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ABSTRACT

Knowledge Tracing (KT) is a core component of Intelligent Tutoring Systems,
modeling learners’ knowledge state to predict future performance and provide
personalized learning support. Current KT models simply assume that training
data and test data follow the same distribution. However, this is challenged by
the continuous changes in learners’ patterns. In reality, learners’ patterns change
irregularly at different stages (e.g., different semesters) due to factors like cogni-
tive fatigue and external stress. Additionally, there are significant differences in
the patterns of learners from various groups (e.g., different classes), influenced by
social cognition, resource optimization, etc. We refer to these distribution changes
at different stages and from different groups as intra-learner shift and inter-learner
shift, respectively—a task introduced, which we refer to as Real-time Learning
Pattern Adjustment (RLPA). Existing KT models, when faced with RLPA, lack
sufficient adaptability, because they fail to timely account for the dynamic nature
of different learners’ evolving learning patterns. Current strategies for enhancing
adaptability rely on retraining, which leads to significant overfitting and high time
cost problem. To address this, we propose Cuff-KT, comprising a controller and
a generator. The controller assigns value scores to learners, while the generator
generates personalized parameters for selected learners. Cuff-KT adapts to distri-
bution changes fast and flexibly without fine-tuning. Experiments on one classic
and two latest datasets demonstrate that Cuff-KT significantly improves current
KT models’ performance under intra- and inter-learner shifts, with an average rel-
ative increase of 7% on AUC, effectively tackling RLPA. 1

1 INTRODUCTION

For nearly a century, researchers have been dedicated to developing Intelligent Tutoring Systems
(ITS) (Pressey, 1926; Kamalov et al., 2023; Zhou et al., 2024). Knowledge Tracing (KT), as a core
component of ITS, aims to model learners’ knowledge state during their interactions with ITS to
predict their performance on future questions (Corbett & Anderson, 1994), as shown in Figure 1.
Solving the KT problem can help teachers or systems better identify learners who need further
attention and recommend personalized learning materials to them (Liu et al., 2021; Abdelrahman
et al., 2023; Liu et al., 2023b).
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Figure 1: Illustration of the knowledge tracing (KT).

Reviewing the current research on KT (Piech
et al., 2015; Shen et al., 2022; Liu et al.,
2023a), we can systematize a dominant
paradigm: using learners’ historical inter-
action sequences as training data, encoding
them into representations with KT models,
and then using these representations to pre-
dict future interactions in the test data. This
paradigm simply assumes that the training data and test data come from the same distribution. How-
ever, this assumption is difficult to hold in real-world scenarios, as it ignores the dynamic nature

1Our code and datasets are available at https://anonymous.4open.science/r/Cuff-KT.
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of KT. Specifically, the properties of streaming data (e.g., the correct rate distribution) often change
across different stages or groups (Zhang et al., 2017; Yang et al., 2023), indicating that the sequential
patterns of learners at different stages or from different groups dynamically vary between historical
and future interactions. We refer to these distribution changes across different stages and groups as
intra-learner shift and inter-learner shift, respectively.

Distribution shift caused by varying sequential patterns undermines current KT models, resulting
in deteriorated generalization when serving future data. Figure 2 provides empirical evidence of
this issue. We first divide the assist15 data into 4 non-overlapping parts by stage and group (see
Section 4.3 for the division method), and calculate the KL-divergence w.r.t. correct rate distribution
between the first part and the other parts. We then train the DKT (Piech et al., 2015) model on the
first part and test it on the remaining parts. Clearly, as the KL-divergence increases across different
stages or groups, the model’s predictive performance significantly declines. Therefore, it is crucial
to enhance the dynamic adaptability of KT models. To this end, we introduce a new task, Real-time
Learning Pattern Adjustment (RLPA), to address the inability of existing KT models to effectively
handle distribution changes arising from differing learning patterns across various stages or groups.
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(b) Inter-learner shift
Figure 2: Empirical evidence of model generalization deterioration
under different shifts.

To tackle RLPA, a well-
known generalization tech-
nique is to retrain (e.g.,
fine-tune) the pre-trained
KT model based on data
from the current stage or
group to achieve person-
alized learning (Houlsby
et al., 2019; Zaken et al.,
2021; Han et al., 2024).
Although fine-tuning based
approaches are promising,
they may not be the opti-
mal solution due to two key
challenges: (i) Overfitting. To achieve personalized learning, fine-tuning based approaches often re-
quire retraining the model based on very limited samples with rapidly changing distributions, which
may lead to overfitting, potentially reducing its ability to generalize to future distributions. (ii) High
time cost. Fine-tuning is very time-consuming as it requires extensive gradient computations to
update model parameters, which is cumbersome in real-world scenarios where real-time require-
ments are common. Therefore, fine-tuning based methods must carefully balance the need to adapt
to recent data and maintain robustness to achieve generalization. These challenges prompt us to
reconsider the design of better solutions to the RLPA in KT.

Towards this end, we propose a novel method to trackle RLPA in KT, called Controllable, tUning-
free, Fast, and Flexible Knowledge Tracing (Cuff-KT). Unlike fine-tuning-based approaches that
produce updated parameters, the core idea of Cuff-KT is to learn a model parameter generator
specific to the current stage or group, generating updating personalized parameters for valuable
learners (e.g., those showing significant progress or regression), achieving adaptive generalization.
Our Cuff-KT consists of two modules: a controller and a generator. When the data distribution of
learners changes due to varying learning patterns, the KT model generalizes worse to the cur-
rent data and tends to make incorrect evaluations. This implies that the benefit of generating
parameters is significant, as generated parameters can appropriately model the current data
distribution. The controller, while considering the fine-grained distance between knowledge state
distributions across various concepts, is also inspired by the Dynamic Assessment Theory (Vygot-
sky & Cole, 1978) and integrates coarse-grained changes in correct rates, assigning a value score to
each learner. The generator generates parameters for learners selected based on the assigned value
scores2 by the controller and enhances adaptability. Specifically, considering the relative relation-
ship between question difficulty and learner ability (Rasch, 1993; Shen et al., 2022) and inspired by
the dual-tower model in recommendation systems (Huang et al., 2013), the generator models ques-
tions and responses separately, extracts features through a sequential feature extractor, simulates the
distribution of real-time samples from the current stage or group to achieve adaptive generaliza-

2The larger a learner’s value score, the more likely they are to be selected.
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tion through our designed state-adaptive attention, and finally reduces the parameter size through
low-rank decomposition. Notably, our generator can be inserted into into any layer or generate
parameters for any layer.

Our contributions are summarized as follows:

• We introduce a new task, RLPA, which enhances the adaptability of existing KT models
in the realm of personalized learning, addressing the challenges arising from distribution
shifts caused by varying sequential patterns of learners across different stages or groups.

• We propose Cuff-KT, a controllable, tuning-free, fast, and flexible general neural method,
which can effectively generate parameters aligned with the current stage or group’s learner
distribution and insert them into any layer of existing KT models. It is noteworthy that
Cuff-KT is model-agnostic.

• We instantiate one classic KT model and two latest state-of-the-art models. Experiments on
one classic dataset and two latest datasets demonstrate that our proposed Cuff-KT generally
improves current KT models under both intra- and inter-learner shift. Specifically, the AUC
metric, which is most commonly used in KT, has relatively increased by 7% on average,
proving that Cuff-KT can effectively tackle RLPA in KT.

2 RELATED WORK

Knowledge tracing (KT), the task of dynamically modeling a learner’s knowledge state over time,
traces its origins back to the early 1990s, with early notable contributions by Corbett and Ander-
son (Corbett & Anderson, 1994). However, with the rise of deep learning, KT research has gained
significant momentum, leading to the development of more sophisticated and refined models capa-
ble of capturing the intricate dynamics of learner learning (Piech et al., 2015; Yeung & Yeung, 2018;
Shen et al., 2022; Liu et al., 2023a). DKT (Piech et al., 2015) first applies LSTM to KT to model
the complex learners’ cognitive process, bringing a leap in performance compared to previous KT
models (e.g., BKT (Corbett & Anderson, 1994)). Subsequently, various neural architectures (e.g.,
attention and graphs) begin to be introduced into KT (Pandey & Karypis, 2019; Nakagawa et al.,
2019; Ghosh et al., 2020; Pandey & Srivastava, 2020). Meanwhile, some training techniques (e.g.,
adversarial training and contrastive learning) also start to be used in KT research (Guo et al., 2021;
Lee et al., 2022a). Recently, incorporating learning-related information has been explored to en-
hance the predictive capability of KT models. For instance, DIMKT (Shen et al., 2022) improves
KT performance by establishing relationship between learners’ knowledge states and question dif-
ficulty levels, while AT-DKT (Liu et al., 2023a) addresses the issues of sparse representation and
personalization in DKT by introducing two auxiliary learning tasks: question tagging prediction
and individualized prior knowledge prediction.

However, surprisingly, to our knowledge, there is a lack of attention to adaptability in KT research,
which severely affects the generalization of KT models across different distributions. Meanwhile,
related studies (Wong et al., 2022; Wong & Ramasamy, 2024) are limited in their applicable sce-
narios (e.g., continuously increasing learners or concepts) and do not provide a general method to
enhance adaptability in KT. Thanks to the well-known fine-tuning based methods, the adaptability
in KT has been enhanced to some extent. However, the challenges posed by overfitting and high
time cost of fine-tuning based methods make it difficult to be effectively applied in real-world sce-
narios (Lv et al., 2023b). Even the recently proposed parameter-efficient fine-tuning based methods
(e.g., Adapter-based tuning (Houlsby et al., 2019) and Bias-term Fine-tuning (Zaken et al., 2021))
still incur non-negligible time cost and cannot avoid the potential risk of overfitting. Our Cuff-KT,
in contrast, updates KT models under dynamic distributions through controllable parameter genera-
tion, eliminating the need for retraining and providing a new perspective on enhancing adaptability
in the KT community.

3 METHODOLOGY

In this section, we first define the problem of KT and formalize the RLPA task in KT, then introduce
our proposed Cuff-KT method.

3
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Figure 3: Overview of proposed Cuff-KT method.

3.1 PROBLEM FORMULATIONS

3.1.1 KNOWLEDGE TRACING

Formally, let S, Q, and C denote the sets of learners, questions, and concepts, respectively. For
each learner s ∈ S , their interactions are represented Xs = {x}ki=1 at time-step k, where the
interaction x is defined as a 4-tuple, i.e., x = (q, {c}, r, t), where q ∈ Q, {c} ⊂ C, r, t represent the
question attempted by the learner s, the concepts associated with the question q, the binary variable
indicating whether the learner responds to the question correctly (1 for correct, 0 for incorrect), and
the timestamp of the learner’s response respectively. The goal of KT is to predict r̂k+1 given the
learner’s historical interactions X and the current question qk+1 at time-step k + 1.

3.1.2 RLPA TASK

RLPA aims to address two common shift issues (intra- and inter- shifts) in KT to enhance the adapt-
ability of existing models. An interaction sequence of a learner s can be divided into multiple stages,
assuming each stage has a length of L. At time-step u, the representation of the learner’s interaction
in that stage is Xs

u = Xs
u:u+L−1. Intra-learner shift is defined as: for any time-step u ̸= v,

|d(χs
u, χ

s
v)| > δ, (1)

where δ is a small threshold. χs
u and χs

v represent the distributions of Xs
u and Xs

v respectively. d is
a distance function (e.g., KL divergence). In contrast, inter-learner shift is:

|d(χs
u, χ

s∗

u )| > δ, (2)

where χs
u and χs∗

u represent the distributions of learners s and s∗ at time-step u, respectively.

When equations 1 or 2 hold, the goal of RLPA is to adjust the parameters of the existing KT model in
real-time so that the predicted distribution χ̂s

v or χ̂s∗

u is as close as possible to the actual distribution:

min
χ̂s
v

∑
x

χs
v(x)log(

χs
v(x)

χ̂s
v(x)

) or min
χ̂s∗
u

∑
x

χs∗

u (x)log(
χs∗

u (x)

χ̂s∗
u (x)

), (3)

where x is a variable in the sample space.

3.2 CUFF-KT

Figure 3 illustrates an overview of our Cuff-KT method, which consists of two modules: (a) Con-
troller identifies learners with valuable parameter update potential, aiming to reduce the cost of
parameter generation. (b) Generator adjusts network parameters for existing KT models at differ-
ent stages or for different groups, aiming to enhance adaptive generalization. In our setup, the KT
model is decoupled into a static backbone and a dynamic layer. The generator can be inserted into
any layer of the KT model or generate parameters for any layer (dynamic layer). Finally, we intro-
duce the training strategy for Cuff-KT.
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3.2.1 CONTROLLER

The controller can identify learners with dramatic changes in their knowledge state distribution (i.e.,
valuable learners, often showing progress or regression), aiming to reduce the cost of parameter
generation. The controller comprehensively considers both fine-grained and coarse-grained changes
in the knowledge states of different learners, as described below.

Fine-grained Changes. At time-step k, the KT model models knowledge states Statesj (i.e., profi-
ciency scores ranging from 0 to 1 for |C| concepts over k time steps) for learner sj with number j
(1 ≤ j ≤ n, where n is the total number of learners) at different time steps. The Statesj is utilized
by the controller to measure the fine-grained distance (e.g., KL-divergence) between the knowledge
state distributions across various concept at the intermediate time-step k/2 and current time-step k:

States∗jk/2 = norm(Statesjk/2),

States∗jk = norm(Statesjk),

KLj =
∑
c∈C

States∗jk(c)log
States∗jk(c)

States∗jk/2(c)
+ 1,

(4)

where norm(·) denotes the normalization operation.

Coarse-grained Changes However, focusing solely on fine-grained changes might not capture the
overall knowledge state changes of the learners. The Zone of Proximal Development (ZPD) is a
core concept in Dynamic Assessment Theory (Vygotsky & Cole, 1978). It refers to the gap between
a learner’s current independent ability level and the potential level that could be reached with the
help of other mediums (e.g., ITS). It describes the overall changes in the learner’s knowledge state
(i.e., progress or regression). Inspired by this, we consider the overall correct rate at the intermediate
time-step k/2 as the lower limit of the ZPD, and the correct rate at the current time-step k as the
upper limit or near-upper limit of the ZPD. We use the rate of change as a quantitative indicator of
the ZPDj of learner sj :

ZPDj =

∣∣∣∣∣
∑k

i=1 r
j
i∑k

i=1 1
−
∑k/2

i=1 r
j
i∑k/2

i=1 1

∣∣∣∣∣× lenj ÷

(∑k/2
i=1 r

j
i∑k/2

i=1 1
+ 1

)
+ 1, (4)

where lenj is the actual length of questions attempted by learner sj (lenj ≤ k, when lenj < k, the
missing sequence, e.g., concepts sequence, is often padded with 0), which reflects the reliability of
the ZPDj , with a larger lenj indicating more reliable results.

Finally, the controller assigns a value score to learner sj :

scorej = KLj × ZPOj . (5)

It can be observed that KLj and ZPOj are positive, which avoids any absolute impact on the scorej
when either one is 0. Notably,the controller can identify learners who have shown significant
progress or regression, which is beneficial for teachers or ITS to pay further attention to them.

3.2.2 GENERATOR

The generator can generate personalized dynamic parameters for learners determined by the con-
troller based on real-time samples from different stages or groups, aiming to improve the adaptive
generalization for continuously changing distributions. We first introduce the generator’s feature
extraction, then propose our designed state-adaptive attention, and finally discuss generating pa-
rameters through low-rank decomposition. For convenience, we have omitted the superscript of the
learner numbers.

Feature Extraction. At time-step k, the generator takes {(ci, ri)}ki=1 as input, considering the
relative relationship between question difficulty and learner ability (Rasch, 1993) and inspired by
the dual-tower model in recommendation systems (Huang et al., 2013; Covington et al., 2016),
embedding the questions c1:k and responses r1:k into vector spaces Q1:k ∈ Rd and R1:k ∈ Rd,
respectively (d is the dimension of the embedding). After non-linearization, features Hq

k ∈ Rdin

and Hr
k ∈ Rdin (din is the input dimension of the dynamic layer) are extracted through a sequential

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

feature extractor (SFE) (e.g., GRU):{
Hq

k = SFE(Tanh(Q1:kW1 + b1)),

Hr
k = SFE(Tanh(R1:kW2 + b2)),

(6)

where W1 ∈ Rd×din , W2 ∈ Rd×din , b1 ∈ Rdin , b2 ∈ Rdin are learnable parameters in the projec-
tion layer. Tanh(·) is the activation function.

State-adaptive Attention (SAA). SAA is responsible for adaptive generalization of the extracted
question and response features, considering both change in concept correct rate (i.e., difficulty) and
the time of the change in knowledge state. Intuitively, the greater the change in difficulty, indicating
more significant progress or regression, and the longer the time since the last response, the more
likely a sudden change in knowledge state can occur. Such positions should receive more attention.
Therefore, the definition of SAA is as follows:

SAA(Xk) = Concat(head1, · · · , headh)Wh,

headi = Attention∗(Q = X
/h
k ,K = X

/h
k , V = X

/h
k ),

Attention∗(Q,K, V ) = softmax∗(X =
QKT√
d/h

)V,

softmax∗(X) = attnw(c1:k, r1:k, t1:k) · softmax(X),

attnw(c1:k, r1:k, t1:k) = distd(c1:k, r1:k) · distt(c1:k, t1:k),

(5)

where h is the number of attention heads and Wh ∈ Rdin×din . X/h
k represents splitting the din di-

mensions of Xk into h parts. distd and distt represent the changes in difficulty and time, respectively.
At position i ∈ [1, k], distd(ci, ri) and distt(ci, ti) are respectively:1, if i = 1,(∑i

j=1 rj [cj=ci]∑i
j=1 1[cj=ci]

−
∑i−1

j=1 rj [cj=ci]∑i−1
j=1 1[cj=ci]

)
+ 1. else{

1, if j = max{k | k < i and ck = ci} = ∅,
ti−tj
ti−t1

. else

(8)

Finally, the representations Sq
k and Sr

k of question difficulty and learner ability are obtained by SAA:
Sq
k = SAA(Hq

k), S
r
k = SAA(Hr

k), (9)

where Sq
k and Sr

k characterize the difficulty distribution of questions and the ability distribution of
learners, respectively, based on real-time data from the current stage or group. SAA is the core
component of the generator, and we will further discuss its importance in Sec. 4.5.

Low-rank Decomposition. Before performing low-rank decomposition on the parameters, the
learned question difficulty Sq

k and learner ability Sr
k are uniformly expressed as the generalized

information feature Sk that characterizes the interaction distribution of learners:
Sk = Sq

k + Sr
k, (10)

Finally, parameters (i.e., weight and bias) are generated through Sk for the dynamic layer:{
weight = SkWw + bw,

bias = SkWb + bb,
(11)

where Ww ∈ Rdin×(din×dout), bw ∈ Rdin×dout , Wb ∈ Rdin×dout , bb ∈ Rdout are learnable pa-
rameters. dout is the output dimension of the dynamic layer. However, it can be observed that the
parameter size of Ww is too large, which increases computational resources and the risk of overfit-
ting. Inspired by LoRA (Hu et al., 2021), Ww is decomposed into low-rank matrices to obtain the
final weight:

weight = SkWw1
Ww2

+ bw, (12)

where Ww1 ∈ Rdin×rank, Ww2 ∈ Rrank×(din×dout) are learnable parameters, and rank ≪ din is a
very small value (e.g., 1). In Sec. 4.5, we will further analyze the effects of different rank.

It’s noted that the generator can generate parameters for the dynamic layer, given the input dimension
din and output dimension dout. In our experiments, the dynamic layer defaults to the output layer
of the KT model.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.2.3 MODEL TRAINING

All learnable parameters are trained by minimizing the binary cross-entropy between ri and r̂i, i.e.,

L = −
k∑

i=1

rilog(r̂i) + (1− ri)log(1− r̂i). (13)

4 EXPERIMENTS

In this section, we demonstrate the superiority of our proposed Cuff-KT and the impact of its dif-
ferent components through experiments. Specifically, the experimental evaluation is divided into
(i) the controllability of parameter generation (Sec. 4.2), (ii) prediction accuracy, quantifying the
effectiveness of tackling RLPA (Sec. 4.3), (iii) the application of Cuff-KT (Sec. 4.4), and (iv) the
impact of dual-tower modeling, SFE, SAA, and low-rank decomposition in Cuff-KT (Sec. 4.5).

4.1 EXPERIMENTAL SETUP

4.1.1 DATASETS

We conduct extensive experiments on a classic dataset (assist15 (Feng et al., 2009)) and two recently
proposed benchmark datasets (comp (Hu et al., 2023) and xes3g5m (Liu et al., 2024)). Following
the data preprocessing method outlined in (Lee et al., 2022b), we exclude learners with fewer than
five interactions and all interactions involving nameless concepts. Since a question may involve
multiple concepts, we convert the unique combinations of concepts within a single question into
a new concept. Table 1 provides a statistical overview of these datasets. It’s noted that the large
datasets (comp and xes3g5m) are randomly sampled 5000 learners.

See Appendix A.1 for a detailed description of the datasets.

4.1.2 BASELINES

Table 1: Statistics of 3 datasets.

Datasets #learners #questions #concepts #interactions
assist15 17,115 100 100 676,288
comp 5,000 7,460 445 668,927

xes3g5m 5,000 7,242 1,221 1,771,657

We select a classic KT model
(DKT (Piech et al., 2015)) and
two recently proposed state-of-the-
art models (AT-DKT (Liu et al.,
2023a) and DIMKT (Shen et al.,
2022)) as the backbone models for
optimization. We compare Cuff-KT with these three backbone models and three classic fine-tuning
based methods: Full Fine-tuning (FFT), Adapter-based tuning (Adapter) (Houlsby et al., 2019), and
Bias-term Fine-tuning (BitFit) (Zaken et al., 2021).

See detailed introductions to the backbone models and baselines in Appendix A.3.

4.1.3 IMPLEMENTATION

We implement all models using Pytorch on a Linux server with two GeForce RTX 3090s. We
used the Adam optimizer with a learning rate of 0.001, and a batch size of 512. The embedding
dimension for all models is fixed at 32. The rank of the generator in Cuff-KT is set to 1. We split
the historical interactions into training, validation, and test sets (7:2:1) based on timestamps and
groups, respectively. An early stopping strategy is applied if the AUC on the validation set does
not increase for 10 epochs. The experiments are repeated 5 times under random seeds 0 to 4 and
the average performance is reported. Following the previous works (Piech et al., 2015; Shen et al.,
2022; Liu et al., 2023a),the evaluation metrics include Area Under the ROC Curve (AUC) and Root
Mean Square Error (RMSE).

4.2 CONTROLLABLE PARAMETER GENERATION

According to (Lv et al., 2023a), anomaly detection algorithms can be used to detect distribution
changes over time. We select four representative anomaly detection algorithms from pyod li-
brary (Zhao et al., 2019) as comparison baselines for the controller in Cuff-KT: LOF (Breunig et al.,

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.720

0.740

0.760

0.780

0.800
D

KT

assist15

0.700

0.720

0.740

0.760

0.780

comp

0.670

0.680

0.690

0.700

0.710

0.720
xes3g5m

0.700

0.725

0.750

0.775

0.800

0.825

AT
-D

KT

0.700

0.720

0.740

0.760

0.780

0.660

0.675

0.690

0.705

0 20 40 60 80 100
0.700

0.725

0.750

0.775

0.800

0.825

D
IM

KT

0 20 40 60 80 100
0.790

0.800

0.810

0.820

0.830

0 20 40 60 80 100
0.832

0.836

0.840

0.844

0.848

0.852

Frequency (%)

ECOD PCA IForest LOF Cuff-KT Random

Figure 4: Performance comparison of Cuff-KT and anomaly detection algorithms at different fre-
quencies.

Table 2: Performance comparison between different methods under intra-learner shift. The best
result is in bold and the next best is underlined. * and ** indicate that the improvements over the
strongest baseline are statistically significant, with p <0.05 and p <0.01, respectively.

Dataset→ assist15 comp xes3g5m

Method↓\Metric→ AUC ↑ RMSE ↓ Time Cost ↓ AUC RMSE Time Cost AUC RMSE Time Cost

DKT 0.7058 0.4107 0ms 0.6990 0.3613 0ms 0.6633 0.4129 0ms
+FFT 0.7063 0.4071 ≥17,200ms 0.7066 0.3594 ≥18,300ms 0.7116 0.3992 ≥33,600ms
+Adapter 0.6749 0.4242 ≥16,600ms 0.6634 0.3714 ≥17,700ms 0.6467 0.4275 ≥36,100ms
+BitFit 0.7054 0.4080 ≥16,300ms 0.7039 0.3599 ≥14,100ms 0.6841 0.4105 ≥32,600ms
+Cuff-KT 0.8130** 0.3773** ≥419ms 0.7834** 0.3459** ≥435ms 0.7176 0.3931 ≥1,211ms

AT-DKT 0.6981 0.4106 0ms 0.6922 0.3621 0ms 0.6437 0.4228 0ms
+FFT 0.7005 0.4083 ≥126,400ms 0.7020 0.3602 ≥95,000ms 0.6918 0.4068 ≥176,000ms
+Adapter 0.6588 0.4287 ≥125,100ms 0.6443 0.3878 ≥88,800ms 0.6276 0.4351 ≥168,300ms
+BitFit 0.6989 0.4094 ≥121,300ms 0.6990 0.3608 ≥91,300ms 0.6668 0.4178 ≥169,300ms
+Cuff-KT 0.8335** 0.3714** ≥236ms 0.7869** 0.3435** ≥254ms 0.7133** 0.4009* ≥784ms

DIMKT 0.7055 0.4080 0ms 0.7934 0.3404 0ms 0.8322 0.3402 0ms
+FFT 0.7072 0.4063 ≥270,900ms 0.8000 0.3375 ≥205,200ms 0.8366 0.3383 ≥377,800ms
+Adapter 0.6507 0.4387 ≥410,000ms 0.7526 0.3671 ≥278,500ms 0.7929 0.3696 ≥509,200ms
+BitFit 0.7082 0.4061 ≥263,500ms 0.7972 0.3382 ≥199,400ms 0.8369 0.3381 ≥347,800ms
+Cuff-KT 0.8322** 0.3710* ≥232ms 0.8380** 0.3297** ≥175ms 0.8540* 0.3347* ≥239ms

2000), PCA (Shyu et al., 2003), IForest (Liu et al., 2008), and ECOD (Li et al., 2022), and use
AUC as the evaluation metric. Detailed descriptions of these four algorithms can be found in the
Appendix A.2. Figure 4 shows the performance results under intra-learner shift when the controller
selects learners with different frequencies for the generator.

We can see that anomaly detection algorithms (especially IForest and ECOD) consistently outper-
form the random selection, demonstrating the correctness of using anomaly detection algorithms to
detect distribution changes. Moreover, our Cuff-KT generally performs better than these algorithms,
indicating that Cuff-KT is more capable of identifying learners whose model generalization deterio-
rates due to distribution changes. We attribute Cuff-KT’s breakthrough to the Dynamic Assessment
Theory (Vygotsky & Cole, 1978), which we further analyze in the Appendix A.4.

4.3 TUNING-FREE AND FAST PREDICTION

Under this setting, the generator in Cuff-KT generates parameters for all learners independently of
the controller. In our setup, we attempt to divide learners into different groups based on the degree
of change in their knowledge states. We use DKT to encode each learner’s interaction history and
choose the distance (e.g., KL divergence) between the prediction distributions for each concept at the
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Table 3: Performance comparison between different methods under inter-learner shift. The best
result is in bold and the next best is underlined. * and ** indicate that the improvements over the
strongest baseline are statistically significant, with p <0.05 and p <0.01, respectively.

Dataset→ assist15 comp xes3g5m

Method↓\Metric→ AUC ↑ RMSE ↓ Time Cost ↓ AUC RMSE Time Cost AUC RMSE Time Cost

DKT 0.7075 0.4363 0ms 0.6681 0.4355 0ms 0.7907 0.4329 0ms
+FFT 0.7137 0.4339 ≥18,800ms 0.6839 0.4310 ≥3,600ms 0.7990 0.4166 ≥4,400ms
+Adapter 0.6805 0.4456 ≥17,000ms 0.6461 0.4438 ≥3,200ms 0.7646 0.4427 ≥4,300ms
+BitFit 0.7119 0.4349 ≥17,200ms 0.6734 0.4326 ≥3,100ms 0.7905 0.4323 ≥4,900ms
+Cuff-KT 0.7365* 0.4302 ≥355ms 0.6937** 0.4294* ≥96ms 0.8004 0.4158 ≥123ms

AT-DKT 0.7030 0.4389 0ms 0.6587 0.4375 0ms 0.7868 0.4370 0ms
+FFT 0.7104 0.4355 ≥74,700ms 0.6751 0.4312 ≥20,300ms 0.7916 0.4242 ≥21,300ms
+Adapter 0.6708 0.4520 ≥55,300ms 0.6253 0.4498 ≥18,100ms 0.7643 0.4457 ≥23,500ms
+BitFit 0.7076 0.4367 ≥59,100ms 0.6666 0.4334 ≥18,600ms 0.7860 0.4352 ≥19,300ms
+Cuff-KT 0.7348** 0.4316* ≥170ms 0.6919** 0.4303* ≥64ms 0.7959* 0.4183* ≥110ms

DIMKT 0.7134 0.4350 0ms 0.7556 0.4118 0ms 0.8255 0.4088 0ms
+FFT 0.7187 0.4320 ≥173,500ms 0.7590 0.4097 ≥52,500ms 0.8329 0.3983 ≥48,200ms
+Adapter 0.6648 0.4577 ≥217,100ms 0.7017 0.4465 ≥82,500ms 0.7467 0.4618 ≥81,800ms
+BitFit 0.7144 0.4334 ≥154,400ms 0.7563 0.4110 ≥50,800ms 0.8254 0.4084 ≥48,600ms
+Cuff-KT 0.7425** 0.4296 ≥203ms 0.7657** 0.4057* ≥64ms 0.8309 0.4009 ≥72ms
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Figure 5: Cuff-KT+FFT under intra-learner shift.

intermediate and current timestamps as the basis for division. Tables 2 and 3 show the performance
comparison between different methods under intra-learner shift and inter-learner shift. Overall, our
Cuff-KT effectively tackles the RLPA task with significant advantages. We can observe:

• Overall, compared to baseline methods, our Cuff-KT generally performs best on all met-
rics across all datasets. This performance improvement can be attributed to Cuff-KT’s
parameter generation approach, which dynamically updates the model to capture distribu-
tion dynamics rather than statically considering interactions in the test data, enhancing the
KT model’s dynamic adaptability.

• Compared to the backbone, the time cost caused by Cuff-KT is significantly smaller
than fine-tuning-based methods. This is because Cuff-KT updates model parameters only
through feedforward computation, without the need for a retraining process.

• Adapter fine-tuning performs poorly and even leads to performance degradation, as it is
heavily affected by task complexity and model scale (He et al., 2021; Karimi Mahabadi
et al., 2021), ultimately resulting in overfitting.

• Although FFT and BitFit fine-tuning methods generally improve the performance of the
backbone, especially FFT based on DKT showing a 0.483 increase in AUC metric on the
xes3g5m dataset under intra-learner shift, the time cost caused is non-negligible in real-
world scenarios.

4.4 FLEXIBLE APPLICATION

Thanks to the independence of the generator in our Cuff-KT from fine-tuning based methods, we
attempt to combine Cuff-KT with FFT. The results in terms of AUC and RMSE under intra-learner
shifit and inter-learner shift are shown in Figure 5 and Figure 8 in the Appendix A.4, respectively. As
can be seen from the figures, on different backbone models and across all datasets, the performance
still shows a significant improvement after combining Cuff-KT with FFT. This is because FFT can
learn different distributions from the recent data, facilitating Cuff-KT’s smooth transition to the
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Figure 6: Performance on AUC for different rank under intra-learner shift.

distribution in the test data. This combination provides a reference for flexibly fine-tuning models
in special real-world scenarios where real-time requirements are not high.

Moreover, the generator in Cuff-KT can flexibly generate parameters for or insert into any layer of
the KT model. This inspires us to consider how the generator can choose the position and network
structure for generation or insertion. Due to space limitations, we leave this as a direction for future
research.

4.5 ABLATION STUDY

Table 4: The performance of different variants in Cuff-KT.
Dataset→ assist15 comp xes3g5m

Metric→ AUC↑ RMSE↓ AUC RMSE AUC RMSE

Cuff-KT 0.8130 0.3773 0.7834 0.3459 0.7176 0.3931
w/o. Dual 0.7013 0.4126 0.7245 0.3693 0.7088 0.4094
w/o. SFE 0.7706 0.3925 0.7204 0.3612 0.6896 0.4140
w/o. SAA 0.7000 0.4141 0.6877 0.3640 0.6716 0.4212
w. SHA 0.7810 0.3844 0.6924 0.3629 0.6767 0.4185

We systematically examine the im-
pact of key components in Cuff-KT
based on DKT by constructing four
variants under intra-learner shift.
“w/o. Dual” indicates that question
and response embeddings are fused
(e.g., by summation) after embed-
ding. “w/o. SFE” means the SFE
component is omitted, “w/o. SAA”
means omitting the SAA compo-
nent, and “w. SHA” means SAA is replaced with standard multi-head attention. From Table 4,
we can easily observe: (1) Cuff-KT outperforms all variants, especially when the SAA component
is removed, the predictive performance generally decreases the most, while Cuff-KT with standard
multi-head attention comes next, empirically validating that our designed SAA component can ef-
fectively achieve adaptive generalization. (2) Cuff-KT’s performance is very low when the SFE
component is removed or dual modeling is not employed. We believe this is because Cuff-KT can
successfully extract question features and learner response features and effectively learn the dif-
ficulty distribution of current questions and the ability distribution of learners based on real-time
data.

Additionally, we study the effects of different rank under intra-learner shift. The performance on
AUC of different rank under intra-learner shift and the parameter size of the generator in Cuff-KT
are shown in Figure 6 and Table 5 in the Appendix A.4, respectively. In Figure 6, after low-rank
decomposition (rank ̸= 0), the performance on AUC generally improves, and the effects of different
rank are inconsistent across different datasets. In Table 5, the parameter size of the generator in-
creases with the rank, indicating that by adjusting different ranks, an effective balance between the
performance and resource consumption of Cuff-KT can be achieved.

5 CONCLUSION

Our paper aims to tackle the RLPA task in KT by proposing a controllable, tuning-free, fast, and
flexible method called Cuff-KT to improve adaptability of KT models in real-world scenarios. We
decompose the RLPA task to be solved into two sub-issues: intra-learner shift and inter-learner shift,
and design a parameter generator capable of generate personalized parameters based on the current
stage or group, thereby achieving adaptive generalization. In instance validations across multiple
KT models, Cuff-KT exhibits superior performance in adapting to rapidly changing distributions,
avoiding the overfitting and high time cost challenges inherent in fine-tuning based methods.
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A APPENDIX

In this document, we include the description of the datasets (A.1), an overview to anomaly detection
algorithms (A.2), an introduction to the backbone models and baselines ( A.3), and additional ex-
perimental results (A.4), which we are unable to include in the main paper due to space limitations.

A.1 DATASETS

Here, we describe the datasets (assist15, comp, xes3g5m) used for evaluation.

• assist153 (Feng et al., 2009): The assist15 dataset, is collected from the ASSISTments
platform in the year of 2015. It includes a total of 708,631 interactions involving 100
distinct concepts from 19,917 learners.

• comp4 (Hu et al., 2023): The comp dataset, is part of the PTADisc, which encompasses
a wide range of courses from the PTA platform. PTADisc includes data from 74 courses,
involving 1,530,100 learners and featuring 4,504 concepts, 225,615 questions, as well as
an extensive log of over 680 million learner responses. The comp dataset is specifically
selected for KT task in Computational Thinking course.

• xes3g5m5 (Liu et al., 2024): The xes3g5m dataset incorporates rich auxiliary informa-
tion such as tree-structured concept relationships, question types, textual contents, and
learner response timestamps and includes 7,652 questions and 865 concepts, with a total of
5,549,635 interactions from 18,066 learners.

A.2 ANOMALY DETECTION ALGORITHMS

We compare the controller of Cuff-KT with the following anomaly detection algorithms:

• LOF (Breunig et al., 2000): LOF quantifies the local outlier degree of samples by calcu-
lating a score. This score reflects the ratio of the average density of the local neighborhood
around a sample point to the density at the location of that sample point. A ratio signifi-
cantly greater than 1 indicates that the density at the sample point’s location is much lower
than the average density of its surrounding neighborhood, suggesting that the point is more
likely to be a local outlier.

• PCA (Shyu et al., 2003): After performing eigenvalue decomposition, the eigenvectors ob-
tained from PCA reflect different directions of variance change in network traffic data,
while eigenvalues represent the magnitude of variance in the corresponding directions.
Thus, the eigenvector associated with the largest eigenvalue represents the direction of
maximum variance in network traffic data, while the eigenvector associated with the small-
est eigenvalue represents the direction of minimum variance. If an individual network con-
nection sample exhibits characteristics inconsistent with the overall network traffic sample,
such as deviating significantly from other normal connection samples in certain directions,
it may indicate that this connection sample is an outlier.

• IForest (Liu et al., 2008): IForest employs an innovative anomaly isolation method to
identify anomalous samples by constructing a binary tree structure (called an Isolation Tree
or iTree). Unlike traditional methods, IForest does not build a model of normal samples, but
instead directly isolates anomalies. In this process, anomalous samples tend to be isolated
more quickly and thus are positioned closer to the root node in the tree, while normal
samples are isolated deeper in the tree. By constructing multiple iTrees (typically T trees),
the average path length from anomalies to the root node is significantly shorter than that of
normal points, and this characteristic is used for anomaly detection. This approach excels
in handling large-scale datasets and high-dimensional data, with the advantages of linear
time complexity and low memory requirements.

3https://sites.google.com/site/assistmentsdata/datasets/
2015-assistments-skill-builder-data

4https://github.com/wahr0411/PTADisc
5https://github.com/ai4ed/XES3G5M
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• ECOD (Li et al., 2022): ECOD is a novel unsupervised anomaly detection algorithm. Its
core idea stems from the definition of outliers—typically rare events occurring in the tails
of a distribution. The algorithm cleverly uses empirical cumulative distribution functions
(ECDF) to estimate the joint cumulative distribution function of the data, thereby calculat-
ing the probability of outliers. The uniqueness of ECOD lies in its avoidance of the slow
convergence problem of joint ECDF in high-dimensional data. The algorithm calculates
the univariate ECDF for each dimension separately, then estimates the degree of anomaly
for multidimensional data points through an independence assumption. This is done by
multiplying the estimated tail probabilities of all dimensions.

A.3 BACKBONE MODELS AND BASELINES

We instantiate a classic backbone model and two recently proposed SOTA models.

• DKT (Piech et al., 2015): DKT is a seminal model that leverages Recurrent Neural Net-
works (RNNs), specifically utilizing a single layer LSTM, to directly model learners’ learn-
ing processes and predict their performance.

• AT-DKT (Liu et al., 2023a): AT-DKT augments the original deep knowledge tracing model
by embedding two auxiliary learning tasks: one for predicting concepts and another for
assessing individualized prior knowledge. This integration aims to sharpen the model’s
predictive accuracy and deepen its understanding of learner performance.

• DIMKT (Shen et al., 2022): DIMKT is designed to enhance the assessment of learners’
knowledge states by explicitly incorporating the difficulty level of questions and establishes
the relationship between learners’ knowledge states and difficulty level during the practice
process.

We compare Cuff-KT with three classic fine-tuning based methods.

• Full Fine-tuning (FFT): FFT involves training all parameters of a model completely. It
usually has the highest potential for performance, but it consumes the most resources, takes
the longest time to train, and is prone to overfitting when the corpus is not large enough.

• Adapter-based tuning (Adapter) (Houlsby et al., 2019): Adapter inserts downstream task
parameters, known as adapters, into each Transformer block of the pre-trained model. Each
adapter consists of two layers of MLP and an activation function, responsible for reducing
and increasing the dimensionality of the Transformer’s representations. During fine-tuning,
the main model parameters are frozen, and only the task-specific parameters are trained.
Since the backbone models might not include a Transformer, in our experiments, it is re-
placed by linear layers.

• Bias-term Fine-tuning (BitFit) (Zaken et al., 2021): BitFit is a sparse fine-tuning method
that efficiently tunes only the parameters with bias, while all other parameters are fixed.
This method tends to be effective on small to medium datasets and can even compete with
other sparse fine-tuning methods on large datasets.

A.4 ADDITIONAL EXPERIMENTAL RESULTS

1. We further analyze the influence of different components of the controller in Cuff-KT under
intra-learner shift. We instantiate DKT on assist15, comp, and xes3g5m datasets. The AUC
performance results are shown in Figure 7. We observe that the performance drops the most
when the controller removes ZPD (“w/o. ZPD”, i.e., without considering coarse-grained
changes in knowledge states). This indicates that considering coarse-grained knowledge
state changes is crucial, which aligns with reality, as in practical scenarios, a learner’s
progress or regression is often judged by an overall score. Additionally, when ZPD does
not take into account actual length (“w/o. Rel.”, i.e., without considering the reliability of
ZPD), the performance drops the second most. This is because when a learner has more
activity records, their knowledge state is more likely to experience drastic changes, and
such learners should receive more attention. On the other hand, when a learner has limited
records, the simulated changes in their knowledge state are less reliable and should be given
lower weight. When the controller does not consider fine-grained changes in the knowledge
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Figure 7: Ablation study of the controller in Cuff-KT at different frequencies.
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Figure 8: Cuff-KT+FFT under inter-learner shift.

state (“w/o. KL”), the performance shows a slight decrease. We attribute this to the fact
that when fine-grained knowledge states decline overall, the learner’s knowledge state will
experience a major shift. However, such situations are relatively rare in reality.

2. Figure 8 shows the performance of Cuff-KT combined with FFT under inter-learner shift
in terms of AUC and RMSE.

3. Table 5 shows the parameter sizes (k) of the generator in Cuff-KT with different ranks
under intra-learner shift.

Table 5: The parameter size (k) of the generator with different
rank in Cuff-KT under intra-learner shift.

Dataset Backbone Rank

0 1 2 3 4

DKT 130.12 29.96 33.22 36.49 39.75
assist15 AT-DKT 130.12 29.96 33.22 36.49 39.75

DIMKT 54.98 23.26 24.32 25.38 26.43

DKT 516.86 74.46 88.77 103.07 117.37
comp AT-DKT 516.86 74.46 88.77 103.07 117.37

DIMKT 66.02 34.30 35.36 36.42 37.47

DKT 1,386.76 174.57 213.70 252.84 291.97
xes3g5m AT-DKT 1,386.76 174.57 213.70 252.84 291.97

DIMKT 90.85 59.14 60.19 61.25 62.30
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