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Abstract
While Bayesian Optimization (BO) has emerged as sample-efficient optimization
method for accelerating drug discovery, it has rarely been applied to the process
optimization of pharmaceutical manufacturing, which traditionally has relied on
human-intuition, along with trial-and-error and slow cycles of learning. The
combinatorial and hierarchical complexity of such process control also introduce
challenges related to high-dimensional design spaces and requirements of larger
scale observations, in which BO has typically scaled poorly. In this paper, we
use penicillin production as a case study to demonstrate the efficacy of BO in
accelerating the optimization of typical pharmaceutical manufacturing processes.
To overcome the challenges raised by high dimensionality, we apply a trust region
BO approach (TuRBO) for global optimization of penicillin yield and empirically
show that it outperforms other BO and random baselines. We also extend the study
by leveraging BO in the context of multi-objective optimization, allowing us to
further evaluate the trade-offs between penicillin yield, production time, and CO2

emission as by-product. Through quantifying the performance of BO across high-
dimensional and multi-objective drug production optimization processes, we hope
to popularize application of BO in this field, and encourage closer collaboration
between machine learning and broader scientific communities.

1 Introduction
Process optimization of pharmaceutical manufacturing typically involves tuning many control and
composition parameters to maximize yield. When new manufacturing processes are tested, practi-
tioners often rely on human intuition for optimization and would have to go through many rounds of
trial-and-error to gain a preliminary understanding. They would also optimize input features one-
at-a-time, resulting in the loss of opportunity in reaching higher yields through global optimization.
In addition, yield data from each set of input control parameter combinations usually takes days
to obtain, resulting in large time and resource budgets that prohibit further optimization. Bayesian
Optimization (BO) would be an ideal optimization algorithm for drug production processes because it
excels in global optimization of systems with expensive cost functions using fewer experiments, and
has applications ranging from hyperparameter tuning, molecule screening to materials optimization
[1, 2, 3, 4, 5, 6, 7, 8, 9]. However, success of BO has been limited to low-dimensional problems that
require smaller sample budgets, whereas the pharmaceutical manufacturing often require optimization
in high-dimensions to include the impact of temperature, time, and pH on final yield.

Global optimization in high-dimensional spaces is challenging for BO mostly due to the curse of
dimensionality, where design space grows exponentially with ndim. The number of local optima
increases and global optimal becomes more elusive. As size of design space becomes intractable with
respect to available budget, there will exist regions that have fewer observations, resulting in larger
posterior uncertainty and thus over-exploration [10]. In addition, the commonly used surrogate model
Gaussian Process (GP) [11] shows cubic time complexity O(n3 + n2 · ndim) with data size n, making
the task of fitting a heterogeneous black-box function with a global model computationally costly.

To overcome the high-dimensional optimization challenges and retain the sample-efficient trait of
BO, we apply a trust region BO (TuRBO) for global optimization [10] and demonstrate its efficacy
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for pharmaceutical manufacturing process optimization. TuRBO simultaneously keeps a set of local
optimizations campaigns through many local GP surrogate models, each fit independently to its
own local trust region, and utilizes a multi-armed bandit strategy at each learning cycle to allocate
batch samples between each trust region. We have chosen the fed-batch penicillin fermentation
process [12] as a representative drug production process to benchmark the performance of TuRBO
and BO algorithms. We demonstrate the efficacy of TuRBO by quantitatively comparing it against
state-of-the-art BO algorithms such as Ensemble Bayesian Optimization (EBO) [13], regular BO,
and other commonly used sampling strategies such as random search and Latin Hypercube Sampling
(LHS). Leveraging Expected Hypervolume Improvement (EHVI) [14] as acquisition function, we
additionally perform multi-objective optimization via BO and demonstrate the evaluation of trade-offs
between penicillin yield, time, and carbon dioxide (CO2) by-product emission. We offer open source
implementation of the penicillin model and benchmarking code to support future development [15].
2 Penicillin Production
To demonstrate the efficacy of BO in increasing yield for a representative drug production process,
we adopt a fed-batch process for penicillin production model proposed by Birol et al [12] and show
the closed-loop optimization framework for the system in Figure 1. We realistically simulate the
manufacturing process by taking the impact of temperature, pH into account due to the heat generation
and acidity tendency during fermentation and microorganisms cell activity. In response to global
movements in tracking greenhouse gas emissions, we also recorded evolution of CO2, and would use
it to evaluate additional trade-offs in such production processes.
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Figure 1: Closed-loop BO framework for fed-batch penicillin production.
We assume excess oxygen supply [16] and run simulations under closed-loop control of assigned
temperature, pH and open-loop addition of given glucose substrate. At zero offset of P (penicillin
concentration g

L ), CO2 (carbon dioxide concentration mmol
L ) and t (reaction time hr)), the initial

values of V (culture medium volume L), X (biomass concentration g
L ), T (temperature K), S

(glucose substrate concentration g
L ), F (substrate feed rate L

hr ), sf (substrate feed concentration g
L )

and H (H+ concentration mol
L ) form the design space as seen in Figure 1 and is governed by:
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where rest of the constants can be obtained from Table 2 of Birol et al [12]. To simulate real
pharmaceutical manufacturing processes, the fermentation process is run open-loop for penicillin
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concentration P until P converges or the culture medium volume V exceed Vmax = 180L. Each
process variable is updated at ∆t = 0.5hr intervals to account for the lag in off-line quantitative
laboratory measurements often seen in bioprocesses. Our penicillin production model serves not only
as a valuable toolbox for benchmarking optimization algorithms but also as a representative example
for drug production processes including a variety of process variables on system dynamics.
3 Bayesian Optimization for Complex Process Optimization
Sample-efficient Bayesian optimization (BO) [3, 11, 2, 17, 18] aims to solve the problem of finding a
global optimum (min or max) of an unknown objective function g: #»x ∗ = arg maxx g( #»x ), #»x ∈ X ,
where X is a domain of interest inRndim . There has been previous work in high-dimensional BO
[19, 13, 20, 21, 22, 23, 24], yet many have relied on exploiting additive structure for the objective
function [21, 22, 23, 13] such as EBO, and mapping to lower dimensional spaces [24, 25], which
still require training a large number of GPs that scale poorly with the number of evaluations in
high-dimensions or deep generative models [26]. Evolutionary algorithms [27] are well designed for
high-dimensional and multi-objective optimization, yet they require many more experimental budget
than BO, making them not suitable for applications such as pharmaceutical manufacturing processes
optimization that typically have costly experiments.

To scale BO for high-dimensional process optimization, we have chosen to apply TuRBO [10]
to demonstrate the feasibility and efficacy of BO. TuRBO assembles the advantages of previous
high-dimensional BO algorithms, notably replacing global model with multiple parallel and local
models to avoid intractable time complexity and uneven posterior uncertainty, and combines it with
the use of trust regions (TR) [28, 29]. For TuRBO-m algorithm, m hyperrectangle TRs are held
simultaneously, and the size of TRs can be dynamically adjusted based on experimental observation
results to avoid over-exploration. The selection of experiments for subsequent batches are controlled
by an implicit multi-armed bandit approach. b samples per batch are allocated unevenly into each
TR, and at iteration t, the ith new observation will be allocated to the most promising TR l if
x
(t)
i ∈ arg minl(arg minx∈TRl

f
(i)
l ) where f (i)l ∼ GP t

l (µl(x), kl(x, x
′)).

In addition, we use BO in a multi-objective setting to perform multi-objective Bayesian Optimization
(MOBO). Each objective will have an independent GP surrogate model, and hypervolume will be
used as indicator for optimization success. We adapt EHVI from Yang et al. [14] as acquisition
function, which accelerates convergence [30, 31] towards the true Pareto front in experimental studies
and supports researchers in evaluating trade-offs between different objectives.
4 Results and Discussions
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Figure 2: Performance of optimization algorithms on penicillin fermentation process. For each
algorithm, initial sampling size and batch size are both 30. TuRBO-5 and TuRBO-2 stand out among
all TuRBO algorithms, which all outperform EBO, regular BO methods, and random sampling
baselines. Horizontal dash line shows the maximum penicillin concentration yield after sampling
106 evaluations from the penicillin model. Variation is visualized by plotting the median as well as
shaded regions representing the 5th to 95th percentile of the aggregated 50 random run ensembles.
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We show the quantitatively evaluated performance of TuRBO and other algorithmic baselines in
Figure 2. Due to limited experimental budgets in pharmaceutical manufacturing, we would suggest
practitioners to examine performance in the first 200 evaluations. We observe TuRBO algorithms
considerably outperform EBO and regular BO, which all clearly show acceleration of process
optimization over random sampling baselines. The improvement of holding multiple local models
over a global surrogate model can be observed by comparing the performance of TurBO to that of
regular BO. EBO uses an ensemble of additive GPs together with a batch acquisition function to scale
BO to high-dimensions. The design space of penicillin production is only 7-dimensional, and thus
does not clearly show the advantage of EBO over regular BO that utilizes GP as surrogate model and
EI as acquisition function. We also observe that TuRBO with TR = 5 and TR = 2 are more effective
than that of TR = 10. Depending on the batch size, having too many trust regions would allocate
too few samples across each, resulting in inaccurate local surrogate model and subpar optimization
performance. The number of TR should scale reasonably with available batch size per iteration.

(a) (b)

Figure 3: (a) Pareto front of fed-batch penicillin fermentation process design space after 500 evalua-
tions. The three objectives of interest are final penicillin concentration yield, time, and CO2 emission.
Pareto optimal and pareto front are shown as green, non pareto optimal points as blue, and arbitrary
reference point as red. (b) Performance of MOBO (w/ EHVI) on fed-batch penicillin fermentation
process shown as normalized hypervolume vs. number of evaluations. Initial sampling size and batch
size are both 30. Horizontal dash line shows the maximum normalized hypervolume after sampling
106 evaluations. Variation is visualized by plotting the median as well as shaded regions representing
the 5th to 95th percentile of the aggregated 30 random run ensembles.
In Figure 3, we show the pareto front and hypervolume improvement at each evaluation when
performing multi-objective optimization using BO equipped with GP surrogate model and EHVI
acquisition function. Compared to the performance of random search, we clearly observe the efficacy
of multi-objective BO in converging towards pareto front and expanding hypervolume in the first 200
evaluations. We see that experiments with highest penicillin yield are not necessarily the most optimal
when other experiments can show high penicillin yield but take significant less time to ferment and
result in lower CO2 emissions. While the exact trade-off criteria and chosen optimal process control
parameters will be decided by practitioners, we hope to demonstrate how BO can accelerate process
optimization and offer comparison of trade-offs in a multi-objective optimization setting.

5 Conclusions
We demonstrated the efficacy of BO algorithms on optimizing yield of a fed-batch penicillin produc-
tion process, which serves as a representative case for many more pharmaceutical manufacturing
processes. We have applied trust region BO (TuRBO) to address the challenges of high-dimensional
optimization for BO and observe its advantage over other BO algorithms and random baselines. We
observe that a suitable number of trusted regions corresponding to designated batch size must be
chosen for best optimization efficacy. In addition, we show the efficacy of BO in combination with
multi-objective optimization, which allowed us to evaluate trade-offs between additional objectives
such as reaction time, and CO2 besides penicillin yield with fewer experiments. Our observations
indicate that variations of BO are suitable tools for optimization drug production processes in high-
dimensions. We hope to share our insights with the field, and popularize the use of BO and machine
learning in future drug production processes.
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6 Broader Impact
Successful benchmarks of scalable BO algorithms for process optimization of Penicillin production
show us an example of how machine learning algorithms can help pharmaceutical and potentially
broader industrial areas. Break-through in multi-objective optimization algorithms in high dimensions
will have direct impact on the efficiency of those processes. Considering usually the high cost to
validate proposed conditions, when combined with efficient experimental technologies (automated
labs for example), the optimization algorithms will bring huge economical values to those fields.
In addition, successful optimization algorithms can also be extended to broader areas, which share
similar characteristics with the Penicillin production we discussed here, such as multiple constraints
(e.g. budget, EHS (Environment, Health, and Safety), etc.), and large number of control parameters.
We hope our work will not only motivate algorithm development and adoption across broader
scientific communities, but also promote the integrated applications of algorithms and cutting edge
experimental technologies in broader industrial scenarios.
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