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ABSTRACT

Conditional Whitney forms have recently emerged as a promising framework at
the intersection of scientific machine learning and finite element analysis. They
offer a solid theoretical foundation for enforcing conservation laws in complex
machine learning settings. However, their use so far has been restricted to learn-
ing tasks where structural constraints can be satisfied with simple, yet inaccurate,
physics representations. In this work, we analyze why existing formulations re-
duce to typical unconstrained reformulations, circumventing physics recovery, and
highlight the necessity of incorporating additive structure pertaining to the gov-
erning physics of the system. Based on the theoretical insights we first attain, we
proceed to the reformulation of the learning problem to enable data-driven physics
recovery and employ conditional Whitney forms to turn a Transformer-based ar-
chitecture into a structure-preserving reduced-order model. We demonstrate the
validity of our theoretical insights and the effectiveness of the subsequent pro-
posed reformulation in a range of advection-diffusion systems of increasing diffi-
culty. Our contributions can be viewed as a step towards understanding the capac-
ity of conditional Whitney forms to build reliable structure-preserving models by
harnessing the modeling power of state-of-the-art machine learning architectures
in physical sciences.

1 INTRODUCTION

Partial differential equations (PDEs) form the foundation for describing and modeling complex sys-
tems across engineering and physical sciences. Traditional PDE solvers, such as the finite element
method (Brenner and Carstensen, |2004), are computationally intensive, lack generalizability across
different PDE parameters, and require customized solver configurations for each specific problem.
Moreover, they struggle in settings where the governing physics is only partially known or where
only general physical principles apply. Motivated by the achievements of machine learning in fields
such as natural language processing (Koroteev, 2021; Radford et al., [2019) and computer vision
(Deng et al., 2009; |Goodfellow et al., 2014; |[Ren et al., |2016), operator learning (Kovachki et al.,
2024) emerged as a powerful learning paradigm for learning maps between infinite-dimensional
function spaces. As neural operators overcome the limitations of traditional solvers and show im-
pressive predictive capabilities, they have been largely employed as surrogates in PDE solving.

Initially, operator learning architectures focused on the construction of appropriate PDE solution
spaces, while recent advancements highlight a paradigm shift toward modern deep learning, in-
cluding Transformer-based architectural designs (Dosovitskiy et al., 2020; Jaegle et al., 2021)), con-
tinuous neural representations (Stanleyl [2007; [Mildenhall et al., 2020) and transfer learning via
foundation models (Touvron et al., 2023} Radford et al [2021). Leveraging attention mechanisms
(Vaswani et al, |2017)), Transformer models can capture multiscale relationships within data rep-
resentations, while neural fields provide an efficient framework for encoding continuous fields at
arbitrary resolutions, aligning closely with the central goals of operator learning. In addition, in-
spired by the abundance of available data and the recent successes of foundation models, the first
scientific foundation models (Bodnar et al.,2025) have been developed. Pre-trained in a vast corpus
of diverse physics tasks, these models provide enhanced generalization in downstream tasks with
only a modest amount of fine-tuning.
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While more and more emphasis is placed on the predictive performance and the efficiency of neural
operators, important aspects of the traditional theory of finite element analysis are usually over-
looked. However, a long-standing body of research (Szab6 and Babuska, [2021)) has endowed the fi-
nite element framework with tools that allow the preservation of topological structures, mimetic dis-
cretizations (Castillo and Mirandal 2013) and exact enforcement of boundary conditions, to name a
few. At the intersection of finite element exterior calculus (FEEC) (Arnold, 2018; Trask et al., {2022}
Actor et al.,2024) and operator learning, conditional Whitney forms (CWFs) (Kinch et al.| [2025)
have recently emerged as a framework that enables the construction of learnable reduced mixed fi-
nite element spaces. Most importantly, due to the mimetic nature of the underlying discretization
and the mixed-space approach, CWFs can ensure the preservation of data-driven conservation laws.

Motivated by the sound theoretical foundation and the non-invasive implementation of CWFs,
we explore their ability to turn standard operator learning architectures into structure-preserving
reduced-order models and, consequently, be employed in challenging learning setups. As prelimi-
nary experiments indicated, the equality-constrained optimization problem, as posed in the original
formulation (Kinch et al. [2025) and applied in subsequent experiments, leads to trivial forms of
conservation, ignoring the actual physics. We provide an intuitive, yet rigorous, interpretation of
this phenomenon and highlight the necessity of additive regularization to mitigate it. Equipped with
the above insights, we reformulate the optimization problem to enable actual-physics recovery and
validate our approach in a suite of four problems of increasing difficulty, characterized by a conser-
vation law. Our main contributions can be summarized as follows.

* Theoretical Insights. We provide insights into the simplicity of the conservation constraint in
the existing formulation of conditional Whitney forms (CWFs) and demonstrate the necessity of
added regularization to reveal their true capacity to achieve ground-truth physics recovery.

* Physics-aware reformulation. We reformulate the existing learning problem by adding a data-
driven physics recovery component and employ the conditional Whitney forms framework to
transform a standard operator-learning architecture into a reduced-order model that precisely pre-
serves conservation laws and enforces boundary conditions.

* Comprehensive evaluation. We test the validity of our approach on four problems governed by
conservation equations and of increasing difficulty. Empirical evidence shows that our method
enables physics recovery while exactly preserving conservation laws and only slightly affecting
the expressivity of the original architecture.

2 BACKGROUND AND RELATED WORK

Operator Learning. Neural operators (Kovachki et al.| 2023 have emerged as a powerful alter-
native to traditional PDE solvers. Early research focused on the generalization of deep learning
architectures such as feed-forward and convolution networks in the infinite-dimensional setting and
the construction of appropriate bases to express PDE solutions, such as Fourier Neural Operator (L1
et al.,2020) and DeepONet (Lu et al., 2021). In addition to attempts to build on these foundational
ideas and develop more efficient models (Bonev et al.l |2023; Zhu et al., |2023; |[Kopanicakova and
Karniadakais| [2025)), motivated by advancements in NLP and Computer Vision, Transformer-based
approaches (Kissas et al., [2022; |Li et al., [2022; |[Hao et al., 2023)) came to merit attention. Specifi-
cally, Wang et al.| (2024) provided a unified perspective between operator learning and conditioned
neural fields (Xie et al., 2022). The adoption of self-attention mechanisms as the main building
block in operator designs and subsequent advances enabled the development of the first scientific
foundation models (Hao et al.,|2024; Herde et al., [2024; [Bodnar et al., 2025). However, physics is
still only partially included as a mere inductive bias in such learning pipelines (Li et al.,[2024; Zhang
et al., 2025)), improving but not providing guarantees on the physical realizability of the proposed
solutions in most cases.

Structure-Preserving Scientific Learning. Recently, a plethora of works have employed compo-
nents of finite element analysis to enhance the structure-preserving properties of machine learning
pipelines. |Ouyang et al.[(2025) utilized the output of pre-trained neural operators as elements in tra-
ditional FEM pipelines. However, due to the presence of learnable elements, the quadrature rule in-
serts variational crime in the computation of stiffness matrices and prevents conservation. [Bouziani
and Boullé| (2024) proposed a FEM-inspired architecture, in which the preservation of structure is
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limited to boundary conditions and a topological inductive bias in the architecture. Furthermore,
Bouziani et al.| (2024) and (Farsi et al., [2025) presented frameworks that allow the integration of
FEM (Ham et al., 2023)) and deep learning(Bradbury et al.l 2018} Paszke et al., |2019) python li-
braries in an end-to-end differentiable way, enabling the solution of inverse problems with learnable
components and the usage of variational residuals as regularization terms among other utilities. Fi-
nally, Sunil and Sills|(2024) and Rezaei et al.|(2024)) proposed alternative PINN (Raissi et al.,[2019)
formulations, where the training loss and design choices are inspired by finite element analysis. Al-
though these works provide useful insights and interesting directions, to the best of our knowledge,
CWFs are the only framework that allows the transformation of deep learning architectures into
structure-preserving reduced-order models with only modest computational overhead and minimal
architectural intervention.

3 LEARNING PROBLEM REFORMULATION

3.1 PRELIMINARIES

Inspired by Whitney forms (Lohi and Kettunen/, |[2021) in FEEC, |Actor et al.|(2024) showed that any
partition of unity ({;(-)} s.t. linearly independent, 1;(-) > 0 and ) _, %;(-) = 1) can be used as the
basis for the construction of a family of finite element spaces that constitute a mimetic discretization
(Castillo and Miranda,[2013) of the de Rham complex, essentially providing exact discrete analogues
of the standard differential operators (e.g. gradient, divergence) and a generalized Stokes theorem.

In the 2D setting, using the finite element spaces:
WO(Q) = span{¢(-)},  W'(Q) = span{vj;(-) = ¥ Vey — VG,
to solve a PDE of the following conservative form:
V- (Vu+ Nlu; ¢]) = s, u = 0on 99,

where N (-, ¢) denotes a generic flux operator with parametrization ¢, mixed Galerkin form seeks
(u, f) € WO(Q) x W(Q) such that for all (¢, v) € WO(Q) x W!(Q):

7(f7 V(])Q = (57(])97 (fa U)Q = (VU,U)Q + (N[uv QSLU)Q'

Theorem 3.4 from Kinch et al.|(2025) yields an equivalent representation of the above formulation:

8§ Myf = Mos, Myf — Mydois — MyNii; ¢] = 0, (1)
where (A) denotes a discretized version of functions or operators, M, M; denote the mass matrices
associated with W°(Q), W' () and &y denotes a generalized incidence matrix between W(£2) and
W) s.t. (80)iz.i = —1, (d0)i5,; = 1 and &y = 0 otherwise.

Using the closeness of partitions of unity under convex combinations, the degrees of freedom of
a fixed partition of unity (fine-grained partition) can be mapped to the degrees of a reduced one
(coarse-grained partition) through a simple multiplication with a learnable column stochastic matrix:
wint(z. 9 0

W(Z; 0) = (() ) py/bnd | - 2
The matrix W (z; #) can be inferred from z by any standard regression model with parameters 6 and,
essentially, maps boundary to boundary and interior to interior degrees of freedom. As proposed in
(Kinch et al | |[2025), taken together, ([I]) and @]) give birth to the following PDE-constrained learning
problem in the reduced space, where operator N is replaced by a neural network NN

min DI i 0 (5520,0) Ui (@) G 1€ {1 Nampes}, 7 €9,
i J 3)
subject to 8 M (zi;0)(Sot; + NN tis; zi, ¢]) — Mo(zi;0)3(2;) = 0.
For more details on these derivations, we refer the reader to Section 2 of |Kinch et al.| (2025)), Section
3 of [Actor et al.| (2024) and Appendix [A]

3.2 TRIVIAL CONSERVATION
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As posed in (3), the learning problem is related to the V- flx) = cos(x)
inverse problem of discovering a conservation equa- 2

tion applied to a reduced space of learnable finite el- — Physics Recovery
ements. However, conservation is achieved in a trivial -—— Flux Conservation

way, which, essentially, means that the constraint can
be omitted, as it does not restrict the search space of
candidate solutions w;(x). Thus, the learning problem
can be solved as an unconstrained regression problem
in WY(Q) and the conservation constraint can be sat-
isfied with a standard post-processing step in W (),
as it only really imposes a source-flux outflow balance.
Formally, the redundancy of the PDE constraint is sum-
marized in the following proposition.

Proposition 1. Let u(z) := >, ¢;\i(z) s.t. 0 < u(x) < 1 and u(z) = 0 on 98, where {\;(z)}}¥,
denotes a fine-grained partition of unity. When function f(-) is not restricted to any specific structure
and for any source s(x), there is a trivial reduced partition {1;(x)}, in which u(zx) can be exactly

described and satisfies a conservation equation of the form:
dg Mif = M3, Myf = Mif(a), )

for an infinite number of vectors f .

Figure 1: Physics recovery vs.
structure preservation.

Proof: We define u(z) := Y, ¢;\i(z), where {\;(z)}}¥Y; denotes a fine-grained partition. We
can construct a coarse-grained partition {7;(z)} as follows.

Polr) == D0 eA@), a(w) = 30 (1= dMN(@),  dala) == D0 A (a).

The subsequent transformation matrix W of (2) is :

T
Cint 0
W = (1 — Cint)T 5
0 17

we trivially derive u(x) = 1-1g(x) +0-1; (z) +0-1b2(x) and denote 4 := [1,0,0]7. Equipped with
the constructed partition of unity, we can express a conservation equation as in (). Since everything
is known and f(-) is not limited to any specific form, we only have to solve the first system in (4).
As we have used o (x) only to apply the homogeneous boundary conditions, the system admits a
reduced form as (60T )12, M f = M3, in which M3 denotes the projection of the source only on
the interior nodes. Since g is an incidence matrix, (5(—')— )1:2,: takes the following form:
-1 -1
(63—)1:27: = |: 1 0 01:| P

which is a full-row rank matrix and M; is a symmetric positive-definite matrix as the mass matrix
of linearly independent finite elements; thus, the system is underdetermined, admitting an infinite
number of solutions and concluding the proof.

Remark 1. We can drop the assumptions pertaining to u(x) in Propositionby slight modifications
to the proof. We can generalize for any u s.t. Umin < w(2) < Umaq by setting G := [uq, ug]T, where
Ul > Umaz A1d Uy < Uiy and rescaling c;ni. Furthermore, we can drop the homogeneous bound-
ary conditions with a decomposition of the fine-grained boundary degrees of freedom, identical to
the decomposition used for the interior ones.

One could assume that increasing the cardinality of the learnable partition of unity would suffice to
endow the method with implicit constraints regarding flux reconstruction, similarly to how a finer
discretization improves the stability and approximation properties of a standard numerical method.
However, we can generalize Proposition [I|for any cardinality of the coarse-grained partition of unity
with standard arguments from linear algebra.

Proposition 2. Let u(z) := Y, c;thi () s.t. u(x) = 0 on 98, where {1;(x)}M | denotes a coarse-
grained partition of unity. When function f(-) is not restricted to any specific structure and for any
source s(x) with projection M3 on {1;(x)}}L,, the conservation constraint:

g My f = My (5)

is satisfied for an infinite number of vectors fand null (6T M) = (Mgl).
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Proof: The full proof is provided in Appendix [B} Briefly, we prove the proposition by analyzing
the rank of .

3.3 FLUX REGULARIZATION

Adopting a mixed-space approach to express a data-driven generalized conservation law, CWFs are
endowed with tools to treat boundary conditions, source-flux outflow balance and other structure-
preserving properties in a precise way. The block-diagonal structure of (Z) plays a critical role
in the preservation of the structure. It allows for the performance of the lift, which is necessary
to impose (in-)homogeneous Dirichlet boundary conditions, and for the quantification of the flux
outflow, which is necessary for the source-flux outflow balance claims.

However, the findings of Section [3.2]indicate that the lack of any structure in the reconstructed flux

f leads to the triviality of . In practice, this translates into trivial reduced partitions and flux
hallucinations, contradicting the initial selection of a mixed-space approach to describe the physics
while preserving a conservation law. Furthermore, experimental evidence shows that, in settings
where a machine learning model is used for the inference of W (z; @), the predictive performance of
CWEFs is almost identical to that of the original model, hinting at the findings of Section[3.2]

As we emphasize the importance of flux regularization, we propose the reformulation of (3), adding
a flux reconstruction term as follows.

min YD 4 (@520, 60) — Ui (@) IR+
i

ui,0,¢
AN I fiwthi (@3 20, 0) = i (@)1,
i gk
subject to &g My (z;0) fi — Mo(zi;0)3(z) = 0,
My (25 0)(fi — Sotis — NN (tis; ¢, 21)) = 0.

(6)

We adopt the above data-driven approach of flux reconstruction, as learning optimal geometries for
the representation of the governing physics is one of the main desiderata of CWFs. To be more pre-
cise, the above form of fz contains both a structural assumption and a learnable component, as o,
exactly represents the gradient term of flux (diffusion); see [Actor et al.| (2024), and NN (5 ¢, 2;)
denotes a learnable nonlinear flux term (convection).

4 EXPERIMENTS

We probe the validity of the theoretical insights in Section and the effectiveness of the proposed
reformulation of Section@]in a suite of four advection-diffusion systems. In addition, we conduct
an ablation on how the flux penalty A affects reconstruction for a Poisson problem in which dis-
cretization choices have altered the conservative nature of the flux. In the remainder of this section,
we will refer to the optimization approach of Section [3.3]as the regularized method, while we will
use the term unregularized method for the original formulation.

Model Setup. We use a CViT (Wang et al.| [2024) model for the inference of learnable Whitney
forms. CViT combines a vision transformer encoder, a grid-based coordinate embedding and a
query-wise cross-attention mechanism with state-of-the-art results in a suite of temporal nonlinear
PDEs. We add a cross-attention module with learnable input queries to extract a low-dimensional
conditioning variable for the NN in (6). In problems with global parameters (Experiments {.3]and
[.4) of the underpinning PDE, we use these parameters as an extra conditioning token in the self-
attention layers of the encoder. Regarding CWFs, we select a Q)1 basis on a 128 x 128 quadrilateral
mesh as the fine-grained partition of unity and select 8 learnable basis functions for the coarse-
grained partition. Furthermore, we replace the attention-based flux model of Kinch et al.|(2025)) with
a small MLP network, since we observed that larger models made training unstable and significantly
slower, when the flux reconstruction term was added.

Experimental Setup. Advection-diffusion equations are used to describe a plethora of phenomena
encountered in fields such as environmental science, oceanography and thermal sciences. In their
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stationary version, they are described by the following conservation equation.
V- (v(@)Vu(z) + a(z)u(z)) = s(x), 7

where u(z) denotes the distribution of a quantity, v(z) denotes the diffusivity tensor (or viscosity),
a(x) denotes the velocity vector and s(x) denotes the source. For all subsequent experiments, we
assume canonical domains 2 := [0, 1]”. We create learning problems of increasing difficulty by a
range of variations in the parameters of (7)), which we present in the following sections.

4.1 1D ADVECTION DIFFUSION

We generate the data according to the following PDE:

d*u 1du

@(ﬂf) - g%(ﬂf) =0,
where u(0) = 1 and u(1) = 0 and € denotes the inverse of the Péclet number. We create different
instantiations of the PDE by sampling € as ~ N(0.5,0.22) clipped in [0.1,0.9]. We use 90 samples
to train and 10 samples to evaluate. We convert the Péclet number into a token z with a simple MLP,
which we use as input to the decoding part of a CViT to infer the coarse-grained partition of unity.

We use this pedagogical example to demonstrate that CWFs without regularization do not recover
the actual flux, even in toy problems, although they achieve exact conservation. The results are
summarized in Tablem As expected, the distribution reconstruction deteriorates with the addition of
the flux reconstruction term, since a single partition of unity should accommodate the reconstruction
for both distribution u and flux f via the Whitney 0- and 1-forms construction. In Figure [2| we
see that the unregularized method resorts to trivial representations of the learnable part of the flux,
adjusting it near boundaries to achieve the source-outflow balance encoded in the equality constraint.

Grad. Term for € =0.547 10 Conv. Term for € = 0.547 Total Flux for € = 0.547
—05 : - | — Predicted 05 —— Ground Truth
’ ~ 0.5 Ground Truth ' Predicted
1.0 \ 0.0 ¥ -10
) —0.5
-1.5 -1.5
-1.0
—— Ground Truth 15
—2.0 Predicted . -20
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
X X X
Grad. Term for £ =0.547 Conv. Term for € = 0.547 Total Flux for € = 0.547
Py 001 Predicted /| —16 —— Ground Truth
-0.5 Ground Truth / Predicted
) | -1.8
-0.5 Y
M
-1.0 Vd -2.0
S
N -1.0 p4 —22{ —
-1.5 ¥
\ o —2.4
\ —_ e A
—— Ground Truth \ 15 ’,‘,'M" 26
-2.0 Predicted \ .‘L‘,'-""'
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 _2'80.00 0.25 0.50 0.75 1.00
X X X

Figure 2: 1D Advection Diffusion. Representative flux reconstruction for the unregularized (top) and the
regularized method (bottom). In the unregularized case, steep adjustments balance out flux inflow-outflow to
match the absence of a source term.

4.2 2D INHOMOGENEOUS ADVECTION DIFFUSION

Adopting the idea of the Darcy flow dataset from (Takamoto et al.| |2022), we create different re-
alizations of (7) by dividing € into 2 subdomains §2; and €25, as shown in Figure 3] and applying
different velocities within these domains. The velocity field a(z, y) is defined as follows.

a(a,y) = {—0.1 1T if (2,y) €
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Furthermore, we set s(z,y) = 20sin(wz) cos(my) and v = 1 for the entire dataset. We divide a
dataset of 10, 000 samples into 9, 500 training and 500 testing samples.

We summarize the results in Table [T} Surprisingly, we observe that the regularized method does
not affect the distribution reconstruction, while it drastically improves the flux reconstruction. This
may indicate that distribution reconstruction is limited by learning properties (dataset/model size,
etc.) and not by an inherent inability of the learned Whitney forms to reconstruct both distribution
u and flux f as previously. Once again, we see that the unregularized method learns uniform fluxes,
achieving flux balance through adjustments near the boundaries (see Figure ).

Inputs Prediction Ground Truth Abs. Error
1.0 0.8 I 0.8
0.8 06 0.6 0.006
0.6
0.4 0.4 0.004
0.4
0.2 0.2 0.2 0.002
0.0 0.0 0.0 0.000
Inputs Prediction Ground Truth Abs. Error
mi-0 I [10.015
0.8 1.0 1.0
06 0.010
0.4
0.5 0.5 0.005
0.2
0.0 0.0 0.0 0.000

Figure 3: 2D Inhomogeneous Advection Diffusion. Representative domains, predictions and point-wise errors

for the regularized method.
Act. Conv. Term|

Act. Conv. Term x

4|

w

N

-

(a) Ground Truth
Pred. Conv. Term x Pred. Conv. Term Pred. Conv. Term x Pred. Conv. Term
TR ‘ 4 4
T : d | (1.0
T 3 3
Y : 0.5
! - 5 0.0 2 2
ol - 1 W —o0.5 1 1
| 0 F e o o 0
(b) Unregularized Convective Term (c) Regularized Convective Term

Figure 4: 2D Inhomogeneous Advection Diffusion. Representative flux reconstruction for both methods. Sim-
ilarly to the 1D Advection Diffusion, we observe that the regularized convective term is coarser than the ground
truth, although it captures the general discontinuous form. This is reasonable as we minimize the reconstruction
error of the total flux. However, we pick to showcase the convective term, as this is the learnable part of the flux
and pictures a stark contrast to the unregularized method. Added visualization pertaining to flux reconstruction
is presented in Appendix@

4.3 2D ADVECTION DIFFUSION

In this experiment, we create different realizations of (7)) by sampling random velocity vectors with
a Euclidean norm in the range of [0, 20] and source terms of variable sparsity as in [Subramanian

~
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(2023) (see Figure3)) and fix viscosity v = 1 for the entire dataset. We divide the dataset into a
training set of 32, 768 samples and a test set of 4, 096 samples. Once again, the regularized method
achieves flux reconstruction, while only slightly harming distribution reconstruction (see Table[T).

Inputs

Prediction Ground Truth Abs. Error

I 03 R Vs | 0.003
0.2 2 [ i 0.002
0.1 - S v 0.001
0.0 . A 0.000

Prediction Ground Truth

0.3
0.2
0.1
0.0

Figure 5: 2D Advection Diffusion. Predictions and point-wise errors for the regularized method.

Act. Total Flux x Act. Total Flux Pred. Total Flux x Pred. Total Flux
o )
3
-1 -1
2
_2 -2
1
_3 -3
. »
—a 0 —a 0

(a) Ground truth total flux. (b) Regularized total flux.

0.003

0.002

0.001

0.000

w

[N

[

Figure 6: 2D Advection Diffusion. Reconstructed and ground truth total flux.

Table 1: MSE for distribution and flux reconstruction in Experiments 4.1-4.3 with the unregularized (first row)
and the regularized method with A = 0.01 (second row).

1D Adv.-Dif. 2D Adv.-Dif. Inhom. 2D Adv.-Dif.
Method Dist. Error  Flux Error  Dist. Error  Flux Error  Dist. Error  Flux Error

Unreg. 82-107'° 24.10° 15-100% 3.0-10° 45-1077 7.1-10°
Reg. 76-107% 36-1077 15-100% 16-107* 1.2-107¢ 5.8-107%

4.4 2D ANISOTROPIC POISSON EQUATION

So far, we have been working with standard
isotropic diffusion terms. However, since
Whitney forms allow for the exact expression
of the diffusion term, we can vary the diffu-
sion tensor without sacrificing the capacity of
Whitney forms to exactly express the diffu-
sion term and the subsequent mass matrices. Solution
Specifically, we set the diffusivity tensor v := 02
RT DR, where R = rot(#) denotes a rotation o1
matrix that controls the direction of diffusion 00
with  ~ U(0,27) and D = diag(1,e) de- o
notes a diagonal matrix that controls the de- o2
gree of diffusion anisotropy with e ~ (1, 5).

Only a slight modification should be made to Figure 7: Anisotropic Poisson Equation.
the stiffness matrix of the diffusion term in

Solution

0.3
0.2
0.1
0.0
-0.1
—0.2

-10
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(I). To further reinforce the variability of the solutions, we sample the source term as in Experi-
ment[4.3]and apply periodic boundary conditions. Representative samples are presented in Figure[7]

We divide the dataset into a training set of Table 2: Ablation on variable flux penalty .
32,768 samples and a test set of 4,096 sam-
ples. For further evaluation of the reconstruc- Method Dist. Loss Flux Loss

tion losses achieved by different flux penalties
A, we mention that the mean absolute value of
u equals 0.235 and the mean absolute value of
flux f equals 0.865 as a reference. We sum up 6 )
the results of our experiments in Table 2] Inter- Flux Pen. 0.001 = 1.8- 10_6 5.3-107 5
estingly enough, setting A = 0.001, we achieve Flux Pen. 0.0001 1.5-10 91-10
better flux reconstruction than larger penalties, demonstrating the importance of distribution recon-
struction in flux reconstruction of diffusion-dominated problems.

Unregularized 821077 3.1-107!
Flux Pen. 0.1 1.2-1075 4.2.107*
Flux Pen. 0.01 1.8-107% 2.2.1073

5 DISCUSSION

Summary. This work sheds light on the recently proposed framework of conditional Whitney
forms (Kinch et al.| 2025)). Building upon foundational concepts of finite element exterior calculus,
CWFs introduce a learning paradigm that operates in mixed spaces of finite elements. Thus, it
is equipped with a strong theoretical machinery to embed structure-preserving properties, such as
conservation laws and boundary conditions, into learnable reduced-order models.

However, the solution of the learning problem, as originally proposed, leads to trivial representations
of both geometry and physics. We essentially show that, when no specific structure of the physics
is assumed, the constrained-optimization problem is equivalent to an unconstrained regression task,
followed by a standard post-processing step. We also stress the necessity of physics regularization
and propose a data-driven approach to recover the ground-truth physics. Finally, we test the valid-
ity of our theoretical insights and evaluate the performance of CWFs in the reformulated learning
problem in a range of four advection-diffusion systems of increasing difficulty. The experimental
results support our theoretical claims, while CWFs exhibit notable adaptability to the new challenges
presented.

Further discussion. As mixed FEM-ML approaches have received increasing attention (Rezaei
et al., 2024; |Bouziani and Boullé, 2024; |Ouyang et al., [2025} [Farsi et al., 2025), we acknowledge
conditional Whitney forms as a very promising direction for the design of reliable machine learning
models with guaranteed physical realizability. Yet, we reckon that they have only been employed in
learning problems, where the structure-preserving properties can be achieved predominantly due to
the selection of a mixed-space approach and do not mingle with the task of actual-physics recovery,
as a mixed-space approach would suggest. Since we are the first to test the performance of CWFs
in such tasks, we hope that our findings will motivate further work on this framework. Future
work could provide better insights into both experimental and theoretical aspects of CWFs, such as
performance in highly nonlinear settings, the trade-off between physics recovery and stability, and
efficient implementations.

Physics recovery, particularly, poses significant new challenges for CWFs. First, a partition of unity
that accommodates both distribution and flux reconstruction has to be learned for each sample.
However, as problems leave the domain of diffusion-dominated systems, this task may present dif-
ficulties generally pertaining to the FEEC treatment of nonlinear systems or the reduced-order ap-
proach. In addition, it is not clear how an accurate recovery of highly nonlinear physics affects the
well-posedness of the equality constraint; the core piece of structure preservation. We present the ex-
ample of a not so well-conditioned equality constraint and discuss it further in Appendix[C] Finally,
the addition of a flux-reconstruction term to the loss function may significantly affect specific de-
sign and optimization choices. For example, it favors the selection of simple models to represent the
learnable flux term for both stability and computational efficiency reasons. Thus, new experimental
evidence is needed on the optimal implementation of CWFs.
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ETHICS STATEMENT

This work proposes physics-informed learning techniques that can accelerate the modeling of com-
plex physical systems and enable more efficient and reliable simulation tools. Our methods rely
solely on synthetic or domain-agnostic data, and we commit to transparency by releasing code and
detailed methodological descriptions to support reproducibility. Although we do not anticipate spe-
cific negative impacts from this work, we recognize that, as with any powerful predictive tool, there
is potential for misuse; we therefore encourage the research community to carefully consider eth-
ical implications and potential dual-use scenarios when applying these technologies in sensitive
domains.

REPRODUCIBILITY STATEMENT

A detailed description of the data generation process and the experimental setup that was followed
is provided in Sectiond] Additional information pertaining to method implementation, model archi-
tecture and data setup can be found in Appendix [A] The code used to carry out the experiments is
provided as a supplementary material for this submission.
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A IMPLEMENTATION DETAILS

Whitney Forms. A significant benefit of conditional Whitney forms is the non-invasive computa-
tion of the mass matrices M, M7 of the coarse-grained partition of unity from the mass matrices

Mg , M 1f of the fine-grained partition of unity. We recall that the mass matrices are generally com-
puted as follows:

(Mo)ij = (¥, 4))a,
(My)ijm = (i, Yr)a,

where (-, -)q denotes the L2-inner product of the functions f : 2 — R and the functions g : Q — R?
correspondingly. The mass matrices M, M 1f can be computed as follows:

Mg =wMIwT,
M= (W @ W)MI (W o W)T.

Since the fine-grained partition consists of ()1 elements on a quadrilateral mesh, we compute the
mass matrices through a sparse, diagonalized implementation of the assembly algorithm proposed in
Appendix A.3 of |Actor et al.|(2024). The interested reader can find more about this implementation
in the code uploaded.

Equality-Constrained Optimization. We adopt the optimization scheme proposed in Section 3
of [Kinch et al.| (2025) to ensure that the equality constraint is met throughout the training enforc-
ing the preservation of structure, strictly and independently of the predictive performance of the
model. In addition, we use the mean squared error of the distribution reconstruction on the nodes of
the rectangular mesh and the mean squared error of the flux reconstruction on the midpoint of the
rectangular cells to train and evaluate our model. We replace the Shampoo optimizer (Gupta et al.,
2018) with a typical AdamW one (which seems to be working fine) for computational efficiency
reasons, as the model size, the data dimensionality and the flux reconstruction setup increase the
computational load of CWFs in our setup. As the flux reconstruction term integrates the governing
physics into the learning problem, the optimality of the employed optimization schemes and their
correlation to the corresponding categories of physics needs to be investigated. More discussion on
this topic is provided in Appendix [C|

CViT. Our main interventions in the CViT architecture are described in the model setup section
of the main paper. We use similar hyperparameters for all our 2D experiments. We train the models
for 250,000 steps with batch size 16 and optimize with AdamW using an exponential learning rate
scheduler. More details on the exact hyperparameters used can be found in the configuration files
provided for each experiment in the code uploaded.

Data Setup. We provide an analytic description of the data generation and training/validation
setup in the main body of the paper. The 1D problem admits an analytical solution,
while we use scikit-fem (Gustafsson and McBain, 2020) to generate solutions for the 2D
experiments. For the problem with periodic boundary conditions, we use the code pro-
vided by |Subramanianet al.[(2023) onhttps://github.com/ShashankSubramanian/
neuraloperators-TL-scaling/tree/main/utils. Any details regarding the data gen-
eration procedure, which were possibly omitted here, can be found in the supplementary code.

Computational Cost. All experiments were performed on two NVIDIA H200 Tensor Core GPUs.
Training times for 250,000 steps and a 16 batch size were 20 hours for the 2D problems. Without
flux reconstruction, training times were around 9 hours. This is an expected increase in compu-
tational times, as flux reconstruction implies the computation of Whitney 1-forms, whose number
is quadratic to the size of the partition of unity. When flux reconstruction is of lesser value, the
increased computational cost can be mitigated by sparser evaluations of the flux, etc.
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B PROOF OF PROPOSITION 2

Proof: As a symmetric positive definite matrix, M is a bijective linear map and does not alter the
rank-nullity properties of J. Therefore, we only have to analyze 6 or equivalently &y, since:

rank (03 ) = rank(do).

We recall that §y denotes a generalized incidence matrix between elements of Whitney-0 forms
WY(Q) and Whitney 1-forms W' (€2) that mimics the incidence matrix between the nodes and the
edges nodes of a complete undirected graph. Briefly, &g takes the following form:

1, if k = j,
(00)ije =< -1, ifk=1, ,
0, otherwise

M
for¢ < j. Therefore, &g € R(%)xM , where M denotes the cardinality of the coarse-grained partition

of unity. We can show that the null space of 8 is spanned by 17, Letz € RM s.t. 2 = (@1, ey )T
Then

dox =0 = |[|dpz|| =0 = xTégéox =0 = Z(ml —l'j)2 =0 = z1=..=2M.
i<j
®)
From the rank-nullity theorem, we have the following.

rank(do) + null(dg) = M,

which yields rank(dy) = M — 1. Now, we need to recall that, since we use the last node to pre-
scribe the homogeneous boundary conditions, we should practically study the rank of (§0T VLM—1,:
or equivalently, the rank of (Jo). 1.a7—1, which is denoted as .. The rank-nullity theorem yields

rank(d.) = M — 1 — null(d.).

Hence, showing that N(J.) = {0}, where N denotes the null space, suffices to conclude that
rank(6.) = M — 1. Lety = [y1,...,ym—1]7 s.t. Sy = 0. This implies that z = [y, 0]7 is a
solution to gz = 0, which makes y = 0. Hence, we conclude that:

N(0.) = {0} = rank(é.) =M — 1.

Thus, rank(67) = rank(s,) = M — 1 and the equation 8, M; f = M3 admits infinite solutions
f for any 3. In addition, the rank-nullity theorem yields the following:

null(dX My) = M(M —1)/2 — rank(dXMy) = M(M —1)/2 — (M —1) = (MQ_ 1)-
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C NONLINEAR PHYSICS

As already addressed in the main body of our work, learning with conditional Whitney forms in
the form of [Kinch et al.|(2025) is identical to solving a typical regression problem in the degrees of
freedom of a finite element space. In addition, since no treatment of the governing physics is taken,
no characterizations can be given to the performance of CWFs in taxonomies of physics domains,
such as diffusion- or advection-dominated, linear or nonlinear, etc. Experimentally, this translates
into a predictive performance identical to the predictive performance of the vanilla data-driven model
used for the inference of the partitions of unity.

Proposition [I| shows that any tuple of distribution and source (u(x), s()) can give birth to a trivial
conservation equation that admits an infinite number of solutions for the flux coefficients and com-
pletely ignores the actual governing physics. Even if one does not adopt the proposed simplified
reformulation of Proposition [I] and sticks to the original formulation of the learning problem, ex-
tensive experiments show that CWFs can replicate the predictive performance of the vanilla model
without difficulty, but also without any generalization benefit as a constrained approach should. As
implied by our work, CWFs can successfully perform regression tasks that are not associated with
conservative physics or any physics in general.

However, once the recovery of governing physics is incorporated into the learning task, Whitney
forms face significant new challenges. First, the approach of Proposition [I]is no longer valid, since
the CWFs must learn a partition of unity that simultaneously supports the reconstruction of both
distribution v via Whitney 0-forms (W°(£2)) and flux f via Whitney 1-forms (W' (£2)). Moreover,
the coefficients of the distribution and the flux in their respective bases, W(2) and W*(Q), must
be consistently linked through a strict, learnable conservation equation posed in a reduced mixed
space (also learnable). As systems move beyond the domain of linear diffusion-dominated PDEs,
overcoming these difficulties is far from trivial.

In particular, for convective systems, accurate flux reconstruction often drives the learnable con-
servation equation into ill-posed regimes. In practice, this translates into the conservation equation
ceasing to be solvable (or solvable under conditions, such as the solver used), thereby threatening
to derail the training process. This behavior is amply demonstrated in the (anisotropic) advection-
diffusion setup of |[Subramanian et al| (2023). Specifically, reflecting the data generation process
presented in that work, we generate PDE coefficients with an advection-to-diffusion ratio distributed
as ~ U(0.2, 1), corresponding to Péclet numbers up to 50. We only modify the boundary conditions
from periodic to homogeneous. Finally, the generated dataset follows the typical 32, 768-4, 096 split

of Experiments {.3pand [4.4]

We observe that larger flux reconstruction penalties push flux reconstruction through error thresholds
that destabilize the learning process via the possible ill-posedness of the equality constraint (see
Figure [8). We contrast these learning curves with the respective ones from Experiment in
which Péclet numbers take values of up to 20 (see Figure[9). In conclusion, this experiment clearly
demonstrates that the performance of CWFs is not affected by the governing physics, when no
accurate flux is required. However, as the convective term dominates the system, flux reconstruction
infuses significant difficulty into the learning task.

Although there is a correlation between strong convection and instability of the CWFs, it is not clear
if it pertains to the general formulation (i.e. as a conservation constrained optimization problem)
or specific implementation aspects, as the optimization method employed. An interesting direction
of future research could investigate how quasi-second-order optimization algorithms may affect the
stability of CWFs. In |Kinch et al.| (2025), they have already used Shampoo, a quasi-second-order
optimization method. However, due to the use of the original formulation, no concrete evidence
is provided regarding its superiority over AdamW. Our experiments show that AdamW does not
face any stability issue too, when no flux regularization is enforced, and therefore, the use of other
optimization schemes does not seem to be a necessity. In the reformulated setting proposed here,
a second-order approach may indeed impact the training dynamics. Wang et al.| (2025) provide an
insightful analysis of how second-order approaches affect the performance of another category of
physics-informed models, the PINNs.
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Figure 8: Highly Convective System. Distribution and flux reconstruction loss for a range of flux
penalties A\. We observe that for flux penalties A larger than 0.0001 the training becomes unstable.
The spikes usually denote an inability to solve the equality constraint (see Figure @
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Figure 9: Moderately Convective System. Distribution and flux reconstruction validation loss for

both methods in Experiment [4.3]
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Figure 10: Highly Convective System. Equality constraint residual for flux reconstruction penalty

A =0.05and \ =

0.00 (unregularized). One observes that the equality constraint is satisfied to

machine precision throughout the entire training for the unregularized method. On the other side,
the model starts struggling with the equality constraint in the range of 50,000-100,000 training steps,
when flux regularization is added. This phenomenon may indicate that as the reconstruction and the
representation of physics become more accurate, the conservation equation is driven to regimes,

where it is not well-conditioned.
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D SUPPLEMENTARY VISUALIZATIONS

We provide additional visualization associated with the experiments in the main body of the article.
We mainly emphasize the reconstruction of the different flux terms.

1D Advection Diffusion For completeness, we present representative field predictions and point-
wise errors achieved by the regularized method in Experiment 4.1.

u(x) for € =0.547 Abs. Error for £ =0.547
0]~ 0.4
0.8
0.2
0.6
\ 0.0
0.4 N\
0.2{ —— Ground Truth . -0.2
Predicted \ —
0.0 N 0.4
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
X X
u(x) for £ =0.276 Abs. Error for € =0.276
LO| ——— — 0.4
0.8
0.2
0.6
0.0
0.4
0.2]{ — Ground Truth -0.2
Predicted \ _
0.0 . 04
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
X X

Figure 11: 1D Advection Diffusion. Representative field predictions and point-wise errors with the
regularized method.
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2D Inhomogeneous Advection Diffusion We below present gradient and total flux reconstruction
for both the unregularized and regularized methods. As the gradient term of the flux is analytic in
Whitney forms construction, its reconstruction quality depends only on the reconstruction quality
of the distribution u. Therefore, we observe that the regularized method gives a slightly coarser
representation compared to the unregularized one. However, the total predicted flux is not only able
to accurately capture the shapes appearing in the ground truth but also eliminates the coarseness
observed in both gradient and convective terms reconstruction.

Act. Grad. Term x Act. Grad. Term
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2 2
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(a) Ground truth gradient term.

Pred. Grad. Term x Pred. Grad. Term
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(b) Unregularized gradient term.
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(c) Regularized gradient term.
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Figure 12: 2D Inhomogeneous Advection Diffusion. Representative gradient reconstruction for both
methods.
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(a) Ground truth total flux.
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(b) Unregularized total flux.
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(c) Regularized total flux.

Figure 13: 2D Inhomogeneous Advection Diffusion. Representative reconstruction of the total flux
for both methods.
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2D Advection Diffusion Consistent with the conclusion of Experiment 4.2, the regularized
method provides an accurate and smooth representation of the ground-truth flux.
Act. Grad. Term x

1 Act. Grad. Term Pred. Grad. Term x Pred. Grad. Term
1

0 2 0
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-2 -2
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(a) Ground truth gradient term. (b) Regularized gradient term.
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Figure 14: 2D Advection Diffusion. Reconstructed and ground truth gradient flux terms.
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(a) Ground truth convective term. (b) Regularized convective term.

Figure 15: 2D Advection Diffusion. Reconstructed and ground truth convective flux term.
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