
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

A Scalable Crawling Algorithm Utilizing Noisy
Change-Indicating Signals

Anonymous Author(s)
∗

ABSTRACT

Web refresh crawling is the problem of keeping a cache of web

pages fresh, that is, having the most recent copy available when

a page is requested, given a limited bandwidth available to the

crawler. Under the assumption that the change and request events,

resp., to each web page follow independent Poisson processes, the

optimal scheduling policy was derived by Azar et al. [1]. In this pa-

per, we study an extension of this problem where side information

indicating content changes, such as various types of web pings, for

example, signals from sitemaps, content delivery networks, etc., is

available. Incorporating such side information into the crawling

policy is challenging, because (i) the signals can be noisy with false

positive events and with missing change events; and (ii) the crawler

should achieve a fair performance over web pages regardless of

the quality of the side information, which might differ from web

page to web page. We propose a scalable crawling algorithm which

(i) uses the noisy side information in an optimal way under mild

assumptions; (ii) can be deployed without heavy centralized com-

putation; (iii) is able to crawl web pages at a constant total rate

without spikes in the total bandwidth usage over any time interval,

and automatically adapt to the new optimal solution when the total

bandwidth changes without centralized computation. Experiments

clearly demonstrate the versatility of our approach.
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1 INTRODUCTION

Efficient web refresh crawling is one of the most fundamental data

management problems in web search. Web pages are the simplest
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and most ubiquitous source of information on the Internet, there-

fore, extracting and organizing their information content is a cru-

cial task. The first step in this process is acquiring the information,

which means that web pages are regularly crawled to ensure that

the information at the search engine is up-to-date. However, the

scale of the problem is enormous since, as of today, there are trillions

of web pages available online, and hence efficient, resource-aware

crawling algorithms are of great practical interest.

In this paper, we consider the problem of designing scheduling

policies for refreshing web pages in a local cache with the objective

of maximizing the probability that incoming requests to the cache

are processed and served with the latest version of the page. An

efficient web page caching policy, thus, aims to schedule refresh

crawl events (i.e., crawling a web page) between subsequent content

change and content request events in order to have a fresh copy

upon request. The issue of course is that the scheduler needs to

check if a web page has changed, hence web pages need to be polled

regularly, which uses bandwidth, and polling them only provides

partial information about their change process, such as a single

bit indicating whether the web page has changed since it was last

refreshed [4].

It has been estimated that up to 53% of the crawling traffic of

major search engines is redundant [5] in the sense that the crawler

visits an unchanged version of a web page. There is a growing

awareness of the environmental and monetary cost of this redun-

dancy, which motivated initiatives to provide additional signals

for crawlers, allowing them in theory to improve their crawling

policies. One form of this effort is for web servers to actively send

so-called web pings, which notify interested parties about content

changes, so that some active crawling traffic for detecting changes

can be saved. There are different types of web pings, such as sig-

nals from sitemaps, content delivery networks, web servers, etc.,

which can all provide content change notifications to downstream

services, such as web crawlers or proxy servers. Kolobov et al. [7]

recognized the importance of side information and proposed an

algorithm under the assumption of complete and accurate change

information for URLs (i.e., web pages; throughout the paper we

use the expressions URLs and web pages interchangeably) with

side information. We provide empirical evidence and conceptual

arguments that this assumption is too strong and extend the model

to cover noisy signals as well.

In the classical crawling setup, the change and request sequences

are assumed to obey certain stochastic processes [3], which al-

lows to derive policies with some optimality guarantee, even if the

change and request sequences are not fully observable. The most

standard assumption is that the sequence of changes and requests,

resp., to each web page are independent Poisson processes [3, 4, 12].

For this setting, Cho and Garcia-Molina [3] derived a convex op-

timization problem to find the optimal refresh rates for the web

pages if the arrival rates of the Poisson processes are known. Azar

1
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et al. [1] presented an explicit efficient algorithm to find the solu-

tion, which, in fact, crawls every web page at a fixed, page-specific

rate. However, this results in a non-uniform total crawling rate,

which is problematic in practice (as the resources available to the

crawler have to match the peak rate). Therefore, they also proposed

a method to transfer a variable-rate continuous-time (continuous

for short) crawling policy with page-specific fixed crawl rates to a

policy with constant total crawl rate; such a policy schedules crawl

events at regular intervals, that is, at discrete time steps (hence,

such policies will be referred to as discrete policies). This reduction

relies crucially on crawling all pages at a fixed rate. In the presence

of side information, the optimal continuous policy does not satisfy

fixed rates and prior work has not provided reductions to discrete

policies for this setup [7].

An alternative method to derive discrete policies from contin-

uous ones based on Lagrange multipliers has been proposed in a

Google blog post [10]. A benefit of their reduction is that one can

modify problem parameters such as the change rate of a URL or its

importance on-the-fly without requiring a global recomputation of

the solution. This makes this method especially appealing for real-

world scenarios where such parameters are continuously estimated

[4, 11].
1

Another line of research leverages ideas from online learning

and reinforcement learning to learn a crawling policy beyond the

Poisson model [6, 7]; however, reinforcement learning methods are

computationally infeasible in large-scale environments.

In this paperwe build on the Poissonmodel and the continuous to

discrete reduction via Lagrange-multipliers and make the following

contributions:

(1) Motivated by the empirical evaluation of information avail-

able to real-world crawlers, we extend the crawling problem

with imperfect (i.e., noisy) change-indicating signals (CI sig-

nals or CISs, for short).We derive the optimal (continuous)

crawling strategy for this model under a global bandwidth

constraint.

(2) Based on the above policy, we also derive a discrete crawling

strategy that is able to use CISs. This strategy is practically

appealing for several reasons: (i) up to a final argmax op-

eration, it is fully decentralized and parallelizable over web

pages both in computation and memory; (ii) the total crawl

rate is constant over time without spikes in bandwidth usage

over any time interval; (iii) the method automatically adapts

to changes of the bandwidth constraint without centralized

computation; and (iv) regular changes to the estimations of

model parameters do not induce any additional computa-

tional overhead.

(3) We provide an extensive empirical study showing a clear

benefit of our method on semi-synthetic data.

The paper is organized as follows: In Section 2 we provide em-

pirical evaluation of CIS justifying the need of our extended model.

In Section 3, we introduce the crawling setup, its objective function

and the formal definition of CI signals. In Section 4, we recall the

1
In this work we do not consider the estimation of the standard parameters of the

Poisson model (i.e., the change rate), but discuss the estimation of the parameters

describing the behavior of the CI signals in Appendix E.

optimization view of the crawling problem which allows to com-

pute optimal continuous policies, and introduce a principled way

to incorporate change-indicating signals into this setting. We intro-

duce a general approach to derive easy-to-implement and scalable

greedy polices based on continuous ones in Section 5. Experimental

studies are presented in Section 6, followed by our conclusions and

future plans in Section 7. All the proofs of our theoretical results are

relegated to Appendix A, and additional experiments are presented

in Appendices B, D and C.

2 CHANGE-INDICATING SIGNALS

In this section, we present some to basic statistics about change

detection signals in general and in the dataset we use in our experi-

ments.

We take the dataset from [7], published in 2019, as a starting point.

It contains 18,532,314 URLs which were crawled intensively over a

period of 2 weeks to compute their empirical change rates. Addition-

ally, they recorded for which sites they obtained side-information

and the importance of the pages according to the Bing production

crawler based on PageRank and popularity.

While only 4% of the URLs has side information, they represent

26.4% of importance-adjusted weight, which is why the question of

including side information is relevant even when the adoption is

not wide-spread yet. In their work, Kolobov et al. [7] assume that

these CISs are noiseless, that is, for every change there is a CIS

generated, and every CIS corresponds to a valid change.

Concerning the quality of CISs, it is worth noting that defining a

change itself is a complex question, since what counts as a change

depends on the actual use case: For example, should correcting a

typo on a web page count as a change, or changing the header, or

some on-the-fly generated content, such as an ad? Because of this,

there is no unified definition of what counts as change; Kolobov et al.

[7] use the non-public change definition of their (Bing) production

crawler, we also use our own definition, and CIS providers use

their own, as well. As a result, CISs are necessarily noisy from

the viewpoint of their users (even if they are perfect according

to the change definition of their providers), and hence the model

of complete and error free signals, used in [7], is too simplistic to

capture the real world.

In fact, we measured the quality of the sitemap signals for the

web pages in their dataset with declared (perfect) sitemaps and

found that the precision of these signals (i.e., the proportion of time

there is a change following a signal) is below 0.2, and their recall

(i.e., the proportion of time when a change is accompanied with

a CIS) is below 0.5, hence they are far from perfect. To give more

insights into the quality of CISs, we measured the distribution of

precision and recall of all the web pages we have sitemap signals

for, and the resulting importance-weighted histograms (using our

own confidential definition of importance, which is also based on

PageRank and should be similar to that of Bing) are shown in

Figure 1. These results clearly demonstrate that sitemap signals are

noisy, but they are in general better than what we found for the

URLs in the dataset of [7]. Importantly, there are very few pages

which have perfect signal with precision and recall that are higher

than 0.8.

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

A Scalable Crawling Algorithm Utilizing Noisy Change-Indicating Signals Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 1: Histogram of precision and recall for URLs with

sitemap signals. The histogram is computed by weighting

the pages with their importance.

3 SETUP

Classical crawling model. We are given𝑚 web pages to be cached

that are indexed by unique URLs. For the sake of presentation,

we index them by [𝑚] = {1, . . . ,𝑚} and we consider the set of

URLs to be fixed. The classical caching problem for a web page 𝑖 is

modelled by three processes: 1) the request process; 2) the change

process; and 3) the refresh (or crawling) process. The request and

change processes are assumed to be independent Poisson processes

with parameters 𝜇𝑖 and Δ𝑖 , respectively. We also assume that these

Poisson processes are independent across all the web pages. In a

practical system, the request processes can be fully observed, while

the change process of a web page can only be partially observed by

comparing its last cached version to the current one when a crawl

event is triggered. The goal of caching is to have a fresh copy of

the web page when a request event happens. So a good crawling

policy tries to refresh each web page between every subsequent

change and request events. Without further constraints, the naive

solution is to continuously refresh each web page all the time,

which is obviously not an implementable policy in practice (due

to limitations in computations and communications). To obtain a

more realistic setting, we assume a bandwidth constraint, which

either limits the overall frequency of crawl events in expectation,

or sets a hard constraint on the minimal time interval between two

subsequent crawl events.

Policies. A crawling policy decides at any time 𝑡 ∈ [0,∞) (po-
tentially based on the history up to time 𝑡 ) whether it crawls web

pages, thereby over time generating an infinite sequence of crawl

events: crawl events are specified by time-web page pairs where

(𝑡, 𝑖) defines a crawl event for web page 𝑖 at time 𝑡 , and the sequence

of crawl events is denoted as T = ((𝑡cr
1
, 𝑖1), (𝑡cr

2
, 𝑖2), . . . ), where

𝑡cr𝑠 ≤ 𝑡cr
𝑠+1 for any 𝑠 ∈ N. We denote the crawl-event sequence of

an individual web page 𝑖 by T𝑖 = (𝑡cr𝑖,1 , 𝑡
cr

𝑖,2
, . . . ), where 𝑡 ∈ T𝑖 if and

only if (𝑡, 𝑖) ∈ T . As mentioned before, we consider two policy

classes under bandwidth-budget constraints:

• Continuous: the average number of crawl events over time

is asymptotically upper bounded by a budget 𝑅 almost surely

(a.s.): lim sup𝑇→∞
1

𝑇
max{𝑖 ∈ N | 𝑡𝑖 ≤ 𝑇 } ≤ 𝑅 almost surely.

• Discrete: the crawl events are uniformly triggered at fixed

times: 𝑡cr
𝑗

=
𝑗
𝑅
.

The policies in the continuous class specify the time of each crawl

event, while the policies in the discrete class choose a web page

to crawl at each time step 𝑡cr
𝑗

by treating the time when a crawl

event can happen as a constraint. Furthermore, an optimal solution

of the continuous class only needs to satisfy the total bandwidth

constraint asymptotically, while an optimal solution of the discrete

class satisfies the total bandwidth constraint over any time inter-

val. The infrastructure and bandwidth constraints as well as the

volatile web environment make the continuous class of policies less

practical. We have assumed a uniform, fixed rate for the discrete

class of policies. However, our method can be easily applied to

other discrete classes with non-uniform rates (e.g. when the total

bandwidth changes). Optimizing over the discrete class is a hard

combinatorial problem and it is significantly easier to find the opti-

mal solution in the continuous class. Prior work followed the recipe

of first computing the optimal solution in the continuous case and

then approximating the continuous crawl rate in the discrete policy

class [1]; in this paper we also take this approach.

CI signals. We extend the classical model described above by

incorporating CI signals as additional observations. We assume

that for each web page 𝑖 , for every change a CI signal
2
is available

with probability 𝜆𝑖 for some 𝜆𝑖 ∈ [0, 1], (independently for each

change). Given this assumption, the (Poisson) change process for

web page 𝑖 can be split into two independent Poisson processes,

a signalled change process with rate 𝜆𝑖Δ𝑖 and an unsignalled –

and hence also directly unobserved – change process with rate

(1 − 𝜆𝑖 )Δ𝑖 . Additionally, we also allow the presence of false CI

signals, and assume that these signals are generated by independent

Poisson processes with rate 𝜈𝑖 for each web page 𝑖 . The decision

maker cannot distinguish whether a CI signal was produced by the

signalled change process or the false signal process. In summary, for

each web page 𝑖 , one observes an additional sequence of CI signals

C𝑖 = (𝑡cis𝑖,1
, 𝑡cis
𝑖,2

, . . . ) generated by a Poisson process with rate 𝛾𝑖 =

𝜆𝑖Δ𝑖 + 𝜈𝑖 , which contains both true and false CI signals. We denote

the rate of the unobserved change process by 𝛼𝑖 = (1− 𝜆𝑖 )Δ𝑖 .3 The
quality of CISs for page 𝑖 is often measured by their precision and

recall: precision, the probability that a CI signal corresponds to a

real change, is given by 𝜆𝑖Δ𝑖/𝛾𝑖 , while recall, the the probability
that a change is indicated by a signal, is equal to 𝜆𝑖 by definition.

Objective. The objective of the crawl scheduler is to maximize

the expected number of requests that are served with a fresh copy

of the corresponding web page, defined, for a policy 𝜋 , as4

𝑂 (𝜋) := lim inf

𝑁→∞
1

𝑁

𝑁∑
𝑛=1

E𝜋 [I {the𝑛-th request hits a fresh copy}] .

In the notation we explicitly included the dependence on 𝜋 to the

expectation; note, however, that the expectation is also taken over

the randomness induced by the environment, in particular by the

different Poisson processes. This dependence is also omitted later.

2
It is straightforward to extend the model to multiple independent sources of CI signals.

We consider a single signal for the sake of presentation.

3
Kolobov et al. [7] study the regime where 𝜈𝑖 = 0 (noiseless) and 𝜆𝑖 ∈ {0, 1} (complete

or no information at all).

4
While we define limiting quantities in terms of lim inf and lim sup for generality,

they can be replaced with lim for the optimal policies we derive, as the corresponding

limits exist.

3
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To simplify this objective, we recall two important properties of

Poisson processes:

• Uniformity: Events that obey a Poisson process will be

uniformly distributed over any time interval.

• Merging: A collection of independent Poisson processes

with rates (𝜇1, . . . , 𝜇𝑚) is equivalent to a single Poisson pro-

cess with rate 𝜇 =
∑
𝑖 𝜇𝑖 where each time an event is gener-

ated, it is assigned a random index from [𝑚] drawn from a

discrete distribution with parameters (𝜇1/𝜇, . . . , 𝜇𝑚/𝜇).
We assume the request events obey Poisson processes, therefore

due to uniformity and merging, we can rewrite the objective as

𝑂 (𝜋) =
𝑚∑
𝑖=1

lim inf

𝑇→∞
�̃�𝑖

𝑇

∫ 𝑇

0

P𝜋 [𝐸𝑖 (𝑡) | H𝑡 ] 𝑑𝑡 ,

where 𝐸𝑖 (𝑡) denotes the event that page 𝑖 is fresh at time 𝑡 , �̃�𝑖 =

𝜇𝑖/(
∑𝑚

𝑗=1 𝜇 𝑗 ) is the normalized importance andH𝑡 = (T𝑖∩[0, 𝑡), C𝑖∩
[0, 𝑡))1,...,𝑚 is the conditioning on all observable events before time

𝑡 . Let

𝜏elap𝑖 (𝑡) = 𝑡 −max{𝑡cr
𝑖,𝑘
| 𝑘 ∈ N, 𝑡cr

𝑖,𝑘
≤ 𝑡}

be the elapsed time since the last crawl for web page 𝑖 at time 𝑡 and

𝑛cis𝑖 (𝑡) =
��C𝑖 ∩ (𝑡 − 𝜏elap𝑖 , 𝑡]

��
be the number of CI signals received since the last crawl event of

web page 𝑖 . Then the conditional probability of page 𝑖 being fresh is

P [𝐸𝑖 (𝑡) | H𝑡 ] = exp(−𝛼𝑖𝜏elap𝑖 (𝑡)) ·
(
𝜈𝑖

𝛾𝑖

)𝑛cis

𝑖
(𝑡 )

. (1)

The first factor is the probability that a Poisson process with rate

𝛼𝑖 did not produce any event in an interval of length 𝜏elap
𝑖
(𝑡). The

second factor follows from the fact that all CI signals are i.i.d. events

and with every event, the probability that the CI signal was a false

positive is
𝜈𝑖
𝛾𝑖
. We can reduce the state (probability of freshness)

to a single number by observing that the freshness reduction of

each CI signal is equivalent to that of not observing any signal for

a certain time. Motivated by this fact, let

𝛽𝑖 = −
log(𝜈𝑖/𝛾𝑖 )

𝛼𝑖
and 𝜏eff𝑖 (𝑡) = 𝜏elap𝑖 (𝑡) + 𝛽𝑖𝑛cis𝑖 (𝑡)

be the time-equivalent of a single CI signal and the effective elapsed

time, respectively. Then (1) equals to exp(−𝛼𝑖𝜏eff𝑖
(𝑡)), and the ob-

jective becomes

𝑂 (𝜋) =
𝑚∑
𝑖=1

lim inf

𝑇→∞
�̃�𝑖E𝜋,𝑡∼unif( [0,𝑇 ])

[
exp(−𝛼𝑖𝜏eff𝑖 (𝑡)) | H𝑡

]
. (2)

4 CONTINUOUS POLICIES

In this section, we focus on how to find optimal continuous policies

which optimize (2) under some bandwidth constraint. Our deriva-

tion can be viewed as a generalization of the approach of Azar et al.

[1], but here we make use of noisy CISs. All proofs are deferred to

Appendix A. First, we narrow down the policy class of potentially

optimal policies.

Lemma 1. Any policy optimizing the objective 𝑂 (𝜋) defined in

(2) has a decision rule such that it triggers a crawl event (𝜏, 𝑖) when
𝜏eff
𝑖,𝜏
≥ 𝜄𝑖 for some fixed threshold vector 𝜾 = (𝜄1, . . . , 𝜄𝑚) ∈ (0,∞]𝑚 .

From now on, let 𝜋 (𝜾) denote the thresholded policy which

crawls web page 𝑖 when 𝜏eff
𝑖,𝜏
≥ 𝜄𝑖 . The class of such thresholded

policies contains at least one optimal policy by Lemma 1, so we

restrict our attention to this class. Also, because of Lemma 1, any

thresholded policy is separable over web pages, which means that

the threshold 𝜄𝑖 determines the performance of the policy 𝜋 (𝜾) on
web page 𝑖 regardless what thresholds are picked for the rest of

the web pages. Nonetheless, solving the optimization problem (2)

under bandwidth constraint is still not straightforward, since the

length of the crawl intervals are random quantities and so are the

crawling frequencies. Motivated by this observation, we now focus

only on a single page: the crawl frequency of policy 𝜋 (𝜾) for web
page 𝑖 and parameters E𝑖 = (𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖 , �̃�𝑖 ) can be computed as

𝑓 (𝜄𝑖 , E𝑖 ) := lim sup

𝑇→∞

1

𝑇
E𝜋 (𝜾)

[
|T𝑖 ∩ [0,𝑇 ] |

]
.

Note that the crawl frequency for web page 𝑖 depends only on 𝜄𝑖 , E𝑖 ,
and no other parameters. Also note that the number of crawl events

for an interval is a random quantity even for a thresholded policy

𝜋 (𝜾), since the sequence 𝜏eff
𝑖,𝜏

is random due to the presence of CISs.

The following theorem is our main result and characterizes the

solution to the optimization problem (2).

Theorem 1. There exists Λ ∈ R such that the optimal threshold

𝜄★ for a policy maximizing (2) satisfies

∀𝑖 ∈ [𝑚] : 𝑉 (𝜄★𝑖 ;E𝑖 ) = Λ or (𝑉 (𝜄★𝑖 ;E𝑖 ) < Λ and 𝜄★𝑖 = ∞)

and

𝑚∑
𝑖=1

𝑓 (𝜄★𝑖 , E𝑖 ) = 𝑅 ,

where 𝑉 (𝜄; E) = �̃�

( ⌊ 𝜄
𝛽
⌋∑

𝑖=0

𝜈𝑖

(Δ + 𝜈)𝑖+1
R𝑖
exp
((𝛼 + 𝛾) (𝜄 − 𝑖𝛽))

−
⌊ 𝑡
𝛽
⌋∑

𝑖=0

exp(−𝛼𝜄)
𝛾

R𝑖
exp
(𝛾 (𝜄 − 𝑖𝛽))

)

and 𝑓 (𝜄, E) =
( ⌊ 𝑡

𝛽
⌋∑

𝑖=0

1

𝛾
R𝑖
exp
(𝛾 (𝜄 − 𝑖𝛽))

)−1
and where R𝑖

exp
denotes the normalized residual of the 𝑖-th Taylor ap-

proximation of the exponential function R𝑖
exp
(𝑥) =

exp(𝑥)−∑𝑖
𝑗=0

𝑥 𝑗

𝑗 !

exp(𝑥) .

While this does not allow for a simple analytical solution, we

can approximate the solution via the following Lemma.

Lemma 2. The functions 𝑉 and 𝑓 are monotonous in their first

argument for any E.

Lemma 2 suggest that, given oracle access to𝑉 and 𝑓 , for any Λ′

we can find 𝜄 ′
𝑖
such that𝑉 (𝜄 ′

𝑖
; E𝑖 ) ≈ Λ′ via line-search and compute

its frequency 𝑓 (𝜄 ′
𝑖
; E𝑖 ). We run an outer line search over Λ′ to find

a value of Λ′ such that

∑𝑚
𝑖=1 𝑓 (𝜄 ′𝑖 ; E𝑖 ) ≈ 𝑅.

5 A SCALABLE DISCRETE POLICY

Optimal continuous policies are in general undesirable in practice,

since the actual bandwidth constraint forbids spikes of crawl events

over any time interval, not only asymptotically. This cannot be

controlled in the optimal solution of the continuous policy class.

4
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This is why, from an infrastructure point of view, it is desirable to

execute a policy from the discrete class.

Azar et al. [1] proposed a transition from their continuous policy

to a discrete one via low-discrepancy sampling, a procedure that

crucially relies on the fact that the crawl events for each web page

under the optimal continuous policy are evenly spaced. Unfortu-

nately, this approach is not practical in a real world crawler for the

following two reasons. On the one hand, solving the joint optimiza-

tion problem, for example the one defined in (5) in Appendix A,

is computationally demanding when trillions of pages are in the

system. In addition to this, change and request rates are constantly

being updated and new pages are added to the pool which requires

to again solve the optimization problem to get an update for the

crawling policy. On the other hand, in the presence of CI signals,

the crawl intervals of the optimal continuous policy are random

and depend on the number of CI signals received in any interval.

It is unclear how to generalize low-discrepancy sampling to this

scenario.

Next we present a more general discretization strategy based

on a method presented in The Unofficial Google Data Science Blog

[10] for the case without the change-indicating signals. Below we

extend it to include CISs, as well.

Discrete policy via bandwidth control. We propose the follow-

ing general procedure to derive a discrete policy. The continuous

solution induces for any bandwidth 𝑅 a policy 𝜋𝑅 that asymp-

totically satisfies the bandwidth constraint. Instead of running

the algorithm with a fixed 𝑅, we are controlling the bandwidth

over time in such a way that the crawl satisfies a discrete pol-

icy. At time 𝑡 =
𝑗−1
𝑅

, pick 𝑅 𝑗 such that the first crawl of policy

𝜋𝑅 𝑗 (H𝑡 ) happens exactly at time
𝑗
𝑅
. While this sounds like a com-

putationally demanding reduction, this is in fact easier to solve

than the continuous problem. We obtain this policy by crawling

any 𝑖𝑡 ∈ argmax𝑖∈{1,...,𝑚}𝑉 (𝜏eff𝑖
(𝑡); E𝑖 ) at any time step. This

immediately follows from Theorem 1 by setting the Lagrange mul-

tiplier Λ to the maximum crawl value.

We note that this policy is fully decentralized expect the argmax

operation. This means that it is trivial to incorporate change of

parameters and addition or removal of URLs in a fully decentralized

manner.

Our empirical evaluations in Section 6 further show that there is

small, albeit not significant, improvement in performance compared

to the algorithm of [1].

5.1 Special cases of the crawl value function

We provide explicit formulas of the crawl value function for differ-

ent settings.

No change-indicating signals: If there are no change-indicating

signals available, then this reduces to the vanilla crawl problem stud-

ied by Cho and Garcia-Molina [3]. This implies 𝜏ef (𝑡) = 𝜏elap (𝑡),
𝛼 = Δ and the value function reduces to𝑉Greedy (𝜄; E) = �̃�

ΔR
1

exp
(Δ𝜄).

Change-indicating signals, no false positives: Without false

positive signals, whenever a signal is provided for a page it implies

that the content of a page as outdated. This corresponds to 𝛽 = ∞
and 𝜏ef (𝑡) = 𝜏elap (𝑡) if no CI signal has been received and 𝜏ef (𝑡) =
∞ otherwise. The value function becomes in the limit of these

parameters

𝑉Greedy_CIS (𝜄;E) =

�̃�

Δ if 𝜄 = ∞ or otherwise

�̃�

(
R0

exp
( (𝛼+𝛾 )𝜄)
𝛼+𝛾 − R

0

exp
(𝛾𝜄)

𝛾 exp(𝛼𝜄)

)
.

Notice that 𝛾 → 0 recovers the value function of without change-

indicating signals.

Noisy change-indicating signals: In the general case, we obtain

the general value function discussed in section 4.

𝑉Greedy_NCIS (𝜄, E) = �̃�

⌊ 𝜄
𝛽
⌋∑

𝑖=0

( 𝜈𝑖

(Δ + 𝜈)𝑖+1
R𝑖
exp
((𝛼 + 𝛾) (𝜄 − 𝑖𝛽))

− exp(−𝛼𝜄)
𝛾

R𝑖
exp
(𝛾 (𝜄 − 𝑖𝛽))

)
.

Approximations of Greedy_NCIS: Since the value function in

the general case is computationally demanding when ⌊ 𝑡
𝛽
⌋ is large,

we also consider an approximation where we set any higher order

residuals to 0 in the computation of the crawl value. We denote

the 𝑗-level approximation of the general value function, summing

the first 𝑗 terms only, by 𝑉G_NCIS-Approx-j (the exact formula is

presented in Appendix A.1).

The proposed discrete policy computes 𝑉 (𝜏eff
𝑖
(𝑡); E𝑖 ) for each

page independently and picks the page with the largest value, i.e.

argmax𝑖∈{1,...,𝑚}𝑉 (𝜏eff𝑖
(𝑡); E𝑖 ) to crawl at each time step. We call

𝑉 (𝜏eff
𝑖
(𝑡); E𝑖 ) the crawl value for each page. Thus, only the com-

parison between the pages with the top crawl values matters in

the scheduling result, and the crawl values of most pages do not

need to be computed at every time step. We can estimate the crawl

value threshold where a page is likely to be selected to crawl by

keeping track of the crawl values of the selected pages over time,

and estimate the next time when the crawl value of a page needs

to be recomputed.

Algorithm 1: Effective crawling with CI signals

Require: ∀𝑖 : E𝑖 = (𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖 , �̃�𝑖 ), 𝑅
for 𝑡 = 1

𝑅
, 2
𝑅
, . . . do

Pick Web page 𝑖𝑡 to crawl where

𝑖𝑡 ← argmax𝑖∈{1,...,𝑚}𝑉 (𝜏eff𝑖
(𝑡);E𝑖 )

(Instances of 𝑉 are defined in App. A.1.)

Crawl page 𝑖𝑡 at time 𝑡 .

end for

5.2 Scalable implementation

Other distributed computation technique can also be applied to

scale up the computation in practice. For example, we can shard

the web pages into 𝑁 shards and assign 1/𝑁 bandwidth to each

shard, and schedule the web pages in each shard independently in

parallel.

6 EXPERIMENTS

The goal of our experiments is to support the following claims: (1)

Our discrete policy indeed constantly achieves a performance that

is close to the optimal continuous one. (2) The CI signals can be

5
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utilized by the proposed methods even if the CI signals are partially

observable, come with false positives and are delayed. All results

which we report in this study are averaged over 100 repetitions

which also allows us to compute standard error for all reported

quantities.

6.1 Problem instances

A crawling problem when there is no CI signals is fully determined

by the change and request rates; we generate these from a uniform

distributions (with parameters specified later). The CI signals in

our model has three parameters for each page:

Partially observability parameter (𝜆𝑖 ): some part of the change

process is not observable in which case the policy does not get CI

signals about the change event. The fraction of the change events

of page 𝑖 which is observable by the policy is denoted by 𝜆𝑖 and this

parameter is generated from a Beta distribution whose parameters

are denoted by 𝜆𝑎 and 𝜆𝑏 .

False positive rate (𝑣𝑖 ): the CI signals might contain false positive

events in which case not all CIS do correspond to some change

event. In our model we assume that the false positive events are

also generated according to a Poisson process. The rate with which

the false positive events are generated is denoted by 𝑣𝑖 for page 𝑖

and this parameter is generated from a uniform distribution over

[𝑣min, 𝑣max].

6.2 Policies

For each problem instance and bandwidth 𝑅, the optimal policy

can be computed by solving (5) which corresponds to the opti-

mal continuous policy, and Algorithm 1 provides our proposed

approximation in the space of discrete policies. We consider the

performance of the optimal continuous policy as the baseline, and

shall refer to this method as Baseline. The performance of a policy

is its accuracy: fraction of events when there is a fresh copy upon

request. Note that the accuracy of a continuous policy with rates

(𝜉1, . . . , 𝜉𝑚) can be computed as
1∑𝑚

𝑖=1 𝜇𝑖

∑𝑚
𝑖=1𝐺 (𝜉𝑖 ; 𝜇𝑖 ,Δ𝑖 ).

Our comparison study includes a few policies based on Algo-

rithm 1 using the special cases of value functions presented in

Section 5.1. Greedy uses the value function without knowledge of

change-indicating signals. Greedy-CIS operates under the (possi-

bly false) assumption that change-indicating signals are noiseless.

Greedy-NCIS using the exact value function in the general case

and G-NCIS-APPROX-1 and G-NCIS-APPROX-2 are the one or two

step approximations of that function.

6.3 Accuracy of a policy

Each algorithm was run with a bandwidth 𝑅 = 100 and for 𝑡 ≤ 1000,

thus each policy schedule 100, 000 crawl events in a single run. We

are varying the number of pages𝑚 in our experiments to control

the hardness of the problem instance at hand. Note that the change

parameters Δ𝑖 as well as the request parameters are drawn from

uniform distribution over [0, 1] thus ∑𝑚
𝑖=1 Δ𝑖 and

∑𝑚
𝑖=1 𝜇𝑖 are close

𝑚/2 in expectation. Therefore the expected change and request

events given that 𝑡 ≤ 1000 are around (𝑚 · 1000)/2 in a single run

with𝑚 web pages. We compute the accuracy of a crawling policy

over these (𝑚 · 1000)/2 events, i.e. fraction of request events when

Figure 2: Accuracy of discrete policies without using change-

indicating signal. The LDS corresponds to the Algorithm 3

in [1] where the input rates are coming from the solution of

(5) with the true change and request rates.

fresh copy is available. Note that the larger the number of pages, the

lower accuracy is that is achievable by any policy. We will always

report the accuracy of the Baseline method which corresponds to

the optimal continuous policy and can be computed by solving (5).

6.4 Continuous vs. discrete policies

Discrete policies have several advantages comparing to continuous

ones in a production system. [3] already came up with several

simple approaches for converting a continuous policy into a discrete

one. In a recent paper, Azar et. al. [1] made use of the technique

of low discrepancy sequences [9] which is a scheduling technique

for discrete systems so as the empirical rates of each scheduled

event has to be close to a predefined rate. Their approach consists

of solving the continuous problem, that is given in (5), to obtain

optimal rates for the continuous case, and then applying a low

discrepancy sequence algorithm to turn this continuous policy into

a discrete one. We implement Algorithm 3 of [1] in experiments for

comparison, and refer to this approach as LDS.

The GREEDY approach conceptually also converts a continuous

policy into a discrete one like LSD algorithm; however, there is no

need to solve the continuous problem, but it computes the value of

function 𝑉Greedy for each page which only depends on the elapsed

times since the last crawl, and on the change and request rates.

Therefore, GREEDY does not require to solve a large constrained

optimization before its deployment.

In the first set of experiments, we will compare the performance

of GREEDY and LDS. The results are shown in Figure 2. Based on

the results, we had found that both policy have a very similar perfor-

mance regardless of the number of pages and in addition to this, the

performance of both algorithm is on par with the performance of

the baseline which is the optimal policy in the continuous class. We

also compared the empirical crawling frequency of GREEDY and

LDS to the frequency of the optimal policy, and we had found that

they are close to each other. This analysis is deferred to Appendix

B due to space limitations.

6.5 Partially observable change sequences

In the second set of experiments, we assess the utility of CI signal

when it is partially observable. We generate problem instance as

in Subsection 6.4, but this time we compare the performance of

GREEDY-CIS to the performance of GREEDY, since GREEDY-CIS

is supposed to be amenable to utilize CI signal in an efficient way

when there is no false positive CI signal.
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Figure 3: Accuracy of GREEDY and GREEDY-CIS with

change-indicating signal.

The parameter 𝜆𝑖 , which controls the fraction of observable

change events according to ourmodel, is generated fromBeta(0.25, 0.25)
which has a bi-modal density function. Thus, the change events are

not revealed too much via CI signals for some pages, and they are

revealed almost every time for some other pages. The results are

presented in Figure 3. The results clearly show that CI signals can

significantly improve the performance of the crawling policy re-

gardless to the relation of bandwidth (𝑅 = 100) and sum of change

parameters

∑𝑚
𝑖=1 Δ𝑖 .

Next, we investigate where this performance boost of GREEDY-

CIS does come from. For doing so, we plotted the empirical rates

achieved by GREEDY and GREED-CIS which are shown in Figure

12. Each dot corresponds to a web page for which we compute the

rate of the Baseline method versus the empirical rates of various

methods. The color of the dots indicates the value of parameters 𝜆𝑖
which represents the fraction of change rates for which CI signals

are available. The larger the parameter 𝜆, the more CI signals are

provided for a web page. Figure 13 shows the very same rates but

the color of the dots indicate the change parameter Δ𝑖 of the web
page. Based on the results with 100 web pages that are shown in

the top subplots in Figure 13 and 12, one can see that GREEDY-CIS

decreases the crawling rate for web pages with many CI signals,

and allocates more bandwidth for web pages with no or few CI

signal. Interestingly, the results for 300 web pages reveal a different

behaviour (see in the bottom subplots of Figure 13 and 12). In this

case, some of the web pages with many CIS get boosted and some

of them get decreased. Typically, those web pages, which have

high change rates, get a higher crawling rate comparing to rate of

Baseline (see bottom right subplot of Figure 13). In general, the

rates of those web pages which have no or few CIS, those rates

remained close to the optimal rate of the Baseline method which

is the optimal behaviour when no CI signals are provided (see the

blue dots around the diagonal of right subplots of Figure 12).

6.6 Presence of false positive CIS

In this set of experiments, we compare the performance of various

policies when false positive are also present among the change

indicating signals, and the policy is aware of the rate of the false

positive events. In the first experiment, we run all policies, including

GREEDY, GREEDY-CIS, GREEDY-NCIS, G-NCIS-APPROX-1 and

G-NCIS-APPROX-2, with𝑚 ∈ {100, 200, 500, 750, 1000, 10000} and
with a constant bandwidth 𝑅 = 100. Thus, the larger the number of

web pages, the less bandwidth can be allocated per web page. The

observability parameters (𝜆𝑖 ) were generated from Beta(0.25, 0.25),
and the parameters that determines the rate of false positive CIS

is generated from Unif(0.1, 0.6). The results are presented in Fig-

ure 4. The results revels several trends which we summarize as

Figure 4: Accuracy for policies with CIS that is partially ob-

servable and there are false positives signal. The partially

observabilty parameter is generated as 𝜆𝑖 ∼ Beta(0.25, 0.25),
and the rate of false positive CI signals as 𝑣𝑖 ∼ Unif(0.1, 0.6).
The parameter selection is described in Subsection 6.1.

follows. The performance of GREEDY-NCIS, G-NCIS-APPROX-1

and G-NCIS-APPROX-2 is superior to GREEDY and GREEDY-CIS

in almost every case, so they can utilize CIS with false positives.

When the band width is not tight, i.e.𝑚 ∈ {100, 200, 500} the per-
formance of the algorithms with approximated value function, i.e.

G-NCIS-APPROX-1 and G-NCIS-APPROX-2) is very close to the

performance of the one with exact crawl value, i.e. GREEDY-NCIS.

However, for larger number of web pages, the exact computation

shows superiority and policies with approximated value function

cannot utilize the CI signal. The performance of GREEDY-CIS,

which assumes no false positive CI signals, is deteriorated with

the number of pages. This policy fully relies on CI signals mean-

ing that it assumes that the content of a page gets outdated upon

incoming CI signal. Therefore it allocates more crawl bandwidth

to those web pages which have CI signals with many false pos-

itive CI signals. This is justified by the empirical rates that can

be seen in Figure 14, presented in Appendix F. The results show

that GREEDY-CIS achieves significantly higher empirical rates for

some pages with high observability rate (indicated by red arrows),

whereas GREEDY-NCIS is able to handle this more noisy CI signal

efficiently.

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 5: Accuracy of GREEDY-NCIS,GREEDY andGREEDY-

CIS+ with corrupted change-indicating signals on 100k

URLs.

6.7 Real world change-rate and precision

Finally, we conduct an experiment with empirical parameters (Fig-

ure 5). We take the dataset provided by Kolobov et al. [7] mentioned

in Section 2. We follow their protocol to create a semi-synthetic

simulation environment: We subsample 100k URLs uniformly from

the dataset, and use the provided importance and change-rate infor-

mation for running simulations with the Poisson model. However,

to reflect that CISs are not perfect, we generate CISs differently.

In their paper, Kolobov et al. [7] labelled a set of URLs havin

CISs with perfect precision and recall (ca. 5% of sampled URLs).

Since our measurements, presented in Section 2, did not validate the

presence of such good signals, we apply the following procedure

to produce CI signals for our experiments, which both respects the

URL selection of [7] and the precision/recall distributions presented

in Section 2: We take the fraction of URLs which the dataset labels

as perfect precision and recall (ca. 5% of sampled URLs). We split

the empirical precision and recall distributions of Section 2 into

a lower part consisting of the lowest 95% values and the highest

5% values. We sample precision and recall numbers for the labelled

top URLs according to the upper tail of the distribution and for all

other URLs from the lower end. We set the crawl budget to 5000

per time step in accordance with prior work, evaluate the policies

on 200 time steps and repeat the experiment 10 times.

Since the policy of Kolobov et al. [7] is not trivially extendable

to uniform crawling, we use GREEDY-CIS+ for a fair comparison.

This algorithm assigns the crawl value of GREEDY for all non high-

quality URLs (defined by Precision > 0.7 and Recall > 0.6 to match all

top URLs without corruption) and the crawl value of GREEDY-CIS

for high quality pages.

To simulate the impact of imperfect estimations, we corrupt all

precision and recall numbers by mixing in uniformly sampled noise

𝜉𝑖 ∼ unif (0, 1) with 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = (1 − 𝑝)𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑝𝜉𝑖 , 𝑟𝑒𝑐𝑎𝑙𝑙 =

(1 − 𝑝)𝑟𝑒𝑐𝑎𝑙𝑙 + 𝜉𝑖 for 𝑝 ∈ {0, 0.1, 0.2}.
The accuracy of the crawling policies under the different settings

are presented in Figure 5. We observe that splitting the pages into

high and low quality and using simplified crawl values is close

to optimal when the estimations are correct, but is less robust to

corrupted precision and recall estimations.

7 CONCLUSIONS AND FUTUREWORK

In this paper, we derived several discrete policies which can be

implemented easily in a decentralized and scalable way which

is demanded by the huge number of URLs that a web caching

system has to cope with. In addition, these scalable policies are

extended so as they are amenable to handle noisy CI signals with

great efficiency. We empirically justified that the performance of

the discrete policies is on par with the continuous one that requires

lots of centralized computation, and, in addition, they are able to

improve their performance with respect to the continuous optimal

policy when CI signals are available.

We also tested Greedy-NCIS when the CI signals are delayed

and the bandwidth constraint is changing. In this case, we apply

a simple heuristic of discarding CI signals if they arrive shortly

after a crawl event (see Appendix C for details). We found that this

simple approach can handle delayed CISs if the delays follows an

exponential distribution. In addition, we had found that our policies

can adjust well to changing bandwidth which result is presented in

Appendix D. We plan to devise a more principled way of handling

delayed CISs in the future.

There are several research topics that are worth exploring and

are related to our work. Maybe the most natural research question

to address is how to apply politeness constraint [8] in our setup.

Politeness constraints allow to set a bandwidth allocation for a

subset of URLs. For example, one can allocate a bandwidth limit

to a host. These constraints are more fine-grained than the global

bandwidth constraint which is denoted by 𝑅 in this paper. An

another interesting research avenue to explore is how to learn

policies in an online fashion when parameters of the system have to

be estimated on the fly. This very same question had been addressed

by [11] and [6] but without CI signals.
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A PROOFS

We provide the proofs for our theoretical results in Section 4.

The following property of the residual function is useful in this section. For ease of notation, from now on we drop the subscript exp for

the function Rexp. For any 𝑖 > 0, we have

𝜕

𝜕𝑥
R𝑖 (𝑥) = 𝜕

𝜕𝑥

1 −
𝑖∑
𝑗=0

𝑥 𝑗

𝑗 ! exp(𝑥)

 = R𝑖−1 (𝑥) − R𝑖 (𝑥) . (3)

Proof of Lemma 1. Assume the opposite is true and with probability 𝑝 > 0, a crawl event is not triggered by a threshold rule. This

implies than we can find consecutive crawl intervals such that 𝜏ef (𝑡cr
𝑖
) > 𝜏ef (𝑡cr

𝑖+1), such that there is no CI signal directly at 𝑡cr
𝑖

and that

these crawl intervals have positive volume on the real line. We show that one can increase the objective by moving the crawl event, which

means that the current policy was not optimal. Pick a small time 𝜖 , such that no CI signal falls between [𝑡cr
𝑖
− 𝜖, 𝑡cr

𝑖
] and assume that the

crawl event would have happened at time 𝑡cr
𝑖
− 𝜖 instead. The original unnormalized objective over the two crawl intervals is∫ 𝑡cr
𝑖

𝑡cr
𝑖−1

exp(−𝛼𝜏ef (𝑠)) 𝑑𝑠 +
∫ 𝑡cr

𝑖+1

𝑡cr
𝑖

exp(−𝛼𝜏ef (𝑠)) 𝑑𝑠 .

After changing the policy by shifting the value, we have an objective of∫ 𝑡cr
𝑖
−𝜖

𝑡cr
𝑖−1

exp(−𝛼𝜏ef (𝑠)) 𝑑𝑠 +
∫ 𝜖

0

exp(−𝛼𝑠) 𝑑𝑠 +
∫ 𝑡cr

𝑖+1

𝑡cr
𝑖

exp(−𝛼 (𝜏ef (𝑠) + 𝜖)) 𝑑𝑠 .

The difference in objective is

(1 − 𝑝𝑖 · exp(𝛼𝜖))
∫ 𝜖

0

exp(−𝛼𝑠)) 𝑑𝑠 − (1 − exp(−𝛼𝜖)) ×∫ 𝑡cr
𝑖+1

𝑡cr
𝑖

exp(−𝛼𝜏ef (𝑠)) 𝑑𝑠 ≥ 1 − exp(−𝛼𝜖)
𝛼

(𝑝𝑖+1 − 𝑝𝑖 · exp(𝛼𝜖)) ,

where the last inequality follows from ∫ 𝑡cr
𝑖+1

𝑡cr
𝑖

exp(−𝛼𝜏ef (𝑠)) ≤
∫ 𝜏ef (𝑡cr

𝑖+1)

0

exp(−𝛼𝑠) 𝑑𝑠 = 1 − 𝑝𝑖+1
𝛼

.

Since We assumed 𝑝𝑖 < 𝑝𝑖+1, we can find an 𝜖 > 0 such that the objective increases with our policy change. Hence the original policy was

not optimal. □

Proof of Lemma 3. We can consider 𝑡cr
1

as a function of the threshold 𝜄 and consider any realization of the CI signal process at which

changing the threshold changes the first crawl event. By the Leibniz integral rule for differentiation, we have

𝜕

𝜕𝑡

∫ 𝑡cr
1
(𝜄)

0

exp(−𝛼𝜏ef (𝑠)) 𝑑𝑠 = exp(−𝛼𝜏ef (𝑡cr
1
(𝜄))) 𝜕

𝜕𝑡
𝑡cr
1
(𝜄) .

We assume changing the threshold changes the time of crawl, hence 𝜏ef (𝑡cr
1
(𝜄)) = 𝜄. Taking the expectation over all these trajectories finishes

the proof. □

Proof of Lemma 2. Using Lemma 3 and

𝑉 (𝜄) = �̃� (𝑤 (𝜄) − exp(−𝛼𝜄)𝜓 (𝜄))
yields

𝑉 ′(𝜄) = �̃�𝛼 exp(−𝛼𝜄)𝜓 (𝜄) > 0 .

Hence the function 𝑉 is monotonically increasing. The derivative of the function R𝑖 (𝑥) is

R𝑖−1 (𝑥) − R𝑖 (𝑥) = 𝑥𝑖

𝑖!
exp(−𝑥) > 0.

Hence the derivative of the function𝜓 (𝜄) is strictly positive and the function 𝑓 is monotonically decreasing. □

Proof of Theorem 1. The contribution of page 𝑖 to the overall objective 𝑂 (𝜋 (𝜾)) (i.e., its weighted expected freshness) can be expressed

as

𝑜 (𝜄𝑖 ; E𝑖 ) = �̃�𝑖 E𝜋 (𝜾),𝑡∼unif(R+)
[
exp(−𝛼𝑖𝜏eff𝑖 (𝑡))

]
,

which again only depends on the parameters 𝜄𝑖 and E𝑖 . Then

𝑂 (𝜋) =
𝑚∑
𝑖=1

𝑜 (𝜄𝑖 ; E𝑖 ),

9
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and finding the optimal policy with bandwidth constraint 𝑅 that maximizes (2) reduces to the optimization problem

maximize

𝑚∑
𝑖=1

𝑜 (𝜄𝑖 ; E𝑖 ) subject to

𝑚∑
𝑖=1

𝑓 (𝜄𝑖 ; E𝑖 ) ≤ 𝑅 ,

or by substituting 𝜉𝑖 = 𝑓 (𝜄𝑖 ; E𝑖 ), we have equivalently

maximize

𝑚∑
𝑖=1

𝑜 (𝑓 −1 (𝜉𝑖 ;E𝑖 );E𝑖 ) subject to

𝑚∑
𝑖=1

𝜉𝑖 ≤ 𝑅 , (4)

where the inverse of 𝑓 is with respect to its first argument. Since the crawl intervals 𝑡cr
𝑖,𝑛+1 − 𝑡

cr

𝑖,𝑛
are i.i.d. random variables for any 𝑛 ∈ N due

to the Poisson processes, we can rewrite the frequency as the inverse of the average length between two subsequent crawls.

The objective in (4) is the sum of the expected freshness of the different web pages at a random point in time, weighted by the request

intensity �̃�𝑖 , similarly to the seminal work of [1]. In fact, it is easy to show that (4) matches the objective in [1] in the absence of CI signals,

in which case 𝛼𝑖 = Δ𝑖 for all 𝑖 ∈ [𝑚], and the crawling interval is deterministic with length 𝜄𝑖 . Consequently, picking a random point in time

is equivalent to picking a random point in any interval between two crawls, since all intervals are of the same length. So in this case, for any

threshold 𝜄 ≥ 0 and Poisson parameters E, the objective function boils down to

𝑜 (𝜄; E) = �̃� · 1
𝜄

∫ 𝜄

0

exp(−Δ𝑠) 𝑑𝑠 = �̃� · 1
Δ𝜄
(1 − exp(−Δ𝜄)) ,

and

𝑜 (𝑓 −1 (𝜉 ;E);E) = 𝐺 (𝜉 ; �̃�,Δ) := �̃�

Δ
𝜉

(
1 − exp

(
−Δ
𝜉

))
.

In the absence of CISs, the optimal policy is given by the optimization problem

maximize

𝑚∑
𝑖=1

𝐺 (𝜉𝑖 ; 𝜇𝑖 ,Δ𝑖 ) subject to

𝑚∑
𝑖=1

𝜉𝑖 ≤ 𝑅 . (5)

which is a special case of (4). The solution 𝜉∗ = (𝑥𝑖∗
1
, . . . , 𝜉∗𝑚) of (5) results in a policy which crawls web page 𝑖 in optimal intervals of length

exactly 1/𝜉∗
𝑖
. (In fact, this optimization objective is already introduced in equation 6 of [1], where it is referenced from [3].)

Before we derive the functions 𝑜 and 𝑓 for the web-ping setting, we first discuss how to actually solve the optimization problem (4) in the

general form. By the Karush–Kuhn–Tucker conditions [2], any local optimum 𝜉∗ satisfies for all 𝑖 ∈ [𝑚]
𝜕

𝜕𝑥
𝑜 (𝑓 −1 (𝑥 ;E𝑖 );E𝑖 )

����
𝑥=𝜉★

𝑖

= Λ

or

𝜕

𝜕𝑥
𝑜 (𝑓 −1 (𝑥 ;E𝑖 );E𝑖 )

����
𝑥=𝜉★

𝑖

< Λ and 𝜉∗𝑖 = 0

for some Lagrange multiplier Λ ≥ 0 (obtained by solving (4) with Lagrange’s method). The case 𝜉∗
𝑖
= 0 corresponds to never crawling a web

page. This can be the optimal for maximizing the objective if there are web pages with low importance �̃� and high change rate Δ. In practice,

completely abandoning web pages might be unacceptable and can be alleviated by enforcing a hard threshold 𝜉𝑖 > 𝜀 on the crawl frequency.

Under sufficient regularities, e.g., 𝑜 ◦ 𝑓 −1 being concave, this is also a sufficient condition for optimality. Define the function

𝑉 (𝜄; E) = 𝜕

𝜕𝑥
𝑜 (𝑓 −1 (𝑥 ; E); E)

����
𝑥=𝑓 (𝜄;E)

,

then any optimal threshold 𝜄★ satisfies

𝑉 (𝜄★𝑖 ; E𝑖 ) = Λ or 𝑉 (𝜄★𝑖 ; E𝑖 ) < Λ and 𝜄★𝑖 = ∞

subject to the bandwidth constraint

∑𝑚
𝑖=1 𝑓 (𝜄★𝑖 , E𝑖 ) = 𝑅.

Computing 𝑉 and 𝑓 with CI signals. We define the following auxiliary functions for a policy parameterized by 𝜄 so as we drop the web

page subscript of all quantities, since we are considering a single web page:

𝑤 (𝜄; E) = E𝜋 (𝜾)

[∫ 𝑡cr

0

exp(−𝛼𝜏eff (𝑠)) 𝑑𝑠
]

(6)

𝜓 (𝜄; E) = E𝜋 (𝜾)
[
𝑡cr

]
. (7)

These quantities are the expected cumulative freshness between two consecutive crawl events and the expected length of that interval,

respectively. These two functions are closely related as the following lemma shows.

Lemma 3. The derivatives of𝑤,𝜓 with respect to the first argument satisfy for any environment E 𝑤 ′(𝑥 ; E) = exp(−𝛼𝑥)𝜓 ′(𝑥 ; E) .
10
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Figure 6: Example of the crawl-value function 𝑉 . Dashed lines are approximations when terminating the sum after 1, 2 or 3

steps respectively. Red line is the asymptotic value of all functions for 𝜄 →∞.

These two functions allow us to express 𝑉 and 𝑓 nicely. As mentioned before, the frequency is simply the inverse expected length, so

𝑓 (𝜄; E) = 1/𝜓 (𝜄; E). The objective 𝑜 is given by

𝑜 (𝜄; E) = �̃� ·𝑤 (𝜄; E) · 𝑓 (𝜄;E) ,

hence by the inverse function rule, we have

𝑉 (𝜄; E) = �̃�
𝜕

𝜕𝑥

[
𝑤 (𝑓 −1 (𝑥 ; E);E) · 𝑥

] ����
𝑥=𝑓 (𝜄;E)

= �̃�

(
𝑤 (𝜄; E) + 𝑤

′(𝜄; E)
𝑓 ′(𝜄; E)

)
= �̃� (𝑤 (𝜄;E) − exp(−𝛼𝜄)𝜓 (𝜄; E)) ,

where the last equation uses Lemma 3 and
1

𝑓 ′ (𝑥) = −
𝜓 (𝑥)
𝜓 ′ (𝑥) . Finally, we present the analytical solutions for the functions𝜓 and𝑤 .

Lemma 4. The expected length of an interval between two consecutive crawl events and its cumulative freshness under the threshold-policy

𝜋 (𝜾) in environment E are given by

𝜓 (𝜄; E) =
⌊ 𝑡
𝛽
⌋∑

𝑖=0

1

𝛾
R𝑖
exp
(𝛾 (𝜄 − 𝑖𝛽))

𝑤 (𝜄; E) =
⌊ 𝜄
𝛽
⌋∑

𝑖=0

𝜈𝑖

(Δ + 𝜈)𝑖+1
R𝑖
exp
((𝛼 + 𝛾) (𝜄 − 𝑖𝛽)) ,

where R𝑖
exp

denotes the normalized residual of the 𝑖-th Taylor approximation of the exponential function R𝑖
exp
(𝑥) =

exp(𝑥)−∑𝑖
𝑗=0

𝑥 𝑗

𝑗 !

exp(𝑥) .

Note that the computational complexity of evaluating the functions𝜓,𝑤 grows in 𝑡 . To avoid unbounded computation, one can approximate

the function values very well by terminating the summation after a small finite number of steps (e.g. 3, see Figure 6), since the residual of the

𝑖-th Taylor approximation converges quickly to 0.

□
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Proof of Lemma 4. We begin with the function𝜓 . Assume 𝜄 ∈ [0, 𝛽]. Then the length of the first interval is given by min{𝑡cis
1

, 𝜄}, since
the first received CI signal puts the effective time above the threshold. The expected length is given by

𝜓 (𝜄; E) =
∫ 𝜄

0

𝛾 exp(−𝛾𝑠)𝑠 𝑑𝑠 + exp(−𝛾𝜄)𝜄

= [− exp(−𝛾𝑠)𝑠]𝜄
0
−

∫ 𝜄

0

− exp(−𝛾𝑠) 𝑑𝑠 + exp(−𝛾𝜄)𝜄

=
1 − exp(−𝛾𝜄)

𝛾

=
R0 (𝛾𝜄)

𝛾
,

which is the same function value as claimed. Now by induction, the show that the function is correct for any 𝜄. Assume that the formula

is correct for any 𝜄 ′ ∈ [0, 𝑖𝛽], then we show that it is also correct for 𝜄 ∈ (𝑖𝛽, (𝑖 + 1)𝛽]. The expected length between crawls can be given

recursively by the time that passes until 𝑡cis
1
∈ [0, 𝜄 − 𝑖𝛽] plus the length for the remaining threshold, or 𝜄 − 𝑖𝛽 plus the length for a threshold

𝑖𝛽 if no CI signal was received in [0, 𝜄 − 𝑖𝛽] (omitting E for brevity)

𝜓 (𝜄) = E[I{𝑡cis
1
∈ [0, 𝜄 − 𝑖𝛽]}(𝑡cis

1
+𝜓 (𝜄 − 𝛽 − 𝑡cis

1
) + I{𝑡cis

1
> 𝛽}(𝜄 − 𝑖𝛽 +𝜓 (𝑖𝛽)]

=

∫ 𝜄−𝑖𝛽

0

𝛾 exp(−𝛾𝑠) (𝑠 +𝜓 (𝜄 − 𝛽 − 𝑠)) 𝑑𝑠 + exp(−𝛾 (𝜄 − 𝑖𝛽)) (𝜄 − 𝑖𝛽 +𝜓 (𝑖𝛽))

= 𝜓 (𝜄 − 𝑖𝛽) +
∫ 𝜄−𝑖𝛽

0

𝑖−1∑
𝑗=0

R 𝑗 (𝛾 (𝜄 − ( 𝑗 + 1)𝛽 − 𝑠))
exp(𝛾𝑠) 𝑑𝑠 + exp(−𝛾 (𝜄 − 𝑖𝛽))𝜓 (𝑖𝛽) .

The middle term is ∫ 𝜄−𝑖𝛽

0

𝑖−1∑
𝑗=0

R 𝑗 (𝛾 (𝜄 − ( 𝑗 + 1)𝛽 − 𝑠))
exp(𝛾𝑠) 𝑑𝑠

=

𝑖−1∑
𝑗=0

[
−R

𝑗+1 (𝛾 (𝜄 − ( 𝑗 + 1)𝛽 − 𝑠))
𝛾 exp(𝛾𝑠)

]𝜄−𝑖𝛽
0

=

⌊ 𝜄
𝛽
⌋∑

𝑗=0

R 𝑗 ((𝜄 − 𝛽 𝑗)𝛾)
𝛾

− R
0 (𝛾𝜏)
𝛾

+ R0 (𝛾𝑖𝛽)
𝛾 exp(𝛾 (𝜄 − 𝑖𝛽)) − exp(−𝛾 (𝜄 − 𝑖𝛽))𝜓 (𝑖𝛽)

=

⌊ 𝜄
𝛽
⌋∑

𝑗=0

R 𝑗 ((𝜄 − 𝛽 𝑗)𝛾)
𝛾

−𝜓 (𝜄 − 𝑖𝛽) − exp(−𝛾 (𝜄 − 𝑖𝛽))𝜓 (𝑖𝛽) .

Combining this with the previous equation finishes the derivation for𝜓 (𝜄).
Next, we show that the claimed function for𝑤 is correct. Note that𝑤 (0) = 0 which is the correct value. By Lemma 3, it is sufficient to

show that the ratio of derivatives between𝜓 (𝑥) and𝑤 (𝑥) matches. Recall

𝜕

𝜕𝑥
R𝑖 (𝑥) = R𝑖−1 (𝑥) − R𝑖 (𝑥) = 𝑥𝑖

𝑖!
exp(−𝑥) .

Hence

𝜕

𝜕𝑥
𝜓 (𝑥)

����
𝑥=𝜄

=

⌊ 𝑡
𝛽
⌋∑

𝑖=0

(𝛾 (𝜄 − 𝑖𝛽))𝑖
𝑖! exp(𝛾 (𝜄 − 𝑖𝛽)) .

The derivative of our claimed form of𝑤 is

𝜕

𝜕𝑥
𝑤 (𝑥)

����
𝑥=𝜄

=

⌊ 𝑡
𝛽
⌋∑

𝑖=0

𝛾𝑖

(𝛼 + 𝛾)𝑖
((𝛼 + 𝛾) (𝜄 − 𝑖𝛽))𝑖

𝑖! exp(𝛼𝜄 + 𝛾 (𝜄 − 𝑖𝛽))

=

⌊ 𝑡
𝛽
⌋∑

𝑖=0

(𝛾 (𝜄 − 𝑖𝛽))𝑖
𝑖! exp(𝛾 (𝜄 − 𝑖𝛽)) exp(−𝛼𝜄) .

Hence the ratio of the derivatives satisfy Lemma 3, which implies that we have found the correct analytical form of𝑤 (𝑥). □
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A.1 Crawl value based on approximation

Approximations of Greedy_NCIS: Since the value function in the general case is computationally demanding when ⌊ 𝑡
𝛽
⌋ is large, we

also consider an approximation where we set any higher order residuals to 0 in the computation of the crawl value. We denote the 𝑗-level

approximation of the general value function by

𝑉G_NCIS-Approx-j (𝜄, E) = �̃�

min{ 𝑗−1, ⌊ 𝜄
𝛽
⌋ }∑

𝑖=0

( 𝜈𝑖

(Δ + 𝜈)𝑖+1
R𝑖
exp
((𝛼 + 𝛾) (𝜄 − 𝑖𝛽)) − exp(−𝛼𝜄)

𝛾
R𝑖
exp
(𝛾 (𝜄 − 𝑖𝛽))

)
.

B COMPARISON OF EMPIRICAL RATES OF GREEDY AND LDS

Even if the performances of the GREEDY and LDS algorithms are very similar, they implement quite different scheduling strategies. When

we compare the empirical rates of GREEDY and LDS to the rates of the Baseline method that can be obtained by solving (5), we can see that

even if the performances of these two algorithms are on-par, the rates for the same pages are different from each other. Figure 7 shows the

empirical rates achieved by GREEDY and LDS with 100 and 500 web pages takes from 10 problem instances. The empirical rates of LDS are

very close to the optimal continuous policy rates since dots are on the diagonal red line. This result can be explained by the fact that the

LDS is based on a low discrepancy scheduling algorithm whose objective is to directly minimize the deviation of these two rates over time.

However, the GREEDY takes into account the staleness of web pages when it picks the next web page to be crawled.

Figure 7: Empirical rates for various web pages achieved by discrete policies without using change-indicating signals. Each

dot corresponds to a web page for which the optimal rate versus the empirical rate of the corresponding method is plotted.

The web pages are taken from 10 synthetic problem instances with 100 and 500 web pages, respectively. The optimal rates are

computed based on (5), and they correspond to the Baselinemethod. LDS corresponds to Algorithm 3 of [1] with the rates of

Baselinemethod as input.).

C DELAYED CI SIGNALS

So far, we have assumed that CI signals arrive instantaneous with the corresponding change event. In practice, there is some latency either

due to the network or the entity generating the CI signals itself. However, the bulk of web pages changes on a scale of several days, and for

such pages any CI signal delay is minuscule compared to the average interval between change events. We propose to simply discard CI

signals that arrive within an interval [𝑡cr, 𝑡cr +𝑇delay] after a crawl for some tuneable parameter 𝑇delay, to ensure that we do not make

decisions based on out-dated CI signals.

Next experiment, we assess the impact of the delay of CI signals on the performance of GREEDY-NCIS policy and to what extent the

proposed thresholded approach, defined in Section C can remedy the performance drop that is caused by the delay of CI signals. The
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thresholding consists of discarding the CI signal for a page 𝑖 when it is close to a recent crawl event that fetches the content of page 𝑖 . We set

this time window to 𝑇DELAY = 5/𝑅.
The problem instances we use in this experiment are generated in a similar way as in the previous section: the partially observabilty

parameter is generated as 𝜆𝑖 ∼ Beta(0.25, 0.25), and the rate of false positive CI signals is 𝑣𝑖 ∼ Unif(0.1, 0.6). In addition to this, the CI signals

are delayed with a random quantity that is generated from the Poisson distribution with 𝑣 = 6 as it is described in Section 6.1.

Figure 8 shows the result with the delayed CI signals. We indicate the baseline by the red line as before which is the performance of the

optimal continuous policy without using CI signals. In addition to this we also indicate the performance of GREEDY-NCIS policy without

delayed CI signals by the blue line. The performance that is indicated by the blue line coincides with the one reported in Figure 4. Based on

the results, one can see that the delay of the CI signals indeed deteriorates the performance of GREEDY-NCIS when the bandwidth is not so

tight, and has marginal impact when the crawling problem has tighter bandwidth allocation. This can be explained by the fact that when the

bandwidth is tighter the improvement achieved by GREEDY-NCIS over GREEDY policy, which does not use CI signals, is smaller, which

implies that the CI signals do not help so much in this case. Thus, their delay has not so significant impact in that case, either. Nevertheless,

when we compare the performance of GREEDY-NCIS-D to the performance of GREEDY-NCIS with no delay (blue line), we see that when

𝑚 = 100, their performances are on-par. In this case, this simple thresholding policy can almost recover the performance drop caused by

delay.

Figure 8: Accuracy achieved by discrete policies including GREEDY-NCIS and GREEDY-NCIS-D. The partially observabilty

parameter is generated as 𝜆𝑖 ∼ Beta(0.25, 0.25), and the rate of false positive CI signals as 𝑣𝑖 ∼ Unif(0.1, 0.6). In addition, the CI

signals are delayed with a random quantity that is generated from the Poisson distribution with 𝑣 = 6. The parameter selection

is described in Subsection 6.1.

D BURN-IN TIME

In the next experiment, we demonstrate that the discrete policy GREEDY is able to automatically adjust the prioritization of web pages to

new optimal solutions when the total bandwidth changes, without centralized computation. In this example, the total bandwidth starts from

𝑅 = 100, and suddenly changes to 𝑅 = 150, before changing back to 𝑅 = 100, with𝑚 = 1000 web pages to crawl, running for 𝑡 ≤ 400. The

GREEDY policy is used to select web pages, and there is no extra computation when the total bandwidth changes. Figure 9 shows that the

accuracy automatically rises to the new optimal level when the bandwidth increases, and automatically falls back to the original optimal

level when the bandwidth decreases back. The accuracy which is plotted in Figure Figure 9 is computed on the last 1000 crawl events for

every time step.

E ESTIMATING MODEL PARAMETERS

We directly observe all request events and CI signals, hence we can estimate the importance parameters 𝜇 and the rate of the CIS 𝛾 with

good accuracy based on the overall frequency of logged events. The unobserved change rate 𝛼 and “goodness” of CI signals 𝛽 are harder to

estimate, since only partial knowledge available of the content change events.

A naive approach is to use empirical crawl events which are observed to create an approximation of the change sequence and directly

calculate the empirical precision and recall of the CI signals based on this approximation. To evaluate this approach, we conduct the following

experiment: We sample precision and recall values uniformly between [0.2, 0.95]. The expected lenth of the change process is sampled

uniformly between [2, 20] and the relative rate of crawls is set between four times to one quarter of the change rate. We use the models to
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Figure 9: Accuracy of GREEDY over time. The red line shows how the accuracy of GREEDY changes over time, when the total

bandwidth starts from 100, and increases to 150 at time 133, before decreasing back to 100 at time 266. The green line shows

the accuracy of GREEDY, when the total bandwidth is always 100. The blue line shows the accuracy of GREEDY, when the

total bandwidth is always 150.

create synthetic datasets of time horizon 100000 and reconstruct precision and recall based on either a statistical approach that computes

precision =
number of intervals with CI signal and change

number of intervals with change

recall =
number of intervals with CI signal and change

number of intervals with change

,

or fitting the linear model for 𝛼 and 𝛽 to the data and compute precision and recall based on these.

Figure 10 shows that the statistical estimator is clearly biased.

Figure 10: Bias of the naive estimator of precision and recall of CIS.

We achieve more faithful results by fitting a model to the empirical data. We collect the data

(
(
(𝜏elap
𝑛cis

)
1
, 𝑧1), . . .

)
, where 𝑧𝑖 is a binary

variable indicating whether there has been a change between crawl 𝑖 − 1 and 𝑖 . The model predicts that 𝑧𝑖 ∼ Ber(exp(−⟨
( 𝛼
𝛼𝛽

)
,
(𝜏elap
𝑛cis

)
𝑖
⟩)).

Estimating the unknown parameter vector

( 𝛼
𝛼𝛽

)
can be done via MLE. In our experiments, we assume that these parameters are known to

the policies, but in a production system this estimation can be carried out based on logged data. The absolute error of this estimator was on

the order of 10
−4

as shown in Figure ?? .

F EMPIRICAL RATES WITH ANDWITHOUT FALSE POSITIVES

We compared the empirical rates of various policies. This is presented in 14. The results show that GREEDY-CIS achieves significantly higher

empirical rates for some pages with high observability rate (indicated by red arrows), whereas GREEDY-NCIS is able to handle this more

noisy CI signal efficiently. This means that in the presence of false positive signals, Greedy-CIS which assumes no false positive CIS, overly

relies on the side information, i.e. the false positives boosts its empirical crawling rate unnecessarily.
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Figure 11: Bias of the naive estimator of precision and recall of CIS.

Figure 12: Empirical rates for various web pages achieved by

discrete policies including GREEDY and GREEDY-CIS. Each

dot corresponds to aweb page for whichwe computed the rate

of the Baseline method and plotted it versus the empirical

rate achieved by the corresponding policy. The color of the

dots indicates the observability of the change sequence that is

controlled by 𝜆.

Figure 13: Similar to Figure 12 but the color of dots indicates

the change rates of the web pages.
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Figure 14: Empirical rates achieved for various web pages achieved by discrete policies including GREEDY, GREEDY-CIS and

GREEDY-NCIS. Each dot corresponds to a web page for which we computed the rate of the Baseline method and plotted

it versus the empirical rate achieved by the corresponding policy. The partially observabilty parameter is generated as 𝜆𝑖 ∼
Beta(0.25, 0.25), and the rate of false positive CI signals as 𝑣𝑖 ∼ Unif(0.1, 0.6). The parameter selection is described in Subsection

6.1.
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