-443

gest that Panoramic-Encoder is able to select very444

diverse and coherent responses. In contrast, even445

though some results of the Cross-Encoder are not446

logically problematic, they are very generic and447

clearly inferior to ours.448

5.2 Too Many Candidates to Fit449

As described earlier, the Panoramic-Encoder is450

originally designed for generation-based dialogue451

systems. Such a task has a very small candidates452

pool and the length of concatenated responses is453

typically no longer or comparable to that of a given454

context. Our method can be applied to retrieval-455

based tasks as well. However, if there are too many456

candidates to fit, memory usages could limit its457

capability due to the O(n2) complexity of the at-458

tention mechanism. In the worst case, where only a 459

single candidate can be processed at a time, the 460

Panoramic-Encoder degenerates into a baseline 461

method. 462

We would suggest a solution to avoid this limita- 463

tion: (i) Dividing candidates into multiple groups 464

with exercisable sizes. (ii) Applying the Panoramic- 465

Encoder to identify the best from each group. (iii) 466

Repeating the procedures hierarchically on pre- 467

vious winners if necessary, until the global opti- 468

mum is determined. Moreover, giving candidates a 469

preliminary screening is helpful to accelerate the 470

whole process. 471

6 Conclusion 472

In this paper, we propose a new paradigm for the 473

dialogue response selection task. To this end, we 474

present the Panoramic-Encoder architecture that 475

integrated with multiple novel candidates atten- 476

tion mechanisms. The proposed method simulta- 477

neously processes all candidate responses to select 478

the global optimum in one-shot inference. Also, 479

the parallel computation fashion in our paradigm 480

allows using the in-batch negative training seam- 481

lessly, which again boosts its performance. By 482

incorporating other common practices in training, 483

our method pushes state-of-the-art results across 484

four benchmarks, with significantly faster inference 485

speed. Thorough empirical results also show the 486

superiority of our proposal. 487
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