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Abstract

Planning and acting to solve ‘real’ tasks us-001
ing large language models (LLMs) in inter-002
active environments has become a new fron-003
tier for AI methods. While recent advances004
allowed LLMs to interact with online tools,005
solve robotics tasks and many more, long range006
reasoning tasks remain a problem for LLMs.007
Existing methods to address this issue are very008
resource intensive and require additional data009
or human crafted rules, instead, we propose a010
simple method based on few-shot in-context-011
learning alone to enhance ‘chain-of-thought’012
with state-tracking for planning and acting013
with LLMs. We show that our method es-014
tablishes the new state-of-the-art on Alfworld015
for in-context-learning methods (+14% over016
the previous best few-shot in-context-learning017
method) and performs on par with methods that018
use additional training data and additional tools019
such as code-execution. We also demonstrate020
that our enhanced ‘chain-of-states’ allows the021
agent to both solve longer horizon problems022
and to be more efficient in number of steps023
required to solve a task. Finally, we also con-024
duct ablation studies and show that ‘chain-of-025
thoughts’ helps state-tracking accuracy, while a026
json-structure harms overall performance. We027
open-source our code and annotations at anony-028
mous URL.029

1 Introduction030

Using the in-build world- and commonsense-031

knowledge1 of large language models (LLMs),032

such as GPT-3, Mixtral, Gemini (Brown et al.,033

2020; Jiang et al., 2024; Anil et al., 2023) to per-034

form interactive reasoning tasks has become a fron-035

tier in AI research, with “AI Agents” now able to036

solve a range of multi-modal complex tasks (Du-037

rante et al., 2024). These range from solving (sim-038

ulated) robotics tasks (Puig et al., 2018; Shridhar039

1Commonsense- and world- knowledge as explored by
Lauscher et al. (2020) for example.

et al., 2021) and digital tasks such as online shop- 040

ping (Yao et al., 2023a) and navigating operating 041

systems (Liu et al., 2023), to playing a variety of 042

games (Côté et al., 2019; Liu et al., 2023). 043

While LLMs are increasingly successful in solv- 044

ing AI agent tasks, Li et al. (2023b) show that 045

LLMs struggle with long range understanding and 046

Coelho et al. (2024) show that LLMs often focus on 047

the beginning of the textual history, further ampli- 048

fying the problem. Existing efforts to address these 049

issues are resource intensive, Wu et al. (2024) re- 050

quired human expert annotations of rules, Sun et al. 051

(2023) a code execution environment with care- 052

fully crafted code-based prompts, Fu et al. (2024) 053

use additional training data together with retrieval 054

augmented generation (RAG) to help the AI agent. 055

To overcome these challenges, we introduce 056

“StateAct” a novel LLM agent based on few-shot 057

in-context-learning that tracks the goal by ‘remind- 058

ing’ the agent of the goal and explicitly keeps track 059

of the agent’s state (such as location and inventory). 060

We also utilise ‘chain-of-thought’ (i.e. explicit rea- 061

soning (Wei et al., 2023)) as an optional addition. 062

At the core of the method lies a simple annota- 063

tion with goal-, state- and reasoning- traces of the 064

few-shot examples, that we call ‘chain-of-states’. 065

Our method establishes a new state-of-the-art 066

for Alfworld (Shridhar et al., 2021) for few-shot in- 067

context-learning based methods, outperforming the 068

previous best method by 14% and even outperforms 069

methods that use external tools by 2.5%. Further- 070

more, while our method does not require additional 071

data or external tools and only minimal and easy 072

human annotations, we perform on part with the 073

current state-of-the-art that is much more resource 074

intensive and requires additional data and expert hu- 075

man annotations. Comparing to in-context-learning 076

methods, we also demonstrate that our method is 077

both more efficient in terms of number of steps 078

to solve a task and is able to solve longer-horizon 079

tasks, validating the hypothesis that explicit state- 080

1



tracking and goal-tracking help with solving longer081

horizon reasoning and planning tasks.082

2 Background083

AI agents have historically used reinforcement084

learning (RL) to solve tasks (Sutton and Barto,085

2018). With the dawn of LLMs works such as086

Li et al. (2022); Nottingham et al. (2023) combined087

LLMs and RL and trained additional policies or088

value functions to make predictions.089

2.1 In-context-learning approaches090

Huang et al. (2022a,b); Singh et al. (2022) were091

among the first to use LLMs directly to act in an in-092

teractive environment, their method produces agent093

actions as output after receiving environment ob-094

servations as input.095

ReAct (Yao et al., 2023b) took this work further096

by combining ‘acting‘ (Huang et al., 2022a) and097

‘chain-of-thought‘ (Wei et al., 2023). ReAct estab-098

lishes state-of-the-art for in-context-learning only099

based approaches and while it is a very scalable100

method, the performance (i.e. success rate) is still101

limited.102

ExpeL (Zhao et al., 2023) uses additional train-103

ing data to generate ‘insights’ and ‘success trajec-104

tories’ during training. At inference time they look-105

up the closest ‘success trajectories’ as few-shot106

examples to the agent (as opposed to fixed few-107

shot examples that we use) and augment them with108

these ‘insights’ to perform the final inference. They109

achieve 59% on Alfworld using retrieved ‘success110

trajectories’ (as few shot examples) + ‘insights’ and111

50% using the same few-shot examples as ReAct +112

‘insights’.113

2.1.1 In-context-learning and additional tools114

The current state-of-the-art for in-context-learning115

based approaches in combination with additional116

tools is AdaPlanner (Sun et al., 2023). They intro-117

duce a code-based prompt (Li et al., 2023a) and use118

code-execution as an additional tool to execute the119

LLM generations to feed them back into the next120

prompt. The short-coming of Adaplanner is that it121

requires very complex human crafted prompts that122

are hard to scale to new environments as well as123

the additional step of requiring code-execution.124

2.2 State tracking in LLM-based agents125

Concurrent work to ours, AutoGuide (Fu et al.,126

2024), uses ReAct as the base agent and addi-127

tional training data to create ‘state-aware’ text-128

based guidelines for the LLM-agent, they then use 129

a type of retrieval augmented generation (RAG) 130

process to guide the decision making process. They 131

embed the current observation as a summary (this 132

is what they call ‘state-aware’) and use a LLM 133

to ‘look up’ the relevant ‘state-aware’ guideline, 134

which is then fed into a final LLM to generate an 135

action. Using training data and LLM-based RAG 136

they achieve 79.1% on top of a ReAct agent on Alf- 137

world. Their training and RAG approach could be 138

used complimentary to our StateAct LLM agent2. 139

Chen et al. (2024) propose state-tracking as a 140

way to help the agent solve the task, without train- 141

ing data. Their method differs to ours two-fold. 142

Firstly, they employ a complex sequence of com- 143

ponents working together (an LLM-based attention 144

over the observations, a LLM-based compilation 145

of a complex state and finally a prediction of a 146

program). Secondly, their system involves execu- 147

tion of actual programs. Our method on the hand 148

requires a straight-forward extension of ‘chain-of- 149

thought’ and uses a single LLM call to produce 150

the state, thought and action and we do not require 151

program execution. 152

2.2.1 Fine-tuning approaches 153

Previous fine-tuning approaches did not signifi- 154

cantly enhance performance (Zhou et al., 2024; 155

Yao et al., 2023b; Shridhar et al., 2021). A con- 156

current work, however, ActRe (Yang et al., 2024b) 157

achieves 83% by fine-tuning gpt-3.5-1106 on addi- 158

tional training data. 159

2.3 “Multi-Agent Conversation” approaches 160

A new trend is to use multiple LLMs concurrently 161

to ‘chat’ to one another to produce a result. A 162

recent work in this direction by (Wu et al., 2023) 163

achieves 67% on Alfworld. 164

2.4 Joined rule and LLM based agents 165

StateFlow (Wu et al., 2024) uses Finite State Ma- 166

chines (FSMs) combined with LLMs to solve Alf- 167

world. These FSMs are human-expert crafted 168

states, transitions and rule-based heuristics, where 169

the LLM is asked to perform limited tasks in each 170

of the given states. While their performance is 82% 171

on Alfworld, we believe this result is more compa- 172

rable to a rule-based ‘experts’ than an LLM-based 173

agent (notably close to 100% can be achieved on 174

2The cost of using RAG at every generation step could be
significantly higher than our method, however.
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(a) (b)

Figure 1: StateAct interacts with the environment di-
rectly, without additional tools or resources (a). A skele-
ton of the StateAct prompt (b).

Alfworld using hand-crafted ‘experts’ (Shridhar175

et al., 2021)).176

2.5 Approaches with multiple trials177

Works such as Reflexion (Shinn et al., 2023) or178

work by Sun et al. (2023); Yang et al. (2024a) are179

methods that perform several evaluations on the180

same test-environments and perform learning loops181

(during evaluation) on these test-set environments182

to improve the score. While the score necessarily183

goes up (as only the failed environments are re-run)184

we do not dive into this, as this does not compare to185

the actual agent performance and ‘reflection‘ can186

be used on top of most LLM-based agents (e.g.187

Reflexion uses ReAct as the base agent).188

3 Method189

StateAct is an LLM-based AI agent that works on190

top of pre-trained large language models. StateAct191

takes the textual ‘observation’ from the environ-192

ment and after a single call to the pre-trained LLM193

returns the ‘action’ back to the environment (with-194

out the use of additional tools or resources), see195

Figure 1a.196

StateAct utilises in-context-learning (Brown197

et al., 2020; Wei et al., 2023) to make the agent198

interact with the environment. At the core of the199

approach is a prompt that consists of few-shot ex-200

Figure 2: An example of how StateAct is working. The
depicted traces are from the Alfworld environment.

amples of successful ‘interaction traces’ as well as 201

the current ‘interaction trace’ up to the current step 202

in the environment, see Figure 1b. An ‘interaction 203

trace’ consists of alternating ‘observations’ from 204

the environment and desired (or actual) ‘outputs’ 205

from the LLM. In the case of StateAct the LLM is 206

tasked to generate the ‘goal’, ‘state’, ‘thought’ and 207

‘action’. The ‘action’ is then extracted and passed 208

to the environment to produce the next observation, 209

see Figure 2. For example a sample of the trace for 210

step n in Alfworld: 211

Observation n: 212

On the countertop 1, you see a tomato 1. 213

LLM Output n: 214

>Goal: Put a clean tomato in fridge 215

Current Location: countertop 1 216

Current Inventory: None 217

Thought: I find the tomato, now I need to 218

take it. 219

Action: take tomato 1 220

In the above example the agent produces the 221

action ‘take tomato 1’, in response to the ob- 222

servation ‘On the countertop 1, you see a 223

tomato 1’. 224

3.1 Goal-reminders and state- tracking using 225

LLMs 226

In order to make StateAct more precise we intro- 227

duce simple notation. By denoting π as the policy 228
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of an AI agent, in the standard case at time step t229

the policy predicts action at, given the history of230

observations and actions [ot, at−1, ..., a0, o0].231

π(at|ot, at−1, ..., a0, o0) (1)232

Where at is the action produced by the agent at233

step t and ot is the observation produced by the234

environment at step t after receiving action at as235

input. Usually, the first observation o0 also contains236

the ‘goal’ description for the given environment.237

For our case we need to enhance the policy to238

incorporate the ‘state’. Similar to previous work239

(Yao et al., 2023b) we introduce the context vec-240

tor, ct. The context vector contains the action, as241

well as the other additional predictions of the agent,242

i.e. ct = (g0, st, rt, at). Where g0 is the goal243

and always remains the same (for a given envi-244

ronment) and uses the goal extracted from o0, st245

represents the predicted state at time step t, rt rep-246

resents ‘chain-of-thought’ style ‘reasoning’ at time247

step t, and at represents the action at time step t,248

as before. The new policy π then becomes:249

πcontextual(ct|ot, ct−1, ..., c0, o0) (2)250

In our case the LLM acts as πcontextual and pro-251

duces the context vector at every time step.252

4 Experimental setup253

Our aim is to study long-range acting, plan-254

ning and reasoning capabilities of LLM-based255

agents. To achieve this, in line with previous256

work, we turn to simulated environments as an257

evaluation framework and to API-based state-of-258

the-art large language models. Specifically, we259

use Alfworld (Shridhar et al., 2021), a household260

robotics environment, and Webshop (Yao et al.,261

2023a), an online shopping environment, as sim-262

ulated environments. As LLM we use OpenAI’s3263

gpt-3.5-turbo-1106.264

4.1 Alfworld265

Alfworld (Shridhar et al., 2021) is based on a 3D,266

visual, household robotics environment called Al-267

fred (Shridhar et al., 2020), which was translated268

into a text-based environment for ease of use for269

language based AI models, see Figure 3. Alfworld270

has a total of 135 test-set examples and six environ-271

ment types. It features long-time horizons, partial272

observability, an out-of-distribution evaluation set273

3https://openai.com, last accessed June 2024.

Figure 3: An example textual interaction in Alfworld
(right) and corresponding 3D rendering (left).

and text-based interactions. Alfworld simulates a 274

household environment with a household assistant 275

robot tasked with solving problems, e.g. clean 276

an apple and put it on a table. The robot 277

(or agent) then needs to perform a series of ‘high- 278

level’ operations to accomplish the tasks, e.g. ‘go 279

to fridge 1’, ‘open fridge 1’. At every step 280

the environment provides a textual observation or 281

feedback that the command has failed, e.g. ‘You 282

open the fridge 1’, ‘You see apple 1’. The 283

underlying text engine is based on Textworld (Côté 284

et al., 2019). See Appendix A for a complete list 285

of commands and details on environments. 286

4.1.1 Alfworld correction 287

In our research we identified that Alfworld has 288

a specific syntactic feature for the put command, 289

namely put <object> in/on <place>, where 290

“in/on” needs to be written exactly this way and 291

using only “in” or only “on” produces a failed com- 292

mand. We observed this issue with LLMs on this 293

environment and we propose a simple fix for it. 294

We map: 1. “put <object> in <place>” and 2. 295

“put <object> on <place>” to the command 296

accepted by Alfworld, namely “put <object> 297

in/on <place>”. 298

Methods such as AdaPlanner (Sun et al., 2023) 299

have avoided this issue because they use code- 300

based prompts and regex parsers. However, meth- 301

ods such as ReAct (Yao et al., 2023b) and ExpeL 302

(Zhao et al., 2023) have been affected, lowering 303

their potential performance. In our work, we also 304

report the results for ReAct using corrections. 305

4

https://openai.com


Figure 4: An example textual interaction in Webshop
(right) and corresponding e-commerce website render-
ing (left).

4.2 Webshop306

Webshop (Yao et al., 2023a) is a simulation of an307

online shopping experience. Given a task, e.g. “I308

want a blue water-proof winter jacket,309

less than $100”, the agent needs to search a310

product catalogue, browse through the search re-311

sults and select the most fitting product, select the312

attributes, e.g. colour, size, and then buy the313

product. In line with previous work we use the text-314

based version of Webshop, where all descriptions315

of the website are given in text form, see Figure316

4. Webshop features a realistic large-scale product317

catalogue, a search engine and very varied product318

attributes depending on the category of product.319

See Appendix B for more details. In total the test320

set consists of 500 examples and each one is of the321

type “search and buy a product”. Overall, Webshop322

has a maximum of 15 steps and two commands: 1.323

search[<query>], 2. click[<button>].324

4.3 In context learning325

Since ReAct (Yao et al., 2023b) forms the under-326

lying agent for many current (Zhao et al., 2023)327

and state-of-the-art approaches (Fu et al., 2024),328

we use the same few-shot ‘interaction traces’ as Re-329

Act. The main reason is to have a fair comparison330

and isolate additional effect - such as performance331

change from different in-context examples.332

In total, Alfworld has six types of tasks and Re-333

Act uses two in-context examples per task type to334

prompt the language models. On average each Re-335

Act example ranges from 352 words to 591 words336

(590 token to 935 tokens). For our study we reuse337

the observations, thoughts and actions and annotate338

these examples further with goal ‘reminders’ and339

state tracking, which results in a range from 484 to340

Method Version AW WS
ReAct gpt-3.5-turbo-1106 40.7 18.2
ReAct gpt-3.5-turbo-0125 30.37 14.6

Table 1: ReAct success rate on Alfworld (AW) and
Webshop (WS) using available gpt-3.5 models.

911 words (807 tokens to 1458 tokens) per example. 341

During our annotation we discovered minor errors 342

in the ReAct prompts and fixed them as well. We 343

release all our annotations with our code release. 344

In comparison, AdaPlanner (Sun et al., 2023), uses 345

a different code based approach and the prompt has 346

1104 words (2015 tokens) on average. 347

We use the two-shot examples from ReAct for 348

Alfworld and the one-shot example from ReAct for 349

Webshop for all our experiments. 350

4.4 Models 351

In line with previous work we focus our atten- 352

tion on the API based LLMs to compare per- 353

formance. Many OpenAI models have become 354

deprecated. Notably, all models from ReAct 355

and AdaPlanner(Sun et al., 2023) davinci-002, 356

gpt-3.5-turbo-0301 and gpt-3.5-turbo-0613 357

are deprecated now. Therefore, we re-implemented 358

ReAct and ran the experiments to determine the 359

most suitable model, see Table 1. We establish 360

that gpt-3.5-turbo-1106 is the best performing 361

(from the ones that remain available) on ReAct 362

and we therefore chose this one. Furthermore, we 363

did not opt for GPT-4 level models as these are 364

prohibitively expensive4. Furthermore, we use tem- 365

perature 0 for all experiments and sample only the 366

top 1 response, see Appendix C the exact settings. 367

4.5 Metrics 368

In terms of metrics we use the pre-defined met- 369

rics of Alfworld and Webshop, namely success 370

rate (SR). Success is a binary metric per each en- 371

vironment in the respective test sets (135 and 500 372

respectively). Success in Alfworld means the agent 373

has successfully complete the whole task. In Web- 374

shop it means the agent has bought an item that 375

has a hundred percent match with the desired item 376

based on a partially hidden list of attributes of the 377

shopping item (e.g. the colour, size, price, etc.). 378

4A single evaluation run on alfworld costs approx. $8
using gpt-3.5 and ReAct, gpt-4 would cost 10+ times more.
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5 Results379

5.1 Alfworld380

For Alfworld we present the results for ReAct, Ada-381

Planner with and without code execution and State-382

Act (ours), which consists of goal + state +383

thought + action. We also show StateAct with-384

out each of the components (i.e. without goal, state385

and thought). Interestingly we find, contrary to386

previous findings, that ‘thought’ or ‘reasoning’ ac-387

tually sometimes harms the performance.388

In Table 2, we can see that StateAct with all389

goal+state+thought and the correction performs390

the best. It outperforms ReAct with correction by391

around 13 points (using the same GPT model for392

ReAct) and by around 9 points (using the better393

model for ReAct). StateAct also outperforms Re-394

Act by 22 points when corrections are not used.395

Furthermore, StateAct even outperforms AdaPlan-396

ner by 2.48 points, an approach that uses regex for397

command mapping (similar to our correction) and398

code-execution.399

Perhaps the most surprising finding is that the400

simple correction described in Section 4.1.1 leads401

to a 16 and 23 point jump for ReAct and a 27 point402

jump for StateAct. This indicates that the model403

generally performs very well, however, struggles404

with minute differences in domain specific syntax.405

5.2 Webshop406

For Webshop we present results for ReAct and407

StateAct (ours). Similarly, to Alfworld we also408

present the results of StateAct without each of goal,409

state and thought. See Table 3. Interestingly, we410

see that removing thought produces the highest411

results and outperforms ReAct by 10 points. Our412

hypothesis is that domain specific syntax, which is413

more prevalent in Webshop than Alfworld, conflicts414

with using verbose thoughts.415

5.3 Summary of results416

In conclusion we found that our simple goal-417

reminding and state tracking approach that purely418

relies on in-context learning outperforms previ-419

ous in-context learning approaches by more al-420

most 10 points and even outperforms leading ap-421

proaches that rely on code-execution. Interestingly,422

we found that the approaches are quite sensitive to423

domain specific syntax and that when this is the424

case ‘thoughts’ that are verbose can harm perfor-425

mance.426

Method GPT-3.5 SR %
Baselines w/o corrections
ReAct 0301* 51.9
ReAct 1106 40.7
ReAct 0125 30.37
ReAct (joined***) 1106 36.30
Results w/o corrections
StateAct (ours) 1106 50.37
- w/o thought 1106 62.96
- w/o goal 1106 42.96
- w/o state 1106 44.44
Baselines with corrections
ReAct + corr. 0301* 68.15
ReAct + corr. 1106 63.70
AdaPlanner No-Exec** 0301* 46.66
AdaPlanner 0301* 75.56
Results with corrections
StateAct + corr. (ours) 1106 77.04
- w/o thought 1106 64.44
- w/o goal 1106 74.04
- w/o state 1106 64.44

Table 2: Success Rate (SR) on the 135 test-set examples
from Alfworld. *gpt-3.5-0301 is scheduled to be dep-
recated in June 2024. **No-Exec means AdaPlanner
without code execution. ***joined means that thought
+ action are produced at every turn. AdaPlanner re-
sults are from (Sun et al., 2023). All other results are
‘single run’.

6 Analysis and Ablations 427

In the results section we discovered that our meth- 428

ods perform better than previous state-of-the-art. 429

This answers the question that we can perform bet- 430

ter with in-context learning without resorting to 431

additional tools, data or bigger models. In this 432

section we want to analyse our results further and 433

particularly also answer if our second hypothesis 434

that goal ‘reminding’ and state tracking help with 435

long-range reasoning actually holds. For all abla- 436

tion studies we focus on Alfworld as it has two 437

favourable properties over Webshop. Firstly, Alf- 438

world has a longer time horizon (50 steps vs. 15 in 439

Webshop), with tasks taking an average of less than 440

10 steps in Webshop and around 20 to 30 steps in 441

Alfworld. Secondly, Alfworld has much less do- 442

main specific syntax and is purely text based, while 443

Webshop has a more specific syntax to follow. 444
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Method GPT-3.5 Success Rate %
Baselines
Rule-based* N/A 9.60
RL* N/A 17.60
ReAct 1106 17.80
Results
StateAct (ours) 1106 17.00
- w/o thought 1106 27.80
- w/o goal 1106 20.40
- w/o state 1106 21.00

Table 3: Success Rate (SR) on the 500 test-set examples
from Webshop. *results taken from (Yao et al., 2023a).
Results are ‘single run’, except for StateAct without
thought and ReAct, where we ran the experiment twice
and reported the average.

6.1 Do goal reminders help with long range445

tasks?446

For this purpose we compare the original ReAct447

(thought+action) with just adding the goal in, i.e.448

StateAct (goal + thought + action). In Figure 5 we449

can see that while the performance of both ReAct450

and StateAct goes down as there are more num-451

ber of steps the goal tracking has a significantly452

better relative performance as the number of steps453

increase.454

To verify that this actually means that goal track-455

ing helps with performance, as opposed to just in-456

creasing the number of steps it takes to solve a task,457

we calculate the average number of steps for Re-458

Act (ignoring empty ‘thought’ turns, as otherwise459

ReAct would have even more steps) and StateAct.460

Table 4 clearly show that ReAct with an average of461

38.84 steps to solve an environemnt is the least ef-462

ficient and StateAct with an average of 28.96 steps463

to solve an environment is the most efficient. This464

shows that not only does goal tracking help with465

longer range tasks, it also helped with efficiency by466

shortening the tasks.467

6.2 What effects does state-tracking have?468

We also analyse whether state tracking helps with469

long-range reasoning and efficiency. We compared470

the full StateAct against StateAct without state-471

tracking as well as ReAct (thought + action) against472

StateAct with state-tracking added (state + thought473

+ action). In Figure 6 we see that state tracking also474

helps with long-range reasoning. In fact, we can475

see that reasoning alone is unable to solve tasks476

longer than 40 steps, while with state tracking even477

longer-range tasks can be solved than with goal-478

Figure 5: Goal vs. No Goal, on the 135 test exam-
ples from Alfworld, using gpt-3.5-turbo-1106 without
correction.

Figure 6: State vs. No State, on the 135 test examples
from Alfworld, using gpt-3.5-turbo-1106 with correc-
tion.

tracking alone. Also, looking at Table 4 we see that 479

state-tracking makes the model the most efficient5. 480

Therefore we find that explicit state-tracking even 481

further helps with long-range tasks and helps the 482

agent solve the tasks more efficiently than without. 483

6.3 Does the model perform actual state 484

tracking? 485

We ask ourselves the question if the model is actu- 486

ally performing state-tracking. For that purpose we 487

look at Alfworld and construct a self-verification al- 488

gorithm that is able to track the state heuristically6 489

based on the actions the agent takes. For example 490

if the agent produces the action go to fridge 1 491

5In terms of cost we found that despite our method using
a twice longer prompt, our cost remains similar at around $8
for the full Alfworld run, since we solve tasks more efficiently
and use fewer number of steps.

6On our few-shot prompts it achieves 100% correctness.
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Method Avg. Steps ↓
ReAct 38.84
StateAct (goal+thought+action) 31.19
StateAct (full) 28.96
ReAct with corr. 31.49
StateAct with corr. 19.11
- w/o thought 23.76
- w/o goal 20.09

Table 4: Average number of Steps (Avg. Steps) [lower
is better] on the 135 test-set examples from Alfworld.
gpt-3.5-1106 for all methods.

Figure 7: State tracking accuracy for StateAct on 135
test examples of Alfworld using gpt-3.5-1106.

and the environment accepts this action we update492

the state with current location: fridge 1. We493

compare the ‘gold’ state against the predicted state.494

Figure 7 shows that StateAct in fact does correct495

state-tracking 88% of the time. We also observe496

that thoughts and goals help the state tracking.497

6.4 Does json structure help with498

performance?499

Since we found that domain specific syntax harms500

performance, we wondered whether adding a struc-501

tured format like json would help. For this purpose,502

we re-ran StateAct on Alfworld, but translated the503

state into a json format, see Appendix D for more504

details. Surprisingly, we found that the json format505

harms performance significantly, see Table 5. How-506

ever, we also see that corrections help the the json507

format less, indicating that json helps with syntax,508

but harms performance.509

7 Conclusion and future work510

We propose a novel method StateAct, using511

our ‘chain-of-states’, based on in-context-learning512

Method SR% SR (+json)%
StateAct 50.37 45.19 (-5.2)
StateAct w/ corr. 77.04 58.52(-18.5)

Table 5: Success Rate (SR) on the 135 test examples
from Alfworld. Showing no-json vs. json, gpt-3.5-1106.

alone and establish a new state-of-the-art for agents 513

that do not perform training, even against methods 514

that use code-execution. The method outperforms 515

the previous state-of-the-art, that uses in-context- 516

learning alone, between 9% and 20% given differ- 517

ent models and tasks and outperform in-context- 518

learning with tools (code-execution) by 3%. We 519

also show that explicit state-tracking and goal re- 520

minders make the model more efficient as well as 521

significantly help with longer range tasks. 522

We found that ‘thoughts’ or explicit reasoning 523

do not always help performance. It would be very 524

interesting to systematise ‘thought’ and ‘states’ and 525

understand what contributes positively and why. 526

Also, inspired by the good results of StateAct, it is 527

interesting to see what other improvements can be 528

done without resorting to training, larger model or 529

external tools. Finally, problems related to domain 530

specific syntax are also an interesting avenue of 531

future work. 532

8 Ethical Considerations 533

8.1 Computational footprint 534

Running many of the experiments presented in 535

this paper can have a significant computational 536

footprint. We should consider the environment 537

and financial resources for reproduciblity of our 538

work. We aimed to address this concern by using 539

gpt-3.5-turbo level models, reporting costs and 540

minimising the cost of our method. 541

8.2 Hallucinations in LLMs 542

As LLM-based agents become more powerful and 543

therefore more pervasive in our daily lives ‘hal- 544

lucinations’ of LLMs can be very harmful (Wei 545

et al., 2024). We hope that explicit state-tracking 546

presented in this work can also lead to future work 547

that can reduce ‘hallucinations.’ 548
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9 Limitations549

9.1 Languages and evaluation benchmarks550

We evaluated our method only in the English lan-551

guage and on two evaluation benchmarks. While552

we do not expect major changes in other lan-553

guages, this is something that should be investi-554

gated. Furthermore, performance on other bench-555

marks should be evaluated as well.556

9.2 Reasoning traces rely on human557

judgement558

Our prompts require human annotations, as such559

there is a natural bias present. This can have both560

task-performance implications as well as ethical561

implications.562
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A Alfworld742

A.1 Environment Types743

Alfworld has six different environment types: 1.744

clean, 2. heat, 3. cool, 4. examine, 5. put, 6.745

puttwo.746

The ‘clean’ task, e.g. Task: Put a clean747

apple on table, requires the agent to first find748

the apple, then clean it (in the sinkbasin) and then749

put it on a table.750

The ‘heat’ task, e.g. Task: Put a hot pie751

on table, requires the agent to first find the pie,752

then heat it (on the stoveburner) and then put it on753

a table.754

The ‘cool’ task, e.g. Task: Put a cool tomato755

on table, requires the agent to first find the tomato,756

then cool it (with the fridge) and then put it on a757

table.758

The ‘examine’ task, e.g. Task: Examine the759

mug with the desklamp, requires the agent to760

first find the mug, then find the desklamp, and then761

use the desklamp.762

The ‘put’ task, e.g. Task: Find some apple763

and put it in sidetable, requires the agent to764

first find an apple, and then put it on the sidetable.765

The ‘puttwo’ task, e.g. Task: Put two766

cellphone in sofa, requires the agent to first767

find one cellphone, and then put it on the sofa, and768

then to find the second one and put it on the sofa.769

A.2 Action Types770

Alfworld has the following valid actions: 1. go to,771

2. open, 3. close, 4. put, 5. take, 6. cool, 7. heat, 8.772

use.773

go to <place>774

Example: go to table 1775

776

open <object>777

Example: open door 1778

779

close <object>780

Example: close door 1781

782

put <object> in/on <place>783

Example: put apple 1 in/on table 1784

785

take <object> from <place>786

Example: take apple 1 from table 1787

788

cool <object> with <place>789

Example: cool apple 1 with fridge 1790

791

heat <object> with <place> 792

Example: heat apple 1 with fire 1 793

794

use <object> 795

Example: use desklamp 1 796

A.3 License 797

Alfworld has the permissible MIT license, we used 798

it in line with the license. 799

B Webshop 800

B.1 Commands and environment 801

Webshop has one environment type: ‘search & 802

buy’, as well as two commands: 1. search, 2. click. 803

click[<button>] 804

Example: click[< Back to Search] 805

806

search[<query>] 807

Example: search[interesting book] 808

B.2 Prodcuts and attributes 809

Webshop has over 1 million real-world prod- 810

ucts across 5 main categories (fashion, makeup, 811

electronics, furniture, and food) and 113 sub- 812

categories. 813

B.3 License 814

Webshop has the permissible Princeton license, we 815

used it in line with the license. 816

C Code snippet to call OpenAI / GPT-3.5 817

client = openai.OpenAI( 818
# Defaults to os.environ.get(" 819

OPENAI_API_KEY ") 820
# api_key=OPENAI_KEY , 821

) 822
823

full_prompt = [{ 824
"role": "user", 825
"content ": prompt 826

}] 827
828

chat_completion = client.chat. 829
completions.create( 830
model="gpt -3.5-turbo -1106" , 831
messages=full_prompt , 832
temperature =0.0, 833
stop = ["\n\n"] 834

) 835

A prompt is given in Appendix E. 836

D StateAct Json Format 837

We translate the text based StateAct prompt: 838
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>goal: put a hot apple in fridge839
current location: starting location840
current inventory: None841
thought: To solve the task , I need to842

find and take an apple , then heat it843
with microwave , then put it in844

fridge. First I need to find an845
apple. An apple is more likely to846
appear in fridge (1), diningtable847
(1), coffeetable (1), drawer (1),848
cabinet (1-13), garbagecan (1). I849
can check one by one , starting with850
fridge 1.851

action: go to fridge 1852

Into the following json format:853

>{"goal": "put a hot apple in fridge",854
"current_location ": "starting location",855
"current_inventory ": None ,856
"thought ": "To solve the task , I need to857

find and take an apple , then heat858
it with microwave , then put it in859
fridge. First I need to find an860
apple. An apple is more likely to861
appear in fridge (1), diningtable862
(1), coffeetable (1), drawer (1),863
cabinet (1-13), garbagecan (1). I864
can check one by one , starting with865
fridge 1."866

"action ": "go to fridge 1"867
}868

E StateAct Prompts869

E.1 Example Alfworld prompt for the ‘heat’870

task871

Interact with a household to solve a872
task.873

874
875

Here are 2 examples:876
877

You are in the middle of a room. Looking878
quickly around you , you see a879

cabinet 13, a cabinet 12, a cabinet880
11, a cabinet 10, a cabinet 9, a881
cabinet 8, a cabinet 7, a cabinet 6,882
a cabinet 5, a cabinet 4, a cabinet883
3, a cabinet 2, a cabinet 1, a884

coffeemachine 1, a countertop 1, a885
diningtable 1, a drawer 1, a fridge886
1, a garbagecan 1, a microwave 1, a887
shelf 3, a shelf 2, a shelf 1, a888
sinkbasin 1, a stoveburner 4, a889
stoveburner 3, a stoveburner 2, a890
stoveburner 1, and a toaster 1.891

Your task is to: put a hot apple in892
fridge.893

894
>goal: put a hot apple in fridge895
current location: starting location896
current inventory: None897
thought: To solve the task , I need to898

find and take an apple , then heat it899
with microwave , then put it in900

fridge. First I need to find an901
apple. An apple is more likely to902

appear in fridge (1), diningtable 903
(1), coffeetable (1), drawer (1), 904
cabinet (1-13), garbagecan (1). I 905
can check one by one , starting with 906
fridge 1. 907

action: go to fridge 1 908
909

The fridge 1 is closed. 910
911

>goal: put a hot apple in fridge 912
current location: fridge 1 913
current inventory: None 914
thought: None 915
action: open fridge 1 916

917
You open the fridge 1. The fridge 1 is 918

open. In it, you see a cup 1, and a 919
egg 1. 920

921
>goal: put a hot apple in fridge 922
current location: fridge 1 923
current inventory: None 924
thought: None 925
action: go to diningtable 1 926

927
On the diningtable 1, you see a apple 1, 928

a bread 1, a fork 3, a fork 2, a 929
fork 1, a mug 2, a peppershaker 3, a 930
plate 2, a pot 1, a soapbottle 3, a 931
spatula 1, a spoon 3, a spoon 2, a 932

spoon 1, a winebottle 3, and a 933
winebottle 2. 934

935
>goal: put a hot apple in fridge 936
current location: diningtable 1 937
current inventory: None 938
thought: Now I find an apple (1). Next , 939

I need to take it. 940
action: take apple 1 from diningtable 1 941

942
You pick up the apple 1 from the 943

diningtable 1. 944
945

>goal: put a hot apple in fridge 946
current location: diningtable 1 947
current inventory: apple 1 948
thought: Now I take an apple (1). Next , 949

I need to go to a microwave (1) and 950
heat it. 951

action: go to microwave 1 952
953

The microwave 1 is closed. 954
955

>goal: put a hot apple in fridge 956
current location: microwave 1 957
current inventory: apple 1 958
thought: None 959
action: heat apple 1 with microwave 1 960

961
You heat the apple 1 using the microwave 962

1. 963
964

>goal: put a hot apple in fridge 965
current location: microwave 1 966
current inventory: apple 1 967
thought: Now I heat an apple (1). Next , 968

I need to put it in/on fridge 1. 969
action: go to fridge 1 970

971
The fridge 1 is open. In it, you see a 972
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cup 1, and a egg 1.973
974

>goal: put a hot apple in fridge975
current location: fridge 1976
current inventory: apple 1977
thought: None978
action: put apple 1 in/on fridge 1979

980
981
982

You are in the middle of a room. Looking983
quickly around you , you see a984

cabinet 10, a cabinet 9, a cabinet985
8, a cabinet 7, a cabinet 6, a986
cabinet 5, a cabinet 4, a cabinet 3,987
a cabinet 2, a cabinet 1, a988

coffeemachine 1, a countertop 3, a989
countertop 2, a countertop 1, a990
diningtable 1, a drawer 6, a drawer991
5, a drawer 4, a drawer 3, a drawer992
2, a drawer 1, a fridge 1, a993
garbagecan 1, a microwave 1, a994
sinkbasin 1, a stoveburner 4, a995
stoveburner 3, a stoveburner 2, a996
stoveburner 1, and a toaster 1.997

Your task is to: heat some egg and put998
it in diningtable.999

1000
>goal: heat some egg and put it in1001

diningtable1002
current location: starting location1003
current inventory: None1004
thought: To solve the task , I need to1005

find and take an egg , then heat it1006
with microwave , then put it in1007
diningtable. First I need to find an1008
egg. An egg is more likely to1009

appear in fridge (1), countertop1010
(1-3), diningtable (1), stoveburner1011
(1-4), toaster (1), garbagecan (1),1012
cabinet (1-10). I can check one by1013
one , starting with fridge 1.1014

action: go to fridge 11015
1016

The fridge 1 is closed.1017
1018

>goal: heat some egg and put it in1019
diningtable1020

current location: fridge 11021
current inventory: None1022
thought: None1023
action: open fridge 11024

1025
You open the fridge 1. The fridge 1 is1026

open. In it, you see a lettuce 2, a1027
mug 2, and a potato 3.1028

1029
>goal: heat some egg and put it in1030

diningtable1031
current location: fridge 11032
current inventory: None1033
thought: None1034
action: go to countertop 11035

1036
On the countertop 1, you see a bread 1,1037

a fork 1, and a saltshaker 1.1038
1039

>goal: heat some egg and put it in1040
diningtable1041

current location: countertop 11042

current inventory: None 1043
thought: None 1044
action: go to countertop 2 1045

1046
On the countertop 2, you see nothing. 1047

1048
>goal: heat some egg and put it in 1049

diningtable 1050
current location: countertop 2 1051
current inventory: None 1052
thought: None 1053
action: go to countertop 3 1054

1055
On the countertop 3, you see a bowl 1, a 1056

butterknife 1, a egg 2, a kettle 2, 1057
a plate 1, a sink 1, and a spatula 1058

2. 1059
1060

>goal: heat some egg and put it in 1061
diningtable 1062

current location: countertop 3 1063
current inventory: None 1064
thought: Now I find an egg (2). Next , I 1065

need to take it. 1066
action: take egg 2 from countertop 3 1067

1068
You pick up the egg 2 from the 1069

countertop 3. 1070
1071

>goal: heat some egg and put it in 1072
diningtable 1073

current location: countertop 3 1074
current inventory: egg 2 1075
thought: Now I take an egg (2). Next , I 1076

need go to a microwave (1) and heat 1077
it. 1078

action: go to microwave 1 1079
1080

The microwave 1 is closed. 1081
1082

>goal: heat some egg and put it in 1083
diningtable 1084

current location: microwave 1 1085
current inventory: egg 2 1086
thought: None 1087
action: heat egg 2 with microwave 1 1088

1089
You heat the egg 2 using the microwave 1090

1. 1091
1092

>goal: heat some egg and put it in 1093
diningtable 1094

current location: microwave 1 1095
current inventory: egg 2 1096
thought: Now I heat an egg (2). Next , I 1097

need to put it in/on diningtable 1. 1098
action: go to diningtable 1 1099

1100
On the diningtable 1, you see a apple 2, 1101

a bread 3, a egg 1, a kettle 1, a 1102
knife 1, a mug 1, a papertowelroll 1103
1, a peppershaker 2, a potato 1, a 1104
soapbottle 1, and a spatula 1. 1105

1106
>goal: heat some egg and put it in 1107

diningtable 1108
current location: diningtable 1 1109
current inventory: egg 2 1110
thought: None 1111
action: put egg 2 in/on diningtable 1 1112

13



1113
1114

Here is the task.1115
<CURRENT TASK >1116

E.2 Example Webshop prompt1117

Webshop1118
Instruction:1119
i would like a 3 ounce bottle of bright1120

citrus deodorant for sensitive skin ,1121
and price lower than 50.00 dollars1122

[Search]1123
1124

Goal: Buy a 3 ounce bottle of bright1125
citrus deodorant for sensitive skin ,1126
and price lower than 50.00 dollars1127

Current Location: Search Home Page1128
Current Selection: None1129
Thought: None1130
Action: search [3 ounce bright citrus1131

deodorant sensitive skin]1132
1133

Observation:1134
[Back to Search]1135
Page 1 (Total results: 50)1136
[Next >]1137
[B078GWRC1J]1138
Bright Citrus Deodorant by Earth Mama |1139

Natural and Safe for Sensitive Skin ,1140
Pregnancy and Breastfeeding ,1141

Contains Organic Calendula 3-Ounce1142
$10.991143
[B078GTKVXY]1144
Ginger Fresh Deodorant by Earth Mama |1145

Natural and Safe for Sensitive Skin ,1146
Pregnancy and Breastfeeding ,1147

Contains Organic Calendula 3-Ounce1148
$10.991149
[B08KBVJ4XN]1150
Barrel and Oak - Aluminum -Free Deodorant1151

, Deodorant for Men , Essential Oil -1152
Based Scent , 24-Hour Odor Protection1153
, Cedar & Patchouli Blend , Gentle on1154
Sensitive Skin (Mountain Sage , 2.71155

oz, 2-Pack)1156
$15.951157

1158
Goal: Buy a 3 ounce bottle of bright1159

citrus deodorant for sensitive skin ,1160
and price lower than 50.00 dollars1161

Current Location: Search Results Page ,1162
page 11163

Current Selection: None1164
Thought: B078GWRC1J and B078GTKVXY are1165

bright citrus deodorant less then 501166
dollars. I can check B078GWRC1J1167

first.1168
Action: click[B078GWRC1J]1169

1170
Observation:1171
[Back to Search]1172
[< Prev]1173
scent [assorted scents ][ bright citrus ][1174

calming lavender ][ ginger fresh][1175
simply non -scents]1176

size [travel set (4-pack)][3 ounce (pack1177
of 1)][3-ounce (2-pack)]1178

Bright Citrus Deodorant by Earth Mama |1179
Natural and Safe for Sensitive Skin ,1180

Pregnancy and Breastfeeding , 1181
Contains Organic Calendula 3-Ounce 1182

Price: $10.99 1183
Rating: N.A. 1184
[Description] 1185
[Features] 1186
[Reviews] 1187
[Buy Now] 1188

1189
Goal: Buy a 3 ounce bottle of bright 1190

citrus deodorant for sensitive skin , 1191
and price lower than 50.00 dollars 1192

Current Location: Item B078GWRC1J Page 1193
Current Selection: None 1194
Thought: For 3 ounce bottle of bright 1195

citrus deodorant for sensitive skin , 1196
the item has options 'bright citrus 1197

' and '3 ounce (pack of 1)' and 1198
seems good to buy. 1199

Action: click[bright citrus] 1200
1201

Observation: You have clicked bright 1202
citrus. 1203

1204
Goal: Buy a 3 ounce bottle of bright 1205

citrus deodorant for sensitive skin , 1206
and price lower than 50.00 dollars 1207

Current Location: Item B078GWRC1J Page 1208
Current Selection: bright citrus 1209
Thought: None 1210
Action: click[3 ounce (pack of 1)] 1211

1212
Observation: You have clicked 3 ounce ( 1213

pack of 1). 1214
1215

Goal: Buy a 3 ounce bottle of bright 1216
citrus deodorant for sensitive skin , 1217
and price lower than 50.00 dollars 1218

Current Location: Item B078GWRC1J Page 1219
Current Selection: bright citrus , 3 1220

ounce (pack of 1) 1221
Thought: None 1222
Action: click[Buy Now] 1223
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