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ABSTRACT

This paper addresses the challenge of achieving second-order stationary points
(SOSP) in differentially private stochastic non-convex optimization. We identify
two key limitations in the state-of-the-art: (i) inaccurate error rates caused by the
omission of gradient variance in saddle point escape analysis, resulting in inap-
propriate parameter choices and overly optimistic performance estimates, and (ii)
inefficiencies in private SOSP selection via the AboveThreshold algorithm, par-
ticularly in distributed learning settings, where perturbing and sharing Hessian
matrices introduces significant additional noise. To overcome these challenges,
we revisit perturbed stochastic gradient descent (SGD) with Gaussian noise and
propose a new framework that leverages general gradient oracles. This framework
introduces a novel criterion based on model drift distance, ensuring provable sad-
dle point escape and efficient convergence to approximate local minima with low
iteration complexity. Using an adaptive SPIDER as the gradient oracle, we estab-
lish a new DP algorithm that corrects existing error rates. Furthermore, we extend
our approach to a distributed adaptive SPIDER, applying our framework to dis-
tributed learning scenarios and providing the first theoretical results on achieving
SOSP under differential privacy in distributed environments with heterogeneous
data. Finally, we analyze the limitations of the AboveThreshold algorithm for pri-
vate model selection in distributed learning and show that as model dimensions
increase, the selection process introduces additional errors, further demonstrating
the superiority of our proposed framework.

1 INTRODUCTION

Stochastic optimization is one of the most fundamental problems in machine learning and statistics,
with the goal of building models that generalize well to unseen data using only a limited number of
i.i.d. samples drawn from an unknown distribution. As the volume of sensitive data grows, ensuring
privacy during the training process has become a critical concern. This has led to the adoption
of differential privacy (DP) (Dwork et al., 2006)) in stochastic optimization, which provides strong
privacy guarantees while preserving the utility of the learned model.

Over the past decade, significant advances have been made in DP stochastic optimization, partic-
ularly for convex objectives, e.g., (Choquette-Choo et al.| |2024; [Liu & Asil [2024; [Su et al., 2023
2022; Tao et al.l 2022). While convex optimization is relatively well-understood, the non-convex
setting presents additional challenges due to the existence of saddle points. In non-convex optimiza-
tion, most existing DP algorithms focus on achieving convergence to first-order stationary points
(FOSP), where the gradient norm is small (Arora et al., 2023; |[Bassily et al., |2021; Zhou et al.,
2020). However, this criterion is often insufficient, as FOSP can include both local maxima and
saddle points—where saddle points represent highly sub-optimal solutions in many problems, as
shown by [Jain et al.|(2015) and |Sun et al.|(2016). For practical non-convex functions, second-order
stationary points (SOSP)—where the gradient is small and the Hessian is positive semi-definite—are
preferred, as they guarantee convergence to a local minimum.

Due to the importance of achieving SOSP, substantial effort has been devoted to this area, as demon-
strated by works such as |[Fang et al.| (2019), [Jin et al.| (2021), [Daneshmand et al.[ (2018)), Jin et al.
(2017), and |Ge et al.|(2015)). However, few algorithms specifically target this more stringent crite-
rion under the DP framework. The notable exception and current state-of-the-art for achieving SOSP
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under DP is the work of|Liu et al.|(2024)), which proposes adding Gaussian noise, scaled according to
the gradient error, to ensure that the DP-SGD sequence escapes each potential saddle point. Despite
being the state-of-the-art, we identify significant gaps in their utility analysis and error rate guaran-
tees. Specifically, the omission of gradient variance in their saddle point escape analysis results in
incorrect parameter settings and overly optimistic performance estimates (see Section 3).

Beyond these challenges, distributed learning serves as another key motivation for this work, be-
coming increasingly important in modern machine learning, particularly with the rise of large-scale
models that require decentralized systems for efficient training. To date, no existing work has ex-
plored DP non-convex stochastic optimization in distributed settings with the goal of achieving
SOSP. Distributed learning introduces additional challenges, such as data heterogeneity and the
need for privacy-preserving protocols across multiple clients. Moreover, the current state-of-the-
art approach by [Liu et al| (2024) suffers from severe performance degradation when applied to
distributed settings. Their reliance on the AboveThreshold algorithm for private model selection
introduces significant noise when sharing perturbed Hessian matrices across clients, particularly in
high-dimensional scenarios (see detailed discussion in Section[6). This degradation can be attributed
to their learning algorithm, which only guarantees the existence of an SOSP among all model iterates
during the learning process and thus requires additional use of private model selection algorithms.

Our Contributions. To address the gaps mentioned above, we propose a new algorithmic frame-
work and analysis for DP stochastic non-convex optimization that ensures convergence to SOSP.
Our contributions can be summarized as follows:

1. Revisiting Non-Convex Stochastic Optimization Beyond DP: We propose a new perturbed
stochastic gradient descent (PSGD) framework with Gaussian noise for perturbation, utilizing gen-
eral stochastic gradient oracles. This framework serves as a general optimization tool for non-convex
stochastic optimization, applicable beyond the context of DP. In this framework, we introduce a
novel criterion based on model drift distance to determine SOSP, ensuring provable escape from
saddle points and efficient convergence to approximate local minima with low iteration complexity
and high probability.

2. Corrected Error Rates for DP Non-Convex Optimization: By employing an adaptive DP-
SPIDER as the perturbed gradient oracle, we establish corrected error rates for achieving SOSP
under DP in non-convex optimization. Specifically, we adjust the previous state-of-the-art error rate

3 2
from O (11 + (T\/j) 7) to O (11 + (g) 5).
n3 n3

3. Application to Distributed Learning: We extend the adaptive DP-SPIDER framework to dis-
tributed settings. With this new estimator, our algorithm offers an adaptive improvement over the
previous DIFF2 algorithm [Murata & Suzuki| (2023)), which only guarantees convergence to FOSP
under DP. Our approach provides the first DP error rate for attaining SOSP in distributed learning
with heterogeneous data. Additionally, we analyze the limitations of the AboveThreshold algo-
rithm for private model selection in distributed learning scenarios, particularly in high-dimensional
settings. We show that this selection process degrades the error rate guaranteed by the learning
algorithm, highlighting the superiority of our proposed framework.

Due to the space limit, the literature review, technical preliminaries, along with all omitted proofs
are included in the Appendix.

2 PRELIMINARIES

Notations We use || - || to denote the £2 norm and A, (+) to represent the smallest eigenvalue of a
matrix. The notation I; denotes the d-dimensional identity matrix. We use O(:) and () to hide
constants independent of problem parameters, while O(-) and €)(-) additionally hide factors that
depend only polylogarithmically on the problem parameters.

Stochastic Optimization Let f : R? x Z — R be a (potentially non-convex) loss function, where
the input consists of the d-dimensional model parameter z € R? and a data point z € 2.
Assumption 1. We assume that f(+; z) is G-Lipschitz, M-smooth, and p-Hessian Lipschitz. Specif-
ically, for any z € Z and any z, 25 € R?, we have:
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o |f(@152) = f(22;2)] < Gl — 22|,
* [IVf(21;2) = V(25 2)|| < Mlzy — 22,
« V2 f(z152) = V2 f(2252)|| < pllwt — 2]

For a dataset Z C Z, we define its empirical risk function as f(z; Z) = ‘—él > ez f(x;2). If the
data points are sampled i.i.d. from an unknown distribution D, the population risk function of a
model z, denoted F'(x; D), is defined as F(x; D) := E,.p[f(z; z)]. For simplicity, we refer to the
population risk as F'(x) when the distribution D is clear from context.

Assumption 2. Let x* represent the population risk minimizer and F'* the corresponding minimum
risk. We assume max, F'(x) — F* < U for some upper bound U.

Given a dataset D with n i.i.d. samples drawn from D, our goal is to find an a-second-order
stationary point (a-SOSP).

Definition 1 (a-SOSP). An «-SOSP z of the population risk F'(-) satisfies |VF(z)|| < « and
V2F(z) = —/pa -1,

The notion of a-SOSP excludes a-strict saddle points where V2 F () < —+/pa - 14, ensuring con-
vergence to an approximate local minimum (with local maxima considered a special case of saddle
points). Following prior works on finding a-SOSP such as (Liu et al.| [2024; [Jin et al.| [2021)), we
assume M > ,/pa to ensure that finding a second-order stationary point is strictly more challenging
than finding a first-order stationary point.

Distributed Learning In the distributed (federated) learning setting, m clients collaboratively learn
under the coordination of a central server. Each client j € [m] has a local dataset D, of size
n, sampled from an unknown local distribution D;. The population risk for client j is defined as
F(z;D;) == E,.p;[f(x; 2)]. For brevity, we refer to the population risk of client j as F(x). In
the distributed setting, the global population risk for any model x, denoted F'(z; D) or simply F'(x),
is defined as F(z) = = > jepm) Fii(@). We allow for heterogeneity in the local datasets, meaning

that the local distributions {D;} ;¢{,,) may differ arbitrarily.

Differential Privacy We aim to achieve SOSP while ensuring privacy under the framework of Dif-
ferential Privacy (DP). Two datasets D and D’ are called adjacent if they differ by at most one
record. DP ensures that the output of a learning algorithm on any pair of adjacent datasets is statis-
tically indistinguishable.

Definition 2 (Differential Privacy (DP) (Dwork et al}[2006)). Given ¢,6 > 0, a randomized algo-
rithm A : Z — X is (¢, §)-DP if for any pair of adjacent datasets D, D’ C Z, and any measurable
subset S C X,

P[A(D) € S] < exp(e) - P[A(D’) € S] + 6. (1)

In distributed learning, we focus on inter-client record-level DP (ICRL-DP), which assumes that
clients do not trust the server or other clients with their sensitive local data. This notion has been
widely adopted in state-of-the-art distributed learning works, such as Gao et al.|(2024); [Lowy et al.
(2023); |[Lowy & Razaviyayn| (2023).

Definition 3 (Inter-Client Record-Level DP (ICRL-DP)). Given €, > 0, a randomized algorithm
A Z™ — X satisfies (e, §)-ICRL-DP if, for any client j € [m] and any pair of local datasets
D; and D;-, the full transcript of client j’s sent messages during the learning process satisfies (I)),
assuming fixed local datasets for other clients.

Variance Reduction via SPIDER In standard SGD and its variants, a gradient estimate g; is used
at each iteration ¢ to approximate the true gradient V F'(x;_1). However, stochastic gradients com-
puted from batches or individual samples often exhibit high variance, which can degrade learning
performance. The Stochastic Path Integrated Differential Estimator (SPIDER), introduced by |[Fang
et al.| (2018), addresses this issue by using two gradient oracles, O; and O,, to reduce variance,
given a batch of data samples B, at each iteration ¢:

* Oracle Oy (z¢—1, Bt) = Vf(x1_1; B;) provides an estimate of VF(x;_1).

* Oracle Oy (xt—1,xt—2,B:) = V f(xi—1; B:) — Vf(x1—2; B:) approximates the gradient differ-
ence VF(xi—1) — VF(xi_2).
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SPIDER periodically queries O; every [ iterations for an updated gradient estimate g;. In the re-
maining [ — 1 iterations, it uses O to estimate the gradient difference and updates the gradient
estimate as g; = gi—1 + O2(x1—1, 242, B¢). For smooth functions, the variance of the estimate
VF(xi—1) — VF(x;_2) is proportional to ||x¢—1 — ¢—2||, which is typically small when the model
drift between iterations is minimal. This enables SPIDER to effectively reduce gradient variance
while maintaining high accuracy in gradient estimation.

3  GAPS AND LIMITATIONS IN STATE-OF-THE-ART

Gaps in Error Rate Analysis The state-of-the-art error rate for achieving an a-SOSP in popula-
tion risk function under DP, as presented in |Liu et al.|(2024), contains fundamental gaps that lead to
incorrect conclusions. First, the error analysis is based on Lemma 3.4, which is essentially derived
from Wang et al.| (2019, Lemma 12). This lemma asserts that adding Gaussian noise at the same
scale as the gradient estimation error can sufficiently reduce the function value with high probability,
ensuring successful escape from saddle points. The key to the proof lies in demonstrating that the
region around the saddle point, where SGD may get stuck, is narrow. This ensures that at least one
of two coupled SGD sequences, initialized a certain distance apart in the escape direction due to the
perturbation, can successfully escape.

However, the existing analysis overlooks a critical factor: the stochastic gradient variance. In ana-
lyzing the dynamics of the coupled points, the authors used exact gradients of the population risk,
as evidenced in the equation preceding equation (39) of Wang et al.| (2019). This oversight leads to
incorrect parameter settings, particularly with respect to the step size 1. Even for non-private SGD,
Jin et al.|(2021)) has shown that the presence of stochastic gradient noise requires a smaller step size
and, thus, induces higher gradient complexity to ensure convergence to an SOSP, compared to exact
gradient descent (GD). In contrast, |Liu et al.| (2024)) adopted a constant step size of ﬁ which is only
appropriate for GD with exact gradients and fails to account for the stochastic nature of population
risk minimization. This misstep leads to an incorrect error rate. Specifically, the increased gradient
complexity reduces the number of data points per gradient estimate, leading to larger estimation
errors. Consequently, the correct error rate for achieving an SOSP should be looser than the one
presented in Liu et al.|(2024).

With the perception of the above gaps, we further argue that directly fixing the error in |Liu et al.
(2024) through a revised proof for their algorithm, while feasible, would fail to achieve the target
SOSP with the optimal dependence on « as required in Definition For a detailed discussion,
please refer to Appendix

Limitations in Private SOSP Selection The state-of-the-art learning algorithm proposed in |Liu
et al.| (2024) only guarantees the existence of an a-SOSP in all models throughout the learning
process. To privately select an a-SOSP from these iterates, the authors employ the well-known
AboveThreshold algorithm. This approach raises significant concerns, as it relies on evaluating both
the gradient and the Hessian matrix of the objective function for every model. In the case of popu-
lation risk minimization, where the objective function is unknown and only samples from the data
distribution are available, approximating these gradients and Hessians requires additional data and
becomes computationally expensive—particularly for Hessians. Due to the need for computing the
Hessian, this method is no longer first-order. Moreover, while |Liu et al.|(2024) claim that the error
introduced by approximating the gradients and Hessians does not exceed the error generated by their
learning algorithm, as we will demonstrate in Section [6} this assertion does not hold in distributed
learning scenarios. The AboveThreshold algorithm primarily uses the perturbed gradient norm and
the minimum eigenvalue of the Hessian for model selection. In single-machine cases, where all data
is centrally stored, it is feasible to approximate the gradients and Hessians and add noise only to
the one-dimensional values of the gradient norm and minimum eigenvalue. However, in distributed
learning with heterogeneous data, each client must perturb and share its local gradients and Hes-
sians—rather than just the one-dimensional quantities—so that noisy estimates can be aggregated at
the central server. This introduces significantly more noise, especially in high-dimensional settings,
thereby worsening the error rates provided by the learning algorithm (see Section [6] for a detailed
analysis).
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4 REVISIT PERTURBED SGD WITH GAUSSIAN NOISES

We begin by revisiting perturbed stochastic gradient descent (PSGD) with Gaussian noise for escap-
ing saddle points in population risk minimization F'(-). In PSGD, the model is updated iteratively.

At each iteration ¢, instead of using the standard stochastic gradient oracle g; := VF(z;—1) + ét,

where ét is the unbiased noise introduced by the stochastic gradient oracle, we introduce additional
Gaussian noise to obtain a perturbed stochastic gradient oracle g;. The model update rule is:

Ty &= Ti—1 — NGt ()

where the perturbed stochastic gradient oracle g is defined as
=gt &= VF(I'tfl)'FCAt +&. (3)

Here, the stochasticity in g; arises from two sources: (i) é}, the stochastic noise from the original
stochastic gradient oracle, which typically depends on the (unknown) data distribution, and (ii) &,

a Gaussian noise term, ét ~ N(0,721,), added intentionally to facilitate escape from saddle points.
Following prior works on stochastic optimization (Jin et al., 2021} [Liu et al.l 2024)), we assume that

¢; ~ nSG(c), where nSG denotes the norm-sub-Gaussian distribution defined in Definition |§I in
Appendix. Define ¢ := /o2 + r2d, which captures the overall magnitude of noise in g;.

Note that we consider a different problem setting from prior work on PSGD Jin et al.[(2021). In their
setting, a target error « is specified, and the noise magnitude is adjusted accordingly to escape saddle
points. However, in our case, privacy is the primary concern, and the Gaussian noise magnitude is
determined by the DP budget. Therefore, our goal is to determine the error o achievable under a
given privacy budget (¢, §) which fixes the Gaussian noise magnitude. The parameter settings and
results from [Jin et al.[(2021)) are not directly applicable to our setting. To guarantee a specific error

«, their method sets the Gaussian noise magnitude for perturbation such that r2d = O(U2 + a3 ),
which is only valid in our setting when the noise magnitude r, as determined by the privacy budget,
is sufficiently large, i.e., r > O(%). The behavior when r is small remains an open question.

4.1 OUR APPROACH: A GENERAL GAUSSIAN-PERTURBED SGD FRAMEWORK

We introduce our framework in Algorithm[T] In this algorithm, we use a general stochastic gradient
oracle with Gaussian perturbation, as described in @, which we denote as P_Grad-Oracle(x)
in steps 4 and 10, where * omits any specific arguments the oracle might require. This allows our
algorithm to serve as a general optimization framework for non-convex stochastic optimization, ap-
plicable beyond the context of DP. Building upon the PSGD updates described earlier, our algorithm
distinguishes itself from the PSGD algorithm of Jin et al.|(2021) by using the moving distance of the
model parameters as the criterion for escaping saddle points (step 12). This innovation allows the
algorithm to determine convergence to an SOSP with high probability during the PSGD process. In
contrast, the algorithm proposed by [Jin et al.|(2021)) outputs all model parameters obtained through-
out the PSGD iterations, only guaranteeing that an SOSP was visited at least once. To further ensure
the output is an SOSP with high probability, their method requires additional post-processing steps,
such as computing the minimum eigenvalue of each Hessian matrix of the empirical risk function or
approximating these eigenvalues using extra data samples for population risk. These steps introduce
significant computational costs and extra sample usage, as well as the need to compute second-order
information, thereby making the overall procedure no longer first-order.

We observe that, when successfully escaping from a saddle point, not only does the function value
decrease sufficiently, as noted inJin et al.| (2021), but the model parameter also moves sufficiently
far beyond a certain threshold .7 (specified later). Leveraging this key insight, our algorithm can
directly identify and output an SOSP during the PSGD process, eliminating the need for additional
calculations or sample usage.

4.2 ERROR RATE ANALYSIS FOR ALGORITHMI]

We begin by introducing the following algorithmic parameter setup and useful notations:
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Algorithm 1: Gaussian Perturbed Stochastic Gradient Descent

Input: Failure probability w, initial model x(, learning rate 7, repeat number of the saddle
point escape process (), model deviation threshold ., number of escape steps .7~

1t 0;

2 while true do

3 t<—t+1;

4 gt < P_Grad-Oracle(x);

5 if ||:|| < 3x then

/* Saddle point escape */

6 t <+ t, & < x4_1, esc « false;

7 forg«1,---,Qdo

8 tt, o — &

9 forr+1,---, 7 do

10 gt < P_Grad_Oracle(x);
1 Ty &= Tp—1 — 1N Gt

12 if ||z, — Z|| > . then

13 escC < true;

14 break;

15 else

16 L t—t+1;

17 if esc = true then

18 L break;

19 if esc = false then

20 | returnz;
21 else

/* Normal descent step */

22 | T T — 0 Gt

/ 4T
L= S, X ‘= max {4\/ Csu?,C4/2log } cp = 4V CspPp, a =4y,
w

3
vra 1 .- " g 1 & 7= [
V p

= Mze = sny/pa’ (15

“4)

where s is a sufficiently large absolute constant to be determined later, and p is a logarithmic factor
defined as:

1 9d 403 [y 160v/2C% [\ (C-logil)z
1 = max ¢ — log - log - Jog | ———— /= |, ————2—,1,.
s Ciny/spy 81 P Sy/nr P 21./s
&)

Throughout our analysis, C represents an absolute constant that does not depend on s, and its value
may change from line to line.

3

Let H = V2F (Z), Umin be the eigenvector corresponding to the minimum eigenvalue of #, and
v = —Amin(#H). Let P_,, ., denote the projection onto the subspace orthogonal to vip.

Definition 4 (Coupling Sequence). Let {x;} and {z}} be two sequences obtained by separate runs
of PSGD both starting at z. We say they are coupled if they share the same randomness for P_,, . &
and B3; at each iteration ¢, while in vy, direction, the random noise is opposite: vmmft ;mgt

Our key insight that, when starting in the vicinity of any strict saddle point, PSGD will cause the
model to drift sufficiently far away with high probability. See proof of Lemma([I]in Appendix
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Lemma 1 (Escaping Saddle Points). Consider two coupled sequence {x;} and {z}}, if Z satisfies
[VE(Z)|l2 < a and Ayin(V2F(2)) < —/pa, then with probability at least 3, 3i < .7 such that
max{|lz; — 2|, |2} — 2]} = 2.

Corollary 1. PSGD can successfully escape from any saddle point, moving the model at least a
distance of . away from the saddle point, with a constant probability of at least i.

Corollary[T|guarantees only a constant probability of successful escape by PSGD. To boost this prob-
ability to meet any desired failure probability wg, we can repeat the escape procedure independently
up to @ times, which corresponds to steps 7-18 in Algorithm|[I]

Lemma 2. Given any target failure probability wo € (0, 1), by repeating the .7 -step PSGD process
independently Q) = g log w—lo times, we can ensure successful escape with probability at least 1 — wy.

See proof of Lemma[Zin Appendix In the remainder of this section, we analyze the total number
of PSGD steps required, in the worst case, for Algorithm [I]to reach a second-order stationary point.
This is primarily determined by the decrease in the function value at each step.

We begin by presenting a standard result that shows how the change in function value can be de-
composed into the decrease due to gradient magnitudes and a possible increase due to randomness
in both the stochastic gradients and the perturbations. Let v; = ét + ét represent the total noise.
Lemma 3 (Descent Lemma). For any time step to, we have

F(aig41) = Flag) < =5 Z IV F(z4044)]” + Z [Vto4il1? (6)
=0
Corollary 2. There exists an absolute constant ¢ such that, for any glven to, with probability at least
1 — 2e7*, we have

Ui

F(wig4t) — Flay,) < — Z IVF (2 10)I” + ¢ - mp?(t + 0). )
=0

Do \

Lemma 3] (see proof in Appendix and Corollary [2Jsee proof in Appendix imply that large
gradients lead to a rapid decrease in the function value. Next, we show in Lemma [] that PSGD
updates can significantly decreases the function value with high probability when starting near any
strict saddle point and escaping it successfully. Proof of Lemmafd]is in Appendix [D.5]

Lemma 4 (Function Value Decrease per Successful Escape). Suppose a successful escape occurs
after 7 steps of PSGD initiated at z;, (7 < .77). With probability at least 1 — 2e~*, the function

value decreases by at least 5’5 4/ ot
v P

Next, we derive the maximum number of PSGD steps required in Lemma [6] (proved in Ap-
pendix [D.7), which relies on the gradient estimation error given in Lemma [5[proved in Ap-

pendix [D.6).
Lemma 5 (Gradient Estimation Error). With probability at least &, ||14|| < C'y/2log L4 < .

Lemma 6 (Maximum Number of Descent Steps). Given the fallure probability w, Algorithm [I]
returns an a-second-order stationary point within at most O (#) steps of PSGD updates.

Remark 1. At first glance, Lemma[6] seems to show an improvement in gradient complexity com-
pared to Jin et al.[(2021), reducing it from O (Zr) to O (=z=) for PSGD. However, we argue that
our result is not directly comparable due to differences in the problem setting. Jin et al.|(2021) as-
sumes the target error is given as an input parameter, which can be arbitrarily small, and the gradient
variance o is often treated as a constant. In contrast, we consider a scenario where the perturbation
noise 7 and the stochastic variance o are given, meaning the error rate « is determined by these pa-
rameters and cannot be made arbitrarily small. As a result, the gradient complexity of our algorithm
should actually depend on ¢ and r. For simplicity, we use « to describe the gradient complexity in
our context.

In summary, we have the follow guarantee for Algorithm T}

Theorem 1. Under Assumption [I]and [2] for any given w € (0, 1), if the parameters are set as in
(), then with probability at least 1 — w, Algorithm [I]will output an a-second-order stationary point
with an error of o = 4y, using a maximum of O (=15) steps of PSGD updates.
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Algorithm 2: Adaptive DP-SPIDER

Input: privacy budget e and 4, time horizon 7', models {x; 1 }]_,, parameter &

1t <« 1, drift « &;

2 while t < T do

3 if drift > « then

4 Sample mini-batch B; of size b; from D;
2

5 Sample & ~ N (0, cl Gbi‘:% s Id) :

6 Gt < O1(z—1,Be) + &

7 drift < 0;

8 else

9 Sample mini-batch B; of size by from D;
21oe 1

10 Sample & ~ N (O, cz%th,l — :ct,2||21d>;

1 | 9t 9e-1+ Oa(@1, 002, Br) + &5

12 drift < drift + 72| g ||*;

B |ttt 1;

Output: g17g27 T >gT

5 ERROR RATE FOR SOSP IN DP STOCHASTIC OPTIMIZATION

We now derive error rates for DP stochastic optimization based on the general result from Theorem([T]
The error rate is derived using the adaptive DP-SPIDER algorithm, shown in Algorithm [2} as the
gradient oracle. This adaptive version refines the original SPIDER by adjusting gradient queries
based on model drift. Unlike standard SPIDER, which queries O; at fixed intervals, potentially
allowing the gradient estimation error to grow over time, adaptive SPIDER tracks the total model

drift, defined as drift; := ZEZT(” |w; — x;_1]|%, where 7(¢) is the last iteration when O; was used.

The intuition behind is that, for smooth functions, the error in Os, which estimates VF (z;_1) —
VF(z_2), is proportional to ||x¢—1 — x¢—2||. When the model drift is small, the gradient estimate
remains accurate enough, and Q5 can continue to be used, reducing variance in gradient estimation
(steps 9-11). However, when the drift grows large, further use of Oy could introduce significant
error, and thus O is queried to refresh the gradient estimate (steps 4-7). A threshold « is set to
determine when the drift becomes excessive, ensuring the total error remains controlled (step 3).

Our adaptive SPIDER differs from the approach in|Liu et al.|(2024)) in an important way. In addition
to triggering O; when the model drift exceeds a threshold, [Liu et al| (2024) also needs to add
additional Gaussian noise and trigger O, every time a potential saddle point is reached, while our
method fully utilizes the DP Gaussian noise already present in the gradient oracle, avoiding the need
to add additional noise at saddle points. As a result, in our framework, the decision to query O,
or continue with O, is based solely on model drift, leading to a simpler and more efficient gradient
estimation process. The following Lemma [/| captures the noise magnitude for any §;, which is
proved in Appendix [E.T]

Lemma 7. Under Assumption [I} for all ¢ € [T, our adaptive DP-SPIDER guarantees that g,
satisfies (3) with:

G?log*d  MZ2log®d G%logt MZ2logi
<0 <0 0 Sk l. (8
7= \/ T T TS 2 e " ®

We can bound the number of occurrences where the drift becomes large, which allows us to limit
the total number of queries to O;. This enables the proper setting of b, and b, for Algorithm

Lemma 8. Under Assumption[l|and 2] let 7 := {t € [T7] : drift, > x} be the set of rounds where
the drift exceeds the threshold . Under the same probability as in Theorem T <O (%)

Theorem 2. Under Assumption[I]and[2] with o and r set as determined by Lemma([7} let Algorithm[T]
2

run with the gradient oracle instantiated by Algorithm where by = 5, by = - and Kk =
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Algorithm 3: Distributed Adaptive DP-SPIDER

Input: privacy budget e and 4, time horizon 7', models {x; 1 }]_,, parameter &
1t <« 1, drift « &;
2 while t < T do

3 if drift > « then

4 for every client j in parallel do

5 Sample mini-batch B, ; of size b; from D;;

2 1

6 Sample &;; ~ N <0, c1 Gb%;f . Id);

7 Git +— O1(xe—1,Bj) + &

8 Send g, ; to the server;

9 drift < 0;
10 else
11 for every client i in parallel do

12 Sample mini-batch B, ; of size b2 from Dy;

M?1

13 Sample & ~ N (0, ) bgozg i les—1 — xt,2||21d);
14 Git < Gjt—1+ O2(Ti—1,2e—2,B54) + & i3
15 Send gj; ; to the server;
16 | G 2iey 95
17 | drift < drift + n?||g:]|%;
18 t+—t+1;

Output: glag27 e ,gT

3
max { G];g } Then the whole algorithm satisfies (¢, §)-DP with some constants
2

2
¢1, ¢ and finds an a-SOSP with v = O (11 n (ﬁ) 5).

ne

n3

See proof of Lemma §]in Appendix [E.2} and proof of Theorem[2]in Appendix [E.3]

6 APPLICATION TO DISTRIBUTED SGD

Our framework, Algorithm |I| can be extended to distributed learning scenarios by adapting the
gradient oracles from Algorithm [2|to a distributed version, as presented in Algorithm |3} Our algo-
rithm can be viewed as an adaptive improvement of the previous DIFF2 algorithm Murata & Suzuki
(2023)) for distributed learning, which uses standard SPIDER to converge to first-order stationary
points and is limited to handling homogeneous data. To the best of our knowledge, our algorithm
is the first to achieve differentially private distributed learning that not only guarantees convergence
to second-order stationary points but also operates effectively in heterogeneous data settings. The
following Lemma 9] captures the noise magnitude for any g, given by Algorithm 3] which is proved
in Appendix [FI]

Lemma 9. Under Assumption|l} for V¢ € [T'], our distributed adaptive DP-SPIDER guarantees that
Gy satisfies (3) with

2log’d = M2l G2log:  MZlog
<0 \/G og’d | Milog'd ) rgo\/ R )

m - by m - by m-b3e2  m-b3e?

Theorem 3. Under Assumption[I]and[2] with o and 7 set as determined by Lemma@ let AlgorithmE]

2
run with the gradient oracle instantiated by Algorlthm where by = 57, by = X and K =

max { Gi usp: Gt 1° d utpts } Then the whole algorithm satisfies (e, §)-ICRL-DP with some
]\47(7711'7,)2 M 15 1o (\/71'7,5)0

i

. _ A 1 Vd
constants ¢, cs, and finds an a-SOSP with o« = O (W + (\/FMJ
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Algorithm 4: Distributed Private Model Selection

Input: A group of models {z;}7_,, privacy parameters ¢, §
1 fort<«1,---,Tdo

2 for every client j in parallel do
2 1
3 Compute VF (x¢) = Vf(z4;Sj) + 0;4, where 6, 4 ~ N (0 c1 %Id) ;
4 Compute V2F;(x;) < V2f(z¢;S;) + H; 4, where H; ; is a symmetric matrix with

its upper triangle (including the diagonal) being i.i.d. samples from
2 1
N (0, c2 %) and each lower triangle entry is copied from its upper

triangle counterpart;

5 | Send VF;(x )andV F( ¢) to the server;
6 VE(z) « iijl xt), V F () « = Zj | V2Fj(2y);
. - Glog( &4 G4/dT lo lo
7| VE@) <ot ij )4 }(n{ 5 ana
= 1 Md,/Tl 1log(22)
Amin (V2F(z¢)) > — («/pa +M os( ;Efwog ) then

8 | Return z;

The proof of Lemma(]is in Appendix [F-T]and the proof of Theorem [3]is in Appendix [F.2}

Remark 2. Our convergence error rate reflects a collaborative synergy between clients, indicating
that our algorithm significantly benefits from the distributed framework. Specifically, there is a lin-
ear term in m before n in the first non-private term of «, and a square root term /m before n in
the second term, which accounts for the privacy cost. This separation arises due to data heterogene-
ity, and the synergy effect aligns with that observed in other DP distributed learning works under
heterogeneity, such as|Gao et al.[(2024).

Finally, we discuss in detail the superiority of our proposed algorithm framework for distributed
learning scenarios. If we cannot guarantee the output of an SOSP with high probability, as we do
in Algorithm [I] then, like the approach given in [Liu et al|(2024), we would need to rely on some
private model selection algorithm to evaluate all the models obtained during the iterations and select
an SOSP. The state-of-the-art private selection method is the AboveThreshold algorithm, as used by
Liu et al| (2024). We extend this algorithm to the distributed setting, as presented in Algorithm [4]
Now, suppose we have a list of model iterates x+; output by a learning algorithm, with at least one
point being an a-SOSP. We then provide the following error rate guarantee for the model selected
by Algorithm ] whose proof in given in Appendix [F.

Theorem 4. Algorithm I is (e, 8)-ICRL-DP. Under Assumption |1} if mn > 2log 3¢, then with
probability at least 1 — w’, we have the following two holds for Algonthm@

« If there exists an a-SOSP point z,, € {z;}7_,, then Algorithmwill output one point.

o If Algorithmoutputs any point z,, then x,, is an o/-SOSP with

2
a’—0<a+1 L a vd d ,_d 5>‘ (10)

Vm \/ \Fneoz 1 \/Frmeoz% mn2e2qz

Remark 3. To ensure that Algorithm [] outputs a model with error no worse than that
guaranteed by the learning algorithm, ie., «, it is necessary to satisfy the condition
~ 2 ~ ) - -

0 \/Eﬁa% * \/E:ea% + mnzdezag> = O(CK), smee O( + \/77' \/%> = O(Oé)
holds trivially. This reduces to a constraint on the model dimension d, such that d <
min{(y/mne)2, (v/mne) 15 }. Therefore, it is impractical to apply private model selection in dis-
tributed learning scenarios, especially when the model dimension is large.

10
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A RELATED WORK

Private Stochastic Optimization Differential privacy (DP) has become a crucial component in
stochastic optimization due to increasing concerns about data privacy. The pioneering work by
Dwork et al.| (2006)) established the foundational principles of DP, and its application in stochastic
optimization has since seen significant progress. Early efforts primarily focused on convex opti-
mization, achieving strong privacy guarantees while ensuring efficient learning, with a long list of

representative works e.g., (Wang et al), [2020a; 2017} Bassily et al 2014 2019} 2021},

et al} 2020} [Choquette-Choo et al., 2024; Wang et al., 2018} [Su et al., 2023; [2024; [Hu et al., 2022}
Xue et al., [2021; [Wang et al., [2020b} [Huai et al., 2020). Recent advances have extended DP to non-

convex settings, mainly focusing on first-order stationary points (FOSP). Notable works in this area
include (Arora et al 2023}, Bassily et al 2021}, [Zhou et al., 2020} [Wang et al., 2019; [Xiao et al}
[2023), which improved error rates in non-convex optimization with balanced privacy and utility in
stochastic gradient methods. However, these works generally fail to address the more stringent crite-
rion of second-order stationary points (SOSP). The very recent work [Liu et al.|(2024) tired to narrow
this gap, but unfortunately has some issues in their results as we discussed before. Our work builds
on this foundation by correcting error rates and proposing a framework that ensures convergence to
SOSP while maintaining DP.

Finding Second-Order Stationary Points (SOSP) In non-convex optimization, convergence to
FOSP is often insufficient, as saddle points can lead to sub-optimal solutions 2015}
2016). Achieving SOSP, where the gradient is small and the Hessian is positive semi-definite,
ensures that the optimization converges to a local minimum rather than a saddle point. Techniques
for escaping saddle points, such as perturbed SGD with Gaussian noise, have been explored in
works like Jin et al.| (2021) and |Ge et al.| (2015). |Ge et al.| (2015) first showed that SGD with a
simple parameter perturbation can escape saddle points efficiently. Later, the analysis was refined
by [Jin et al] (2017} [2021). Recently, variance reduction techniques have been applied to second-
order guaranteed methods |Ge et al.[ (2019); (2019).These methods ensure escape from saddle
points by introducing noise to the gradient descent process. In contrast, the studies of SOSP under
DP are quite limited, and most of them only consider the empirical risk minimization objective, such
as[Wang et al.| (2019); Wang & Xu| (2021)). Very recently, addressed the population
risk minimization objective, but with notable gaps in their error analysis, particularly in the treatment
of gradient variance. Moreover, all of these works are limited to the centralized learning setting with
only one client and cannot be directly extended to the more general distributed learning setting.

Distributed Learning Distributed learning has gained prominence due to the growing need for
large-scale models trained on decentralized data. Methods like federated learning
have enabled multiple clients to collaboratively train models without sharing their local data,
preserving privacy. Recent efforts, such as|Gao et al.| (2024); Lowy et al.| (2023); Lowy & Raza-
(2023) investigated DP learning problems in distributed settings, but these works are limited
to first-order optimization. No prior work, to our knowledge, has extended these methods to ensure
SOSP in distributed learning scenarios with heterogeneous data. Our proposed framework addresses
this gap by introducing the first distributed learning algorithm with DP guarantees for SOSP, capable
of handling arbitrary data heterogeneity across clients.

B MORE DISCUSSIONS ON GAPS IN SOTA

In this section, we further discuss whether the error in can be directly fixed through
arevised proof for their algorithm. While this is feasible, such a correction would still fail to achieve
the target SOSP with the optimal dependence on « required in our work: |[VF(z)|| < « and
V2F(z) = —/pa - 1. Specifically, a direct correction would result in suboptimal second-order

accuracy with a dependence of O(a2/%), instead of the desired O(a!/2).
The algorithm in [2024) can be viewed as a special single-machine case of the generic

framework of perturbed gradient descent (GD) with bounded gradient inexactness, as developed by
(2019)). In this view, DP noise contributes to bounded gradient inexactness. The analysis

by [Yin et al| (2019) implies the corrected convergence guarantees for the algorithm of
(2024). Assuming the first-order error rate satisfies |[VF(z)|| < O(«), the analysis in (Yin et al.|
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2019) guarantees ||[VE(z)| < O(a) and V2F(z) = —6(\/50/2/5) - 14, see Theorem 3 of
et al.}[2019). However, this falls short of the desired guarantee of V2F () = —O(,/pa) - 14, which
1s also what|Liu et al.| (2024])) ideally aimed to achieve.

Furthermore, Proposition 1 in (Yin et al| [2019) establishes a lower bound of O(«!/2) for depen-

dence on « in second-order guarantees, highlighting the suboptimality of 6(042/ %). Additionally,
Theorem 4 in (Yin et al| [2019) shows that with an exact gradient oracle, an optimal dependence
of O(a'/?) can be achievable. This explains why (2024)) appeared to achieve the optimal

order, as their analysis omitted the effect of gradient variance, as we discussed in Section 3 of our
paper.

In summary, while directly correcting the results of [Liu et al] (2024) using a refined analysis is
feasible and can be accomplished with minimal effort based on (Yin et al] [2019), such corrections

still cannot guarantee the target SOSP. Designing a new framework, as we have done, is therefore
both necessary and essential to meet these expectations.

C USEFUL FACTS

C.1 PROBABILITY TOOLS

Definition 5 (Sub-Gaussian random vector (Jin et al., 2019, Definition 2)). A random vector v € R?
is (-sub-Gaussian (or SG(()), if there exists a positive constant ¢ such that

m 2,2
Bfexp((u, 0~ B[] < oxp (112

Definition 6 (Norm-sub-Gaussian random vector (Jin et al., 2019, Definition 3)). A random vector
v € R is (-norm-sub-Gaussian (or nSG(()), if there exists a positive constant ¢ such that

> , Yu € RY. (11)

2

t
Pllv — E[o]]| > ] < 2exp (_2@) . vier (12)
Note that norm-sub-Gaussian random vectors (Definition [6) are more general than sub-Gaussian
random vectors (Definition [5), as sub-Gaussian distributions require isotropy, whereas norm-sub-
Gaussian distributions do not impose this condition.

Lemma 10 ((Jin et al.} 2019, Lemma 1)). A SG(r) random vector v € R is also nSG(2v/2 - rv/d).

We are interested in the properties of norm-subGaussian martingale difference sequences. Con-
cretely, they are sequences satisfying the following properties.

Condition 1. Consider random vectors vi,--- ,v, € R?, and corresponding filtrations F; =
o(vy,- -+ ,v;) fori € [n], such that v;|F;_1 is zero-mean nSG((;) with ¢; € F;_1. That s,
2
BlolFea] =0, Pllul > 7] <20 (-55 ) WeRviep. a3
Lemma 11 (Hoeffding type inequality for norm-sub-Gaussian (Jin et al.,[2019, Corollary 7)). Let
random vectors vy, - ,v, € RY and corresponding filtrations F; = o(vq, -+ ,v;) for i € [K]

satisfy condition with fixed {¢;}. Then for any ¢ > 0, there exists an absolute constant C' such
that, with probability at least 1 — 2d - e,

P
D v
i=1

p
<C- > ¢ (14)
2 i=1

Lemma [ T]implies that the sum of norm-sub-Gaussian random vectors is till norm-sub-Gaussian.

Corollary 3. Let random vectors vy, - ,v, € R9 and corresponding filtrations F; =
o(vi, -+ ,v;) for ¢ € [k] satisfy condition with fixed {¢;}.  Then Y7 v; is

nSG (c -\/log(d) S8, gg).
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Proof. Let (4 = 1/Clog(d) Zle G According to DeﬁnitionH we aim to show that, for any
w

€ (0,1), with probability at least oo Vil < ,/2(_2‘_ In 2. By Lemma , we have
known that, with probability at least 1 — w, || >0 vil| < C - /37, (?In2¢. Next, we show
that \/2¢2In2 > C - P ¢?In 22, which, by re-arranging the terms, is equivalent to show
¢ > T( b CZ)log . This follows directly from the fact that Og 5 < 2logd,Vw € (0,1). O

Lemma 12 ((Jin et al., 2021, Lemma C.6)). Let random vectors vy, --- ,vp, € R4, and correspond-
ing filtrations 7; = o(vy, - - , v;) for i € [k] satisfy condition[] then for any . > 0, and B > b > 0,
there exists an absolute constant C' such that, with probability at least 1 — 2d log ( ) e,

P

P
ZC?ZB or <C- max{zgf,b}w. (15)
i=1 i

Lemma 13 ((Jin et al., 2021, Lemma C.7)). Let random vectors vy, --- ,v, € R?, and correspond-
ing filtrations F; = o (v1,- - ,v;) fori € [k] satisfy condition[T| with ﬁxed (1= CQ =(,=¢

then there exists an absolute constant C' such that, for any ¢ > 0, with probability at least 1—e™,

P
D lwl><C-¢-(p+o). (16)
i=1

Lemma 14 (Matrix Bernstein inequality (Tropp, 2012, Theorem 1.4)). Consider a finite sequence

{M;} ;e of independent, random, self-adjoint matrices with dimension d x d. Assume that each

random matrix satisfies E[M;] = 0, |[M;||2 < B, then for all ¢ > 0, we have

t2

1€ K]

where 02 = Hzie[k] E[M?] ,

Lemma 15 (Norm of symmetric matrices with sub-gaussian entries (Vershynin, 2020, Corol-
lary 4.4.8)). Let M be an d x d symmetric random matrix whose entries M; ; on and above the
diagonal are independent, mean zero, sub-gaussian random variables. Then, with probability at least
1 — 4exp(—t?), for any t > 0 we have

IM]}> < C - max [Mijly, - (Vd+1), (18)

where C is a universal constant.

C.2 PRIVACY PRELIMINARIES

Definition 7 (Gaussian Mechanism [Dwork et al.| (2014)). Given any input data D € X" and a
query function ¢ : X™ — R, the Gaussian mechanism M is defined as q(D) + v where v ~
N(0,0%1,). Let As(q) be the lo-sensitivity of g, i.e., Aa(q) = suppp [lg(D) — q(D")||2. For

any 0,8 > 0, M guarantees (=24 Z(q) \/2log 222, 5)-DP. That is, if we want the output of ¢ to be

(e,9)-DP for any 0 < €,d < 1, then o should be set to 2(‘7) \/@.

Lemma 16 (Parallel Composition of DPMcSherry|(2009)). Suppose there are n (¢, ¢)-differentially
private mechanisms {M;}?_; and n disjoint datasets denoted by {D;}?_,. Then the algorithm,
which applies each M; on the corresponding D;, preserves (¢, §)-DP in total.

D OMITTED PROOFS IN SECTION [l

D.1 PROOF OF LEMMA[I]
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Proof of Lemmall] We define the following notations for proving Lemma I}

b= — 1, (19)
iminc 0
=68, @n
Apzfvﬁﬂyxt+ﬂy%$9dyﬂ (22)

Lemma 17 (Dynamics of the Coupling Sequence Difference). For any time step ¢ > 0, we have

t t R t o
Gr=—nY Ma—nH)""Aiadii—nY Ta—nH)' "G -n) Ta—nH)"6.  (23)
=1

=1 =1

Ph(t) Psg(t) Pp(t)

Proof of Lemma(I7]
By =2 — a) = @1 — [VF(xi-1) — VF(,_) + G — ¢ + & — €] (24)
=G — (M + Dem)de—1 + G+ &) = (g — H)E—1 —n[A1@e1 + G + &) (25)

t ~ ~
= (Lo — M) 20 —n > _(Ta = nH) " (Ai @iy + G + &) (26)
i=1
¢ . N N
==Y (Lo —nH) " (Aiadig + G+ &), 27)
i=1

where the last equality is due to £y = 0. O

We prove Lemma [I|by contradiction. Suppose that for V¢ < .7:

maX{th—gE||2,||m;—fH2} < .72 (28)

With the above assumption (28)), we show that 22, (t) controls the behavior of the dynamics, while
P (t) and P4(t) remain small compared with &2, (t).

Define o := \/22:1(1 +7y)2(t=9 and B == (1+nv)t//2n7. Itis easy to verify that o (t) < B(t)
forany t € N.

Lemma 18. For V¢ > 0, we have

P | Zp)| < cB(t)nr-Vi] > 1 —2e7 (29)
P [H@p(t)ﬂ > B(i)”’"} >3 (30)

Lemma 19. If for V¢ < .7, max { ||z, — Z[|?, ||z} — Z||*} < % holds, then we have

P {||<%(t) + P4t < /J’(;Z)nr] >1-6d7 log (y> et (31)

o

Proof of Lemma[I9, Denote by & the event {V¢ < .7 : max { |z, — Z|?, ||z} — Z[|*} < .?}. We
prove the following claim for any ¢ < .7 by induction:

B(i)nr
20

P {5 = Vi<t: ]| Ph(i)+ Poy(i)|| < N2 < Cﬁ(t)”“ﬁ} < 1-6dtlog (i) .

(32)
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For the base case of ¢t = 0, the claim holds trivially as 7, (0) = &,4(0) = 0. Suppose there exists
some 7 < 7 such that the claim holds for all ¢ < 7, we then forward prove that the claim also holds
fort =741 < .7. Since forany t < 7, || Z,(t)| < cB(t)nr+/t, we have

12l < 120 (8) + Psg (D] + | Zp D) (33)
t
< 6(2—2)”7“ + Bt Vi (34)
< 2ch(t)nr - Vi (35)
Moreover, due to assumption (28) and the Hessian Lipschitz property, we have
1
I8l = [ V2F(y-a+ (0 -0) ) ay 36)
0
< pmax{|lz, — |, |l — Z|1} < p7 (37)
With the above upper bounds on ||#;|| and ||A¢|| for ¢ < 7, we immediately get
T+1
|2n(m+ Dl <nps” > (L+my) ™ (2¢- B(t)nry/e) (38)
t=1

< omp7 Tes(r+ 1y < DT

where the last inequality follows from 2¢cnp. 7 = % < 4—10 for large enough s such that s > 80c.

(39)

Note that ¢,|F;_1 ~ nSG(M]||Z|)), by applying Lemma |12 with B = [a(t)]? - n>M2.#? and
b = [a(t)]?>n*>M?n?r? therein, we know that, with probability at least 1 — 4d log (%) e~ ", we have

|Psg(r + )| < 2enMV T B(r)nr /e (40)
For large enough s such that s > (80¢)2, we have enM+/ .71 < % < 5. Thus,
|2yl + 1)1 < endV T (i < 20 @)
By Lemma we know that, when ¢ = 7 4 1, with probability at least 1 — 2e™*, we have
[Z(T +1)|| < eB(T + L)/t (42)

By the union bound, with probability at least 1 — (Gdr log (%) e ' 4+ 4dlog (%) et + 26_“) >
1 —6d(r 4+ 1)log (%) e,

A 2y Dl < B+ e, @)

which concludes the proof. O

[Zn(T +1) + Psg(T + 1| <

We continue the proof of Lemma For large enough ¢ such that ¢ > log (36d9 log (%) ) , which

is promised by p1 > %log (19‘1 log <4C4 ¢)>, we have 6d.7 log (%) et < %. Then by

Canspp srvop
Lemma|18land Lemma with probability at least % — % = %, we have
B(T )nr B(T )nr
1Zp(I 2 =57 NZu(T) + Pog (Tl < =55 (44)
Combining (44) and the decomposition of #; given by Lemma[I7] we have
max {||z7 — &, [[+'7 — 7|} (45)
1 1 BT )gr _ (L+ny)7 /ar
> = > | Po(D) = | Ph(T) + Psye(T)||] = = 46
2 51221l 2 5 Il Zp(I) = 1 Zr(T) + P (D] 2 =5 103 (46)
(1+ny/pa)7 i _ 2P i 25 i 2 i
402 40v2 40v2  40v2

18
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where the second last inequality is due to the fact 1 +a > 2%,Va € (0,1] and 1,/pa < 3 < 1, and

160fC4

the last inequality is because p > log ( \/7 ) The above contradicts with our assumption

(28). Thus, with probability at least 5, It < 9 ,max{||z; — Z|?, ||z} — Z||*} > 2 O
D.2 PROOF OF LEMMA[2]
Proof of Lemma|2| The failure probability after () repeats is at most () © it is easy to verify that
when Q = 2 log ( )Q < wp, which concludes the proof. O
D.3 PROOF OF LEMMA[3]

Proof of Lemma[3] For any ¢t > 1, we have

M
F(xt) = F(wi-1) <(VF(w¢-1), 00 — 24-1) + 7”% — za|? (48)
N M 5.
< —(VE(z¢-1), Ge—1) + 7772”91571”2 (49)
< —n(VF (@11, Go-1) + 313111 (50)
< 2l = ZNIVE@e-)I? = ge-al? + gl D
1
= ~J|VE @) + 5 ] (52

Thus, for any time step ¢(, we have

- n
F(zi,4¢) = Flay,) < ZHVF (@eo+0)[I” + ZHVtoJrZH (53)
=0

D.4 PROOF OF COROLLARY 2]

Proof of Corollary[2] Note that

t
n n
3 2 il = Z et + Eeorill® < nZ (sl + N0 411%) (54)
i=1

1=1

Since ¢; ~ nSG(c), Vi, by Lemma with probability at least 1 — e, Zle I eorill> < C -
o2(t 4 1). On the other hand, &; ~ SG(r), Vi, by Lemma we know & ~ nSG(2v/2 - rv/d). By
Lemmaagain, with probability at least 1—e™*, 22:1 €t +4]12 < 8C-r2d(t+1). Combine the two
upper bounds and apply the union bound, we get the desired upper bound on 2 22:1 lvegaill?. O

D.5 PROOF OF LEMMA [4]

Proof of Lemmad Note that,
2

[t — T2 |* = Z VE(2ty1t-1) + Vg tt (55)
t=1
T T 2
< > VF(24044-1) D vy (56)
t=1 t=1
<207 Y IVF(tgre—) > +20°7 Y g e (57)

t=1 t=1

19
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By following the same argument as in the proof of corollary with probability at least 1 — 2e™*,

D vl < - 0P(r+0). (58)
t=1
Again by corollary 2] with the same probability,
a 2
S IVE i) < 1) = Flasr)] + ¢ 9?7 +0), (59)
t=1
Therefore, with probability at least 1 — 2e™*,
thoJrT — Tt ||2 < 4777—[F(xto) - F(xt0+7)] +4c- 7727-'(/)2(7- + L)' (60)
By re-arranging terms above, we have
1
F(@ty47) = Foy,) < —477||$to+r — &4o||” + ¢y (1 4 0). (61)

According to our criterion for successful escape, we know that ||z, 4+ — x| > . Then

1
F(y47) = F(z1,) < *477_H~Tt0+r — x4 ||* + ey (T +0) (62)
2
‘ 2
_ . g 63
<7 te (T + 1) (63)
s a3 2c-9%
-/t v (64)
4¢ P sy/pa
s |a3
———— =7, 65
<55\ 5 (65)
where the second to last inequality is from the fact that sn,/pa = M’Q’if;w < 1, and the last inequality
follows from a > 4v/Csp?. O

D.6 PROOF OF LEMMA [3]

Proof of Lemmal[5] By corollary we know that for V¢, vy ~ nSG(C'vo? + r2d). Since E[1;] = 0,
according to deﬁnition@, with probability at least 1 — 5%

4T
ve]l < V2C - 44/ log — <X (66)

Applying the union bound to above immediately guarantees that, for all ¢ € [T'], with probability at
least 1 — ¢, the gradient estimation error ||§; — VF (z;_1)|| does not exceed x.

D.7 PROOF OF LEMMA

Proof of Lemmal6] By Lemma 5| for all ¢ € [T, with probability at least 1 — &, the gradient
estimation error [|g: — VF (z;—1)]|| does not exceed x defined in {@). With this hold, we know that,
for any time step ¢ € [T, if ||g:|| < 3x so that the escape process is triggered, we know the true
gradient norm || VF(z;_1)|| is at most o = 4)x, otherwise, when the algorithm runs out of the escape
process, the true gradient norm ||V F(x;_1)|| is at least 2y. With this insight, we discuss the average
function value decrease per PSGD step for above two cases separately.

* Case 1. When the algorithm runs in the escape process, the average decrease in the function
value during the successful Escape process is

F _sha’n 2%
T

TRs os2ud’

(67)
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» Case 2. When the algorithm runs out of the escape process, for every PSGD update, the function

value is decreased by at least

2x°n
(2x)% = 2x% > o (68)

N3

Combining the two cases, the total number of effective descent steps is at most

(Fo — F*)s*p?

Tefrective = 2X277 (69)
The total number of strict saddle points we need to escape is at most:
Fy—F*  83(Fy—F*
Nsaddle = 0 = ( 0 ) ﬁ (70)

F s X3

We know that, at each a-saddle point, we escape it successfully with probability at least i. To boost
the success probability for all such escapes to desired 1 — %, we need to repeat the process for @

times independently. By applying Lemmawith wo = ﬁ therein, () should be set as

Q= glog (16L3(F0 — ) 'O> .

71
“w v (71

Therefore, the maximum total number of all descent steps the algorithm performs (sequential and
parallel) is bounded as

5(Fp — F*)s?u? 163 (Fy — F* ~( U
T < Tefrective - Q = ( 0 4)(277) K log< (S(id ) )?3) :O<’I7X2> . (72)

O

E OMITTED PROOFS IN SECTION[3]

E.1 PROOF OF LEMMAI[7]

Proof of Lemmal7} For Vt, let 7(t) be the last iteration till ¢ when Oy was used. If ¢ = 7(¢), then
we have

Gt = O1(z—1,By) + &. (73)
O;(x¢—1, B;) is an unbiased estimate of V F'(x;_1). Denote (; := O1(x1—1,B¢) — VF(x;—1), then
Gt — VF(x-1) = G + &, (74)

By the G-Lipschitzness of loss function f, (; ~ nSG (valslgd). According to the algorithm, &; is

2 1
G~ log 5
b2e2

also zero-mean and & ~ N (0, c1 Id) . In this case, the lemma holds.

If t > 7(t), then we have

t

Gt = O1(xr =1, Brr)) + &rr) + Z (Oa(wi—1,mi2,B;) + &), (75)
i=7(t)+1

Os(xi—1,m;—2,B;) is an unbiased estimate of VF(z;—1) — VF(x;_2). Denote (/] =
(92(1’7;_1, Ti—2, Bz) — [VF(Z‘,_l) — VF(I'i_Q)}, then

t

G = VF(zi1) =g — | VF(zr (1) + Y [VF(2i1) = VF(z;_2)] (76)
i=7(t)+1
t t
=Gyt Z G+&w+ Z &, )
i=7(t)+1 i=7(t)+1
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By the M-smoothness of loss function f, each ¢/ ~ nSG (M”;”*1 _jl%? RALE d). According to the
2

algorithm, &, ~ N (O, cz%ozg%
26

algorithm that, drift, = ZE:T(”H |lzi—1 — z;—2||* < K almost surely, we have

lw—1 — xt,2||21d). By corollary [3|and the fact ensured by our

Gylogd d)2 ! (Mxi_l — 2;_s|VIogd d>2
c<O — ] + -logd (78)
( Vb1 i_%+1 Vb2
2 2 2 2
<0 G?log”d n M?1log dﬁ ' (79)
b1 b

By the properties of Gaussian distribution, and the fact that, drift; = Z§=T(t)+1 |lzi1—2i 2| <k
almost surely, we have

G?log * ¢ M?2log £
r<O| Tt D (W‘nxtl—xtw) (80)
1 i=7(t)+1 2
G%log: MZ2log+
<0 . %k . 81
- \/ ble2 + be2 " @D
O

E.2 PROOF OF LEMMAI§]
Proof of Lemmal8] By n < ﬁ and M -smoothness, we have
F(a) = F(zi1) < (V@) 20— 1) + oo — 20|
< (VF(i-1) = oo =n-30) = nllanll” + 513

A A /TN

SIVE(@e-1) = gellllgell2 — §||gt|\2~
By Lemma we know that, with probability at least 1 — %, the gradient estimation error ||g; —
VF(zi—1)| = ||ve]l < x holds forall t € [T]. If | VF (z4—1)|| > 4x, then we have

[Gell = 3x = 3[IVEF (ze—1) — gl

which further leads to 0

F(zy) = Fzp-1) < —6||§It||2-
If |VF(z—1)||2 < 4x. then ||§:]| < 5x, which implies

F(x) — F(z_1) < 5nx>

Index the items in 7" with 7" = {t1,--- ,#|71} such that ¢; < t;41,V1 <4 < |T| — 1. Then
tit1
Fay,,) — Flay,) < o D P15 + (tiga — )5y
t=t;+1

1 .. 9 1 9
< —% drlfttHl +(ti+1 — ti)577X < —%/‘i + (ti+1 - ti)5’l7X .
Summing over all indices, we have
7|

F(yy) — F(oy,) < _|617K + 5T

Since the risk function is upper bounded by U, there must be F'(z; - ) — F'(z4,) > —U, which gives

2,2
<o (24 T —o (1),

K
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E.3 PROOF OF THEOREM 2|

Proof of Theorem E] We first show that, our setting of b, and bs is feasible. Specifically, we need to
show the total sample used by each client is O(n). This can be verified as follows.

b [T1+ba (T —|T[) <by|T| +b2-T < O(n),
where we use the fact T'= O < ) and | 7| < O( U") given in Lemma

As we never reuse a sample,the privacy guarantee follows directly from the Gaussian mechanism
and the parallel composition property.

By Theorem T}
a=0(x) = 0) < O(vo? +12d)

o e a2 wray
a b1 b%62 b2 b§€2 '

By our setting of by = == and by =

we further have

2Un et
~ G?U G2dU?n?  M?2U M?2dU?
-0 n 4 U o n (82)
nK n2e2K2 nnx?  n2e2n?y?t
- [ |G2Uprar  G2dU%pa ~ MUk = MSdU2k
O(\/ 5 T 52 4PZ+ T 5 2¢2 505 | (83)
M?nk n2e? M4k npzaz n<e’pa
which gives us that
2 2 1
o =0 [ max G*U\/p\® G*dU?p (M*Ur\® [(MSdU?k\7
N M?nk "n2e2MAK2T\ ny/p n2eZp '
3 11 14 32 4 8
Setting k = max{Gﬂéz’fz ALK LUV AL } we get
M2n?2 M 15 (ne)s
1 2 2 8 3 %
~ GUM\® GisUsSM1s d ~ [ 1 d
a=o | (CUM) 4 CRUAE <W> s <f>
n pis ne ns ne
O

F OMITTED PROOFS IN SECTION[6]

F.1 PROOF OoF LEMMA[9]

Proof of Lemmal9] For Vt, let 7(t) be the last iteration till ¢ when O; was used. If ¢ = 7(¢), then

we have
m

. 1
gr=— Z (O1(zt-1,Bj1) + &) - (84)
j=1
O1(z—1, Bj ) is an unbiased estimate of VF};(x;_1). Denote ¢; ; == O1(xi—1, Bj) — VFj(xi—1),
(o= mm > ity Grand & == L3 &5 4, then

1 m
— VF(x¢-1) Zgjt j(wi—1) gZCyt‘i‘é}t =G + &, (85)
By the G-Lipschitzness of loss function f, (; ~ nSG (%Log ) According to the algorithm, each
2
&j,t 1s zero-mean and &;; ~ N (0 ( ,C1 Gb;(:% 5 Id> , and thus & ~ (0, c1 Cjn 1;; 2 Id) In this case,
Ze

the lemma holds.
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If t > 7(t), then we have

m t

R 1

ge=— Z O1(xrt)—15Bjrt)y-1) +&jirr) + Z (Oa(@iz1,mi2, Bja) +&54) |+ (86)
j=1 i=7(0)+1

Each Oz(xi-1,%i—2,B;,) is an unbiased estimate of VFj(z;—1) — VFj(x;—2). Denote (j,; =
O(wi—1,i—9,Bji) = [VFj(wi1) = VFj(zi2)], ¢ = 15 370, ¢ and & = = 37", &, then

R 1 m _A t
gt — VF(v1-1) = - Git — | VEi(Tr@y-1) + Z [VFj(zi-1) — VFj(7;2)]
i=1 | i=1(t)+1
(87)
1 m I t t
= Z Cirty + Z Git &+ Z 37 (88)
J=1 [ i=7(t)+1 i=7(t)+1
t t
=G+ Z Gi+&w+ Z & (89)
i=7(t)+1 i=7(t)+1

By the M-smoothness of loss function f, each (/ ~ nSG(M”x“l_m’zl‘vlogd). Ac-

m-bo
cording to the algorithm, each &, ~ N (0 M log 3 log%” - 1 thus & ~
g g ’ Jyi ) C2 bZe? Ti—1 — Te—2||"La ) us g

2
N (0, Cs M log |ws—1 — 22 Hzld). By corollary [3| and the fact ensured by our algorithm that,

m-b%e2
drift, = ZEZT@H |wi—1 — 2;_2]|? < K almost surely, we have
2 t 2

G+/logd M|zi—1 — 2i—2||\/logd

<O (Og) n Z ( |wi—1 — zi—2]|v/1og ) logd (90)
Vi by i=r(t)+1 V- b

G?log’d = M?2log®d
<0 o6 @, 1708 4. 1)
m - b1 m - bg

By the properties of Gaussian distribution, and the fact that, drift, = S>¢__ )41 [Tim1—zi2 I? <k
almost surely, we have

G?log 3 i M?log %
r<0 e + > (Wﬂxt—l - xt—2||2> 92)
i=7(t)+1
G?logt MZ2logi
<0 . Ok | .
- \/m - b2e2 o b e2 " ©3)

O

F.2 PROOF OF THEOREM[3]

Proof of Theorem[3] We first show that, our setting of b; and b, is feasible. Specifically, we need to
show the total sample used by each client is O(n). This can be verified as follows.

b [T1+be (T —|T[) <by-|T|+b2- T < O(n),
where we use the fact T = O (n%) and |7 < O(%) given in Lemma
As we never reuse a sample,the privacy guarantee follows directly from the Gaussian mechanism
and the parallel composition property.
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By Theorem T}
o = 0(x) = O(¥) < O(Vo? + r2d)

(. fer e e
N m-by  m-be2 m-by  m-b3e? a

By our setting of by = 577 and by = nx® e further have

BTip) 20>
~ GQUT] G2dU?n? M2Uk M2dU?k
=0 94)
m- nm m-n2e2k2  m-nnx2  m-n2e2n?y?t
_6 GQUpzoz2 G2dU?pa MUk M6dU2k (5)
- m M2nk m-n262M4/€2 m-npia:  m-n2e2pad |’
which gives us that
2 2 1
~ GQU\/ﬁ E G2dU?%p MUk \° MSdU%k\ 7
a =0 | max , , , .
m - M?nk m-n2e2M4k2" \'m - n./p m-n2e2p
. G3U%p2 GI5d3US,Ts
Setting £ = max { 3 2B (Vi) }, we get
- [ (GUM GHsUSMTs d \’ [ 1 d \’
“=0 < ) —— v =0 -+ vd
mn pis mne (mn)s V/mne
O

F.3 PROOF OF THEOREM ]

Proof of Theorem, Define S := | |i”, S;. Define 6, := L >0 and Hy = L > Hyp.

Denote U% = szleozg% and U% =y % for simplicity.
For any S; and z, V f(z;S;) — VF}(x) is zero-mean and follows nSG (7) By the Hoeffding
inequality for norm-sub-Gaussian (Lemma , with probability at least 1 — “é we have
Gy/log ()
IVF(zp) = Vf(zp;S)]2 <O — Jmn (96)
Note that 6, ~ N(0, ) By Lemma and DeﬁmtlonH with probability at least 1 — %-, we have
16
§ 202 log (18) G\/chdTlog (§)log (£2) o G\/dTlog (%) log (X))
1€pll2 < m /mne o /mne
o7)

Forany j € [m] and z € S}, E[V?f(x,;2) — V2Fj(z,,)] = 0, and || V2 f(2p; 2) — V2Fj(z,)]]2 <
2M (due to M -smoothness). Applying Matrix Bernstein inequality (Lemma with 02 = 4M?mn

andt = 4M/mnlog i—",l therein and noting that mn > % log i—‘%, we have

/!
P Z Z V2 f(xp; 2) — V2Fj(zp) > 4M\/mnlogi—a; < % (98)

j€[mM] \2€S; 9
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Therefore, with probability at least 1 — %-, we have
log 8¢ log <
2 . 2 w’ w’
[V2f(@p; S) = V2F ()|, < AMY[ —22 < O | My —en (99)

Note that each on-and- above diagonal entry in H,, samples from N (0, ) By Lemmal 5| with

probability at least 1 — %-, we have
s < 0 vie e 2V Z o Md,/Tlog X +M\/dimog 1) log (22)
/4 2 \/7 g W/ - \/777/6 \/ﬁnﬁ
(100)
Md,/Tlog % log (22)
< . 101
=0 Jmne (101)
Combining the results above, with probability at least 1 — %-, we have
IVE(2p)ll2 < (IVF(2p) — VF(ap)]2 + IIVF(mp)Ilz (102)
<V (@p;S) = VE(zp) |2 + [16pll2 + IVE ()2 (103)
-0 Glog (&) G\/dTlog (§)log (1) o4
- vmn + /mne tals (104)
and
Auin (V2F(2p)) 2 Amin (V2 F(2p) = V2F(25)) + Amin (V2 F () (105)
> Amin (V2 (x,,; S) - V2 F(2p)) + Amin (Hp) + Amin (V2F () (106)
> — ||V [ 8) = V2F ()|, = [Hyll2 — Voo (107)
log 8d Md\/W
2= 1
> e (108)

This means that, if 2, is an a-SOSP, it can be output by Algorithm ] Therefore, Algorithm [ will
output a point with probability at least 1 — ‘“’7/

Let z,, be the output of Algorithm 4} for which we have

IVE(o)ll2 < [[VF(w0) = VE(x0) |2 + I VF(2o)||2 (109)
< IVE(wo) = VI (2o; S)ll2 + [loll2 + [ VE (20)ll2, (110)
and
Amin(V2F(26)) > Amin(V2F (20) — V2F(2,)) + Amin(V2F(2,)) (111)
> —||V2F(20) — VPF (o) |2 + Amin(V2F(2,)) (112)
> —[[V2F(20) = V2 f(20: S)ll2 = | Holl2 + Amin(V2F (2,)).  (113)
Following the same arguments for x,, with probability at least 1 — %-, we have the following z,-
related bounds hold:
IVF(r0) = V(2:S)]2 < O (Glog (&) ) , (114)
vmn

G\/dT log (4) log ()
\/> b

[€oll2 < O (115)
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log (&
[V2f(20;S) = V2F(2,)|[, <O | M %;;) : (116)
Md,/Tlog%log(%)
[Hpll2 <O . (117)

Vmne

Moreover, since z,, is the output, we have

Glog () G\/dTlog (5)log (37)
vmn + /mne ’

[VF(zo)ll2 < a+ (118)

and

B log( d/) de/Tlog%log(T},)
. 2 _ w
Amin (V2F(z0)) > — | Vpa+ M e e . (119)

Combining these together, we finally obtain

Glog (&) G/dT1og (4) log ()

Fl(z, <O , 120
IVEG@)s <0 | = T ta (120)
and
log(i,) Md./Tlog%log(ﬁ)
Amin (V2F(2,)) > -0 | M w . 121
(V2 F(w) = =0 | M| =t g~ 4 (121)

Finally, by noting that 7' = O (3= ), and ignoring logarithmic factors and other irrelevant constant
such as G, M, etc., we obtain x, is an o’-SOSP for o’ shown in the statement. By using the union
bound, we have the two statements of Theorem [4| hold simultaneously with probability at least
1—uw. O
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