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Abstract

Planning and acting to solve ‘real’ tasks us-
ing large language models (LLMs) in inter-
active environments has become a new fron-
tier for AI methods. While recent advances
allowed LLMs to interact with online tools,
solve robotics tasks and many more, long range
reasoning tasks remain a problem for LLMs.
Existing methods to address this issue are very
resource intensive and require additional data
or human crafted rules, instead, we propose a
simple method based on few-shot in-context-
learning alone to enhance ‘chain-of-thought’
with state-tracking for planning and acting
with LLMs. We show that our method es-
tablishes the new state-of-the-art on Alfworld
for in-context-learning methods (+14% over
the previous best few-shot in-context-learning
method) and performs on par with methods that
use additional training data and additional tools
such as code-execution. We also demonstrate
that our enhanced ‘chain-of-states’ allows the
agent to both solve longer horizon problems
and to be more efficient in number of steps
required to solve a task. Finally, we also con-
duct ablation studies and show that ‘chain-of-
thoughts’ helps state-tracking accuracy, while a
json-structure harms overall performance. We
open-source our code and annotations at anony-
mous URL.

1 Introduction

Using the in-build world- and commonsense-
knowledge' of large language models (LLMs),
such as GPT-3, Mixtral, Gemini (Brown et al.,
2020; Jiang et al., 2024; Anil et al., 2023) to per-
form interactive reasoning tasks has become a fron-
tier in Al research, with “Al Agents” now able to
solve a range of multi-modal complex tasks (Du-
rante et al., 2024). These range from solving (sim-
ulated) robotics tasks (Puig et al., 2018; Shridhar

!Commonsense- and world- knowledge as explored by
Lauscher et al. (2020) for example.

et al., 2021) and digital tasks such as online shop-
ping (Yao et al., 2023a) and navigating operating
systems (Liu et al., 2023), to playing a variety of
games (Coté et al., 2019; Liu et al., 2023).

While LLMs are increasingly successful in solv-
ing Al agent tasks, Li et al. (2023b) show that
LLMs struggle with long range understanding and
Coelho et al. (2024) show that LLLMs often focus on
the beginning of the textual history, further ampli-
fying the problem. Existing efforts to address these
issues are resource intensive, Wu et al. (2024) re-
quired human expert annotations of rules, Sun et al.
(2023) a code execution environment with care-
fully crafted code-based prompts, Fu et al. (2024)
use additional training data together with retrieval
augmented generation (RAG) to help the Al agent.

To overcome these challenges, we introduce
“StateAct” a novel LLM agent based on few-shot
in-context-learning that tracks the goal by ‘remind-
ing’ the agent of the goal and explicitly keeps track
of the agent’s state (such as location and inventory).
We also utilise ‘chain-of-thought’ (i.e. explicit rea-
soning (Wei et al., 2023)) as an optional addition.
At the core of the method lies a simple annota-
tion with goal-, state- and reasoning- traces of the
few-shot examples, that we call ‘chain-of-states’.

Our method establishes a new state-of-the-art
for Alfworld (Shridhar et al., 2021) for few-shot in-
context-learning based methods, outperforming the
previous best method by 14% and even outperforms
methods that use external tools by 2.5%. Further-
more, while our method does not require additional
data or external tools and only minimal and easy
human annotations, we perform on part with the
current state-of-the-art that is much more resource
intensive and requires additional data and expert hu-
man annotations. Comparing to in-context-learning
methods, we also demonstrate that our method is
both more efficient in terms of number of steps
to solve a task and is able to solve longer-horizon
tasks, validating the hypothesis that explicit state-



tracking and goal-tracking help with solving longer
horizon reasoning and planning tasks.

2 Background

Al agents have historically used reinforcement
learning (RL) to solve tasks (Sutton and Barto,
2018). With the dawn of LLMs works such as
Li et al. (2022); Nottingham et al. (2023) combined
LLMs and RL and trained additional policies or
value functions to make predictions.

2.1 In-context-learning approaches

Huang et al. (2022a,b); Singh et al. (2022) were
among the first to use LLMs directly to act in an in-
teractive environment, their method produces agent
actions as output after receiving environment ob-
servations as input.

ReAct (Yao et al., 2023b) took this work further
by combining ‘acting‘ (Huang et al., 2022a) and
‘chain-of-thought‘ (Wei et al., 2023). ReAct estab-
lishes state-of-the-art for in-context-learning only
based approaches and while it is a very scalable
method, the performance (i.e. success rate) is still
limited.

ExpeL (Zhao et al., 2023) uses additional train-
ing data to generate ‘insights’ and ‘success trajec-
tories’ during training. At inference time they look-
up the closest ‘success trajectories’ as few-shot
examples to the agent (as opposed to fixed few-
shot examples that we use) and augment them with
these ‘insights’ to perform the final inference. They
achieve 59% on Alfworld using retrieved ‘success
trajectories’ (as few shot examples) + ‘insights’ and
50% using the same few-shot examples as ReAct +
‘insights’.

2.1.1 In-context-learning and additional tools

The current state-of-the-art for in-context-learning
based approaches in combination with additional
tools is AdaPlanner (Sun et al., 2023). They intro-
duce a code-based prompt (Li et al., 2023a) and use
code-execution as an additional tool to execute the
LLM generations to feed them back into the next
prompt. The short-coming of Adaplanner is that it
requires very complex human crafted prompts that
are hard to scale to new environments as well as
the additional step of requiring code-execution.

2.2 State tracking in LLLM-based agents

Concurrent work to ours, AutoGuide (Fu et al.,
2024), uses ReAct as the base agent and addi-
tional training data to create ‘state-aware’ text-

based guidelines for the LLM-agent, they then use
a type of retrieval augmented generation (RAG)
process to guide the decision making process. They
embed the current observation as a summary (this
is what they call ‘state-aware’) and use a LLM
to ‘look up’ the relevant ‘state-aware’ guideline,
which is then fed into a final LLM to generate an
action. Using training data and LLM-based RAG
they achieve 79.1% on top of a ReAct agent on Alf-
world. Their training and RAG approach could be
used complimentary to our StateAct LLM agent”.

Chen et al. (2024) propose state-tracking as a
way to help the agent solve the task, without train-
ing data. Their method differs to ours two-fold.
Firstly, they employ a complex sequence of com-
ponents working together (an LLM-based attention
over the observations, a LLM-based compilation
of a complex state and finally a prediction of a
program). Secondly, their system involves execu-
tion of actual programs. Our method on the hand
requires a straight-forward extension of ‘chain-of-
thought’ and uses a single LLLM call to produce
the state, thought and action and we do not require
program execution.

2.2.1 Fine-tuning approaches

Previous fine-tuning approaches did not signifi-
cantly enhance performance (Zhou et al., 2024;
Yao et al., 2023b; Shridhar et al., 2021). A con-
current work, however, ActRe (Yang et al., 2024b)
achieves 83% by fine-tuning gpt-3.5-1106 on addi-
tional training data.

2.3 “Multi-Agent Conversation’ approaches

A new trend is to use multiple LLMs concurrently
to ‘chat’ to one another to produce a result. A
recent work in this direction by (Wu et al., 2023)
achieves 67% on Alfworld.

2.4 Joined rule and LLM based agents

StateFlow (Wu et al., 2024) uses Finite State Ma-
chines (FSMs) combined with LLMs to solve Alf-
world. These FSMs are human-expert crafted
states, transitions and rule-based heuristics, where
the LLM is asked to perform limited tasks in each
of the given states. While their performance is 82%
on Alfworld, we believe this result is more compa-
rable to a rule-based ‘experts’ than an LLM-based
agent (notably close to 100% can be achieved on

The cost of using RAG at every generation step could be
significantly higher than our method, however.
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Figure 1: StateAct interacts with the environment di-
rectly, without additional tools or resources (a). A skele-
ton of the StateAct prompt (b).

Alfworld using hand-crafted ‘experts’ (Shridhar
etal., 2021)).

2.5 Approaches with multiple trials

Works such as Reflexion (Shinn et al., 2023) or
work by Sun et al. (2023); Yang et al. (2024a) are
methods that perform several evaluations on the
same test-environments and perform learning loops
(during evaluation) on these test-set environments
to improve the score. While the score necessarily
goes up (as only the failed environments are re-run)
we do not dive into this, as this does not compare to
the actual agent performance and ‘reflection‘ can
be used on top of most LLM-based agents (e.g.
Reflexion uses ReAct as the base agent).

3 Method

StateAct is an LLM-based Al agent that works on
top of pre-trained large language models. StateAct
takes the fextual ‘observation’ from the environ-
ment and after a single call to the pre-trained LLM
returns the ‘action’ back to the environment (with-
out the use of additional tools or resources), see
Figure 1a.

StateAct utilises in-context-learning (Brown
et al., 2020; Wei et al., 2023) to make the agent
interact with the environment. At the core of the
approach is a prompt that consists of few-shot ex-

Environment: Agent:
L Aflworld StateAct )
: I - N
Observation 1:
Your task is to: > Prediction N-1:
put a cool apple in >Goal: PUENESNEOOL
shelf. apple in shelf
P Ob_serv >Current Location:
aton table 2
__________ >Current Inventory:
Observation N-1: None
On the table 2, you >Thought: None
see apple 1, .. >Action: pick up
—— apple 1
Observation N: B
You pick up apple Prediction N:
1. >Goal: pPUENSNCOOL
- apple in shelf
Observation N+1: >Current Location:
Fridge 1 is closed. table 2
Action >Current Inventory:
apple 1
>Thought: None
>Action: go to
fridge 1
. -/

=Goal “reminding”
=State tracking
=Action

Figure 2: An example of how StateAct is working. The
depicted traces are from the Alfworld environment.

amples of successful ‘interaction traces’ as well as
the current ‘interaction trace’ up to the current step
in the environment, see Figure 1b. An ‘interaction
trace’ consists of alternating ‘observations’ from
the environment and desired (or actual) ‘outputs’
from the LLM. In the case of StateAct the LLM is
tasked to generate the ‘goal’, ‘state’, ‘thought’ and
‘action’. The ‘action’ is then extracted and passed
to the environment to produce the next observation,
see Figure 2. For example a sample of the trace for
step n in Alfworld:
Observation n:
On the countertop 1, you see a tomato 1.
LLM Output n:
>Goal: Put a clean tomato in fridge
Current Location: countertop 1
Current Inventory: None
Thought: I find the tomato, now I need to
take it.
Action: take tomato 1

In the above example the agent produces the
action ‘take tomato 1°, in response to the ob-
servation ‘On the countertop 1, you see a
tomato 1°.

3.1 Goal-reminders and state- tracking using
LLMs

In order to make StateAct more precise we intro-
duce simple notation. By denoting 7 as the policy



of an Al agent, in the standard case at time step ¢
the policy predicts action a;, given the history of
observations and actions [0y, G;—1, ..., ag, 0p).

W(atlotvat—lu"'aa()ao()) (1)

Where a; is the action produced by the agent at
step t and o, is the observation produced by the
environment at step t after receiving action a; as
input. Usually, the first observation og also contains
the ‘goal’ description for the given environment.

For our case we need to enhance the policy to
incorporate the ‘state’. Similar to previous work
(Yao et al., 2023b) we introduce the context vec-
tor, ¢;. The context vector contains the action, as
well as the other additional predictions of the agent,
ie. ¢ = (go,st,7¢,ar). Where gg is the goal
and always remains the same (for a given envi-
ronment) and uses the goal extracted from og, s;
represents the predicted state at time step ¢, r; rep-
resents ‘chain-of-thought’ style ‘reasoning’ at time
step t, and a; represents the action at time step ¢,
as before. The new policy 7 then becomes:

T eontextual (ct |0t7 Ct—1, .-+, CO, 00) 2)

In our case the LLM acts as T.ontestuqar and pro-
duces the context vector at every time step.

4 Experimental setup

Our aim is to study long-range acting, plan-
ning and reasoning capabilities of LLM-based
agents. To achieve this, in line with previous
work, we turn to simulated environments as an
evaluation framework and to API-based state-of-
the-art large language models. Specifically, we
use Alfworld (Shridhar et al., 2021), a household
robotics environment, and Webshop (Yao et al.,
2023a), an online shopping environment, as sim-
ulated environments. As LLM we use OpenAl’s>
gpt-3.5-turbo-1106.

4.1 Alfworld

Alfworld (Shridhar et al., 2021) is based on a 3D,
visual, household robotics environment called Al-
fred (Shridhar et al., 2020), which was translated
into a text-based environment for ease of use for
language based Al models, see Figure 3. Alfworld
has a total of 135 test-set examples and six environ-
ment types. It features long-time horizons, partial
observability, an out-of-distribution evaluation set

Shttps://openai.com, last accessed June 2024.
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Figure 3: An example textual interaction in Alfworld
(right) and corresponding 3D rendering (left).

and text-based interactions. Alfworld simulates a
household environment with a household assistant
robot tasked with solving problems, e.g. clean
an apple and put it on a table. The robot
(or agent) then needs to perform a series of ‘high-
level’ operations to accomplish the tasks, e.g. ‘go
to fridge 1°, ‘open fridge 1°. At every step
the environment provides a textual observation or
feedback that the command has failed, e.g. ‘You
open the fridge 1°, ‘You see apple 1°. The
underlying text engine is based on Textworld (Coté
et al., 2019). See Appendix A for a complete list
of commands and details on environments.

4.1.1 Alfworld correction

In our research we identified that Alfworld has
a specific syntactic feature for the put command,
namely put <object> in/on <place>, where
“in/on” needs to be written exactly this way and
using only “in” or only “on” produces a failed com-
mand. We observed this issue with LLMs on this
environment and we propose a simple fix for it.
We map: 1. “put <object> in <place>” and 2.
“put <object> on <place>” to the command
accepted by Alfworld, namely “put <object>
in/on <place>”.

Methods such as AdaPlanner (Sun et al., 2023)
have avoided this issue because they use code-
based prompts and regex parsers. However, meth-
ods such as ReAct (Yao et al., 2023b) and ExpeL
(Zhao et al., 2023) have been affected, lowering
their potential performance. In our work, we also
report the results for ReAct using corrections.
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Figure 4: An example textual interaction in Webshop
(right) and corresponding e-commerce website render-
ing (left).

4.2 Webshop

Webshop (Yao et al., 2023a) is a simulation of an
online shopping experience. Given a task, e.g. “I
want a blue water-proof winter jacket,
less than $100”, the agent needs to search a
product catalogue, browse through the search re-
sults and select the most fitting product, select the
attributes, e.g. colour, size, and then buy the
product. In line with previous work we use the text-
based version of Webshop, where all descriptions
of the website are given in text form, see Figure
4. Webshop features a realistic large-scale product
catalogue, a search engine and very varied product
attributes depending on the category of product.
See Appendix B for more details. In total the test
set consists of 500 examples and each one is of the
type “search and buy a product”. Overall, Webshop
has a maximum of 15 steps and two commands: 1.
search[<query>], 2. click[<button>].

4.3 In context learning

Since ReAct (Yao et al., 2023b) forms the under-
lying agent for many current (Zhao et al., 2023)
and state-of-the-art approaches (Fu et al., 2024),
we use the same few-shot ‘interaction traces’ as Re-
Act. The main reason is to have a fair comparison
and isolate additional effect - such as performance
change from different in-context examples.

In total, Alfworld has six types of tasks and Re-
Act uses two in-context examples per task type to
prompt the language models. On average each Re-
Act example ranges from 352 words to 591 words
(590 token to 935 tokens). For our study we reuse
the observations, thoughts and actions and annotate
these examples further with goal ‘reminders’ and
state tracking, which results in a range from 484 to

Method Version AW | WS
ReAct gpt-3.5-turbo-1106 | 40.7 | 18.2
ReAct gpt-3.5-turbo-0125 | 30.37 | 14.6

Table 1: ReAct success rate on Alfworld (AW) and
Webshop (WS) using available gpt-3.5 models.

911 words (807 tokens to 1458 tokens) per example.
During our annotation we discovered minor errors
in the ReAct prompts and fixed them as well. We
release all our annotations with our code release.
In comparison, AdaPlanner (Sun et al., 2023), uses
a different code based approach and the prompt has
1104 words (2015 tokens) on average.

We use the two-shot examples from ReAct for
Alfworld and the one-shot example from ReAct for
Webshop for all our experiments.

4.4 Models

In line with previous work we focus our atten-
tion on the API based LLMs to compare per-
formance. Many OpenAl models have become
deprecated. Notably, all models from ReAct
and AdaPlanner(Sun et al., 2023) davinci-002,
gpt-3.5-turbo-0301 and gpt-3.5-turbo-0613
are deprecated now. Therefore, we re-implemented
ReAct and ran the experiments to determine the
most suitable model, see Table 1. We establish
that gpt-3.5-turbo-1106 is the best performing
(from the ones that remain available) on ReAct
and we therefore chose this one. Furthermore, we
did not opt for GPT-4 level models as these are
prohibitively expensive*. Furthermore, we use tem-
perature O for all experiments and sample only the
top 1 response, see Appendix C the exact settings.

4.5 Metrics

In terms of metrics we use the pre-defined met-
rics of Alfworld and Webshop, namely success
rate (SR). Success is a binary metric per each en-
vironment in the respective test sets (135 and 500
respectively). Success in Alfworld means the agent
has successfully complete the whole task. In Web-
shop it means the agent has bought an item that
has a hundred percent match with the desired item
based on a partially hidden list of attributes of the
shopping item (e.g. the colour, size, price, etc.).

*A single evaluation run on alfworld costs approx. $8
using gpt-3.5 and ReAct, gpt-4 would cost 10+ times more.



5 Results

5.1 Alfworld

For Alfworld we present the results for ReAct, Ada-
Planner with and without code execution and State-
Act (ours), which consists of goal + state +
thought + action. We also show StateAct with-
out each of the components (i.e. without goal, state
and thought). Interestingly we find, contrary to
previous findings, that ‘thought’ or ‘reasoning’ ac-
tually sometimes harms the performance.

In Table 2, we can see that StateAct with all
goal+state+thought and the correction performs
the best. It outperforms ReAct with correction by
around 13 points (using the same GPT model for
ReAct) and by around 9 points (using the better
model for ReAct). StateAct also outperforms Re-
Act by 22 points when corrections are not used.
Furthermore, StateAct even outperforms AdaPlan-
ner by 2.48 points, an approach that uses regex for
command mapping (similar to our correction) and
code-execution.

Perhaps the most surprising finding is that the
simple correction described in Section 4.1.1 leads
to a 16 and 23 point jump for ReAct and a 27 point
jump for StateAct. This indicates that the model
generally performs very well, however, struggles
with minute differences in domain specific syntax.

5.2 Webshop

For Webshop we present results for ReAct and
StateAct (ours). Similarly, to Alfworld we also
present the results of State Act without each of goal,
state and thought. See Table 3. Interestingly, we
see that removing thought produces the highest
results and outperforms ReAct by 10 points. Our
hypothesis is that domain specific syntax, which is
more prevalent in Webshop than Alfworld, conflicts
with using verbose thoughts.

5.3 Summary of results

In conclusion we found that our simple goal-
reminding and state tracking approach that purely
relies on in-context learning outperforms previ-
ous in-context learning approaches by more al-
most 10 points and even outperforms leading ap-
proaches that rely on code-execution. Interestingly,
we found that the approaches are quite sensitive to
domain specific syntax and that when this is the
case ‘thoughts’ that are verbose can harm perfor-
mance.

Method GPT-3.5 | SR %
Baselines w/o corrections

ReAct 0301* 51.9
ReAct 1106 40.7
ReAct 0125 30.37
ReAct (joined***) 1106 36.30
Results w/o corrections

StateAct (ours) 1106 50.37
- w/o thought 1106 62.96
- w/o goal 1106 42.96
- w/o state 1106 44 .44
Baselines with corrections

ReAct + corr. 0301* 68.15
ReAct + corr. 1106 63.70
AdaPlanner No-Exec** 0301* 46.66
AdaPlanner 0301* 75.56
Results with corrections

StateAct + corr. (ours) 1106 77.04
- w/o thought 1106 64.44
- w/o goal 1106 74.04
- w/o state 1106 64.44

Table 2: Success Rate (SR) on the 135 test-set examples
from Alfworld. *gpt-3.5-0301 is scheduled to be dep-
recated in June 2024. **No-Exec means AdaPlanner
without code execution. ***joined means that thought
+ action are produced at every turn. AdaPlanner re-
sults are from (Sun et al., 2023). All other results are
‘single run’.

6 Analysis and Ablations

In the results section we discovered that our meth-
ods perform better than previous state-of-the-art.
This answers the question that we can perform bet-
ter with in-context learning without resorting to
additional tools, data or bigger models. In this
section we want to analyse our results further and
particularly also answer if our second hypothesis
that goal ‘reminding’ and state tracking help with
long-range reasoning actually holds. For all abla-
tion studies we focus on Alfworld as it has two
favourable properties over Webshop. Firstly, Alf-
world has a longer time horizon (50 steps vs. 15 in
Webshop), with tasks taking an average of less than
10 steps in Webshop and around 20 to 30 steps in
Alfworld. Secondly, Alfworld has much less do-
main specific syntax and is purely text based, while
Webshop has a more specific syntax to follow.



Method GPT-3.5 | Success Rate %
Baselines

Rule-based* N/A 9.60

RL* N/A 17.60
ReAct 1106 17.80
Results

StateAct (ours) 1106 17.00

- w/o thought 1106 27.80

- w/o goal 1106 20.40

- w/o state 1106 21.00

Table 3: Success Rate (SR) on the 500 test-set examples
from Webshop. *results taken from (Yao et al., 2023a).
Results are ‘single run’, except for StateAct without
thought and ReAct, where we ran the experiment twice
and reported the average.

6.1 Do goal reminders help with long range
tasks?

For this purpose we compare the original ReAct
(thought+action) with just adding the goal in, i.e.
StateAct (goal + thought + action). In Figure 5 we
can see that while the performance of both ReAct
and StateAct goes down as there are more num-
ber of steps the goal tracking has a significantly
better relative performance as the number of steps
increase.

To verify that this actually means that goal track-
ing helps with performance, as opposed to just in-
creasing the number of steps it takes to solve a task,
we calculate the average number of steps for Re-
Act (ignoring empty ‘thought’ turns, as otherwise
ReAct would have even more steps) and StateAct.
Table 4 clearly show that ReAct with an average of
38.84 steps to solve an environemnt is the least ef-
ficient and StateAct with an average of 28.96 steps
to solve an environment is the most efficient. This
shows that not only does goal tracking help with
longer range tasks, it also helped with efficiency by
shortening the tasks.

6.2 What effects does state-tracking have?

We also analyse whether state tracking helps with
long-range reasoning and efficiency. We compared
the full StateAct against StateAct without state-
tracking as well as ReAct (thought + action) against
StateAct with state-tracking added (state + thought
+ action). In Figure 6 we see that state tracking also
helps with long-range reasoning. In fact, we can
see that reasoning alone is unable to solve tasks
longer than 40 steps, while with state tracking even
longer-range tasks can be solved than with goal-

Average Success Rate vs. Number of Steps
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Figure 5: Goal vs. No Goal, on the 135 test exam-
ples from Alfworld, using gpt-3.5-turbo-1106 without
correction.
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Figure 6: State vs. No State, on the 135 test examples
from Alfworld, using gpt-3.5-turbo-1106 with correc-
tion.

tracking alone. Also, looking at Table 4 we see that
state-tracking makes the model the most efficient’.
Therefore we find that explicit state-tracking even
further helps with long-range tasks and helps the
agent solve the tasks more efficiently than without.

6.3 Does the model perform actual state
tracking?

We ask ourselves the question if the model is actu-
ally performing state-tracking. For that purpose we
look at Alfworld and construct a self-verification al-
gorithm that is able to track the state heuristically®
based on the actions the agent takes. For example
if the agent produces the action go to fridge 1

>In terms of cost we found that despite our method using
a twice longer prompt, our cost remains similar at around $8
for the full Alfworld run, since we solve tasks more efficiently
and use fewer number of steps.

®0n our few-shot prompts it achieves 100% correctness.



Table 4: Average number of Steps (Avg. Steps) [lower
is better] on the 135 test-set examples from Alfworld.
gpt-3.5-1106 for all methods.

10 State Tracking Accuracy
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+Thought (vs. Base) +Thought (vs. Goal)

0.78(+6.41%)

0.85(+13.92%)

0.8 4

0.6

Accuracy

0.4 4

0.2 4 WEE StateAct
W StateAct
N StateAct
N StateAct

state+action)
state+thought+action)
goal+state+action)
goal+state+thought+action)

0.0 T
Method

Figure 7: State tracking accuracy for StateAct on 135
test examples of Alfworld using gpt-3.5-1106.

and the environment accepts this action we update
the state with current location: fridge 1. We
compare the ‘gold’ state against the predicted state.
Figure 7 shows that StateAct in fact does correct
state-tracking 88% of the time. We also observe
that thoughts and goals help the state tracking.

6.4 Does json structure help with
performance?

Since we found that domain specific syntax harms
performance, we wondered whether adding a struc-
tured format like json would help. For this purpose,
we re-ran StateAct on Alfworld, but translated the
state into a json format, see Appendix D for more
details. Surprisingly, we found that the json format
harms performance significantly, see Table 5. How-
ever, we also see that corrections help the the json
format less, indicating that json helps with syntax,
but harms performance.

7 Conclusion and future work

We propose a novel method StateAct, using
our ‘chain-of-states’, based on in-context-learning

Method Avg. Steps | Method SR% | SR (+json) %
ReAct 38.84 StateAct 50.37 | 45.19(-5.2)
StateAct (goal+thought+action) 31.19 StateAct w/ corr. | 77.04 | 58.52(-18.5)
StateAct (full) 28.96

ReAct with corr. 31.49 Table 5: Success RaFe (SR). on the '135 test examples
StateAct with corr. 19.11 from Alfworld. Showing no-json vs. json, gpt-3.5-1106.
- w/o thought 23.76

- w/o goal 20.09 alone and establish a new state-of-the-art for agents

that do not perform training, even against methods
that use code-execution. The method outperforms
the previous state-of-the-art, that uses in-context-
learning alone, between 9% and 20% given differ-
ent models and tasks and outperform in-context-
learning with tools (code-execution) by 3%. We
also show that explicit state-tracking and goal re-
minders make the model more efficient as well as
significantly help with longer range tasks.

We found that ‘thoughts’ or explicit reasoning
do not always help performance. It would be very
interesting to systematise ‘thought’ and ‘states’ and
understand what contributes positively and why.
Also, inspired by the good results of StateAct, it is
interesting to see what other improvements can be
done without resorting to training, larger model or
external tools. Finally, problems related to domain
specific syntax are also an interesting avenue of
future work.

8 Ethical Considerations

8.1 Computational footprint

Running many of the experiments presented in
this paper can have a significant computational
footprint. We should consider the environment
and financial resources for reproduciblity of our
work. We aimed to address this concern by using
gpt-3.5-turbo level models, reporting costs and
minimising the cost of our method.

8.2 Hallucinations in LLMs

As LLM-based agents become more powerful and
therefore more pervasive in our daily lives ‘hal-
lucinations’ of LLLMs can be very harmful (Wei
et al., 2024). We hope that explicit state-tracking
presented in this work can also lead to future work
that can reduce ‘hallucinations.’



9 Limitations

9.1 Languages and evaluation benchmarks

We evaluated our method only in the English lan-
guage and on two evaluation benchmarks. While
we do not expect major changes in other lan-
guages, this is something that should be investi-
gated. Furthermore, performance on other bench-
marks should be evaluated as well.

9.2 Reasoning traces rely on human
judgement

Our prompts require human annotations, as such
there is a natural bias present. This can have both
task-performance implications as well as ethical
implications.
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A Alfworld

A.1 Environment Types

Alfworld has six different environment types: 1.
clean, 2. heat, 3. cool, 4. examine, 5. put, 6.
puttwo.

The ‘clean’ task, e.g. Task: Put a clean
apple on table, requires the agent to first find
the apple, then clean it (in the sinkbasin) and then
put it on a table.

The ‘heat’ task, e.g. Task: Put a hot pie
on table, requires the agent to first find the pie,
then heat it (on the stoveburner) and then put it on
a table.

The ‘cool’ task, e.g. Task: Put a cool tomato
on table, requires the agent to first find the tomato,
then cool it (with the fridge) and then put it on a
table.

The ‘examine’ task, e.g. Task: Examine the
mug with the desklamp, requires the agent to
first find the mug, then find the desklamp, and then
use the desklamp.

The ‘put’ task, e.g. Task: Find some apple
and put it in sidetable, requires the agent to
first find an apple, and then put it on the sidetable.

The ‘puttwo’ task, e.g. Task: Put two
cellphone in sofa, requires the agent to first
find one cellphone, and then put it on the sofa, and
then to find the second one and put it on the sofa.

A.2  Action Types

Alfworld has the following valid actions: 1. go to,
2. open, 3. close, 4. put, 5. take, 6. cool, 1. heat, 8.
use.

go to <place>
Example: go to table 1

open <object>
Example: open door 1

close <object>
Example: close door 1

put <object> in/on <place>
Example: put apple 1 in/on table 1

take <object> from <place>
Example: take apple 1 from table 1

cool <object> with <place>
Example: cool apple 1 with fridge 1

heat <object> with <place>
Example: heat apple 1 with fire 1

use <object>
Example: use desklamp 1

A.3 License

Alfworld has the permissible MIT license, we used
it in line with the license.

B Webshop

B.1 Commands and environment

Webshop has one environment type: ‘search &

buy’, as well as two commands: 1. search, 2. click.
click[<button>]

Example: click[< Back to Search]

search[<query>]
Example: search[interesting book]

B.2 Prodcuts and attributes

Webshop has over 1 million real-world prod-
ucts across 5 main categories (fashion, makeup,
electronics, furniture, and food) and 113 sub-
categories.

B.3 License

Webshop has the permissible Princeton license, we
used it in line with the license.

C Code snippet to call OpenAl/ GPT-3.5

client = openai.OpenAlI(
# Defaults to os.environ.get("
OPENAI_API_KEY")
# api_key=0PENAI_KEY,

)

full_prompt = [{
"role”: "user",
"content”: prompt

3]

chat_completion = client.chat.
completions.create(
model="gpt-3.5-turbo-1106",
messages=full_prompt,
temperature=0.0,
stop = ["\n\n"]

)

A prompt is given in Appendix E.

D StateAct Json Format

We translate the text based StateAct prompt:



Into the following json format:

E StateAct Prompts

E.1 Example Alfworld prompt for the ‘heat’
task
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