
Under review as a conference paper at ICLR 2024

VOCABULARY FOR UNIVERSAL APPROXIMATION:
A LINGUISTIC PERSPECTIVE OF MAPPING COMPOSI-
TIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

In recent years, deep learning-based sequence modelings, such as language mod-
els, have received much attention and success, which pushes researchers to explore
the possibility of transforming non-sequential problems into a sequential form.
Following this thought, deep neural networks can be represented as composite
functions of a sequence of mappings, linear or nonlinear, where each composition
can be viewed as a word. However, the weights of linear mappings are undeter-
mined and hence require an infinite number of words. In this article, we investi-
gate the finite case and constructively prove the existence of a finite vocabulary
V = {ϕi : Rd → Rd|i = 1, ..., n} with n = O(d2) for the universal approx-
imation. That is, for any continuous mapping f : Rd → Rd, compact domain
Ω and ε > 0, there is a sequence of mappings ϕi1 , ..., ϕim ∈ V,m ∈ Z+, such
that the composition ϕim ◦ ... ◦ ϕi1 approximates f on Ω with an error less than
ε. Our results demonstrate an unusual approximation power of mapping compo-
sitions which is a little similar to the compositionality in linguistics which is the
idea that a finite vocabulary of basic elements can be combined via grammar to
express an infinite range of meanings.

1 INTRODUCTION

Cognitive psychologists and linguisticians have long recognized the importance of languages
(Pinker, 2003), which has been further highlighted by the popularity of language models such as
BERT (Devlin et al., 2018) and GPT (Brown et al., 2020). These models, based on RNNs or Trans-
formers, have revolutionized natural language processing by transforming it into a sequence learning
problem. They can handle the long-term dependencies in text and generate coherent text based on the
previous content, making them invaluable tools in language understanding and generation (Vaswani
et al., 2017). The success of these models has also led to a new approach to solving non-sequential
problems by transforming them into sequential ones. For instance, image processing can be turned
into a sequence learning problem by segmenting an image into small blocks, arranging them in a cer-
tain order, and then processing the resulting sequence using sequence learning algorithms to achieve
image recognition (Dosovitskiy et al., 2021). The use of sequence learning algorithms has also been
extended to reinforcement learning (Chen et al., 2021), such as the decision transformer outputs
the optimal actions by leveraging a causally masked transformer and exceeds the state-of-the-art
performance.

Sequence modeling has opened up new possibilities for solving a wide range of problems, and this
trend seems to hold in the field of theoretical research. As is well known, artificial neural networks
have universal approximation capabilities, and wide or deep feedforward networks can approximate
continuous functions on a compact domain arbitrarily well (Cybenkot, 1989; Hornik et al., 1989;
Leshno et al., 1993). However, in practical applications such as AlphaFold (Jumper et al., 2021),
BERT (Devlin et al., 2018) and GPT (Brown et al., 2020), the residual network structures (He et al.,
2016a;b) are more preferred than the feedforward structures. It is observed that residual networks
(ResNets) are forward Euler discretizations of dynamical systems (E, 2017; Sander et al., 2022), and
this relationship has spawned a series of dynamical system-based neural network structures such as
the neural ODE (Chen et al., 2018). The dynamical system-based neural network structures are
expected to play an important role in various fields.

1

Under review as a conference paper at ICLR 2024

Notably, both the language models and the dynamical systems are linked to time series modeling
and have been effectively applied to non-sequential problems. This observation naturally leads us to
question: is there an intricate relationship between their individual successes? This article aims
to ponder upon the question. Through a comparative study, we obtain some initial results from the
perspective of universal approximation. Specifically, we demonstrate that there exists a finite set of
mappings, referred to as the vocabulary V , choosing as flow maps of some autonomous dynamical
system x′(t) = f(x(t)), such that any continuous mapping can be approximated by compositing
a sequence of mappings in the vocabulary V . This bears a resemblance to the way complex in-
formation is conveyed in natural language through constructing phrases, sentences, and ultimately
paragraphs and compositions. Table 1 provides an intuitive representation of this similarity.

Table 1: Comparison of natural languages and dynamical systems in dimension d

English Flow map of dynamical systems ‡

Vocabulary ∼140,000† O(d2)

Word I, you, am, is, are, apple, banana, car,
buy, do, have, blue, red,...

ϕτ
±e1 , ϕτ

±e2 , ..., ϕτ
±ed

, ϕτ
±E11x

, ϕτ
±E12x

,
ϕτ
±E21x

, ..., ϕτ
±Eddx

, ϕτ
±ReLU(x), ...

Phrase A big deal, easier said than done, time
waits for no man, ...

ϕτ
e1 • ϕ

τ
−e2 , ϕτ

e1 • ϕ
τ
E11x

• ϕτ
ReLU(x), ...

Sentence It was the best of times, it was the worst
of times, it was the age of wisdom, it
was the age of foolishness, ...

ϕτ
e3 • ϕτ

ReLU(x) • ϕτ
−E21x

• ϕτ
ReLU(x) •

ϕτ
E23x

• ϕτ
−e2•ϕ

τ
ReLU(x)•ϕ

τ
E11x

•ϕτ
e1•. . .

† The number of words, phrases, and meanings in Cambridge Advanced Learner’s Dictionary.
‡ Notations are provided in Section 2.

1.1 CONTRIBUTIONS

1. We proved that it is possible to achieve the universal approximation property by composit-
ing a sequence of mappings in a finite set V . (Theorem 2.2 and Corollary 2.3).

2. Our proof is constructive as we designed such a V that contains a finite number of flow
maps of dynamical systems. (Theorem 2.6)

1.2 RELATED WORKS

Universal approximation. The approximation properties of neural networks have been extensively
studied, with previous studies focusing on the approximation properties of network structures such
as feedforward neural networks (Cybenkot, 1989; Hornik et al., 1989; Leshno et al., 1993) and
residual networks (He et al., 2016a;b). In these networks, the structure is fixed and the weights are
adjusted to approximate target functions. Although this paper also considers universal approxima-
tion properties, we use a completely different way. We use a finite set of mappings, and the universal
approximation is achieved by composing sequences of these mappings. The length of the mapping
sequence is variable, which is similar to networks with a fixed width and variable depth (Lu et al.,
2017; Johnson, 2019; Kidger & Lyons, 2020; Park et al., 2021; Beise & Da Cruz, 2020; Cai, 2022).
However, in our study, we do not consider learnable weights; instead, we consider the composition
sequence, which is different from previous research.

Residual network, neural ODE, and control theory. The word mapping constructed in this paper
is partially based on the numerical discretization of dynamical systems and therefore has a relation-
ship with residual networks and neural ODEs. Residual networks (He et al., 2016a;b) are currently
one of the most popular network structures and can be viewed as a forward Euler discretization
of neural ODEs (Chen et al., 2018). Recently, Li et al. (2022) and Tabuada & Gharesifard (2020;
2022) studied the approximation properties of neural ODEs. Their basic idea is employing control-
lability results in control theory to construct source terms that approximate a given finite number
of input-output pairs, thus obtaining the approximation properties of functions in the Lp norm or
continuous norm sense. Additionally, Duan et al. (2022) proposed an operator splitting format that

2

Under review as a conference paper at ICLR 2024

discretizes neural ODEs into Leaky-ReLU fully connected networks. Partially inspired by Duan et
al.’s construction, we designed a special splitting method to finish Part 1 of our construction.

It’s worth noting that all neural networks mentioned above can be represented as compositions of
mapping sequences. However, the networks involve an infinite number of mappings, which is dif-
ferent from our construction which only requires a finite number of mappings.

Compositionality. Our results demonstrate that the composition is a powerful operator that allows
us to achieve the universal approximation property on compact domains by using a finite number of
mappings. This is a little similar to the concept of compositionality in linguistics, especially in the
Montagovian framing (Montague, 1970; Kracht, 2012), which is the idea that a finite vocabulary of
basic elements can be combined via a grammar to express an infinite range of meanings. Recently,
researchers have explored the capabilities of neural models to acquire compositionality while learn-
ing from data (Dankers et al., 2022; Valvoda et al., 2022). However, they focused on algebraic
relations rather than approximations. It’s interesting to think whether these studies and ours can be
connected.

Word embeding. The finite mapping vocabulary might be related to the word embedding in nat-
ural language processing. The most basic model involves embedding words as vectors and then
summing these word vectors to obtain the sentence vector (Mikolov et al., 2013). However, the
summation operator is commutative, and thus vector embedding models fail to capture any notion
of word order. To address this limitation, Rudolph & Giesbrecht (2010) proposed modeling words
as matrices rather than vectors and composing sentence embeddings through matrix multiplication
instead of addition. For recent advancements in this direction, we refer to Mai et al. (2018); Asaadi
et al. (2023). It is noteworthy that, to the best of our knowledge, prior research in this domain has
not delved into the approximation properties. Leveraging the techniques presented in this paper,
we can readily establish the existence of a finite vocabulary for both vector embedding and matrix
embedding (refer to Appendix D). Furthermore, it is important to note that vector space and matrix
space are finite-dimensional, while the continuous function space is infinite-dimensional. This sug-
gests that embedding words as nonlinear mappings could enhance the expressiveness of sentences.
However, there is limited exploration in this direction.

1.3 OUTLINE

We state the main result for universal approximation in Section 2, which includes notations, main
theorems, and ideas for construction and proof. Before providing the detailed construction in Section
4, we add a Section 3 to introduce flow maps and the techniques we used. Finally, in Section 5 we
discuss the result of this paper. All formal proof of the theorems is provided in the Appendix.

2 NOTATIONS AND MAIN RESULTS

2.1 PRELIMINARIES

The statement and the proof of our main results contain some concepts in mathematics. Here we
provide a brief introduction for them, which is enough to understand most parts of this paper.

One concept is the orientation-preserving (OP) diffeomorphisms of Rd. A differentiable map f :
Rd → Rd is called a diffeomorphism if it is a bijection and its inverse f−1 is differentiable as well.
In addition, a diffeomorphism f of Rd is called orientation-preserving if the Jacobian of f is positive
everywhere. A simple example of OP diffeomorphisms is the linear map f : x → Px where x ∈ Rd

and P is a square matrix with positive determinant.

Another concept is the flow map of dynamical systems. Here the dynamical system is characterized
by the following ordinary differential equation (ODE) in dimension d,{

ẋ(t) = v(x(t), t), t ∈ (0, τ),

x(0) = x0 ∈ Rd,
(1)

where v : Rd → Rd is the velocity field and x0 is the initial value. When the field v satisfies some
conditions, such as Lipschitz continuous, the ODE (1) has a unique solution x(t), t ∈ [0, τ]. Then
the map from the initial state x0 to x(τ), the state of the system after time τ , is called the flow map

3

Under review as a conference paper at ICLR 2024

and denoted by ϕτ
v(x,t)(x0), where x0 is allowed to vary. A basic property is that the flow maps are

naturally OP diffeomorphisms. For example, let A be a square matrix and v(x, t) = Ax, then the
flow map ϕτ

v(x,t)(x0) is a linear map ϕτ
Ax(x0) = eAτx0, where eAτ is the matrix exponential of Aτ .

A deeper introduction and understanding of flows and dynamical systems can be found in Chapter
1 of Arrowsmith & Place (1990).

2.2 NOTATIONS

For a (vector valued) function class F , the vocabulary V is defined as a finite subset of F , i.e.,

V = {ϕ1, ϕ2, ..., ϕn} ⊂ F , n ∈ Z+. (2)

Each ϕi ∈ V is called a word. We will consider a sequence of functions, ϕi1 , ϕi2 , ..., ϕim ∈ V , and
their composition, called as a sentence, to generate the hypothesis function space,

HV = {ϕi1 • ϕi2 • ... • ϕim |ϕi1 , ϕi2 , ..., ϕim ∈ V,m ∈ Z+}. (3)

Particularly, some (short) sentences are called phrases for some purpose. Here the operator • is
defined as function composition from left to right, which aligns the composition order to the writing
order, i.e.

ϕi1 • ϕi2 • ... • ϕim = ϕim ◦ ... ◦ ϕi2 ◦ ϕi1 = ϕim(...(ϕi2(ϕi1(·)))...). (4)

In additional, we use ϕ•m, to denote the mapping that composites ϕ m times.

In this paper, we consider two function classes: (1) C(Rd,Rd), continuous functions from Rd to Rd,
(2) Diff0(Rd), OP diffeomorphisms of Rd. Particularly, we will restrict the functions on a compact
domain Ω ⊂ Rd and define the universal approximation property as below.

Definition 2.1 (Universal approximation property, UAP). For the compact domain Ω in dimension
d, the target function space F and the hypothesis space H, we say

1. H has C-UAP for F , if for any f ∈ F and ε > 0, there is a function h ∈ H such that

∥f(x)− h(x)∥ < ε, ∀x ∈ Ω.

2. H has Lp-UAP for F , if for any f ∈ F and ε > 0, there is a function h ∈ H such that

∥f − h∥Lp(Ω) =
(∫

Ω

|f(x)− h(x)|pdx
)1/p

< ε, p ∈ [1,+∞).

2.3 MAIN THEOREM

Our main result is Theorem 2.2 and its Corollary 2.3 which show the existence of a finite function
vocabulary V for the universal approximation property.

Theorem 2.2. Let Ω ⊂ Rd be a compact domain. Then, there is a finite set V ⊂ Diff0(Rd) such
that the hypothesis space HV in Eq. (3) has C-UAP for Diff0(Rd).

Corollary 2.3. Let Ω ⊂ Rd be a compact domain, d ≥ 2 and p ∈ [1,+∞). Then, there is a finite
set V ⊂ C(Rd,Rd) such that the hypothesis space HV in Eq. (3) has Lp-UAP for C(Rd,Rd).

The Corollary 2.3 is based on the fact that OP diffeomorphisms can approximate continuous func-
tions under the Lp norm provided the dimension is larger than two (Brenier & Gangbo, 2003) . Next,
we only need to prove Theorem 2.2.

Remark 2.4. We are considering functions to have the same dimension of the input and output,
for simplicity. Our results can be directly extended to the case of different input and output di-
mensions. In fact, for f ∈ C(Rdx ,Rdy), one can lift it as a function f̃ ∈ C(Rd,Rd) with
some d ≥ max(dx, dy). For example, let f = Ain • f̃ • Aout where Ain ∈ C(Rdx ,Rd) and
Aout ∈ C(Rd,Rdy) are two fixed affine mappings.

4

Under review as a conference paper at ICLR 2024

2.4 SKETCH OF THE PROOF

Our proof for Theorem 2.2 is constructive, by concerning the flow maps of ODEs. In particular, our
construction will use the following class of candidate flow maps in dimension d,

H1 =
{
ϕτ
Ax+b | A ∈ Rd×d, b ∈ Rd, τ ≥ 0

}
≡

{
ϕ : x → eÃx+ b̃ | Ã ∈ Rd×d, b̃ ∈ Rd

}
, (5)

H2 =
{
ϕτ
Σα,β(x) | α,β ∈ Rd, τ ≥ 0

}
≡

{
ϕ : x → Σα̃,β̃(x) | α̃, β̃ ∈ (0,+∞)d

}
, (6)

where Σα,β is the generalized leaky-ReLU functions defined as below. We say H1 the affine flows
and H2 the leaky-ReLU flows.
Definition 2.5 (Generalized leaky-ReLU). Define the generalized leaky-ReLU function as σα,β :
R → R and Σα,β : Rd → Rd, with α, β ∈ R, α = (α1, ..., αd) ∈ Rd, β = (β1, ..., βd) ∈ Rd,

σα,β(x) =

{
αx, x < 0

βx, x ≥ 0
, Σα,β(x) =

(
σα1,β1(x1), ..., σαd,βd

(xd)
)
. (7)

Generalized leaky-ReLU functions are piecewise linear functions. Using this notation, the tradi-
tional ReLU and leaky-ReLU functions are ReLU(x) ≡ σ0(x) ≡ σ0,1(x) and σα(x) ≡ σα,1(x)
with α ∈ (0, 1), respectively. For vector input x, we use σα,β as an equivilant notation of Σα1,β1.

We will show that the following set V meets our requirement for universal approximations,

V =
{
ϕτ
±ei , ϕ

τ
±Eijx, ϕ

τ
±Σei,0

(x), ϕ
τ
±Σ0,ei

(x) | i, j ∈ {1, 2, ..., d}, τ ∈ {1,
√
2}
}
, (8)

where ei ∈ Rd is the i-th unit coordinate vector, Eij is the d× d matrix that has zeros in all entries
except for a 1 at the index (i, j). Obviously, V ⊂ Diff0(Rd) is a finite set with O(d2) functions.
Theorem 2.6. Let Ψ ∈ Diff0(Ω) be an orientation preserving diffeomorphism, Ω be a compact
domain Ω ⊂ Rd. Then, for any ε > 0, there is a sequence of flow maps, ϕ1, ϕ2, ..., ϕn ∈ V, n ∈ Z+,
such that

∥Ψ(x)− (ϕ1 • ϕ2 • ... • ϕn)(x)∥ ≤ ε, ∀x ∈ Ω. (9)

Theorem 2.6 provides a constructive proof for Theorem 2.3. The proof of Theorem 2.6 can be
separated into the following two parts.

Part 1: Approximate each flow map in H1 and H2 by compositing a sequence of flow maps in V .
Part 2: Approximate Ψ ∈ Diff0(Rd) by compositing a sequence of flow maps in H1 ∪H2. Partic-

ularly, we approximate Ψ by gL is of the form

gL = h0 • h∗
1 • h1 • h∗

2 • h2 • ... • h∗
L • hL, hi ∈ H1, h

∗
i ∈ H2, L ∈ Z+. (10)

The validation of such constructed V is technical and will be proved in Section 3 and Section 4.
Here we only explain the main ideas. First of all, we note that to approximate a composition map T ,
we only need to approximate each component in T , which is detailed in the following Lemma 2.7.
Lemma 2.7. Let map T = F1 • ... • Fn be a composition of n continuous functions Fi defined on
an open domain Di, and let F be a continuous function class that can uniformly approximate each
Fi on any compact domain Ki ⊂ Di. Then, for any compact domain K ⊂ D1 and ε > 0, there are
n functions F̃1, ..., F̃n in F such that

∥T (x)− F̃1 • ... • F̃n(x)∥ ≤ ε, ∀x ∈ K. (11)

For Part 1, the validation involves three techniques in math: the Lie product formula (Hall, 2015),
the splitting method (Holden et al., 2010) and the Kronecker’s theorem (Apostol, 1990). We take
ϕ1
b ∈ H1, b =

∑d
i=1 βiei, βi ≥ 0, as an example to illustrate the main idea. Firstly, motivated by

the Lie product formula or the splitting method, we can approximate ϕ1
b by

ϕ1
b ≈

(
ϕβ1/n
e1 • ϕβ2/n

e2 • ... • ϕβd/n
ed

)•n
, n ∈ Z+, (12)

with n large enough. Secondly, each ϕ
βi/n
ei can be approximated by

ϕβi/n
ei ≈ (ϕ1

ei)
•pi • (ϕ

√
2

−ei)
•qi ∈ HV , pi, qi ∈ Z+ (13)

5

Under review as a conference paper at ICLR 2024

where pi and qi are non-negative integers such that |pi− qi
√
2−βi/n| is small enough according to

the Kronecker’s theorem (Apostol, 1990) as
√
2 is an irrational number. Finally, ϕ1

b can be approx-
imated by compositing a sequence of flow maps in V . The case for ϕτ

Ax+b and ϕτ
Σα,β(x) in H1 and

H2 can be done in the same spirit.

Then for Part 2, we note that the gL we constructed in Eq. (10) is similar to a feedforward neural
network gL with width d and depth L. The form of gL is motivated by a recent work of Duan
et al. (2022) which proved that vanilla feedforward leaky-ReLU networks with width d can be a dis-
cretization of dynamic systems in dimension d. However, affine transformations in general networks
are not necessarily OP diffeomorphisms, and one novelty of this paper is improving the technique
to construct Pi as flow maps. Importantly, making them flow maps helps with employing the con-
struction in Part 1.

3 PROOF OF THE CONSTRUCTION PART 1

To warm up, we show some flow maps of autonomous ODEs below,

ẋ(t) = b, x(0) = x0 ⇒ x(t) = ϕt
b(x0) = x0 + bt, (14)

ẋ(t) = Ax(t) + b, x(0) = x0 ⇒ x(t) = eAtx0 +

∫ t

0

eA(t−τ)bdτ, (15)

ẋ(t) = aσ0(x(t)), x(0) = x0 ⇒ x(t) = ϕt
aσ0(x)

(x0) = eatσe−at(x0), (16)

ẋ(t) = aσ0(−x(t)), x(0) = x0 ⇒ x(t) = ϕt
aσ0(−x)(x0) = σe−at(x0). (17)

Here σ0 and σe−at are ReLU and leaky-ReLU functions, respectively. Next, we provide some
properties to verify a given map to be an affine flow map in H1 or a leaky-ReLU flow map in H2.

3.1 AFFINE FLOWS AND LEAKY-RELU FLOWS

Consider the affine transformation P : x → Wx+ b and examine conditions of P to be a flow map.
Generally, if W is nonsingular and has real matrix logarithm ln(W), then P is an affine flow map,
as we can represent P as P (x) = Wx + b = ϕ1

Ax+b̃
where A = ln(W) and b̃ =

∫ 1

0
eA(τ−1)bdτ .

As it is hard to verify ln(W) is a real matrix (Culver, 1966), we are happy to construct some special
matrix W . The following properties are useful.

Proposition 3.1. (1) Let Q be a nonsingular matrix. If x → Wx is an affine flow map then the map
x → QWQ−1x, x → WTx and x → W−1x also are. (2) Let U be an upper triangular matrix
below with λ > 0, then the map x → Ux is an affine flow map for arbitrary vector w2:d,

U =

(
λ w2:d

0 Id−1

)
. (18)

Here Id−1 is the (d − 1)th order identity matrix. The property (1) is because ln(QWQ−1) =
Q ln(W)Q−1 and ln(WT) = ln(W)T . The property (2) can be obtained by employing the formula,

ln

(
λ w2:d

0 Id−1

)
=

(
ln(λ) ln(λ)

λ−1 w2:d

0 0

)
, λ ̸= 1. (19)

When λ = 1, the formula is simplified as ln(U) = U − Id.

Next, we consider the leaky-ReLU flow maps.

By directly calculate the flow map ϕτ
Σα,β(x) with α,β ∈ Rd, we have

ϕτ
Σα,β(x)(x) = Σα̃,β̃(x), (20)

where α̃ = (eτα1 , ..., eταd) and β̃ = (eτβ1 , ..., eτβd). The following property is implied.

Proposition 3.2. If α̃, β̃ ∈ (0,∞)d, then the map Σα̃,β̃ is a leaky-ReLU flow map.

6

Under review as a conference paper at ICLR 2024

3.2 APPLICATION OF LIE PRODUCT FORMULA

Theorem 3.3 (Lie product formula). For all matrix A,B ∈ Rd×d, we have

eA+B = lim
n→∞

(
eA/neB/n

)n

= lim
n→∞

(
ϕ
1/n
Ax • ϕ1/n

Bx

)•n
(21)

Here eA denotes the matrix exponential of A, which is also the flow map ϕ1
Ax of the autonomous

system x′(t) = Ax(t). The proof can be found in Hall (2015) for example and the formula can
be extended to multi-component cases. The formula can also be derived from the operator splitting
approach (Holden et al., 2010), which allows us to obtain the following result.
Lemma 3.4. Let vi : Rd → Rd, i = 1, 2, ...,m be Lipschitz continuous funcitons, v =

∑m
i=1 vi, Ω

be a compact domain. For any t > 0 and ε > 0, there is a positive integers n, such that the flow
map ϕt

v can be approximated by composition of flow maps ϕt/n
vi , i.e.

∥ϕt
v(x)−

(
ϕt/n
v1 • ϕt/n

v2 • ... • ϕt/n
vm

)•n
(x)∥ < ε, ∀x ∈ Ω. (22)

3.3 APPLICATION OF KRONECKER’S THEOREM

Theorem 3.5 (Kronecker’s approximation theorem (Apostol, 1990)). Let γ ∈ R be an irrational
number, then for any t ∈ R and ε > 0, there exist two integers p and q with q > 0, such that
|γq + p− t| < ε.

Although Kronecker’s Theorem 3.5 is proposed for approximating real numbers, we can employ it
in the scenario of approximating the flow map ϕt

v as it contains a real-time parameter t. Choosing
γ = −

√
2, approximating t by p − q

√
2, then we can approximate ϕt

v by ϕp−q
√
2

v . Considering
positive t, we have p is positive as q is. Then the property of flow maps,

ϕp−q
√
2

v = ϕp
v • ϕ−q

√
2

v = ϕp
v • ϕ

q
√
2

−v = (ϕ1
v)

•p • (ϕ
√
2

−v)
•q, (23)

allow us to prove the following result.
Lemma 3.6. Let v : Rd → Rd be a Lipschitz continuous function, Ω be a compact domain. For
any t > 0 and ε > 0, there exist two positive integers p and q, such that the flow map ϕt

v can be
approximated by (ϕ1

v)
•p • (ϕ

√
2

−v)
•q , i.e.

∥ϕt
v(x)− (ϕ1

v)
•p • (ϕ

√
2

−v)
•q(x)∥ < ε, ∀x ∈ Ω. (24)

Corollary 3.7. For any flow maps h in H1 ∪ H2, ε > 0 and compact domain Ω ⊂ Rd, there is a
sequence ϕ1, ϕ2, ..., ϕm in V (Eq. 8) such that

∥h(x)− (ϕ1 • ϕ2 . . . • ϕm)(x)∥ < ε, ∀x ∈ Ω. (25)

The result is obtained by directly employing Lemma 3.4 and Lemma 3.6 with the following split-
tings,

Ax+ b =

d∑
i=1

d∑
j=1

aijEijx+

d∑
i=1

biei, Σα,β(x) =

d∑
i=1

αiΣei,0(x) +

d∑
i=1

βiΣ0,ei(x). (26)

4 PROOF OF THE CONSTRUCTION PART 2

This section provides the construction that OP diffeomorphisms can be approximated by composit-
ing a sequence of flow maps in H1∪H2. The construction contains three steps: (1) approximate OP
diffeomorphisms by deep compositions using the splitting approach, (2) approximate each splitting
component by compositing flow maps in H1 ∪H2, (3) combine results to finish the construction.

4.1 APPROXIMATE THE OP DIFFEOMORPHISM BY DEEP COMPOSITIONS

Employing results of Agrachev & Caponigro (2010) and Caponigro (2011), any OP diffeomorphism
Ψ can be approximated by flow maps of ODEs. Particularly, we can choose the ODEs as neural

7

Under review as a conference paper at ICLR 2024

ODEs of the form

x′(t) = v(x(t), t) =

N∑
i=1

si(t)σ(wi(t) · x(t) + bi(t)), (27)

where the field function v is a neural network with N hidden neurons, the activation is chosen as
the leaky-ReLU function σ = σα for some α ∈ (0, 1), si ∈ Rd, wi ∈ Rd and bi ∈ R are piecewise
smooth functions of t. The universal approximation property of neural networks (Cybenko, 1989)
implies that Ψ can be approximated by the flow map ϕτ

v of Eq. (27) for some τ > 0 and N ∈ Z+

big enough.

Following the approach of Duan et al. (2022), we employ a proper splitting numerical scheme
to discretize the neural ODE (27). Split the field v as a summation of Nd functions, v(x, t) =∑N

i=1

∑d
j=1 vij(x, t)ej , where ej is the j-th axis unit vector and vij(x, t) = sij(t)σ(wi(t)·x+bi(t))

are scalar functions. Then the numerical analysis theory of splitting methods (Holden et al., 2010)
ensures that the following composition Φ can approximate ϕτ provided the time step ∆t := τ/n is
sufficiently small,

Φ = T1 • · · · • Tn ≡ (T
(1,1)
1 • T (1,2)

1 • . . . • T (N,d)
1) • . . . • (T (1,1)

n • T (1,2)
n • . . . • T (N,d)

n),

where the map T
(i,j)
k : x → y in each split step is{

y(l) = x(l), l ̸= j,

y(j) = x(j) +∆tvij(x, k∆t).
(28)

Here, the superscript in x(l) indicates the l-th coordinate of x. The map T i,j
k is given by the forward

Euler discretization of x′(t) = vi,j(x(t), t)ej in the interval (k∆t, (k + 1)∆t). Note that vij is
Lipschitz continuous on Rd, hence the map T i,j

k also is.

Below is the formal statement of the approximation in this step.

Theorem 4.1. Let Ψ ∈ Diff0(Ω) be an orientation preserving diffeomorphism, Ω be a compact
domain Ω ⊂ Rd. Then, for any ε > 0, there is a sequence of transformations, T (i,j)

k , is of the form
Eq. (28) such that

∥Ψ(x)− (T
(1,1)
1 • T (1,2)

1 • . . . • T (N,d)
1 • . . . • T (1,1)

n • T (1,2)
n • . . . • T (N,d)

n)(x)∥ ≤ ε, ∀x ∈ Ω.

4.2 APPROXIMATE EACH COMPOSITION COMPONENT BY FLOW MAPS IN H1 AND H2

Now we examine the map T
(i,j)
k in each splitting step. Since all T (i,j)

k have the same structure (over
a permutation), we only need to consider the case of T (N,d)

k , which is simply denoted as T : x → y
is of the form

T :

{
y(i) = x(i), i = 1, · · · , d− 1,

y(d) = x(d) + aσ(w1x
(1) + · · ·+ wdx

(d) + b).
(29)

where σ = σα, α ∈ (0, 1), is the leaky-ReLU funciton, a, b, w1, ..., wd ∈ R are parameters. Since
the time step ∆t in T

(i,j)
k are small, we can assume the parameters satisfing max(1/α, α)|awd| < 1.

Lemma 4.2. Let α > 0 and max(1/α, α)|awd| < 1, then the map T in Eq. (29) is a composition
of at most six flow maps in H1 ∪H2.

Noting that the case of w1 = ... = wd−1 = 0 is trivial, we can assume w1 ̸= 0 without loss of
generality. Then, the bias parameter b can be absorbed in x(1) using an affine flow map; hence we
only need to consider the case of b = 0. In addition, using the property of leaky-ReLU, σα(x) =
−ασ1/α(−x), we can further assume w1 > 0. As a result, the map T can be represented by the
following composition,

T (x) = F0 • F1 • · · · • F5(x), (30)

8

Under review as a conference paper at ICLR 2024

where each composition step is as follows, x(1)

x(2:d−1)

x(d)

F0−→

 ν
x(2:d−1)

x(d)

F1−→

 σ(ν)
x(2:d−1)

x(d)

F2−→

 σ(ν)
x(2:d−1)

x(d) + aσ(ν)

F3−→

 ν
x(2:d−1)

x(d) + aσ(ν)


F4−→

ν + wdaσ(ν)
x(2:d−1)

x(d) + aσ(ν)

F5−→

 x(1)

x(2:d−1)

x(d) + aσ(ν)

 .

Here, ν := w1x
(1) + · · ·+ wdx

(d) and x(2:d−1) represent the elements x(2), ..., x(d−1).

We clarify that each component Fi, i = 0, · · · , 5, are flow maps in H1 ∪H2. In fact, F0, F2, F5 =
F−1
0 are affine mappings,

F0(x) =

(
w1 w2:d

0 Id−1

)
x, F2(x) =

(
Id−1 0

(a, 02:d−1) 1

)
x, F5(x) =

(
1/w1 −w2:d/w1

0 Id−1

)
x,

where Id−1 is the identity matrix, (a, 02:d−1) = (a, 0, ..., 0) with d− 2 zeros. According to Propo-
sition 3.1, they are flow maps in H1. In addition, according to Proposition 3.2, F1, F3 and F4 are
leaky-ReLU flow maps in H2 as

F1 = Σ(α,12:d),11:d , F3 = Σ(1/α,12:d),11:d , F4 = Σ(1+wdaα,12:d),(1+wda,12:d). (31)

Here, the condition max(1/α, α)|awd| < 1 is used to ensure 1 + wdaα > 0 and 1 + wda > 0.

4.3 FINISH THE CONSTRUCTION

Combining Theorem 4.1 and Lemma 4.2 above, and using the fact in Lemma 2.7, we have the
following result.
Theorem 4.3. Let Ψ ∈ Diff0(Ω) be an orientation preserving diffeomorphism, Ω be a compact
domain Ω ⊂ Rd. Then, for any ε > 0, there is a sequence of flow maps, h1, h2, ..., hm,m ∈ Z+, in
H = H1 ∪H2 such that

∥Ψ(x)− (h1 • h2 • ... • hm)(x)∥ ≤ ε, ∀x ∈ Ω. (32)

Then we can finish the construction for Theorem 2.6 by combining Corollary 3.7 and Theorem 4.3.

5 CONCLUSION

Universal approximation properties are the foundation for machine learning. This paper examined
the approximation property of mapping composition from a sequential perspective. We proved, for
the first time, that the universal approximation for diffeomorphisms and high-dimensional continu-
ous functions can be achieved by using a finite number of sequential mappings. Our result implies
that the universal approximations can be easily achieved. Importantly, the mappings used in our
composition are flow maps of dynamical systems and do not increase the dimensions. However, our
result is restricted to mappings on a compact domain. It is interesting to study whether it is possible
to generalize this result to the case of mappings on unbounded domains.

Our Theorem 2.2 was inspired by the fact of finite vocabulary in natural languages, where V can
be mimicked to a “vocabulary”, H1 and H2 to “phrases”, and HV to “sentences”. Our results
provide a novel aspect for composite mappings, and we hope our findings could in turn inspire
related research for the algorithm and modeling communities. For example, one can embed words
as nonlinear mappings instead of vectors or matrices in traditional models. However, constructing
such embedding models involves lots of techniques that are beyond the scope of this paper.

It should be noted that this paper focuses on the existence of a finite vocabulary and the constructed
V in Eq. (8) is not optimal. If a sequential composition of mappings in such V is used to approximate
functions in practical applications, the required sequence length may be extremely large. However,
in practical applications, it is often only necessary to approximate a certain small set of continuous
functions, hence designing an efficient vocabulary for them would be a fascinating future direction.

9

Under review as a conference paper at ICLR 2024

REFERENCES

A. A. Agrachev and M. Caponigro. Dynamics control by a time-varying feedback. Journal of
Dynamical and Control Systems, 16(2):149–162, 2010.

Tom M. Apostol. Kronecker’s theorem with applications. In Modular Functions and Dirichlet Series
in Number Theory, Graduate Texts in Mathematics, pp. 142–160. Springer, New York, NY, 1990.

David K Arrowsmith and Colin M Place. An introduction to dynamical systems. Cambridge univer-
sity press, 1990.

Shima Asaadi, Eugenie Giesbrecht, and Sebastian Rudolph. Compositional matrix-space models of
language: Definitions, properties, and learning methods. Natural Language Engineering, 29(1):
32–80, 2023.

Hans-Peter Beise and Steve Dias Da Cruz. Expressiveness of Neural Networks Having Width Equal
or Below the Input Dimension. arXiv preprint arXiv:2011.04923, November 2020.

Yann Brenier and Wilfrid Gangbo. $Lˆp$ Approximation of maps by diffeomorphisms. Calculus of
Variations and Partial Differential Equations, 16(2):147–164, February 2003. ISSN 0944-2669,
1432-0835.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, and Amanda Askell. Language models are
few-shot learners. In Advances in neural information processing systems, volume 33, pp. 1877–
1901, 2020.

Yongqiang Cai. Achieve the minimum width of neural networks for universal approximation. arXiv
preprint arXiv:2209.11395, 2022.

Marco Caponigro. Orientation preserving diffeomorphisms and flows of control-affine systems.
IFAC Proceedings Volumes, 44(1):8016–8021, 2011.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary dif-
ferential equations. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, pp. 6572–6583, 2018.

Walter J. Culver. On the existence and uniqueness of the real logarithm of a matrix. Proceedings of
the American Mathematical Society, 17(5):1146–1151, 1966.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

George Cybenkot. Approximation by superpositions of a sigmoidal function. Mathematics of Con-
trol, Signals and Systems, 2(4):303–314, 1989.

Verna Dankers, Elia Bruni, and Dieuwke Hupkes. The paradox of the compositionality of natural
language: A neural machine translation case study. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 4154–4175.
Association for Computational Linguistics, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representations, 2021.

Yifei Duan, Li’ang Li, Guanghua Ji, and Yongqiang Cai. Vanilla feedforward neural networks as a
discretization of dynamic systems. arxiv, 2022.

10

Under review as a conference paper at ICLR 2024

Weinan E. A proposal on machine learning via dynamical systems. Communications in Mathematics
and Statistics, 5(1):1–11, 2017.

Brian Hall. The Matrix Exponential. In Lie Groups, Lie Algebras, and Representations: An Elemen-
tary Introduction, Graduate Texts in Mathematics, pp. 31–48. Springer International Publishing,
2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European conference on computer vision, pp. 630–645, 2016b.

Helge Holden, Kenneth H Karlsen, and Knut-Andreas Lie. Splitting methods for partial differ-
ential equations with rough solutions: Analysis and MATLAB programs, volume 11. European
Mathematical Society, 2010.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural networks, 2(5):359–366, 1989.

Jesse Johnson. Deep, Skinny Neural Networks are not Universal Approximators. In ICLR, 2019.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

Patrick Kidger and Terry Lyons. Universal Approximation with Deep Narrow Networks. arXiv
preprint arXiv:1905.08539, June 2020.

Marcus Kracht. Compositionality in Montague Grammar. In Wolfram Hinzen, Edouard Mach-
ery, and Markus Werning (eds.), The Oxford Handbook of Compositionality, pp. 47–63. Oxford
University Press, 2012.

Moshe Leshno, Vladimir Ya. Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward net-
works with a nonpolynomial activation function can approximate any function. Neural Networks,
6(6):861–867, January 1993.

Qianxiao Li, Ting Lin, and Zuowei Shen. Deep learning via dynamical systems: An approximation
perspective. Journal of the European Mathematical Society, 2022.

Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The expressive power of
neural networks: A view from the width. volume 30, 2017.

Florian Mai, Lukas Galke, and Ansgar Scherp. CBOW Is Not All You Need: Combining CBOW
with the Compositional Matrix Space Model. In International Conference on Learning Represen-
tations, 2018.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of Word Repre-
sentations in Vector Space. In ICLR, 2013. arXiv: 1301.3781.

Richard Montague. Universal grammar. Theoria, 36(3):373–398, 1970.

Sejun Park, Chulhee Yun, Jaeho Lee, and Jinwoo Shin. Minimum Width for Universal Approxima-
tion. In International Conference on Learning Representations, 2021.

Steven Pinker. The language instinct: How the mind creates language. Penguin UK, 2003.

Sebastian Rudolph and Eugenie Giesbrecht. Compositional Matrix-Space Models of Language. In
Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pp.
907–916, Uppsala, Sweden, 2010. Association for Computational Linguistics.

Michael E. Sander, Pierre Ablin, and Gabriel Peyré. Do Residual Neural Networks discretize Neural
Ordinary Differential Equations? arXiv preprint arXiv:2205.14612, 2022.

11

Under review as a conference paper at ICLR 2024

Paulo Tabuada and Bahman Gharesifard. Universal Approximation Power of Deep Residual Neural
Networks via Nonlinear Control Theory. December 2020.

Paulo Tabuada and Bahman Gharesifard. Universal approximation power of deep residual neural
networks through the lens of control. IEEE Transactions on Automatic Control, pp. 1–14, 2022.

Josef Valvoda, Naomi Saphra, Jonathan Rawski, Adina Williams, and Ryan Cotterell. Benchmark-
ing Compositionality with Formal Languages. In Proceedings of the 29th International Confer-
ence on Computational Linguistics, pp. 6007–6018, Gyeongju, Republic of Korea, 2022. Interna-
tional Committee on Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In Advances in Neural Infor-
mation Processing Systems, volume 30, 2017.

12

Under review as a conference paper at ICLR 2024

A ADDITIONAL LEMMAS

It is well known that an ODE system can be approximated by many numerical methods. Particu-
larly, we use the splitting approach (Holden et al., 2010). Let v(x, t) be the summation of several
functions,

v(x, t) =

J∑
j=1

vj(x, t), J ∈ Z+. (33)

For a given time step ∆t, we define the iteration as

xk+1 = Tkxk = T
(J)
k ◦ · · · ◦ T (2)

k ◦ T (1)
k xk, (34)

where the map T
(j)
k : x → y is

y ≡ T
(j)
k (x) = x+∆tvj(x, tk) tk = k∆t. (35)

Lemma A.1. Let all vj(x, t), j = 1, 2, ..., J, and v(x, t), (x, t) ∈ Rd× [0, τ], be piecewise constant
(w.r.t. t) and L-Lipschitz (L > 0). Then, for any τ > 0, ε > 0 and x0 in a compact domain Ω, there
exist a positive integer n and ∆t = τ/n < 1 such that ∥x(τ)− xn∥ ≤ ε.

Proof. Without loss of generality, we only consider J = 2. (The general J case can be proven
accordingly.) In addition, we assume vj are constant w.r.t. t in each interval [tk, tk+1) the time step,
i.e. v(x, t) = v(x, tk), t ∈ [tk, tk+1). This can be arrived at by choosing small enough ∆t and
adjusting the time step to match the piecewise points of vj . Thus, we have

xk+1 = T
(2)
k (xk +∆tv1(xk, tk))

= xk +∆tv1(xk, tk) + ∆tv2(xk +∆tv1(xk, tk), tk)

= xk +∆t(v1(xk, tk) + v2(xk, tk)) + ∆t2Rk.

Since vi(x, t) are Lipschitz, the residual term Rk is bounded by a constant R that is independent of
k. In fact, we have

∥Rk∥ = ∥v2(xk +∆tv1(xk, tk), tk)− v2(xk, tk)∥/∆t

≤ L∥v1(xk, tk)∥ ≤ L(∥v1(0, tk)∥+ L∥xk∥).

Let V := sup{∥vj∥|t ∈ (0, τ)}, X := sup{∥x0∥|x0 ∈ Ω}, then we have

∥xk+1∥ ≤ (1 + L∆t)∥xk∥+∆t2L(V + L∥xk∥). (36)

As a result, ∥xk∥ is bounded by B := (X + V∆t
1+L)e

L(1+L)τ and ∥Rk∥ is bounded by R := L(V +

LB).

Using the integral form of the ODE and defining the error as ek := xk−x(tk), we have the following
estimation:

∥ek+1∥ = ∥ek +

∫ tk+1

tk

(v(xk, tk)− v(x(t), t))dt+Rk∆t2∥

≤ ∥ek∥+
∫ tk+1

tk

∥v(x(t), tk)− v(xk, tk)∥dt+ ∥Rk∥∆t2

≤ (1 + L∆t)∥ek∥+R∆t2.

Employing the inequality (1 + L∆t)k ≤ eLk∆t ≤ eLτ and the initial error e0 = 0, we have

∥ek∥ ≤ (1 + L∆t)k∥e0∥+
R∆t2

L∆t
[(1 + L∆t)k − 1] ≤ R∆t(eLτ − 1)/L. (37)

For any ε > 0, let n ≥ [RτeLτ

Lε], then we have ∥x(tk)− xk∥ ≤ ε, which finishes the proof.

13

Under review as a conference paper at ICLR 2024

B PROOFS OF LEMMAS AND PROPOSITIONS

B.1 PROOF OF LEMMA 2.7

Lemma 2.7. Let map T = F1 • ... •Fn be a composition of n continuous functions Fi defined on an
open domain Di, and let F be a continuous function class that can uniformly approximate each Fi

on any compact domain Ki ⊂ Di. Then, for any compact domain K ⊂ D1 and ε > 0, there are n
functions F̃1, ..., F̃n in F such that

∥T (x)− F̃1 • ... • F̃n(x)∥ ≤ ε, ∀x ∈ K. (38)

Proof. It is enough to prove the case of n = 2. (The case of n > 2 can be proven by the method of
induction, as T can be expressed as the composition of two functions, T = Fn ◦Tn−1, with Tn−1 =
Fn−1 ◦ ...◦F1.) According to the definition, we have F1(D1) ⊂ D2. Since D2 is open and F1(K) is
compact, we can choose a compact set K2 ⊂ D2 such that K2 ⊃ {F1(x) + δ0y : x ∈ K, ∥y∥ < 1}
for some δ0 > 0 that is sufficiently small.

According to the continuity of F2, there is a δ ∈ (0, δ0) such that

∥F2(y)− F2(y
′)∥ ≤ ε/2,∀y, y′ ∈ K2,

provided ∥y− y′∥ ≤ δ. The approximation property of F allows us to choose F̃1, F̃2 ∈ F such that

∥F̃1(x)− F1(x)∥ ≤ δ < δ0, ∀x ∈ K,

∥F̃2(y)− F2(y)∥ ≤ ε/2, ∀y ∈ K2.

As a consequence, for any x ∈ K, we have F1(x), F̃1(x) ∈ K2 and

∥F2 ◦ F1(x)− F̃2 ◦ F̃1(x)∥ ≤ ∥F2 ◦ F1(x)− F2 ◦ F̃1(x)∥+ ∥F2 ◦ F̃1(x)− F̃2 ◦ F̃1(x)∥
≤ ε/2 + ε/2 = ε.

B.2 PROOF OF PROPOSITION 3.1

Proposition 3.1. (1) Let Q be a nonsingular matrix. If x → Wx is an affine flow map then the map
x → QWQ−1x, x → WTx and x → W−1x also are. (2) Let U be an upper triangular matrix
below with λ > 0, then the map x → Ux is an affine flow map for arbitrary vector w2:d,

U =

(
λ w2:d

0 Id−1

)
. (39)

Proof. (1) It is because ln(QWQ−1) = Q ln(W)Q−1, ln(WT) = ln(W)T and ln(W−1) =
− ln(W) are real as ln(W) is real. (2) It can be obtained by employing the formula,

ln

(
λ w2:d

0 Id−1

)
=

(
ln(λ) ln(λ)

λ−1 w2:d

0 0

)
, λ ̸= 1. (40)

When λ = 1, the formula is simplified as ln(U) = U − Id.

B.3 PROOF OF PROPOSITION 3.2

Proposition 3.2. If α̃, β̃ ∈ (0,∞)d, then the map Σα̃,β̃ is a leaky-ReLU flow map.

Proof. By directly calculate the flow map ϕτ
Σα,β(x) with α,β ∈ Rd, we have

ϕτ
Σα,β(x)(x) = Σα̃,β̃(x), (41)

where α̃ = (eτα1 , ..., eταd) and β̃ = (eτβ1 , ..., eτβd). Choosing αi = ln(α̃i), βi = ln(β̃i) and
τ = 1, we can finish the proof.

14

Under review as a conference paper at ICLR 2024

B.4 PROOF OF LEMMA 3.4

Theorem 3.3. (Lie product formula) For all matrix A,B ∈ Rd×d, we have

eA+B = lim
n→∞

(
eA/neB/n

)n

= lim
n→∞

(
ϕ
1/n
Ax • ϕ1/n

Bx

)•n
(42)

Proof. The proof can be found in Hall (2015).

Lemma 3.4.Let vi : Rd → Rd, i = 1, 2, ...,m be Lipschitz continuous funcitons, v =
∑m

i=1 vi, Ω be
a compact domain. For any t > 0 and ε > 0, there is a positive integers n, such that the flow map
ϕt
v can be approximated by composition of flow maps ϕt/n

vi , i.e.

∥ϕt
v(x)−

(
ϕt/n
v1 • ϕt/n

v2 • ... • ϕt/n
vm

)•n
(x)∥ < ε, ∀x ∈ Ω. (43)

Proof. It’s a special case of Lemma A.1 with a velocity field vi independent on t.

B.5 PROOF OF LEMMA 3.6

Theorem 3.5. (Kronecker’s approximation theorem) Let γ ∈ R be an irrational number, then for
any t ∈ R and ε > 0, there exist two integers p and q with q > 0, such that |γq + p− t| < ε.

Proof. The proof can be found in Apostol (1990).

Lemma 3.6. Let v : Rd → Rd be a Lipschitz continuous function, Ω be a compact domain. For
any t > 0 and ε > 0, there exist two positive integers p and q, such that the flow map ϕt

v can be
approximated by (ϕ1

v)
•p • (ϕ

√
2

−v)
•q , i.e.

∥ϕt
v(x)− (ϕ1

v)
•p • (ϕ

√
2

−v)
•q(x)∥ < ε, ∀x ∈ Ω. (44)

Proof. Since the field v is Lipschitz and the domain Ω is compact, there exist a constant C > 0 such
that

∥ϕt2
v (x0)− ϕt1

v (x0)∥ ≤
∫ t2

t1

∥v(x(t))∥dt < C|t2 − t1|, ∀x0 ∈ Ω. (45)

Employing the Kronecker’s Theorem 3.5 with γ = −
√
2, approximating t by p− q

√
2 such that

|p− q
√
2− t| < ε/C, (46)

then we have

∥ϕt
v(x)− ϕp−q

√
2

v (x)∥ < ε, ∀x ∈ Ω. (47)

As t is positive, we have p is positive as q is. The following representation of the flow maps finishes
the proof,

ϕp−q
√
2

v = ϕp
v • ϕ−q

√
2

v = ϕp
v • ϕ

q
√
2

−v = (ϕ1
v)

•p • (ϕ
√
2

−v)
•q. (48)

Corollary 3.7. For any flow maps h in H1 ∪ H2, ε > 0 and compact domain Ω ⊂ Rd, there is a
sequence ϕ1, ϕ2, ..., ϕm in V (Eq. 8) such that

∥h(x)− (ϕ1 • ϕ2 . . . • ϕm)(x)∥ < ε, ∀x ∈ Ω. (49)

Proof. The proof is finished by directly employing Lemma 3.4 and Lemma 3.6 with the following
splittings,

Ax+ b =

d∑
i=1

d∑
j=1

aijEijx+

d∑
i=1

biei, Σα,β(x) =

d∑
i=1

αiΣei,0(x) +

d∑
i=1

βiΣ0,ei(x). (50)

15

Under review as a conference paper at ICLR 2024

B.6 PROOF OF LEMMA 4.2

Lemma 4.2. Let α > 0 and max(1/α, α)|awd| < 1, then the map T in Eq. (29) is a composition of
at most six flow maps in H1 ∪H2.

Proof. Recall the map T : x → y is of the form

T :

{
y(i) = x(i), i = 1, · · · , d− 1,

y(d) = x(d) + aσ(w1x
(1) + · · ·+ wdx

(d) + b).
(51)

where σ = σα is the leaky-ReLU funciton, a, b, w1, ..., wd ∈ R are parameters. We construct the
composition flow maps in three cases.

(1) The case of w1 = ... = wd = 0. In this case, T is already an affine flow map in H1.

(2) The case of w1 = ... = wd−1 = 0, wd ̸= 0. In this case, we only need to consider the last
coordinate as the first d− 1 coordinates are kept. According to

y(d) = x(d) + aσα(wdx
(d) + b) = (x(d) + b

wd
) + aσα(wd(x

(d) + b
wd

))− b
wd

, (52)

we can assume b = 0 as it can be absorbed in an affine flow map. Let α̃ = 1 + αawd > 0, β̃ =
1 + awd > 0, as max(1/α, α)|awd| < 1, we have the following representation,

x(d) + aσα(wdx
(d)) =

{
σα̃,β̃(x

(d)), wd < 0,

σβ̃,α̃(x
(d)), wd > 0,

(53)

which is a leaky-ReLU flow map in H3 either wd > 0 or wd < 0.

(3) The case of wi ̸= 0 for some i = 1, ..., d− 1. We only show the case of w1 ̸= 0 without loss of
generality. Same with (1), we can absorb b in x(1) using an affine flow map; hence we only need to
consider the case of b = 0. In addition, using the property of leaky-ReLU,

σα(x) = −ασ1/α(−x) (54)

σα(x) = −ασ1/α(−x), we can further assume w1 > 0. (If w1 < 0, we change w to −w, α to
1/α, a to aα, which does not change the map T). As a result, the map T can be represented by the
following composition,

T (x) = F0 • F1 • · · · • F5(x), (55)

where each composition step is as follows, x(1)

x(2:d−1)

x(d)

F0−→

 ν
x(2:d−1)

x(d)

F1−→

 σ(ν)
x(2:d−1)

x(d)

F2−→

 σ(ν)
x(2:d−1)

x(d) + aσ(ν)

F3−→

 ν
x(2:d−1)

x(d) + aσ(ν)


F4−→

ν + wdaσ(ν)
x(2:d−1)

x(d) + aσ(ν)

F5−→

 x(1)

x(2:d−1)

x(d) + aσ(ν)

 .

Here, ν := w1x
(1) + · · · + wdx

(d) and x(2:d−1) represent the elements x(2), ..., x(d−1). We clarify
that each component Fi, i = 0, · · · , 5, are flow maps in H1 ∪H2.

In fact, F0, F2, F5 = F−1
0 are affine transformations,

F0(x) =

(
w1 w2:d

0 Id−1

)
x, F2(x) =

(
Id−1 0

(a, 02:d−1) 1

)
x, F5(x) =

(
1/w1 −w2:d/w1

0 Id−1

)
x,

where Id−1 is the identity matrix, (a, 02:d−1) = (a, 0, ..., 0) with d− 2 zeros. According to Propo-
sition 3.1, they are flow maps in H1. In addition, F1, F3 and F4 are leaky-ReLU flow maps in H2

as

F1 = Σ(α,12:d),11:d , F3 = Σ(1/α,12:d),11:d , F4 = Σ(1+wdaα,12:d),(1+wda,12:d). (56)

Here, the condition max(1/α, α)|awd| < 1 is used to ensure 1 + wdaα > 0 and 1 + wda > 0, no
matter whether Eq. (54) is uesd.

16

Under review as a conference paper at ICLR 2024

C PROOF OF THE MAIN THEOREMS

C.1 PROOF OF THEOREM 4.1

Theorem 4.1. Let Ψ ∈ Diff0(Ω) be an orientation preserving diffeomorphism, Ω be a compact
domain Ω ⊂ Rd. Then, for any ε > 0, there is a sequence of transformations, T (i,j)

k , is of the form
Eq. (28) such that

∥Ψ(x)− (T
(1,1)
1 • T (1,2)

1 • . . . • T (N,d)
1 • . . . • T (1,1)

n • T (1,2)
n • . . . • T (N,d)

n)(x)∥ ≤ ε, ∀x ∈ Ω.

Proof. (1) Firstly, employed results of Agrachev & Caponigro (2010) and Caponigro (2011), any
OP diffeomorphism Ψ can be approximated by flow map of ODEs. Particularly, we can choose the
ODEs as neural ODEs are of the form

x′(t) = v(x(t), t) =

N∑
i=1

si(t)σ(wi(t) · x(t) + bi(t)), (57)

where the field function v is a neural network with N hidden neurons, the activation is chosen as
the leaky-ReLU function σ = σα for some α ∈ (0, 1), si ∈ Rd, wi ∈ Rd and bi ∈ R are piecewise
constant functions of t. The universal approximation property of neural networks Cybenko (1989)
implies that, for any ε > 0, there exist si ∈ Rd, wi ∈ Rd, bi ∈ R, τ > 0 and N ∈ Z+, such that

∥Ψ(x)− ϕτ
v(x)∥ < ε/2, ∀x ∈ Ω, (58)

where ϕτ
v is the flow map of Eq. (27).

(2) Following the approach of Duan et al. (2022), we employ a proper splitting numerical scheme
to discretize the neural ODE (27). Split the field v as a summation of Nd functions, v(x, t) =∑N

i=1

∑d
j=1 vij(x, t)ej , where ej is the j-th axis unit vector and vij(x, t) = sij(t)σ(wi(t)·x+bi(t))

are scalar Lipschitz functions. Then Lemma A.1 implies that there is a n ∈ Z+ big enough such that
∥ϕτ

v(x)− Φ(x)∥ < ε/2, ∀x ∈ Ω, (59)
where

Φ = T1 • · · · • Tn ≡ (T
(1,1)
1 • T (1,2)

1 • . . . • T (N,d)
1) • . . . • (T (1,1)

n • T (1,2)
n • . . . • T (N,d)

n),

and the map T
(i,j)
k : x → y is of the form{

y(l) = x(l), l ̸= j,

y(j) = x(j) +∆tvij(x, k∆t).
(60)

Here, the superscript in x(l) indicates the l-th coordinate of x.

(3) Combining the above two parts, we finish the proof.

C.2 PROOF OF THEOREM 4.3

Theorem 4.3. Let Ψ ∈ Diff0(Ω) be an orientation preserving diffeomorphism, Ω be a compact
domain Ω ⊂ Rd. Then, for any ε > 0, there is a sequence of flow maps, h1, h2, ..., hm,m ∈ Z+, in
H = H1 ∪H2 such that

∥Ψ(x)− (h1 • h2 • ... • hm)(x)∥ ≤ ε, ∀x ∈ Ω. (61)

Proof. According to Theorem 4.1, there is a sequence of transformations, T (i,j)
k , is of the form

Eq. (28) such that

∥Ψ(x)− (T
(1,1)
1 • T (1,2)

1 • . . . • T (N,d)
1 • . . . • T (1,1)

n • T (1,2)
n • . . . • T (N,d)

n)(x)∥ ≤ ε, ∀x ∈ Ω.

Here n can be choosed large enough such that max(1/α, α)C2∆t < 1,∆t = τ/n, where
C = max

t∈[0,τ]

{
|sij(t)|, |wij(t)| | i, j = 1, 2, ..., d

}
. (62)

Since si, wi are piecewise constant functions, the constant C is finite. Then according to Lemma
4.2, each T

(i,j)
k is a composition of at most six flow maps in H1 ∪H2. As a consequence, we finish

the proof by relabelling the index of the used flow maps.

17

Under review as a conference paper at ICLR 2024

C.3 PROOF OF THEOREM 2.6

Theorem 2.6. Let Ψ ∈ Diff0(Ω) be an orientation preserving diffeomorphism, Ω be a compact
domain Ω ⊂ Rd. Then, for any ε > 0, there is a sequence of flow maps, ϕ1, ϕ2, ..., ϕn ∈ V, n ∈ Z+,
such that

∥Ψ(x)− (ϕ1 • ϕ2 • ... • ϕn)(x)∥ ≤ ε, ∀x ∈ Ω. (63)

Proof. (1) According to Theorem 4.3, there is a sequence of flow maps, h1, h2, ..., hm,m ∈ Z+, in
H = H1 ∪H2 such that

∥Ψ(x)− (h1 • h2 • ... • hm)(x)∥ ≤ ε/2, ∀x ∈ Ω. (64)

(2) According to Corollary 3.7, each hi can be universal approximation by HV , i.e., for any εi > 0
and compact domain Ωi, there is a sequence of flow maps, ϕi,1, ..., ϕi,ni

∈ V , such that

∥hi(x)− (ϕi,1 • ϕi,2 • ... • ϕi,ni
)(x)∥ ≤ εi, ∀x ∈ Ωi. (65)

(3) According to Lemma 2.7, we can choose ϕi,j ∈ V and reindex them as ϕ1, ϕ2, ..., .ϕn such that

∥(h1 • h2 • ... • hm)(x)− (ϕ1 • ϕ2 • ... • ϕn)(x)∥ ≤ ε/2, ∀x ∈ Ω. (66)

(4) Combining (1) and (3), we finish the proof.

C.4 PROOF OF THEOREM 2.2

Theorem 2.2. Let Ω ⊂ Rd be a compact domain. Then, there is a finite set V ⊂ Diff0(Rd) such that
the hypothesis space HV in Eq. (3) has C-UAP for Diff0(Rd).

Proof. The Theorem 2.6 provides constructive proof for the existence of V in Eq. (8).

Corollary 2.3. Let Ω ⊂ Rd be a compact domain, d ≥ 2 and p ∈ [1,+∞). Then, there is a finite set
V ⊂ C(Rd,Rd) such that the hypothesis space HV in Eq. (3) has Lp-UAP for C(Rd,Rd).

Proof. We can use the same V in Theorem 2.2 as V ⊂ Diff0(Rd) ⊂ C(Rd,Rd).

(1) Let f ∈ C(Rd,Rd), d ≥ 2, then the result of Brenier & Gangbo (2003) indicates that for any
ε > 0, there is a OP diffeomorphism Ψ ∈ Diff0(Rd) such that

∥f −Ψ∥Lp(Ω) < ε/2. (67)

(2) The Theorem 2.2 indicates that, there is mapping Φ ∈ HV such that

∥Ψ(x)− Φ(x)∥ < ε′ = ε
2|Ω| , ∀x ∈ Ω. (68)

(3) Combining (1) and (2), we have

∥f − Φ∥Lp(Ω) < ε. (69)

which finishes the proof.

18

Under review as a conference paper at ICLR 2024

D VOCABULARY FOR LINEAR SPACES

Here we provide similar results for both the vector space and the linear mapping space. Note that
linear mappings can be characterized as matrics and the construction here is much simpler than what
we do in the main body of this paper for the continuous function space.
Theorem D.1. There is a finite set V0 ⊂ Rd, such that for any vector v∗ ∈ Rd and ε > 0, there is a
sequence, vi1 , vi2 , ..., vin , in V0, n ∈ Z+, such that

∥vi1 + vi2 + ...+ vin − v∗∥ < ε.

Proof. Directly employing Kronecker’s Theorem 3.5, it is easy to see the following set satisfies the
requirement,

V0 = {λei|λ ∈ {±1,±
√
2}, i = 1, 2, ..., d}, (70)

where ei is the axis vector in the i-th coordinate.

Lemma D.2. Let V1 = {0,±1, 10±1,±10±
√
2}, then for any number λ ∈ R and ε > 0, there is a

sequence, vi1 , vi2 , ..., vin , in V1, n ∈ Z+, such that

|vi1vi2 ...vin − λ| < ε.

Proof. It is enough to consider the case of λ > 0. According to Theorem D.1 with d = 1, we can
finish the proof by approximating v∗ = log10 (λ).

Theorem D.3. There is a finite set V2 ⊂ Rd×d, such that for any matrix A∗ ∈ Rd×d and ε > 0,
there is a sequence, Ai1 , Ai2 , ..., Ain , in V2, n ∈ Z+, such that

∥Ai1Ai2 ...Ain −A∗∥ < ε.

Proof. For simplicity, we only consider the case of d = 2 as the general cases can be proved in the
same way. Since any singular matrix can be approximated by nonsingular matrixes, we only need to
consider A∗ as a nonsingular matrix. In addition, every nonsingular matrix can be represented as a
product of elementary matrices. Hence we can further assume A∗ to be an elementary matrix. Note
that the elementary matrices are of the following,(

λ 0
0 1

)
,

(
1 0
λ 1

)
,

(
0 1
1 0

)
, λ ̸= 0.

Therefore, we can finish the proof by considering the following set V2,

V2 =
{(

λ 0
0 1

)
,

(
1 0
1 1

)
,

(
0 1
1 0

) ∣∣∣λ ∈ {±1, 10±1, 10±
√
2}
}
. (71)

The validation of this V2 can be verified by using Lemma D.2 and the following relations,(
1 0
λ 1

)
=

(
1/λ 0
0 1

)(
1 0
1 1

)(
λ 0
0 1

)
, λ ̸= 0,(

λ1 0
0 1

)(
λ2 0
0 1

)
=

(
λ1λ2 0
0 1

)
, λ1, λ ∈ R.

19

	Introduction
	Contributions
	Related works
	Outline

	Notations and main results
	Preliminaries
	Notations
	Main theorem
	Sketch of the proof

	Proof of the construction Part 1
	Affine flows and leaky-ReLU flows
	Application of Lie product formula
	Application of Kronecker's theorem

	Proof of the construction Part 2
	Approximate the OP diffeomorphism by deep compositions
	Approximate each composition component by flow maps in H1 and H2
	Finish the construction

	Conclusion
	Additional lemmas
	Proofs of lemmas and propositions
	Proof of Lemma 2.7
	Proof of Proposition 3.1
	Proof of Proposition 3.2
	Proof of Lemma 3.4
	Proof of Lemma 3.6
	Proof of Lemma 4.2

	Proof of the main theorems
	Proof of Theorem 4.1
	Proof of Theorem 4.3
	Proof of Theorem 2.6
	Proof of Theorem 2.2

	Vocabulary for linear spaces

