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ABSTRACT

This paper addresses the challenge of achieving second-order stationary points
(SOSP) in differentially private stochastic non-convex optimization. We identify
two key limitations in the state-of-the-art: (i) inaccurate error rates caused by the
omission of gradient variance in saddle point escape analysis, resulting in inap-
propriate parameter choices and overly optimistic performance estimates, and (ii)
inefficiencies in private SOSP selection via the AboveThreshold algorithm, par-
ticularly in distributed learning settings, where perturbing and sharing Hessian
matrices introduces significant additional noise. To overcome these challenges,
we revisit perturbed stochastic gradient descent (SGD) with Gaussian noise and
propose a new framework that leverages general gradient oracles. This framework
introduces a novel criterion based on model drift distance, ensuring provable sad-
dle point escape and efficient convergence to approximate local minima with low
iteration complexity. Using an adaptive SPIDER as the gradient oracle, we estab-
lish a new DP algorithm that corrects existing error rates. Furthermore, we extend
our approach to a distributed adaptive SPIDER, applying our framework to dis-
tributed learning scenarios and providing the first theoretical results on achieving
SOSP under differential privacy in distributed environments with heterogeneous
data. Finally, we analyze the limitations of the AboveThreshold algorithm for pri-
vate model selection in distributed learning and show that as model dimensions
increase, the selection process introduces additional errors, further demonstrating
the superiority of our proposed framework.

1 INTRODUCTION

Stochastic optimization is one of the most fundamental problems in machine learning and statistics,
with the goal of building models that generalize well to unseen data using only a limited number of
i.i.d. samples drawn from an unknown distribution. As the volume of sensitive data grows, ensuring
privacy during the training process has become a critical concern. This has led to the adoption
of differential privacy (DP) (Dwork et al., 2006) in stochastic optimization, which provides strong
privacy guarantees while preserving the utility of the learned model.

Over the past decade, significant advances have been made in DP stochastic optimization, partic-
ularly for convex objectives, e.g., (Choquette-Choo et al., 2024; Liu & Asi, 2024; Su et al., 2023;
2022; Tao et al., 2022). While convex optimization is relatively well-understood, the non-convex
setting presents additional challenges due to the existence of saddle points. In non-convex optimiza-
tion, most existing DP algorithms focus on achieving convergence to first-order stationary points
(FOSP), where the gradient norm is small (Arora et al., 2023; Bassily et al., 2021; Zhou et al.,
2020). However, this criterion is often insufficient, as FOSP can include both local maxima and
saddle points—where saddle points represent highly sub-optimal solutions in many problems, as
shown by Jain et al. (2015) and Sun et al. (2016). For practical non-convex functions, second-order
stationary points (SOSP)—where the gradient is small and the Hessian is positive semi-definite—are
preferred, as they guarantee convergence to a local minimum.

Due to the importance of achieving SOSP, substantial effort has been devoted to this area, as demon-
strated by works such as Fang et al. (2019), Jin et al. (2021), Daneshmand et al. (2018), Jin et al.
(2017), and Ge et al. (2015). However, few algorithms specifically target this more stringent crite-
rion under the DP framework. The notable exception and current state-of-the-art for achieving SOSP
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under DP is the work of Liu et al. (2024), which proposes adding Gaussian noise, scaled according to
the gradient error, to ensure that the DP-SGD sequence escapes each potential saddle point. Despite
being the state-of-the-art, we identify significant gaps in their utility analysis and error rate guaran-
tees. Specifically, the omission of gradient variance in their saddle point escape analysis results in
incorrect parameter settings and overly optimistic performance estimates (see Section 3).

Beyond these challenges, distributed learning serves as another key motivation for this work, be-
coming increasingly important in modern machine learning, particularly with the rise of large-scale
models that require decentralized systems for efficient training. To date, no existing work has ex-
plored DP non-convex stochastic optimization in distributed settings with the goal of achieving
SOSP. Distributed learning introduces additional challenges, such as data heterogeneity and the
need for privacy-preserving protocols across multiple clients. Moreover, the current state-of-the-
art approach by Liu et al. (2024) suffers from severe performance degradation when applied to
distributed settings. Their reliance on the AboveThreshold algorithm for private model selection
introduces significant noise when sharing perturbed Hessian matrices across clients, particularly in
high-dimensional scenarios (see detailed discussion in Section 6). This degradation can be attributed
to their learning algorithm, which only guarantees the existence of an SOSP among all model iterates
during the learning process and thus requires additional use of private model selection algorithms.

Our Contributions. To address the gaps mentioned above, we propose a new algorithmic frame-
work and analysis for DP stochastic non-convex optimization that ensures convergence to SOSP.
Our contributions can be summarized as follows:

1. Revisiting Non-Convex Stochastic Optimization Beyond DP: We propose a new perturbed
stochastic gradient descent (PSGD) framework with Gaussian noise for perturbation, utilizing gen-
eral stochastic gradient oracles. This framework serves as a general optimization tool for non-convex
stochastic optimization, applicable beyond the context of DP. In this framework, we introduce a
novel criterion based on model drift distance to determine SOSP, ensuring provable escape from
saddle points and efficient convergence to approximate local minima with low iteration complexity
and high probability.

2. Corrected Error Rates for DP Non-Convex Optimization: By employing an adaptive DP-
SPIDER as the perturbed gradient oracle, we establish corrected error rates for achieving SOSP
under DP in non-convex optimization. Specifically, we adjust the previous state-of-the-art error rate
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3. Application to Distributed Learning: We extend the adaptive DP-SPIDER framework to dis-
tributed settings. With this new estimator, our algorithm offers an adaptive improvement over the
previous DIFF2 algorithm Murata & Suzuki (2023), which only guarantees convergence to FOSP
under DP. Our approach provides the first DP error rate for attaining SOSP in distributed learning
with heterogeneous data. Additionally, we analyze the limitations of the AboveThreshold algo-
rithm for private model selection in distributed learning scenarios, particularly in high-dimensional
settings. We show that this selection process degrades the error rate guaranteed by the learning
algorithm, highlighting the superiority of our proposed framework.

Due to the space limit, the literature review, technical preliminaries, along with all omitted proofs
are included in the Appendix.

2 PRELIMINARIES

Notations We use ∥ · ∥ to denote the ℓ2 norm and λmin(·) to represent the smallest eigenvalue of a
matrix. The notation Id denotes the d-dimensional identity matrix. We use O(·) and Ω(·) to hide
constants independent of problem parameters, while Õ(·) and Ω̃(·) additionally hide factors that
depend only polylogarithmically on the problem parameters.

Stochastic Optimization Let f : Rd × Z → R be a (potentially non-convex) loss function, where
the input consists of the d-dimensional model parameter x ∈ Rd and a data point z ∈ Z .

Assumption 1. We assume that f(·; z) isG-Lipschitz,M -smooth, and ρ-Hessian Lipschitz. Specif-
ically, for any z ∈ Z and any x1, x2 ∈ Rd, we have:
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• |f(x1; z)− f(x2; z)| ≤ G∥x1 − x2∥,

• ∥∇f(x1; z)−∇f(x2; z)∥ ≤M∥x1 − x2∥,

• ∥∇2f(x1; z)−∇2f(x2; z)∥ ≤ ρ∥x1 − x2∥.

For a dataset Z ⊆ Z , we define its empirical risk function as f(x;Z) := 1
|Z|
∑
z∈Z f(x; z). If the

data points are sampled i.i.d. from an unknown distribution D, the population risk function of a
model x, denoted F (x;D), is defined as F (x;D) := Ez∼D[f(x; z)]. For simplicity, we refer to the
population risk as F (x) when the distribution D is clear from context.
Assumption 2. Let x∗ represent the population risk minimizer and F ∗ the corresponding minimum
risk. We assume maxx F (x)− F ∗ ≤ U for some upper bound U .

Given a dataset D with n i.i.d. samples drawn from D, our goal is to find an α-second-order
stationary point (α-SOSP).
Definition 1 (α-SOSP). An α-SOSP x of the population risk F (·) satisfies ∥∇F (x)∥ ≤ α and
∇2F (x) ⪰ −√ρα · Id.

The notion of α-SOSP excludes α-strict saddle points where ∇2F (x) ⪯ −√ρα · Id, ensuring con-
vergence to an approximate local minimum (with local maxima considered a special case of saddle
points). Following prior works on finding α-SOSP such as (Liu et al., 2024; Jin et al., 2021), we
assumeM ≥ √ρα to ensure that finding a second-order stationary point is strictly more challenging
than finding a first-order stationary point.

Distributed Learning In the distributed (federated) learning setting, m clients collaboratively learn
under the coordination of a central server. Each client j ∈ [m] has a local dataset Dj of size
n, sampled from an unknown local distribution Dj . The population risk for client j is defined as
F (x;Dj) := Ez∼Dj [f(x; z)]. For brevity, we refer to the population risk of client j as Fj(x). In
the distributed setting, the global population risk for any model x, denoted F (x;D) or simply F (x),
is defined as F (x) := 1

m

∑
j∈[m] Fj(x). We allow for heterogeneity in the local datasets, meaning

that the local distributions {Dj}j∈[m] may differ arbitrarily.

Differential Privacy We aim to achieve SOSP while ensuring privacy under the framework of Dif-
ferential Privacy (DP). Two datasets D and D′ are called adjacent if they differ by at most one
record. DP ensures that the output of a learning algorithm on any pair of adjacent datasets is statis-
tically indistinguishable.
Definition 2 (Differential Privacy (DP) (Dwork et al., 2006)). Given ϵ, δ > 0, a randomized algo-
rithm A : Z → X is (ϵ, δ)-DP if for any pair of adjacent datasets D,D′ ⊆ Z , and any measurable
subset S ⊆ X ,

P[A(D) ∈ S] ≤ exp(ϵ) · P[A(D′) ∈ S] + δ. (1)

In distributed learning, we focus on inter-client record-level DP (ICRL-DP), which assumes that
clients do not trust the server or other clients with their sensitive local data. This notion has been
widely adopted in state-of-the-art distributed learning works, such as Gao et al. (2024); Lowy et al.
(2023); Lowy & Razaviyayn (2023).
Definition 3 (Inter-Client Record-Level DP (ICRL-DP)). Given ϵ, δ > 0, a randomized algorithm
A : Zm → X satisfies (ϵ, δ)-ICRL-DP if, for any client j ∈ [m] and any pair of local datasets
Dj and D′

j , the full transcript of client j’s sent messages during the learning process satisfies (1),
assuming fixed local datasets for other clients.

Variance Reduction via SPIDER In standard SGD and its variants, a gradient estimate gt is used
at each iteration t to approximate the true gradient ∇F (xt−1). However, stochastic gradients com-
puted from batches or individual samples often exhibit high variance, which can degrade learning
performance. The Stochastic Path Integrated Differential Estimator (SPIDER), introduced by Fang
et al. (2018), addresses this issue by using two gradient oracles, O1 and O2, to reduce variance,
given a batch of data samples Bt at each iteration t:

• Oracle O1(xt−1,Bt) := ∇f(xt−1;Bt) provides an estimate of∇F (xt−1).
• Oracle O2(xt−1, xt−2,Bt) := ∇f(xt−1;Bt)−∇f(xt−2;Bt) approximates the gradient differ-

ence∇F (xt−1)−∇F (xt−2).
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SPIDER periodically queries O1 every l iterations for an updated gradient estimate gt. In the re-
maining l − 1 iterations, it uses O2 to estimate the gradient difference and updates the gradient
estimate as gt = gt−1 + O2(xt−1, xt−2,Bt). For smooth functions, the variance of the estimate
∇F (xt−1)−∇F (xt−2) is proportional to ∥xt−1− xt−2∥, which is typically small when the model
drift between iterations is minimal. This enables SPIDER to effectively reduce gradient variance
while maintaining high accuracy in gradient estimation.

3 GAPS AND LIMITATIONS IN STATE-OF-THE-ART

Gaps in Error Rate Analysis The state-of-the-art error rate for achieving an α-SOSP in popula-
tion risk function under DP, as presented in Liu et al. (2024), contains fundamental gaps that lead to
incorrect conclusions. First, the error analysis is based on Lemma 3.4, which is essentially derived
from Wang et al. (2019, Lemma 12). This lemma asserts that adding Gaussian noise at the same
scale as the gradient estimation error can sufficiently reduce the function value with high probability,
ensuring successful escape from saddle points. The key to the proof lies in demonstrating that the
region around the saddle point, where SGD may get stuck, is narrow. This ensures that at least one
of two coupled SGD sequences, initialized a certain distance apart in the escape direction due to the
perturbation, can successfully escape.

However, the existing analysis overlooks a critical factor: the stochastic gradient variance. In ana-
lyzing the dynamics of the coupled points, the authors used exact gradients of the population risk,
as evidenced in the equation preceding equation (39) of Wang et al. (2019). This oversight leads to
incorrect parameter settings, particularly with respect to the step size η. Even for non-private SGD,
Jin et al. (2021) has shown that the presence of stochastic gradient noise requires a smaller step size
and, thus, induces higher gradient complexity to ensure convergence to an SOSP, compared to exact
gradient descent (GD). In contrast, Liu et al. (2024) adopted a constant step size of 1

M , which is only
appropriate for GD with exact gradients and fails to account for the stochastic nature of population
risk minimization. This misstep leads to an incorrect error rate. Specifically, the increased gradient
complexity reduces the number of data points per gradient estimate, leading to larger estimation
errors. Consequently, the correct error rate for achieving an SOSP should be looser than the one
presented in Liu et al. (2024).

With the perception of the above gaps, we further argue that directly fixing the error in Liu et al.
(2024) through a revised proof for their algorithm, while feasible, would fail to achieve the target
SOSP with the optimal dependence on α as required in Definition 1. For a detailed discussion,
please refer to Appendix B.

Limitations in Private SOSP Selection The state-of-the-art learning algorithm proposed in Liu
et al. (2024) only guarantees the existence of an α-SOSP in all models throughout the learning
process. To privately select an α-SOSP from these iterates, the authors employ the well-known
AboveThreshold algorithm. This approach raises significant concerns, as it relies on evaluating both
the gradient and the Hessian matrix of the objective function for every model. In the case of popu-
lation risk minimization, where the objective function is unknown and only samples from the data
distribution are available, approximating these gradients and Hessians requires additional data and
becomes computationally expensive—particularly for Hessians. Due to the need for computing the
Hessian, this method is no longer first-order. Moreover, while Liu et al. (2024) claim that the error
introduced by approximating the gradients and Hessians does not exceed the error generated by their
learning algorithm, as we will demonstrate in Section 6, this assertion does not hold in distributed
learning scenarios. The AboveThreshold algorithm primarily uses the perturbed gradient norm and
the minimum eigenvalue of the Hessian for model selection. In single-machine cases, where all data
is centrally stored, it is feasible to approximate the gradients and Hessians and add noise only to
the one-dimensional values of the gradient norm and minimum eigenvalue. However, in distributed
learning with heterogeneous data, each client must perturb and share its local gradients and Hes-
sians—rather than just the one-dimensional quantities—so that noisy estimates can be aggregated at
the central server. This introduces significantly more noise, especially in high-dimensional settings,
thereby worsening the error rates provided by the learning algorithm (see Section 6 for a detailed
analysis).
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4 REVISIT PERTURBED SGD WITH GAUSSIAN NOISES

We begin by revisiting perturbed stochastic gradient descent (PSGD) with Gaussian noise for escap-
ing saddle points in population risk minimization F (·). In PSGD, the model is updated iteratively.
At each iteration t, instead of using the standard stochastic gradient oracle gt := ∇F (xt−1) + ζ̂t,
where ζ̂t is the unbiased noise introduced by the stochastic gradient oracle, we introduce additional
Gaussian noise to obtain a perturbed stochastic gradient oracle ĝt. The model update rule is:

xt ← xt−1 − ηĝt, (2)

where the perturbed stochastic gradient oracle ĝ is defined as

ĝt := gt + ξ̂t = ∇F (xt−1) + ζ̂t + ξ̂t. (3)

Here, the stochasticity in ĝt arises from two sources: (i) ζ̂t, the stochastic noise from the original
stochastic gradient oracle, which typically depends on the (unknown) data distribution, and (ii) ξ̂t,
a Gaussian noise term, ξ̂t ∼ N (0, r2Id), added intentionally to facilitate escape from saddle points.
Following prior works on stochastic optimization (Jin et al., 2021; Liu et al., 2024), we assume that
ζ̂t ∼ nSG(σ), where nSG denotes the norm-sub-Gaussian distribution defined in Definition 6 in
Appendix. Define ψ :=

√
σ2 + r2d, which captures the overall magnitude of noise in ĝt.

Note that we consider a different problem setting from prior work on PSGD Jin et al. (2021). In their
setting, a target error α is specified, and the noise magnitude is adjusted accordingly to escape saddle
points. However, in our case, privacy is the primary concern, and the Gaussian noise magnitude is
determined by the DP budget. Therefore, our goal is to determine the error α achievable under a
given privacy budget (ϵ, δ) which fixes the Gaussian noise magnitude. The parameter settings and
results from Jin et al. (2021) are not directly applicable to our setting. To guarantee a specific error
α, their method sets the Gaussian noise magnitude for perturbation such that r2d = O(σ2 + α

3
2 ),

which is only valid in our setting when the noise magnitude r, as determined by the privacy budget,
is sufficiently large, i.e., r ≥ O( σ√

d
). The behavior when r is small remains an open question.

4.1 OUR APPROACH: A GENERAL GAUSSIAN-PERTURBED SGD FRAMEWORK

We introduce our framework in Algorithm 1. In this algorithm, we use a general stochastic gradient
oracle with Gaussian perturbation, as described in (3), which we denote as P Grad Oracle(∗)
in steps 4 and 10, where ∗ omits any specific arguments the oracle might require. This allows our
algorithm to serve as a general optimization framework for non-convex stochastic optimization, ap-
plicable beyond the context of DP. Building upon the PSGD updates described earlier, our algorithm
distinguishes itself from the PSGD algorithm of Jin et al. (2021) by using the moving distance of the
model parameters as the criterion for escaping saddle points (step 12). This innovation allows the
algorithm to determine convergence to an SOSP with high probability during the PSGD process. In
contrast, the algorithm proposed by Jin et al. (2021) outputs all model parameters obtained through-
out the PSGD iterations, only guaranteeing that an SOSP was visited at least once. To further ensure
the output is an SOSP with high probability, their method requires additional post-processing steps,
such as computing the minimum eigenvalue of each Hessian matrix of the empirical risk function or
approximating these eigenvalues using extra data samples for population risk. These steps introduce
significant computational costs and extra sample usage, as well as the need to compute second-order
information, thereby making the overall procedure no longer first-order.

We observe that, when successfully escaping from a saddle point, not only does the function value
decrease sufficiently, as noted in Jin et al. (2021), but the model parameter also moves sufficiently
far beyond a certain threshold S (specified later). Leveraging this key insight, our algorithm can
directly identify and output an SOSP during the PSGD process, eliminating the need for additional
calculations or sample usage.

4.2 ERROR RATE ANALYSIS FOR ALGORITHM 1

We begin by introducing the following algorithmic parameter setup and useful notations:

5
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Algorithm 1: Gaussian Perturbed Stochastic Gradient Descent
Input: Failure probability ω, initial model x0, learning rate η, repeat number of the saddle

point escape process Q, model deviation threshold S , number of escape steps T
1 t← 0;
2 while true do
3 t← t+ 1;
4 ĝt ← P Grad Oracle(∗);
5 if ∥ĝt∥ ≤ 3χ then

/* Saddle point escape */
6 t̃← t, x̃← xt−1, esc← false;
7 for q ← 1, · · · , Q do
8 t← t̃, xt ← x̃;
9 for τ ← 1, · · · ,T do

10 ĝt ← P Grad Oracle(∗) ;
11 xt ← xt−1 − η · ĝt;
12 if ∥xt − x̃∥ ≥ S then
13 esc← true;
14 break;
15 else
16 t← t+ 1;

17 if esc = true then
18 break;

19 if esc = false then
20 return xt−1

21 else
/* Normal descent step */

22 xt ← xt−1 − η · ĝt;

ι := s · µ, χ := max

{
4
√
Csµ2, C

√
2 log

4T

ω

}
· ψ = 4

√
Csµ2ψ, α := 4χ,

η =

√
ρα

M2ι2
≤ 1

M
, T :=

ι

sη
√
ρα
, S :=

1

ι1.5

√
α

ρ
, F :=

s

8ι3

√
α3

ρ
,

(4)

where s is a sufficiently large absolute constant to be determined later, and µ is a logarithmic factor
defined as:

µ = max

{
1

s
log

(
9d

C
1
4 η
√
sρψ

log

(
4C

1
4

sηr

√
ψ

ρ

))
, log

(
160
√
2C

1
4

s
√
ηr

√
ψ

ρ

)
,
(C · log 4T

ω )
1
4

2
3
4
√
s

, 1

}
.

(5)

Throughout our analysis, C represents an absolute constant that does not depend on s, and its value
may change from line to line.

Let H := ∇2F (x̃), vmin be the eigenvector corresponding to the minimum eigenvalue of H, and
γ := −λmin(H). Let P−vmin denote the projection onto the subspace orthogonal to vmin.

Definition 4 (Coupling Sequence). Let {xi} and {x′i} be two sequences obtained by separate runs
of PSGD both starting at x̃. We say they are coupled if they share the same randomness for P−vmin ξ̂t
and Bt at each iteration t, while in vmin direction, the random noise is opposite: v⊤minξ̂t = −v⊤minξ̂

′
t.

Our key insight that, when starting in the vicinity of any strict saddle point, PSGD will cause the
model to drift sufficiently far away with high probability. See proof of Lemma 1 in Appendix D.1.
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Lemma 1 (Escaping Saddle Points). Consider two coupled sequence {xi} and {x′i}, if x̃ satisfies
∥∇F (x̃)∥2 ≤ α and λmin(∇2F (x̃)) ≤ −√ρα, then with probability at least 1

2 , ∃i ≤ T such that
max{∥xi − x̃∥2, ∥x′i − x̃∥2} ≥ S 2.
Corollary 1. PSGD can successfully escape from any saddle point, moving the model at least a
distance of S away from the saddle point, with a constant probability of at least 1

4 .

Corollary 1 guarantees only a constant probability of successful escape by PSGD. To boost this prob-
ability to meet any desired failure probability ω0, we can repeat the escape procedure independently
up to Q times, which corresponds to steps 7-18 in Algorithm 1.
Lemma 2. Given any target failure probability ω0 ∈ (0, 1), by repeating the T -step PSGD process
independentlyQ = 5

2 log
1
ω0

times, we can ensure successful escape with probability at least 1−ω0.

See proof of Lemma 2 in Appendix D.2. In the remainder of this section, we analyze the total number
of PSGD steps required, in the worst case, for Algorithm 1 to reach a second-order stationary point.
This is primarily determined by the decrease in the function value at each step.

We begin by presenting a standard result that shows how the change in function value can be de-
composed into the decrease due to gradient magnitudes and a possible increase due to randomness
in both the stochastic gradients and the perturbations. Let νt := ζ̂t + ξ̂t represent the total noise.
Lemma 3 (Descent Lemma). For any time step t0, we have

F (xt0+t)− F (xt0) ≤ −
η

2

t−1∑
i=0

∥∇F (xt0+i)∥2 +
η

2

t∑
i=1

∥νt0+i∥2 (6)

Corollary 2. There exists an absolute constant c such that, for any given t0, with probability at least
1− 2e−ι, we have

F (xt0+t)− F (xt0) ≤ −
η

2

t−1∑
i=0

∥∇F (xt0+i)∥2 + c · ηψ2(t+ ι). (7)

Lemma 3 (see proof in Appendix D.3) and Corollary 2(see proof in Appendix D.4) imply that large
gradients lead to a rapid decrease in the function value. Next, we show in Lemma 4 that PSGD
updates can significantly decreases the function value with high probability when starting near any
strict saddle point and escaping it successfully. Proof of Lemma 4 is in Appendix D.5.
Lemma 4 (Function Value Decrease per Successful Escape). Suppose a successful escape occurs
after τ steps of PSGD initiated at xt0 (τ ≤ T ). With probability at least 1 − 2e−ι, the function

value decreases by at least s
8ι3

√
α3

ρ .

Next, we derive the maximum number of PSGD steps required in Lemma 6 (proved in Ap-
pendix D.7), which relies on the gradient estimation error given in Lemma 5(proved in Ap-
pendix D.6).

Lemma 5 (Gradient Estimation Error). With probability at least ω2 , ∥νt∥ ≤ C
√

2 log 4T
ω ψ ≤ χ.

Lemma 6 (Maximum Number of Descent Steps). Given the failure probability ω, Algorithm 1
returns an α-second-order stationary point within at most Õ

(
1

α2.5

)
steps of PSGD updates.

Remark 1. At first glance, Lemma 6 seems to show an improvement in gradient complexity com-
pared to Jin et al. (2021), reducing it from O

(
1
α4

)
to O

(
1

α2.5

)
for PSGD. However, we argue that

our result is not directly comparable due to differences in the problem setting. Jin et al. (2021) as-
sumes the target error is given as an input parameter, which can be arbitrarily small, and the gradient
variance σ is often treated as a constant. In contrast, we consider a scenario where the perturbation
noise r and the stochastic variance σ are given, meaning the error rate α is determined by these pa-
rameters and cannot be made arbitrarily small. As a result, the gradient complexity of our algorithm
should actually depend on σ and r. For simplicity, we use α to describe the gradient complexity in
our context.

In summary, we have the follow guarantee for Algorithm 1.
Theorem 1. Under Assumption 1 and 2, for any given ω ∈ (0, 1), if the parameters are set as in
(4), then with probability at least 1− ω, Algorithm 1 will output an α-second-order stationary point
with an error of α = 4χ, using a maximum of Õ

(
1

α2.5

)
steps of PSGD updates.
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Algorithm 2: Adaptive DP-SPIDER

Input: privacy budget ϵ and δ, time horizon T , models {xt−1}Tt=1, parameter κ
1 t← 1, drift← κ;
2 while t ≤ T do
3 if drift ≥ κ then
4 Sample mini-batch Bt of size b1 from D;

5 Sample ξt ∼ N
(
0, c1

G2 log 1
δ

b21ϵ
2 Id

)
;

6 ĝt ← O1(xt−1,Bt) + ξt;
7 drift← 0;
8 else
9 Sample mini-batch Bt of size b2 from D;

10 Sample ξt ∼ N
(
0, c2

M2 log 1
δ

b22ϵ
2 ∥xt−1 − xt−2∥2Id

)
;

11 ĝt ← ĝt−1 +O2(xt−1, xt−2,Bt) + ξt;

12 drift← drift + η2∥ĝt∥2;
13 t← t+ 1;

Output: ĝ1, ĝ2, · · · , ĝT

5 ERROR RATE FOR SOSP IN DP STOCHASTIC OPTIMIZATION

We now derive error rates for DP stochastic optimization based on the general result from Theorem 1.
The error rate is derived using the adaptive DP-SPIDER algorithm, shown in Algorithm 2, as the
gradient oracle. This adaptive version refines the original SPIDER by adjusting gradient queries
based on model drift. Unlike standard SPIDER, which queries O1 at fixed intervals, potentially
allowing the gradient estimation error to grow over time, adaptive SPIDER tracks the total model
drift, defined as driftt :=

∑t
i=τ(t) ∥xi − xi−1∥2, where τ(t) is the last iteration when O1 was used.

The intuition behind is that, for smooth functions, the error in O2, which estimates ∇F (xt−1) −
∇F (xt−2), is proportional to ∥xt−1 − xt−2∥. When the model drift is small, the gradient estimate
remains accurate enough, and O2 can continue to be used, reducing variance in gradient estimation
(steps 9-11). However, when the drift grows large, further use of O2 could introduce significant
error, and thus O1 is queried to refresh the gradient estimate (steps 4-7). A threshold κ is set to
determine when the drift becomes excessive, ensuring the total error remains controlled (step 3).

Our adaptive SPIDER differs from the approach in Liu et al. (2024) in an important way. In addition
to triggering O1 when the model drift exceeds a threshold, Liu et al. (2024) also needs to add
additional Gaussian noise and trigger O1 every time a potential saddle point is reached, while our
method fully utilizes the DP Gaussian noise already present in the gradient oracle, avoiding the need
to add additional noise at saddle points. As a result, in our framework, the decision to query O1

or continue with O2 is based solely on model drift, leading to a simpler and more efficient gradient
estimation process. The following Lemma 7 captures the noise magnitude for any ĝt, which is
proved in Appendix E.1.
Lemma 7. Under Assumption 1, for all t ∈ [T ], our adaptive DP-SPIDER guarantees that ĝt
satisfies (3) with:

σ ≤ O

√G2 log2 d

b1
+
M2 log2 d

b2
κ

 , r ≤ O

√G2 log 1
δ

b21ϵ
2

+
M2 log 1

δ

b22ϵ
2

κ

 . (8)

We can bound the number of occurrences where the drift becomes large, which allows us to limit
the total number of queries to O1. This enables the proper setting of b1 and b2 for Algorithm 2.
Lemma 8. Under Assumption 1 and 2, let T := {t ∈ [T ] : driftt ≥ κ} be the set of rounds where
the drift exceeds the threshold κ. Under the same probability as in Theorem 1, |T | ≤ O

(
Uη
κ

)
.

Theorem 2. Under Assumption 1 and 2, with σ and r set as determined by Lemma 7, let Algorithm 1
run with the gradient oracle instantiated by Algorithm 2, where b1 = nκ

2Uη , b2 = nηχ2

2U and κ =

8
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Algorithm 3: Distributed Adaptive DP-SPIDER

Input: privacy budget ϵ and δ, time horizon T , models {xt−1}Tt=1, parameter κ
1 t← 1, drift← κ;
2 while t ≤ T do
3 if drift ≥ κ then
4 for every client j in parallel do
5 Sample mini-batch Bj,t of size b1 from Dj ;
6 Sample ξj,t ∼ N

(
0, c1

G2 log 1
δ

b21ϵ
2 Id

)
;

7 ĝj,t ← O1(xt−1,Bj,t) + ξj,t;
8 Send ĝj,t to the server;
9 drift← 0;

10 else
11 for every client i in parallel do
12 Sample mini-batch Bj,t of size b2 from Dj ;
13 Sample ξj,t ∼ N

(
0, c2

M2 log 1
δ

b22ϵ
2 ∥xt−1 − xt−2∥2Id

)
;

14 ĝj,t ← ĝj,t−1 +O2(xt−1, xt−2,Bj,t) + ξj,t;
15 Send ĝj,t to the server;

16 ĝt ← 1
m

∑m
j=1 ĝj,t;

17 drift← drift + η2∥ĝt∥2;
18 t← t+ 1;

Output: ĝ1, ĝ2, · · · , ĝT

max

{
G

3
2 U

1
2 ρ

1
2

M
5
2 n

1
2
, G

14
15 d

2
5 U

4
5 ρ

8
15

M
34
15 (nϵ)

4
5

}
. Then the whole algorithm satisfies (ϵ, δ)-DP with some constants

c1, c2 and finds an α-SOSP with α = Õ

(
1

n
1
3
+
(√

d
nϵ

) 2
5

)
.

See proof of Lemma 8 in Appendix E.2, and proof of Theorem 2 in Appendix E.3.

6 APPLICATION TO DISTRIBUTED SGD

Our framework, Algorithm 1, can be extended to distributed learning scenarios by adapting the
gradient oracles from Algorithm 2 to a distributed version, as presented in Algorithm 3. Our algo-
rithm can be viewed as an adaptive improvement of the previous DIFF2 algorithm Murata & Suzuki
(2023) for distributed learning, which uses standard SPIDER to converge to first-order stationary
points and is limited to handling homogeneous data. To the best of our knowledge, our algorithm
is the first to achieve differentially private distributed learning that not only guarantees convergence
to second-order stationary points but also operates effectively in heterogeneous data settings. The
following Lemma 9 captures the noise magnitude for any ĝt given by Algorithm 3, which is proved
in Appendix F.1.
Lemma 9. Under Assumption 1, for ∀t ∈ [T ], our distributed adaptive DP-SPIDER guarantees that
ĝt satisfies (3) with

σ ≤ O

√G2 log2 d

m · b1
+
M2 log2 d

m · b2
κ

 , r ≤ O

√G2 log 1
δ

m · b21ϵ2
+
M2 log 1

δ

m · b22ϵ2
κ

 . (9)

Theorem 3. Under Assumption 1 and 2, with σ and r set as determined by Lemma 9, let Algorithm 1
run with the gradient oracle instantiated by Algorithm 3, where b1 = nκ

2Uη , b2 = nηχ2

2U and κ =

max

{
G

3
2 U

1
2 ρ

1
2

M
5
2 (mn)

1
2
, G

14
15 d

2
5 U

4
5 ρ

8
15

M
34
15 (

√
mnϵ)

4
5

}
. Then the whole algorithm satisfies (ϵ, δ)-ICRL-DP with some

constants c1, c2, and finds an α-SOSP with α = Õ

(
1

(mn)
1
3
+
( √

d√
mnϵ

) 2
5

)
.

9
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Algorithm 4: Distributed Private Model Selection

Input: A group of models {xt}Tt=1, privacy parameters ϵ, δ
1 for t← 1, · · · , T do
2 for every client j in parallel do
3 Compute∇F̄j(xt)← ∇f(xt;Sj) + θi,t, where θi,t ∼ N

(
0, c1

G2T log 1
δ

n2ϵ2 Id

)
;

4 Compute∇2F̄j(xt)← ∇2f(xt;Sj) +Hj,t, where Hj,t is a symmetric matrix with
its upper triangle (including the diagonal) being i.i.d. samples from
N
(
0, c2

M2dT log 1
δ

n2ϵ2

)
and each lower triangle entry is copied from its upper

triangle counterpart;
5 Send ∇F̄j(xt) and ∇2F̄j(xt) to the server;

6 ∇F̄ (xt)← 1
m

∑m
j=1∇F̄j(xt),∇2F̄ (xt)← 1

m

∑m
j=1∇2F̄j(xt);

7 if ∥∇F̄ (xt)∥2 ≤ α+
G log( 8d

ω′ )√
mn

+
G
√
dT log( 1

δ ) log(
16
ω′ )√

mnϵ
and

λmin

(
∇2F̄ (xt)

)
≥ −

(
√
ρα+M

√
log( 8d

ω′ )
mn +

Md
√
T log 1

δ log( 32
ω′ )√

mnϵ

)
then

8 Return xt

The proof of Lemma 9 is in Appendix F.1 and the proof of Theorem 3 is in Appendix F.2.

Remark 2. Our convergence error rate reflects a collaborative synergy between clients, indicating
that our algorithm significantly benefits from the distributed framework. Specifically, there is a lin-
ear term in m before n in the first non-private term of α, and a square root term

√
m before n in

the second term, which accounts for the privacy cost. This separation arises due to data heterogene-
ity, and the synergy effect aligns with that observed in other DP distributed learning works under
heterogeneity, such as Gao et al. (2024).

Finally, we discuss in detail the superiority of our proposed algorithm framework for distributed
learning scenarios. If we cannot guarantee the output of an SOSP with high probability, as we do
in Algorithm 1, then, like the approach given in Liu et al. (2024), we would need to rely on some
private model selection algorithm to evaluate all the models obtained during the iterations and select
an SOSP. The state-of-the-art private selection method is the AboveThreshold algorithm, as used by
Liu et al. (2024). We extend this algorithm to the distributed setting, as presented in Algorithm 4.
Now, suppose we have a list of model iterates xtt∈T output by a learning algorithm, with at least one
point being an α-SOSP. We then provide the following error rate guarantee for the model selected
by Algorithm 4, whose proof in given in Appendix F.3.

Theorem 4. Algorithm 4 is (ϵ, δ)-ICRL-DP. Under Assumption 1, if mn ≥ 4
9 log

8d
ω′ , then with

probability at least 1− ω′, we have the following two holds for Algorithm 4.

• If there exists an α-SOSP point xp ∈ {xt}Tt=1, then Algorithm 4 will output one point.

• If Algorithm 4 outputs any point xo, then xo is an α′-SOSP with

α′ = Õ

(
α+

1

mn
+

1√
mn

+
α√
mn

+

√
d

√
mnϵα

5
4

+
d

√
mnϵα

3
4

+
d2

mn2ϵ2α
5
2

)
. (10)

Remark 3. To ensure that Algorithm 4 outputs a model with error no worse than that
guaranteed by the learning algorithm, i.e., α, it is necessary to satisfy the condition

Õ

( √
d

√
mnϵα

5
4
+ d

√
mnϵα

3
4
+ d2

mn2ϵ2α
5
2

)
≤ Õ(α), since Õ

(
1
mn + 1√

mn
+ α√

mn

)
≤ Õ(α)

holds trivially. This reduces to a constraint on the model dimension d, such that d ≤
min{(

√
mnϵ)2, (

√
mnϵ)

6
13 }. Therefore, it is impractical to apply private model selection in dis-

tributed learning scenarios, especially when the model dimension is large.

10
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A RELATED WORK

Private Stochastic Optimization Differential privacy (DP) has become a crucial component in
stochastic optimization due to increasing concerns about data privacy. The pioneering work by
Dwork et al. (2006) established the foundational principles of DP, and its application in stochastic
optimization has since seen significant progress. Early efforts primarily focused on convex opti-
mization, achieving strong privacy guarantees while ensuring efficient learning, with a long list of
representative works e.g., (Wang et al., 2020a; 2017; Bassily et al., 2014; 2019; 2021; Feldman
et al., 2020; Choquette-Choo et al., 2024; Wang et al., 2018; Su et al., 2023; 2024; Hu et al., 2022;
Xue et al., 2021; Wang et al., 2020b; Huai et al., 2020). Recent advances have extended DP to non-
convex settings, mainly focusing on first-order stationary points (FOSP). Notable works in this area
include (Arora et al., 2023; Bassily et al., 2021; Zhou et al., 2020; Wang et al., 2019; Xiao et al.,
2023), which improved error rates in non-convex optimization with balanced privacy and utility in
stochastic gradient methods. However, these works generally fail to address the more stringent crite-
rion of second-order stationary points (SOSP). The very recent work Liu et al. (2024) tired to narrow
this gap, but unfortunately has some issues in their results as we discussed before. Our work builds
on this foundation by correcting error rates and proposing a framework that ensures convergence to
SOSP while maintaining DP.

Finding Second-Order Stationary Points (SOSP) In non-convex optimization, convergence to
FOSP is often insufficient, as saddle points can lead to sub-optimal solutions (Jain et al., 2015; Sun
et al., 2016). Achieving SOSP, where the gradient is small and the Hessian is positive semi-definite,
ensures that the optimization converges to a local minimum rather than a saddle point. Techniques
for escaping saddle points, such as perturbed SGD with Gaussian noise, have been explored in
works like Jin et al. (2021) and Ge et al. (2015). Ge et al. (2015) first showed that SGD with a
simple parameter perturbation can escape saddle points efficiently. Later, the analysis was refined
by Jin et al. (2017; 2021). Recently, variance reduction techniques have been applied to second-
order guaranteed methods Ge et al. (2019); Li (2019).These methods ensure escape from saddle
points by introducing noise to the gradient descent process. In contrast, the studies of SOSP under
DP are quite limited, and most of them only consider the empirical risk minimization objective, such
as Wang et al. (2019); Wang & Xu (2021). Very recently, Liu et al. (2024) addressed the population
risk minimization objective, but with notable gaps in their error analysis, particularly in the treatment
of gradient variance. Moreover, all of these works are limited to the centralized learning setting with
only one client and cannot be directly extended to the more general distributed learning setting.

Distributed Learning Distributed learning has gained prominence due to the growing need for
large-scale models trained on decentralized data. Methods like federated learning (McMahan et al.,
2017) have enabled multiple clients to collaboratively train models without sharing their local data,
preserving privacy. Recent efforts, such as Gao et al. (2024); Lowy et al. (2023); Lowy & Raza-
viyayn (2023) investigated DP learning problems in distributed settings, but these works are limited
to first-order optimization. No prior work, to our knowledge, has extended these methods to ensure
SOSP in distributed learning scenarios with heterogeneous data. Our proposed framework addresses
this gap by introducing the first distributed learning algorithm with DP guarantees for SOSP, capable
of handling arbitrary data heterogeneity across clients.

B MORE DISCUSSIONS ON GAPS IN SOTA

In this section, we further discuss whether the error in (Liu et al., 2024) can be directly fixed through
a revised proof for their algorithm. While this is feasible, such a correction would still fail to achieve
the target SOSP with the optimal dependence on α required in our work: ∥∇F (x)∥ ≤ α and
∇2F (x) ⪰ −√ρα · Id. Specifically, a direct correction would result in suboptimal second-order
accuracy with a dependence of Õ(α2/5), instead of the desired Õ(α1/2).

The algorithm in (Liu et al., 2024) can be viewed as a special single-machine case of the generic
framework of perturbed gradient descent (GD) with bounded gradient inexactness, as developed by
Yin et al. (2019). In this view, DP noise contributes to bounded gradient inexactness. The analysis
by Yin et al. (2019) implies the corrected convergence guarantees for the algorithm of Liu et al.
(2024). Assuming the first-order error rate satisfies ∥∇F (x)∥ ≤ O(α), the analysis in (Yin et al.,

14
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2019) guarantees ∥∇F (x)∥ ≤ O(α) and ∇2F (x) ⪰ −Õ(
√
ρα2/5) · Id, see Theorem 3 of (Yin

et al., 2019). However, this falls short of the desired guarantee of∇2F (x) ⪰ −Õ(
√
ρα) · Id, which

is also what Liu et al. (2024) ideally aimed to achieve.

Furthermore, Proposition 1 in (Yin et al., 2019) establishes a lower bound of Õ(α1/2) for depen-
dence on α in second-order guarantees, highlighting the suboptimality of Õ(α2/5). Additionally,
Theorem 4 in (Yin et al., 2019) shows that with an exact gradient oracle, an optimal dependence
of Õ(α1/2) can be achievable. This explains why Liu et al. (2024) appeared to achieve the optimal
order, as their analysis omitted the effect of gradient variance, as we discussed in Section 3 of our
paper.

In summary, while directly correcting the results of Liu et al. (2024) using a refined analysis is
feasible and can be accomplished with minimal effort based on (Yin et al., 2019), such corrections
still cannot guarantee the target SOSP. Designing a new framework, as we have done, is therefore
both necessary and essential to meet these expectations.

C USEFUL FACTS

C.1 PROBABILITY TOOLS

Definition 5 (Sub-Gaussian random vector (Jin et al., 2019, Definition 2)). A random vector v ∈ Rd
is ζ-sub-Gaussian (or SG(ζ)), if there exists a positive constant ζ such that

E[exp(⟨u, v − E[v]⟩)] ≤ exp

(
∥u∥22ζ2

2

)
, ∀u ∈ Rd. (11)

Definition 6 (Norm-sub-Gaussian random vector (Jin et al., 2019, Definition 3)). A random vector
v ∈ Rd is ζ-norm-sub-Gaussian (or nSG(ζ)), if there exists a positive constant ζ such that

P [∥v − E[v]∥ ≥ t] ≤ 2 exp

(
− t2

2ζ2

)
, ∀t ∈ R. (12)

Note that norm-sub-Gaussian random vectors (Definition 6) are more general than sub-Gaussian
random vectors (Definition 5), as sub-Gaussian distributions require isotropy, whereas norm-sub-
Gaussian distributions do not impose this condition.

Lemma 10 ((Jin et al., 2019, Lemma 1)). A SG(r) random vector v ∈ Rd is also nSG(2
√
2 · r
√
d).

We are interested in the properties of norm-subGaussian martingale difference sequences. Con-
cretely, they are sequences satisfying the following properties.
Condition 1. Consider random vectors v1, · · · , vp ∈ Rd, and corresponding filtrations Fi =
σ(v1, · · · , vi) for i ∈ [n], such that vi|Fi−1 is zero-mean nSG(ζi) with ζi ∈ Fi−1. That is,

E[vi|Fi−1] = 0, P [∥vi∥ ≥ t|Fi−1] ≤ 2 exp

(
− t2

2ζ2

)
, ∀t ∈ R,∀i ∈ [p]. (13)

Lemma 11 (Hoeffding type inequality for norm-sub-Gaussian (Jin et al., 2019, Corollary 7)). Let
random vectors v1, · · · , vp ∈ Rd, and corresponding filtrations Fi = σ(v1, · · · , vi) for i ∈ [k]
satisfy condition 1 with fixed {ζi}. Then for any ι > 0, there exists an absolute constant C such
that, with probability at least 1− 2d · e−ι,∥∥∥∥∥

p∑
i=1

vi

∥∥∥∥∥
2

≤ C ·

√√√√ p∑
i=1

ζ2i · ι. (14)

Lemma 11 implies that the sum of norm-sub-Gaussian random vectors is till norm-sub-Gaussian.
Corollary 3. Let random vectors v1, · · · , vp ∈ Rd, and corresponding filtrations Fi =
σ(v1, · · · , vi) for i ∈ [k] satisfy condition 1 with fixed {ζi}. Then

∑p
i=1 vi is

nSG

(
C ·
√
log(d)

∑k
i=1 ζ

2
i

)
.
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Proof. Let ζ+ :=
√
C log(d)

∑k
i=1 ζi. According to Definition 6, we aim to show that, for any

ω ∈ (0, 1), with probability at least 1 − ω, ∥
∑p
i=1 vi∥ ≤

√
2ζ2+ ln 2

ω . By Lemma 11, we have

known that, with probability at least 1 − ω, ∥
∑p
i=1 vi∥ ≤ C ·

√∑p
i=1 ζ

2
i ln

2d
ω . Next, we show

that
√
2ζ2+ ln 2

ω ≥ C ·
√∑p

i=1 ζ
2
i ln

2d
ω , which, by re-arranging the terms, is equivalent to show

ζ2+ ≥ C2

2 (
∑p
i=i ζ

2
i )

log 2d
ω

log 2
ω

. This follows directly from the fact that log 2d
ω

log 2
ω

≤ 2 log d, ∀ω ∈ (0, 1).

Lemma 12 ((Jin et al., 2021, Lemma C.6)). Let random vectors v1, · · · , vp ∈ Rd, and correspond-
ing filtrations Fi = σ(v1, · · · , vi) for i ∈ [k] satisfy condition 1, then for any ι > 0, andB > b > 0,
there exists an absolute constant C such that, with probability at least 1− 2d log

(
B
b

)
· e−ι,

p∑
i=1

ζ2i ≥ B or

∥∥∥∥∥
p∑
i=i

vi

∥∥∥∥∥ ≤ C ·
√√√√max

{
p∑
i

ζ2i , b

}
· ι. (15)

Lemma 13 ((Jin et al., 2021, Lemma C.7)). Let random vectors v1, · · · , vp ∈ Rd, and correspond-
ing filtrations Fi = σ(v1, · · · , vi) for i ∈ [k] satisfy condition 1 with fixed ζ1 = ζ2 = · · · = ζp = ζ,
then there exists an absolute constant C such that, for any ι > 0, with probability at least 1− e−ι,

p∑
i=1

∥vi∥2 ≤ C · ζ2 · (p+ ι). (16)

Lemma 14 (Matrix Bernstein inequality (Tropp, 2012, Theorem 1.4)). Consider a finite sequence
{Mi}i∈[k] of independent, random, self-adjoint matrices with dimension d × d. Assume that each
random matrix satisfies E[Mi] = 0, ∥Mi∥2 ≤ B, then for all t ≥ 0, we have

P

∥∥∥∥∥∥
∑
i∈[k]

Mi

∥∥∥∥∥∥
2

≥ t

 ≤ d exp(− t2

2(σ2 +Bt/3)

)
, (17)

where σ2 =
∥∥∥∑i∈[k] E[M2

i ]
∥∥∥
2
.

Lemma 15 (Norm of symmetric matrices with sub-gaussian entries (Vershynin, 2020, Corol-
lary 4.4.8)). Let M be an d × d symmetric random matrix whose entries Mi,j on and above the
diagonal are independent, mean zero, sub-gaussian random variables. Then, with probability at least
1− 4 exp(−t2), for any t > 0 we have

∥M∥2 ≤ C ·max
i,j
∥Mi,j∥ψ2

· (
√
d+ t), (18)

where C is a universal constant.

C.2 PRIVACY PRELIMINARIES

Definition 7 (Gaussian Mechanism Dwork et al. (2014)). Given any input data D ∈ Xn and a
query function q : Xn → Rd, the Gaussian mechanism MG is defined as q(D) + ν where ν ∼
N (0, σ2

GId). Let ∆2(q) be the ℓ2-sensitivity of q, i.e., ∆2(q) := supD∼D′ ∥q(D) − q(D′)∥2. For

any σ, δ > 0, MG guarantees (∆2(q)
σG

√
2 log 1.25

δ , δ)-DP. That is, if we want the output of q to be

(ϵ, δ)-DP for any 0 < ϵ, δ < 1, then σG should be set to ∆2(q)
ϵ

√
2 log 1.25

δ .

Lemma 16 (Parallel Composition of DP McSherry (2009)). Suppose there are n (ϵ, δ)-differentially
private mechanisms {Mi}ni=1 and n disjoint datasets denoted by {Di}ni=1. Then the algorithm,
which applies eachMi on the corresponding Di, preserves (ϵ, δ)-DP in total.

D OMITTED PROOFS IN SECTION 4

D.1 PROOF OF LEMMA 1
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Proof of Lemma 1. We define the following notations for proving Lemma 1.

x̂t := xt − x′t, (19)
ˆ̂
ζt := ζ̂t − ζ̂ ′t, (20)
ˆ̂
ξt := ξ̂t − ξ̂′t, (21)

∆t :=

∫ 1

0

∇2F (y · xt + (1− y) · x′t) dy −H (22)

Lemma 17 (Dynamics of the Coupling Sequence Difference). For any time step t ≥ 0, we have

x̂t = − η
t∑
i=1

(Id − ηH)t−i∆i−1x̂i−1︸ ︷︷ ︸
Ph(t)

− η
t∑
i=1

(Id − ηH)t−i ˆ̂ζi︸ ︷︷ ︸
Psg(t)

− η
t∑
i=1

(Id − ηH)t−i ˆ̂ξi︸ ︷︷ ︸
Pp(t)

. (23)

Proof of Lemma 17.

x̂t = xt − x′t = x̂t−1 − η[∇F (xt−1)−∇F (x′t−1) + ζ̂t − ζ̂ ′t + ξ̂t − ξ̂′t] (24)

= x̂t−1 − η[(H+∆t−1)x̂t−1 +
ˆ̂
ζt +

ˆ̂
ξt] = (Id − ηH)x̂t−1 − η[∆t−1x̂t−1 +

ˆ̂
ζt +

ˆ̂
ξt] (25)

= (Id − ηH)tx̂0 − η
t∑
i=1

(Id − ηH)t−i(∆i−1x̂i−1 +
ˆ̂
ζi +

ˆ̂
ξi) (26)

= −η
t∑
i=1

(Id − ηH)t−i(∆i−1x̂i−1 +
ˆ̂
ζi +

ˆ̂
ξi), (27)

where the last equality is due to x̂0 = 0.

We prove Lemma 1 by contradiction. Suppose that for ∀t ≤ T :

max
{
∥xt − x̃∥2, ∥x′t − x̃∥2

}
≤ S 2. (28)

With the above assumption (28), we show that Pp(t) controls the behavior of the dynamics, while
Ph(t) and Psg(t) remain small compared with Pp(t).

Define α :=
√∑t

i=1(1 + ηγ)2(t−i) and β := (1+ ηγ)t/
√
2ηγ. It is easy to verify that α(t) ≤ β(t)

for any t ∈ N.

Lemma 18. For ∀t ≥ 0, we have

P
[
∥Pp(t)∥ ≤ cβ(t)ηr ·

√
ι
]
≥ 1− 2e−ι (29)

P
[
∥Pp(t)∥ ≥

β(T )ηr

10

]
≥ 2

3
(30)

Lemma 19. If for ∀t ≤ T , max
{
∥xt − x̃∥2, ∥x′t − x̃∥2

}
≤ S 2 holds, then we have

P
[
∥Ph(t) + Psg(t)∥ ≤

β(t)ηr

20

]
≥ 1− 6dT log

(
S

ηr

)
e−ι (31)

Proof of Lemma 19. Denote by E the event {∀t ≤ T : max
{
∥xt − x̃∥2, ∥x′t − x̃∥2

}
≤ S 2}. We

prove the following claim for any t ≤ T by induction:

P
[
E =⇒ ∀i ≤ t : ∥Ph(i) + Psg(i)∥ ≤

β(i)ηr

20
, ∥Pp(t)∥ ≤ cβ(t)ηr

√
ι

]
≤ 1−6dt log

(
S

ηr

)
e−ι

(32)
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For the base case of t = 0, the claim holds trivially as Ph(0) = Psg(0) = 0. Suppose there exists
some τ < T such that the claim holds for all t ≤ τ , we then forward prove that the claim also holds
for t = τ + 1 ≤ T . Since for any t ≤ τ , ∥Pp(t)∥ ≤ cβ(t)ηr

√
ι, we have

∥x̂t∥ ≤ ∥Ph(t) + Psg(t)∥+ ∥Pp(t)∥ (33)

≤ β(t)ηr

20
+ cβ(t)ηr ·

√
ι (34)

≤ 2cβ(t)ηr ·
√
ι. (35)

Moreover, due to assumption (28) and the Hessian Lipschitz property, we have

∥∆t∥ =
∫ 1

0

∇2F (y · xt + (1− y) · x′t) dy (36)

≤ ρmax{∥xt − x̃∥, ∥x′t − x̃∥} ≤ ρS . (37)

With the above upper bounds on ∥x̂t∥ and ∥∆t∥ for t ≤ τ , we immediately get

∥Ph(τ + 1)∥ ≤ ηρS
τ+1∑
t=1

(1 + ηγ)τ+1−t (2c · β(t)ηr√ι) (38)

≤ 2ηρS T cβ(τ + 1)ηr
√
ι ≤ β(τ + 1)ηr

40
, (39)

where the last inequality follows from 2cηρS T = 2c
s ≤

1
40 for large enough s such that s ≥ 80c.

Note that ˆ̂
ζt|Ft−1 ∼ nSG(M∥x̂t∥), by applying Lemma 12 with B = [α(t)]2 · η2M2S 2 and

b = [α(t)]2η2M2η2r2 therein, we know that, with probability at least 1− 4d log
(

S
ηr

)
e−ι, we have

∥Psg(τ + 1)∥ ≤ 2cηM
√

T β(τ)ηr
√
ι. (40)

For large enough s such that s ≥ (80c)2, we have cηM
√

T ι ≤ 2c√
s
≤ 1

40 . Thus,

∥Psg(τ + 1)∥ ≤ cηM
√

T β(τ)ηr
√
ι ≤ β(τ)ηr

40
. (41)

By Lemma 18, we know that, when t = τ + 1, with probability at least 1− 2e−ι, we have

∥Pp(τ + 1)∥ ≤ cβ(τ + 1)ηr
√
ι (42)

By the union bound, with probability at least 1−
(
6dτ log

(
S
ηr

)
e−ι + 4d log

(
S
ηr

)
e−ι + 2e−ι

)
≥

1− 6d(τ + 1) log
(

S
ηr

)
e−ι,

∥Ph(τ + 1) + Psg(τ + 1)∥ ≤ β(τ)ηr

20
, ∥Pp(τ + 1)∥ ≤ cβ(τ + 1)ηr

√
ι, (43)

which concludes the proof.

We continue the proof of Lemma 1. For large enough ι such that ι ≥ log
(
36dT log

(
S
η

))
, which

is promised by µ ≥ 1
s log

(
9d

C
1
4 η

√
sρψ

log

(
4C

1
4

sηr

√
ψ
ρ

))
, we have 6dT log

(
S
ηr

)
e−ι ≤ 1

6 . Then by

Lemma 18 and Lemma 19, with probability at least 2
3 −

1
6 = 1

2 , we have

∥Pp(T )∥ ≥ β(T )ηr

10
, ∥Ph(T ) + Psg(T )∥ ≤ β(T )ηr

20
. (44)

Combining (44) and the decomposition of x̂t given by Lemma 17, we have

max {∥xT − x̃∥, ∥x′T − x̃∥} (45)

≥ 1

2
∥x̂T ∥ ≥

1

2
[∥Pp(T )∥ − ∥Ph(T ) + Psg(T )∥] ≥ β(T )ηr

40
=

(1 + ηγ)T
√
ηr

40
√
2

(46)

≥
(1 + η

√
ρα)T

√
ηr

40
√
2

≥
2η

√
ραT√ηr
40
√
2

=
2

ι
s
√
ηr

40
√
2

=
2µ
√
ηr

40
√
2
> S , (47)
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where the second last inequality is due to the fact 1 + a > 2a,∀a ∈ (0, 1] and η
√
ρα ≤ 1

ι2 ≤ 1, and

the last inequality is because µ > log

(
160

√
2C

1
4

s
√
ηr

√
ψ
ρ

)
. The above contradicts with our assumption

(28). Thus, with probability at least 1
2 , ∃t ≤ T ,max{∥xt − x̃∥2, ∥x′t − x̃∥2} ≥ S 2.

D.2 PROOF OF LEMMA 2

Proof of Lemma 2. The failure probability after Q repeats is at most
(
3
4

)Q
, it is easy to verify that

when Q = 5
2 log

1
ω0

,
(
3
4

)Q
< ω0, which concludes the proof.

D.3 PROOF OF LEMMA 3

Proof of Lemma 3. For any t > 1, we have

F (xt)− F (xt−1) ≤ ⟨∇F (xt−1), xt − xt−1⟩+
M

2
∥xt − xt−1∥2 (48)

≤ −η⟨∇F (xt−1), ĝt−1⟩+
M

2
η2∥ĝt−1∥2 (49)

≤ −η⟨∇F (xt−1), ĝt−1⟩+
η

2
∥ĝt−1∥2 (50)

≤ η

2
∥νt∥2 −

η

2
∥∇F (xt−1)∥2 −

η

2
∥ĝt−1∥2 +

η

2
∥ĝt−1∥2 (51)

= −η
2
∥∇F (xt−1)∥2 +

η

2
∥νt∥2. (52)

Thus, for any time step t0, we have

F (xt0+t)− F (xt0) ≤ −
η

2

t−1∑
i=0

∥∇F (xt0+i)∥2 +
η

2

t∑
i=1

∥νt0+i∥2 (53)

D.4 PROOF OF COROLLARY 2

Proof of Corollary 2. Note that

η

2

t∑
i=1

∥νt0+i∥2 =
η

2

t∑
i=1

∥ζ̂t0+i + ξ̂t0+i∥2 ≤ η
t∑
i=1

(∥ζ̂t0+i∥2 + ∥ξ̂t0+i∥2) (54)

Since ζ̂i ∼ nSG(σ),∀i, by Lemma 13, with probability at least 1 − e−ι,
∑t
i=1 ∥ζ̂t0+i∥2 ≤ C ·

σ2(t+ ι). On the other hand, ξ̂i ∼ SG(r),∀i, by Lemma 10, we know ξ̂i ∼ nSG(2
√
2 · r
√
d). By

Lemma 13 again, with probability at least 1−e−ι,
∑t
i=1 ∥ξ̂t0+i∥2 ≤ 8C·r2d(t+ι). Combine the two

upper bounds and apply the union bound, we get the desired upper bound on η
2

∑t
i=1 ∥νt0+i∥2.

D.5 PROOF OF LEMMA 4

Proof of Lemma 4. Note that,

∥xt0+τ − xt0∥2 = η2

∥∥∥∥∥
τ∑
t=1

∇F (xt0+t−1) + νt0+t

∥∥∥∥∥
2

(55)

≤ 2η2

∥∥∥∥∥
τ∑
t=1

∇F (xt0+t−1)

∥∥∥∥∥
2

+

∥∥∥∥∥
τ∑
t=1

νt0+t

∥∥∥∥∥
2
 (56)

≤ 2η2τ

τ∑
t=1

∥∇F (xt0+t−1)∥2 + 2η2τ

τ∑
t=1

∥νt0+t∥2 (57)
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By following the same argument as in the proof of corollary 2, with probability at least 1− 2e−ι,
τ∑
t=1

∥νt0+t∥ ≤ c · ψ2(τ + ι). (58)

Again by corollary 2, with the same probability,
τ∑
t=1

∥∇F (xt0+t−1)∥2 ≤
2

η
[F (xt0)− F (xt0+τ )] + c · ψ2(τ + ι). (59)

Therefore, with probability at least 1− 2e−ι,

∥xt0+τ − xt0∥2 ≤ 4ητ [F (xt0)− F (xt0+τ )] + 4c · η2τψ2(τ + ι). (60)

By re-arranging terms above, we have

F (xt0+τ )− F (xt0) ≤ −
1

4ητ
∥xt0+τ − xt0∥2 + c · ηψ2(τ + ι). (61)

According to our criterion for successful escape, we know that ∥xt0+τ − xt0∥ ≥ S . Then

F (xt0+τ )− F (xt0) ≤ −
1

4ητ
∥xt0+τ − xt0∥2 + c · ηψ2(τ + ι) (62)

≤ − S 2

4ηT
+ c · ηψ2(T + ι) (63)

≤ − s

4ι3

√
α3

ρ
+

2c · ψ2ι

s
√
ρα

(64)

≤ − s

8ι3

√
α3

ρ
= F , (65)

where the second to last inequality is from the fact that sη
√
ρα = ρα

M2sµ2 < 1, and the last inequality

follows from α ≥ 4
√
Csµ2ψ.

D.6 PROOF OF LEMMA 5

Proof of Lemma 5. By corollary 3, we know that for ∀t, νt ∼ nSG(C
√
σ2 + r2d). Since E[νt] = 0,

according to definition 6, with probability at least 1− ω
2T

∥νt∥ ≤
√
2C · ψ

√
log

4T

ω
≤ χ. (66)

Applying the union bound to above immediately guarantees that, for all t ∈ [T ], with probability at
least 1− ω

2 , the gradient estimation error ∥ĝt −∇F (xt−1)∥ does not exceed χ.

D.7 PROOF OF LEMMA 6

Proof of Lemma 6. By Lemma 5, for all t ∈ [T ], with probability at least 1 − ω
2 , the gradient

estimation error ∥ĝt −∇F (xt−1)∥ does not exceed χ defined in (4). With this hold, we know that,
for any time step t ∈ [T ], if ∥ĝt∥ ≤ 3χ so that the escape process is triggered, we know the true
gradient norm ∥∇F (xt−1)∥ is at most α = 4χ, otherwise, when the algorithm runs out of the escape
process, the true gradient norm ∥∇F (xt−1)∥ is at least 2χ. With this insight, we discuss the average
function value decrease per PSGD step for above two cases separately.

• Case 1. When the algorithm runs in the escape process, the average decrease in the function
value during the successful Escape process is

F

T
=
s2α2η

8ι4
=

2χ2η

s2µ4
. (67)
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• Case 2. When the algorithm runs out of the escape process, for every PSGD update, the function
value is decreased by at least

η

2
(2χ)2 = 2χ2η >

2χ2η

s2µ4
. (68)

Combining the two cases, the total number of effective descent steps is at most

Teffective :=
(F0 − F ∗)s2µ4

2χ2η
. (69)

The total number of strict saddle points we need to escape is at most:

Nsaddle :=
F0 − F ∗

F
=

8ι3(F0 − F ∗)

s

√
ρ

χ3
. (70)

We know that, at each α-saddle point, we escape it successfully with probability at least 1
4 . To boost

the success probability for all such escapes to desired 1 − ω
2 , we need to repeat the process for Q

times independently. By applying Lemma 2 with ω0 = ω
2Nsaddle

therein, Q should be set as

Q =
5

2
log

(
16ι3(F0 − F ∗)

sω

√
ρ

χ3

)
. (71)

Therefore, the maximum total number of all descent steps the algorithm performs (sequential and
parallel) is bounded as

T ≤ Teffective ·Q =
5(F0 − F ∗)s2µ4

4χ2η
log

(
16ι3(F0 − F ∗)

sω

√
ρ

χ3

)
= Õ

(
U

ηχ2

)
. (72)

E OMITTED PROOFS IN SECTION 5

E.1 PROOF OF LEMMA 7

Proof of Lemma 7. For ∀t, let τ(t) be the last iteration till t when O1 was used. If t = τ(t), then
we have

ĝt = O1(xt−1,Bt) + ξt. (73)

O1(xt−1,Bt) is an unbiased estimate of∇F (xt−1). Denote ζt := O1(xt−1,Bt)−∇F (xt−1), then

ĝt −∇F (xt−1) = ζt + ξt, (74)

By the G-Lipschitzness of loss function f , ζt ∼ nSG
(
G
√
log d√
b1

)
. According to the algorithm, ξt is

also zero-mean and ξt ∼ N
(
0, c1

G2 log 1
δ

b21ϵ
2 Id

)
. In this case, the lemma holds.

If t > τ(t), then we have

ĝt = O1(xτ(t)−1,Bτ(t)) + ξτ(t) +

t∑
i=τ(t)+1

(O2(xi−1, xi−2,Bi) + ξi) , (75)

O2(xi−1, xi−2,Bi) is an unbiased estimate of ∇F (xi−1) − ∇F (xi−2). Denote ζ ′i :=
O2(xi−1, xi−2,Bi)− [∇F (xi−1)−∇F (xi−2)], then

ĝt −∇F (xt−1) = ĝt −

∇F (xτ(t)−1) +

t∑
i=τ(t)+1

[∇F (xi−1)−∇F (xi−2)]

 (76)

= ζτ(t) +

t∑
i=τ(t)+1

ζ ′i + ξτ(t) +

t∑
i=τ(t)+1

ξ′i, (77)
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By the M -smoothness of loss function f , each ζ ′i ∼ nSG
(
M∥xi−1−xi−2∥

√
log d√

b2

)
. According to the

algorithm, ξ′i ∼ N
(
0, c2

M2 log 1
δ

b22ϵ
2 ∥xt−1 − xt−2∥2Id

)
. By corollary 3 and the fact ensured by our

algorithm that, driftt =
∑t
i=τ(t)+1 ∥xi−1 − xi−2∥2 ≤ κ almost surely, we have

σ ≤ O


√√√√√
(G√log d√

b1

)2

+

t∑
i=τ(t)+1

(
M∥xi−1 − xi−2∥

√
log d√

b2

)2
 · log d

 (78)

≤ O

√G2 log2 d

b1
+
M2 log2 d

b2
κ

 . (79)

By the properties of Gaussian distribution, and the fact that, driftt =
∑t
i=τ(t)+1 ∥xi−1−xi−2∥2 ≤ κ

almost surely, we have

r ≤ O

√√√√G2 log 1
δ

b21ϵ
2

+

t∑
i=τ(t)+1

(
M2 log 1

δ

b22ϵ
2
∥xt−1 − xt−2∥2

) (80)

≤ O

√G2 log 1
δ

b21ϵ
2

+
M2 log 1

δ

b22ϵ
2

κ

 . (81)

E.2 PROOF OF LEMMA 8

Proof of Lemma 8. By η ≤ 1
M and M -smoothness, we have

F (xt)− F (xt−1) ≤ ⟨∇F (xt−1), xt − xt−1⟩+
M

2
∥xt − xt−1∥2

≤ ⟨∇F (xt−1)− ĝt,−η · ĝt⟩ − η∥ĝt∥2 +
η

2
∥ĝt∥2

≤ η∥∇F (xt−1)− ĝt∥∥ĝt∥2 −
η

2
∥ĝt∥2.

By Lemma 5, we know that, with probability at least 1 − ω
2 , the gradient estimation error ∥ĝt −

∇F (xt−1)∥ = ∥νt∥ ≤ χ holds for all t ∈ [T ]. If ∥∇F (xt−1)∥ ≥ 4χ, then we have
∥ĝt∥ ≥ 3χ ≥ 3∥∇F (xt−1)− ĝt∥,

which further leads to
F (xt)− F (xt−1) ≤ −

η

6
∥ĝt∥2.

If ∥∇F (xt−1)∥2 ≤ 4χ, then ∥ĝt∥ ≤ 5χ, which implies

F (xt)− F (xt−1) ≤ 5ηχ2.

Index the items in T with T = {t1, · · · , t|T |} such that ti < ti+1,∀1 ≤ i ≤ |T | − 1. Then

F (xti+1
)− F (xti) ≤ −

1

6η

ti+1∑
t=ti+1

η2∥ĝt∥22 + (ti+1 − ti)5ηχ2

≤ − 1

6η
driftti+1

+(ti+1 − ti)5ηχ2 ≤ − 1

6η
κ+ (ti+1 − ti)5ηχ2.

Summing over all indices, we have

F (xt|T |)− F (xt1) ≤ −
|T |
6η

κ+ 5Tηχ2.

Since the risk function is upper bounded by U , there must be F (xt|T |)−F (xt1) ≥ −U , which gives

|T | ≤ O
(
Uη

κ
+
Tη2χ2

κ

)
= O

(
Uη

κ

)
.
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E.3 PROOF OF THEOREM 2

Proof of Theorem 2. We first show that, our setting of b1 and b2 is feasible. Specifically, we need to
show the total sample used by each client is O(n). This can be verified as follows.

b1 · |T |+ b2 · (T − |T |) ≤ b1 · |T |+ b2 · T ≤ O(n),

where we use the fact T = O
(

U
ηχ2

)
and |T | ≤ O(Uηκ ) given in Lemma 8.

As we never reuse a sample,the privacy guarantee follows directly from the Gaussian mechanism
and the parallel composition property.

By Theorem 1,

α = O(χ) = Õ(ψ) ≤ Õ(
√
σ2 + r2d)

= Õ

(√
G2

b1
+
G2d

b21ϵ
2
+

(
M2

b2
+
M2d

b22ϵ
2

)
· κ

)
.

By our setting of b1 = nκ
2Uη and b2 = nηχ2

2U , we further have

α = Õ

(√
G2Uη

nκ
+
G2dU2η2

n2ϵ2κ2
+
M2Uκ

nηχ2
+
M2dU2κ

n2ϵ2η2χ4

)
(82)

= Õ

√G2Uρ
1
2α

1
2

M2nκ
+
G2dU2ρα

n2ϵ2M4κ2
+
M4Uκ

nρ
1
2α

5
2

+
M6dU2κ

n2ϵ2ρα5

 , (83)

which gives us that

α =Õ

(
max

{(
G2U

√
ρ

M2nκ

) 2
3

,
G2dU2ρ

n2ϵ2M4κ2
,

(
M4Uκ

n
√
ρ

) 2
9

,

(
M6dU2κ

n2ϵ2ρ

) 1
7

})
.

Setting κ = max

{
G

3
2 U

1
2 ρ

1
2

M
5
2 n

1
2
, G

14
15 d

2
5 U

4
5 ρ

8
15

M
34
15 (nϵ)

4
5

}
, we get

α = Õ

(GUM
n

) 1
3

+
G

2
15U

2
5M

8
15

ρ
1
15

(√
d

nϵ

) 2
5

 = Õ

 1

n
1
3

+

(√
d

nϵ

) 2
5

 .

F OMITTED PROOFS IN SECTION 6

F.1 PROOF OF LEMMA 9

Proof of Lemma 9. For ∀t, let τ(t) be the last iteration till t when O1 was used. If t = τ(t), then
we have

ĝt =
1

m

m∑
j=1

(O1(xt−1,Bj,t) + ξj,t) . (84)

O1(xt−1,Bj,t) is an unbiased estimate of∇Fj(xt−1). Denote ζj,t := O1(xt−1,Bj,t)−∇Fj(xt−1),
ζt :=

1
m

∑m
j=1 ζj,t and ξt := 1

m

∑m
j=1 ξj,t, then

ĝt −∇F (xt−1) =
1

m

m∑
j=1

(ĝj,t −∇Fj(xt−1)) =
1

m

m∑
j=1

(ζj,t + ξj,t) = ζt + ξt, (85)

By the G-Lipschitzness of loss function f , ζt ∼ nSG
(
G
√
log d√
m·b1

)
. According to the algorithm, each

ξj,t is zero-mean and ξj,t ∼ N
(
0, c1

G2 log 1
δ

b21ϵ
2 Id

)
, and thus ξt ∼ N

(
0, c1

G2 log 1
δ

m·b21ϵ2
Id

)
. In this case,

the lemma holds.
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If t > τ(t), then we have

ĝt =
1

m

m∑
j=1

O1(xτ(t)−1,Bj,τ(t)−1) + ξj,τ(t) +

t∑
i=τ(t)+1

(
O2(xi−1, xi−2,Bj,i) + ξ′j,i

) , (86)

Each O2(xi−1, xi−2,Bj,i) is an unbiased estimate of ∇Fj(xi−1) − ∇Fj(xi−2). Denote ζ ′j,i :=

O2(xi−1, xi−2,Bj,i)− [∇Fj(xi−1)−∇Fj(xi−2)], ζ ′i :=
1
m

∑m
j=1 ζ

′
j,i and ξ′i :=

1
m

∑m
j=1 ξ

′
j,i then

ĝt −∇F (xt−1) =
1

m

m∑
j=1

ĝj,t −
∇Fj(xτ(t)−1) +

t∑
i=τ(t)+1

[∇Fj(xi−1)−∇Fj(xi−2)]


(87)

=
1

m

m∑
j=1

ζj,τ(t) + t∑
i=τ(t)+1

ζ ′j,i + ξj,τ(t) +

t∑
i=τ(t)+1

ξ′j,i

 (88)

= ζτ(t) +

t∑
i=τ(t)+1

ζ ′i + ξτ(t) +

t∑
i=τ(t)+1

ξ′i (89)

By the M -smoothness of loss function f , each ζ ′i ∼ nSG
(
M∥xi−1−xi−2∥

√
log d√

m·b2

)
. Ac-

cording to the algorithm, each ξ′j,i ∼ N
(
0, c2

M2 log 1
δ

b22ϵ
2 ∥xt−1 − xt−2∥2Id

)
, thus ξ′i ∼

N
(
0, c2

M2 log 1
δ

m·b22ϵ2
∥xt−1 − xt−2∥2Id

)
. By corollary 3 and the fact ensured by our algorithm that,

driftt =
∑t
i=τ(t)+1 ∥xi−1 − xi−2∥2 ≤ κ almost surely, we have

σ ≤ O


√√√√√
(G√log d√

m · b1

)2

+

t∑
i=τ(t)+1

(
M∥xi−1 − xi−2∥

√
log d√

m · b2

)2
 · log d

 (90)

≤ O

√G2 log2 d

m · b1
+
M2 log2 d

m · b2
κ

 . (91)

By the properties of Gaussian distribution, and the fact that, driftt =
∑t
i=τ(t)+1 ∥xi−1−xi−2∥2 ≤ κ

almost surely, we have

r ≤ O

√√√√G2 log 1
δ

m · b21ϵ2
+

t∑
i=τ(t)+1

(
M2 log 1

δ

m · b22ϵ2
∥xt−1 − xt−2∥2

) (92)

≤ O

√G2 log 1
δ

m · b21ϵ2
+
M2 log 1

δ

m · b22ϵ2
κ

 . (93)

F.2 PROOF OF THEOREM 3

Proof of Theorem 3. We first show that, our setting of b1 and b2 is feasible. Specifically, we need to
show the total sample used by each client is O(n). This can be verified as follows.

b1 · |T |+ b2 · (T − |T |) ≤ b1 · |T |+ b2 · T ≤ O(n),

where we use the fact T = O
(

U
ηχ2

)
and |T | ≤ O(Uηκ ) given in Lemma 8.

As we never reuse a sample,the privacy guarantee follows directly from the Gaussian mechanism
and the parallel composition property.
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By Theorem 1,

α = O(χ) = Õ(ψ) ≤ Õ(
√
σ2 + r2d)

= Õ

(√
G2

m · b1
+

G2d

m · b21ϵ2
+

(
M2

m · b2
+

M2d

m · b22ϵ2

)
· κ

)
.

By our setting of b1 = nκ
2Uη and b2 = nηχ2

2U , we further have

α = Õ

(√
G2Uη

m · nκ
+

G2dU2η2

m · n2ϵ2κ2
+

M2Uκ

m · nηχ2
+

M2dU2κ

m · n2ϵ2η2χ4

)
(94)

= Õ

√G2Uρ
1
2α

1
2

m ·M2nκ
+

G2dU2ρα

m · n2ϵ2M4κ2
+

M4Uκ

m · nρ 1
2α

5
2

+
M6dU2κ

m · n2ϵ2ρα5

 , (95)

which gives us that

α =Õ

(
max

{(
G2U

√
ρ

m ·M2nκ

) 2
3

,
G2dU2ρ

m · n2ϵ2M4κ2
,

(
M4Uκ

m · n√ρ

) 2
9

,

(
M6dU2κ

m · n2ϵ2ρ

) 1
7

})
.

Setting κ = max

{
G

3
2 U

1
2 ρ

1
2

M
5
2 (mn)

1
2
, G

14
15 d

2
5 U

4
5 ρ

8
15

M
34
15 (

√
mnϵ)

4
5

}
, we get

α = Õ

(GUM
mn

) 1
3

+
G

2
15U

2
5M

8
15

ρ
1
15

( √
d√

mnϵ

) 2
5

 = Õ

 1

(mn)
1
3

+

( √
d√

mnϵ

) 2
5

 .

F.3 PROOF OF THEOREM 4

Proof of Theorem 4. Define S :=
⊔m
j=1 Sj . Define θp := 1

m

∑m
j=1 θj,p and Hp := 1

m

∑m
j=1 Hj,p.

Denote σ2
1 = c1

G2T log 1
δ

n2ϵ2 and σ2
2 = c2

M2dT log 1
δ

n2ϵ2 for simplicity.

For any Sj and x, ∇f(x;Sj) − ∇Fj(x) is zero-mean and follows nSG
(

2G√
n

)
. By the Hoeffding

inequality for norm-sub-Gaussian (Lemma 11), with probability at least 1− ω′

8 , we have

∥∇F (xp)−∇f(xp;S)∥2 ≤ O

G
√

log
(
d
ω′

)
√
mn

 . (96)

Note that θp ∼ N (0,
σ2
1

m ). By Lemma 10 and Definition 6, with probability at least 1− ω′

8 , we have

∥ξp∥2 ≤

√
2σ2

1 log
(
16
ω′

)
m

=
G
√
2c1dT log

(
1
δ

)
log
(
16
ω′

)
√
mnϵ

= O

G
√
dT log

(
1
δ

)
log
(

1
ω′

)
√
mnϵ

 .

(97)

For any j ∈ [m] and z ∈ Sj , E[∇2f(xp; z)−∇2Fj(xp)] = 0, and ∥∇2f(xp; z)−∇2Fj(xp)∥2 ≤
2M (due toM -smoothness). Applying Matrix Bernstein inequality (Lemma 14) with σ2 = 4M2mn

and t = 4M
√
mn log 8d

ω′ therein and noting that mn ≥ 4
9 log

8d
ω′ , we have

P

∥∥∥∥∥∥
∑
j∈[m]

∑
z∈Sj

∇2f(xp; z)−∇2Fj(xp)

∥∥∥∥∥∥
2

≥ 4M

√
mn log

8d

ω′

 ≤ ω′

8
. (98)
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Therefore, with probability at least 1− ω′

8 , we have

∥∥∇2f(xp;S)−∇2F (xp)
∥∥
2
≤ 4M

√
log 8d

ω′

mn
≤ O

M
√

log d
ω′

mn

 . (99)

Note that each on-and-above-diagonal entry in Hp samples from N (0,
σ2
2

m ). By Lemma 15, with
probability at least 1− ω′

8 , we have

∥Hp∥2 ≤ O

(
σ2√
m

(
√
d+

√
log

(
32

ω′

)))
= O

Md
√
T log 1

δ√
mnϵ

+
M
√
dT log

(
1
δ

)
log
(
32
ω′

)
√
mnϵ


(100)

≤ O

Md
√
T log 1

δ log
(
32
ω′

)
√
mnϵ

 . (101)

Combining the results above, with probability at least 1− ω′

2 , we have

∥∇F̄ (xp)∥2 ≤ ∥∇F̄ (xp)−∇F (xp)∥2 + ∥∇F (xp)∥2 (102)
≤ ∥∇f(xp;S)−∇F (xp)∥2 + ∥ξp∥2 + ∥∇F (xp)∥2 (103)

≤ O

G log
(
8d
ω′

)
√
mn

+
G
√
dT log

(
1
δ

)
log
(
16
ω′

)
√
mnϵ

+ α

 , (104)

and

λmin

(
∇2F̄ (xp)

)
≥ λmin

(
∇2F̄ (xp)−∇2F (xp)

)
+ λmin

(
∇2F (xp)

)
(105)

≥ λmin

(
∇2f(xp;S)−∇2F (xp)

)
+ λmin (Hp) + λmin

(
∇2F (xp)

)
(106)

≥ −
∥∥∇2f(xp;S)−∇2F (xp)

∥∥
2
− ∥Hp∥2 −

√
ρα (107)

≥ −O

M
√

log
(
8d
ω′

)
mn

+
Md

√
T log 1

δ log
(
32
ω′

)
√
mnϵ

+
√
ρα

 . (108)

This means that, if xp is an α-SOSP, it can be output by Algorithm 4. Therefore, Algorithm 4 will
output a point with probability at least 1− ω′

2 .

Let xo be the output of Algorithm 4, for which we have

∥∇F (xo)∥2 ≤ ∥∇F (xo)−∇F̄ (xo)∥2 + ∥∇F̄ (xo)∥2 (109)

≤ ∥∇F (xo)−∇f(xo;S)∥2 + ∥ξo∥2 + ∥∇F̄ (xo)∥2, (110)

and

λmin(∇2F (xo)) ≥ λmin(∇2F (xo)−∇2F̄ (xo)) + λmin(∇2F̄ (xo)) (111)

≥ −∥∇2F (xo)−∇2F̄ (xo)∥2 + λmin(∇2F̄ (xo)) (112)

≥ −∥∇2F (xo)−∇2f(xo;S)∥2 − ∥Ho∥2 + λmin(∇2F̄ (xo)). (113)

Following the same arguments for xp, with probability at least 1 − ω′

2 , we have the following xo-
related bounds hold:

∥∇F (xo)−∇f(xo;S)∥2 ≤ O

(
G log

(
d
ω′

)
√
mn

)
, (114)

∥ξo∥2 ≤ O

G
√
dT log

(
1
δ

)
log
(

1
ω′

)
√
mnϵ

 , (115)

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

∥∥∇2f(xo;S)−∇2F (xo)
∥∥
2
≤ O

M
√

log
(
d
ω′

)
mn

 , (116)

∥Hp∥2 ≤ O

Md
√
T log 1

δ log
(

1
ω′

)
√
mnϵ

 . (117)

Moreover, since xo is the output, we have

∥∇F̄ (xo)∥2 ≤ α+
G log

(
d
ω′

)
√
mn

+
G
√
dT log

(
1
δ

)
log
(

1
ω′

)
√
mnϵ

, (118)

and

λmin

(
∇2F̄ (xo)

)
≥ −

√ρα+M

√
log
(
d
ω′

)
mn

+
Md

√
T log 1

δ log
(

1
ω′

)
√
mnϵ

 . (119)

Combining these together, we finally obtain

∥∇F (xo)∥2 ≤ O

G log
(
d
ω′

)
√
mn

+
G
√
dT log

(
1
δ

)
log
(

1
ω′

)
√
mnϵ

+ α

 , (120)

and

λmin(∇2F (xo)) ≥ −O

M
√

log
(
d
ω′

)
mn

+
Md

√
T log 1

δ log
(

1
ω′

)
√
mnϵ

+
√
ρα

 . (121)

Finally, by noting that T = O
(

1
α2.5

)
, and ignoring logarithmic factors and other irrelevant constant

such as G,M , etc., we obtain xo is an α′-SOSP for α′ shown in the statement. By using the union
bound, we have the two statements of Theorem 4 hold simultaneously with probability at least
1− ω′.
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