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ABSTRACT

Non-parametric mesh reconstruction has recently shown significant progress in
3D hand and body applications. In these methods, mesh vertices and edges are
visible to neural networks, enabling the possibility to establish a direct mapping
between 2D image pixels and 3D mesh vertices. In this paper, we seek to establish
and exploit this mapping with a simple and compact architecture. The network is
designed with these considerations: 1) aggregating both local 2D image features
from the encoder and 3D geometric features captured in the mesh decoder; 2)
decoding coarse-to-fine meshes along the decoding layers to make the best use
of the hierarchical multi-scale information. Specifically, we propose an end-to-
end pipeline for hand mesh recovery tasks which consists of three phases: a
2D feature extractor constructing multi-scale feature maps, a feature mapping
module transforming local 2D image features to 3D vertex features via 3D-to-2D
projection, and a mesh decoder combining the graph convolution and self-attention
to reconstruct mesh. The decoder aggregate both local image features in pixels and
geometric features in vertices. It also regresses the mesh vertices in a coarse-to-
fine manner, which can leverage multi-scale information. By exploiting the local
connection and designing the mesh decoder, Our approach achieves state-of-the-art
for hand mesh reconstruction on the public FreiHAND dataset.

1 INTRODUCTION

Reconstructing 3D hand mesh from a single RGB image has attracted tremendous attention as it
has numerous applications in human-computer interactions (HCI), VR/AR, robotics, etc. Recent
studies have made great efforts in the accurate hand mesh reconstruction and achieved very promising
results (Lin et al., 2021b; Moon & Lee, 2020; Kulon et al., 2020; Ge et al., 2019; Hasson et al., 2019).
Recent state-of-the-art approaches address the problem mainly by deep learning. These learning-
based methods can be roughly divided into two categories according to the representation of the hand
meshes, i.e., the parametric approaches, and the non-parametric ones. The parametric approaches use
a parametric model that projects hand meshes in a low dimensional space (e.g., MANO (Romero et al.,
2022)) and regresses the coefficients in the space (e.g., the shape and pose parameters of MANO) to
recover the 3D hand (Hasson et al., 2019). The non-parametric ones instead directly regress the mesh
vertices using graph convolution neural network (Moon & Lee, 2020; Kulon et al., 2020; Chen et al.,
2021b) or transformer (Lin et al., 2021b).

Non-parametric approaches have shown substantial improvement over the parametric ones in recent
work, owing to the mapping between the image and the vertices is less non-linear than that between
the image and the coefficients of the hand models (Taheri et al., 2021). Their pipelines (Kulon et al.,
2020; Chen et al., 2021b; Lin et al., 2021b) usually consist of three stages: a 2D encoder extracts
the global image feature, which is mapped to 3D mesh vertices before fed into a 3D mesh decoder
operating on the vertices and edges to get the final mesh.

Despite the success, the potential of non-parametric approaches has not been fully uncovered with this
pipeline. In parametric methods, vertices and edges are not visible to the network, and no operation
is carried out in the manifold of the meshes; 2D image features are extracted only to learn a mapping
between the image content and the hand model parameters. Conversely in non-parametric methods,
operations on vertices and edges, such as graph convolutions or attention modules, are designed to
aggregate the geometric features of the meshes. With the operation, vertices and edges are visible to
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the networks; thus direct connections between pixels of the 2D image feature space and vertices of
the 3D mesh can be established and operations in the decoder can aggregate both image features and
geometric features, which can not be realized in the parametric methods. This connection and the
aggregation, however, have not been fully explored by previous work.

In this paper, we seek to establish the connections and merge the local hand features from appearance
in the input and geometry in the output. To this end, we utilize the pixel-aligned mapping module to
establish the connections and propose a simple and compact architecture to deploy the connections.
We design our network by making the following philosophical choices: 1) For the 2D feature extractor,
we keep feature maps of different scales in the encoder instead of using the final global feature to
enable 2D local information mapping to 3D. 2) We decode the mesh in the coarse-to-fine manner to
make the best use of the multi-scale information. 3) Both image features and geometric features are
aggregated in the operations of the mesh decoder rather than only geometric features.

Our design is shown in Figure 1. Multi-scale image features are naturally passed to the 3D mesh
decoder. Our experiments show the design enables better alignment between the image and the
reconstructed mesh. The aggregation of features not only improves the graph convolution network
substantially but also gains large superiority over the attention mechanism with global features.

To summarize, our key contributions are 1) Operations are capable of aggregating both local 2D image
features and 3D geometric features on meshes in different scales. 2) Connections between pixels of
2D image appearance in the encoder and vertices of 3D meshed in the decoder are established by a
pixel-vertex mapping module. 3) A novel graph convolution architecture achieves state-of-the-art
results on the FreiHAND benchmark.

2 RELATED WORK

Mesh Reconstruction. Previous research methods employ pre-trained parametric human hand and
human models, namely MANO (Romero et al., 2022), SMPL (Loper et al., 2015). And estimate
the pose and shape coefficients of the parametric model. However, it is challenging to regress pose
and shape coefficients directly from input images. Researchers propose to train network models
with human priors, such as using skeletons (Lassner et al., 2017) or segmentation maps. Some
researchers have proposed regressed SMPL parameters by relying on human key points and contour
maps (Pavlakos et al., 2018; Tan et al., 2017) of the body. Coincidentally (Omran et al., 2018)
utilized the segmentation map of the human body as a supervision condition. A weakly supervised
approach (Kanazawa et al., 2018) using 2D keypoint reprojection and adversarial learning regression
SMPL parameters. Hsiao-Yu Tung (Tung et al., 2017) proposed a self-supervised approach to
regression of human parametric models.

Recently, model-free methods (Choi et al., 2020; Moon & Lee, 2020; Kolotouros et al., 2019) for
directly regressing human pose and shape from input images have received increasing attention.
Because it can express the nonlinear relationship between the image and the predicted 3D space.
Researchers have explored various ways to represent the human body and hand using 3D mesh (Lin
et al., 2021b; Kolotouros et al., 2019; Choi et al., 2020; Lin et al., 2021a; Litany et al., 2018; Ranjan
et al., 2018; Verma et al., 2018; Wang et al., 2018; Moon & Lee, 2020), voxel spaces (Varol et al.,
2018), or occupancy fields (Saito et al., 2019; Niemeyer et al., 2020; Xu et al., 2019; Saito et al.,
2020; Peng et al., 2020). Among them, the voxel space method adopts a completely non-parametric
method, which requires a lot of computing resources, and the output voxel needs to fit the body
model to obtain the final human 3D mesh.Among the recent research methods, Graph Convolution
Neural Networks (GCNs) (Kolotouros et al., 2019; Choi et al., 2020; Lin et al., 2021a; Litany et al.,
2018; Ranjan et al., 2018; Verma et al., 2018; Wang et al., 2018; Moon & Lee, 2020) is one of
the most popular methods. Because GCN is particularly convenient for convolution operations on
mesh data. However, GCN is good for representing the local features of the mesh, and the global
features of the long-distance interaction between human vertices and joints cannot be well represented.
Transformer-based methods (Lin et al., 2021b) use a self-attention mechanism to take full advantage
of the information interaction between vertex and joints and use the global information of the human
body to reconstruct more accurate vertex positions. But whether it is a GCN-based method or
an attention mechanism-based method. Neither considers pixel-level semantic feature alignment
information. Local pixel-level semantic feature alignment can compensate for the global information
that GCN and transformer methods focus on.
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Graph Neural Networks. Graph deep learning generalizes neural networks to non-Euclidean
domains, and we hope to apply graph convolution neural networks to learn shape-invariant features
on triangular meshes. For example, spectral graph convolution neural network methods (Bruna
et al., 2013; Defferrard et al., 2016; Kipf & Welling, 2016; Levie et al., 2018) perform convolution
operations in the frequency domain. Local graph methods (Masci et al., 2015; Boscaini et al., 2016;
Monti et al., 2017) based on spatial graph convolutions make deep learning on Manifold more
convenient.

In the application of mesh reconstruction. (Ranjan et al., 2018) used fast local spectral filters to learn
nonlinear representations of human faces. (Kulon et al., 2019) extended autoencoder networks to 3D
representations of hands.Kolotouros proposed GraphCMR (Kolotouros et al., 2019) to regression
3D mesh vertices using a GCN (Kolotouros et al., 2019; Choi et al., 2020; Lin et al., 2021a; Litany
et al., 2018; Ranjan et al., 2018; Verma et al., 2018; Wang et al., 2018; Moon & Lee, 2020).
Pose2Mesh (Choi et al., 2020) proposes to reconstruct a human mesh from a given human pose
representation based on a cascaded GCN. (Lim et al., 2018) proposed spiral convolution to handle
mesh in the spatial domain. Based on SpiralConv, Kulon (Kulon et al., 2020) introduced an automatic
method to generate training data from unannotated images for 3D hand reconstruction and pose
estimation. (Chen et al., 2021b;a) propose a novel aggregation method to collect effective 2D cues
and exploit high-level semantic relations for root-relative mesh recovery. Kevin Lin proposed
Graphormer (Lin et al., 2021a), combining Transformer and GCN to simulate the global interaction
between joints and mesh vertices.

Mesh-image alignment. In the field of 2D image processing, most deep learning methods employ
a "fully convolution" network framework that maintains spatial alignment between images and
outputs (Kirillov et al., 2020; Long et al., 2015; Tompson et al., 2014). Several research methods also
consider alignment relationships in the 3D domain. For example, PIFu (Saito et al., 2019) proposed
an implicit representation that locally aligns the pixels of a 2D image with the global context of their
corresponding 3D objects. PyMAF (Zhang et al., 2021) introduced a mesh alignment feedback loop,
where evidence of mesh alignment is used to correct parameters for better-aligned reconstruction
results. The alignment can take advantage of more informative features that are sensitive to position
to predict mesh.

Existing mesh recovery works (Tang et al., 2021; Li et al., 2022) face the shortcomings of complex
network structure when mesh-images alignment. Furthermore, the initial input of the 3D decoder
is a high-resolution mesh, which makes network optimization difficult. This is critical for practical
applications. To address these issues, we propose a compact network framework to map 2d image
pixel features to 3d mesh vertex locations. We apply a multi-scale structure to the 2D feature
encoder and 3D mesh decoder respectively, to achieve coarse-to-fine pixel alignment at corresponding
resolutions. Using multi-scale pixel-aligned features can achieve better mesh-image alignment than
previous methods.

3 METHODOLOGY

Given a monocular RGB image I , our goal is to predict the 3D positions of all the N vertices
V = {vi}Ni=1 of the predefined hand mesh M. The overall architecture of our network, as shown
in Figure 1, has two major components: a 2D feature extractor, as well as a 3D mesh decoder that
consists of feature mapping modules and mesh-conv layers. The 2D feature extractor is an hourglass
that encodes the image content into features at S levels of scale. Respectively the 3D mesh decoder
also recovers the vertices in a coarse-to-fine manner in S different scales. By design the mesh decoder
at level s ∈ S leverages the 2D feature map at level s. In the following sections, we will describe the
architecture of the 2D feature extractor in 3.1, the pixel-aligned feature mapping module in 3.2, the
mesh decoder in 3.3, as well as training details in 3.4.

3.1 2D FEATURE EXTRACTOR

In order to extract 2D features at different scales/receptive fields, we adopt a simple hourglass model
with skip connections as the feature extractor. Previous works (Lin et al., 2021b; Kulon et al., 2020;
Kolotouros et al., 2019) extract a global image feature vector and feed it to the decoder. Since all the
vertices share the same global feature, only the geometric features relating to the overall deformation
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Figure 1: Our full pipeline. Given a single-hand RGB image as input, our network first extracts 2D feature
maps with an hourglass module. Downsampled Fs and upsampled feature maps Hs are aggregated to have
the multiscale image feature pyramids, which are mapped to vertices of meshes at different scales by our
pixel-aligned mapping module and GCN blocks. Vertex position of the meshes can then be predicted in a
coarse-to-fine manner.

of meshes are aggregated and updated for each vertex. To enable mapping local image features to the
vertices, we combine the downsampled feature Fs and upsampled feature Hs from the respective
level s of the hourglass network to have a fusion feature map Qs ∈ Rhs∗ws∗cs for the level s of the
mesh decoder. Specifically,

Qs = Conv1D(
⊕

(Fs, Hs)), (1)

where
⊕

denotes concatenation, Conv1D denotes 1D convolution. hs, ws, and cs represent height,
width, and the number of channels of Qs respectively.

3.2 PIXEL-ALIGNED FEATURE MAPPING MODULE

Given a 2D image feature map Q ∈ Rh∗w∗c, the mapping module needs to transform it into 3D
vertex features G ∈ RN∗c of the corresponding mesh decoder layer, where N denotes the number
of vertices as mentioned. For this purpose, previous methods (Kulon et al., 2020; Kolotouros et al.,
2019; Lin et al., 2021b) either simply repeat the global feature from a feature extraction network to
have the vertex features, or use a fully connected layer to map the global feature vector from Rc to
RN∗c (the vertex features G are obtained by reshaping F

′

g). This mapping manner can not well build
the relationship between the 2D and 3D domain and have difficulty in guaranteeing mesh-alignment
with the input image (Zhang et al., 2021).

Inspired by (Wang et al., 2018; Saito et al., 2019), we utilize a pixel-aligned feature mapping module
to transform the feature map Qs to 3D vertex features Gs ∈ RNs∗cs . Each predicted vertex v ∈ Vs is
projected to pixel x in image space, as illustrated in Figure 2. After that, we sample the feature map
Qs to extract pixel-aligned vertex features Gs using the following equation:

Gs = f(Qs, π(Ms)), (2)

where π(.) denotes 2D projection, and f(.) is a sampling function.

Similar to (Wang et al., 2018; Zhang et al., 2021) we use bilinear interpolation around each projected
vertices on the feature maps to extract pixel-aligned feature vectors. The 2D feature maps {Qs} are
multi-scale (7x7->14x14->28x28->56x56). Lower-resolution image features have a larger receptive
field, hence more global information, while higher-resolution feature maps contain more local
information. The pyramid feature maps and pixel-aligned feature mapping modules can provide
richer content for vertices.
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Figure 2: Left: The architecture of the mesh decoder. Right: The data flow of the mesh decoder. 3D vertices
are projected to the 2D image plane to retrieve pixel-aligned features. The GCN blocks and the attention module
form a mesh-conv layer to predict offset mesh.

3.3 MESH DECODER

In the 2D feature extractor, feature maps of different scales are kept and in the mapping module, the
connections of the features of pixels of these feature maps and features for the 3D vertices in the
corresponding decoding layers are established. In this section, we aim to design a mesh decoder
structure that makes full use of the connections that are made possible via the non-parametric mesh
representation. To be specific, we aim to 1) design a mechanism to leverage the multi-scale image
features in the hierarchical decoding architecture; 2) aggregate both local features from the feature
extractor and the features extracted in the previous mesh decoder layers.

For the first aim, our decoder reconstructs hand meshes in a coarse-to-fine manner along with the
hierarchical layers, shown in Figure 1. Our blocks skip connects the different vertex feature Gi from
the mapping module. In each decoding layer, based on the reconstructed mesh, image features of
the corresponding scale are sampled by the feature mapping module and then concatenated to the
vertices features. Rather than directly regressing the 3D coordinates, we predict the offset mesh δMi

of last-block-estimated Mi. The coarse-to-fine mesh topologies for each block are acquired by mesh
simplification (Gong et al., 2019). The number of vertices of different meshes is 98, 195, 389, and
778. The M1 has the same mesh topology as MANO (Romero et al., 2022). The meshes at different
scales are predicted by several additional mesh decoding headers. We use the strategy based on
edge contraction (Garland & Heckbert, 1997) to do the pooling and unpooling operation. The input
features are multiplied with a pre-computed transform matrix to obtain the output features.

We achieve the second aim by deploying operations that can work on vertices of meshes, i.e., graph
convolution operating on the manifold of the meshes and the attention module. In the ablation
studies, we demonstrate that local features can significantly boost the performance of both operations
compared with global features. Though in our approach, the feature mapping and the hierarchical
decoding are only applied to decoders with graph convolutions and the attention modules, they can
be injected into other 3D mesh decoders. In the experiment, we show that our components are also
very effective for the transformer-based method (Lin et al., 2021b).

Graph Convolution For the graph convolution operators, spectral convolutions and spatial convo-
lutions have been used in the mesh reconstruction. We use a spiral patch operator (Gong et al., 2019)
to process vertex features in the spatial domain as it demonstrates superior performance in recent
work. The spiral operator collects vertex neighbors of the center v. The graph convolution produces
the offset mesh δMs and feature F s

GCN for each vertex. The spiral convolution of input F s
GCN (v)

can be defined as:

(F s
GCN ∗ g)v =

L∑
l=1

glF
s
GCN (O(v)) (3)

where gl is the convolution kernel, and O(v) denotes the pre-computed vertices ordered sequence.

Self-Attention While GCN is useful for capturing fine-grained neighborhood information, it
is less efficient at extracting long-range dependencies. We inject the multi-head self-attention
module (Vaswani et al., 2017) into GCN blocks to address this challenge.

Given the vertex features F s
GCN generated by GCN, we strengthen the global interactions and get a

new feature F s
MHSA for each vertex with the help of MHSA:

F i
MHSA = MHSA(F s

GCN ), (4)
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The GCN blocks and the attention module form a mesh-conv layer as shown in Figure 2.

3.4 TRAINING

We denote a dataset as a set of tuples {(I, P, C,M)}, where I is the input image and M is the hand
mesh; P and C are the heatmaps of 2D pose and silhouette, respectively. Following (Moon & Lee,
2020), We apply the Gaussian distribution to construct 2D pose heatmaps.

3D Supervision One concern for non-parametric methods is the lack of kinematic and shape
constraints. Adding 3D shape supervision can mitigate that. To this end, we adopt an L1 loss norm
Lmesh to supervise the 3D coordinates of vertices in the coarse-to-fine manner. Besides, we use the
normal loss Lnorm and edge length loss Ledge in (Wang et al., 2018) for smoother reconstruction
meshes in the last mesh decoding layer. So the loss for a sample in the dataset is defined as:

Lmesh =

S∑
s=1

λs
m ∗ ||M̂s −Ms||1

Ledge =
∑
t∈T

∑
e∈t

|||ê| − |e||||1

Lnorm =
∑
t∈T

∑
e∈t

||ê · n||1

(5)

where t is a triangle face from all the faces T of M, e denotes an edge of t, and n the normal vector
of t computed from the ground truth. To ensure the performance of the reconstruction of the finest
mesh, we set a weight λs

m for different scale mesh recontruction loss.

2D Auxiliary Supervision For the 2D feature extractor, we add auxiliary supervision for better
feature extraction. We apply binary-cross-entropy (BCE) loss to formulate both the silhouette loss
Lsil and 2D pose loss L2Dpose as follows:

Lsil = −(
∑
j

(xC
j log(x̂C

j ) + (1− xC
j ) log(1− x̂C

j ))), x
C ∈ C

L2Dpose = −(
∑
j

(xP
j log(x̂P

j ) + (1− xP
j ) log(1− x̂P

j ))), x
P ∈ P,

(6)

where xC
j and xP

j denotes the j-th pixel value of the silhouette and pose heatmaps respectively, and ˆ
denotes the prediction.

The overall loss is a weighted sum of all losses, Ltotal = Lmesh +Ledge +λn ∗Lnorm +λs ∗Lsil +
λp ∗ L2Dpose, where λn = 0.1, λp = 10, λs = 2.5 are set empirically.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUPS

FreiHAND (Zimmermann et al., 2019) is the most widely-used benchmark for hand mesh recon-
struction. It contains 130K images for training with 3D and 2D annotations, and the test set has 4K
images. As the annotations of the test set are not available, we submit our results to their provided
online server for evaluation.

Training Procedure. Our network is based on the HRNet-W64 (Wang et al., 2020) and ResNet-
50 (He et al., 2016) backbone pre-trained on ImageNet (Krizhevsky et al., 2012). We trained our
model in an end-to-end manner. 2D keypoints and masks are used to train the image feature extractors
as auxiliary supervision. We resize the input image to 224×224. Following previous work, data
augmentations including rotation, translation, color jitter, etc are applied during training. Our method
is implemented in Pytorch and trained on Nvidia RTX 3090 GPU with a batch size of 64 for 50
epochs. We optimize the network by Adam with a learning rate of 1e-4 and set a decay rate of 0.1 at
35 epochs.
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Table 1: Analysis of the self-attention and mapping module

Feat. Mapping Module Self-attention PA-MPJPE↓ PA-MPVPE↓

Global Repeat % 10.1 10.3
Global MLP % 9.1 9.2
Feature maps(w/o 2D) Pixel-aligned % 8.3 8.4
Feature maps(w/ 2D) Pixel-aligned % 7.8 7.9
Global MLP " 8.4 8.6
Feature maps Pixel-aligned " 7.5 7.7

Evaluation metrics. We report the results of our approach using several evaluation metrics. PA-
MPJPE: It first performs the rigid alignment between the prediction and ground-truth using Procrustes
Analysis (Gower, 1975), then calculates the mean-per-joint-position-error. PA-MPVPE: similar to
PA-MPJPE, but it measures the difference between the vertices predicted and the ground truth. The
unit for the PA-MPJPE/PA-MPVPE metrics is millimeter (mm). F-scores: It measures the harmonic
mean between recall and precision between two meshes. We report the F@5mm and F@15mm as
existing works.

Table 2: Analysis of adding skip connections in
different decoder layers.

M4 M3 M2 M1 PJ↓ PV↓

" % % % 8.25 8.31
" " % % 8.06 8.13
" " " % 7.93 8.02
" " " " 7.83 7.93

Table 3: Effectiveness of coarse-to-fine for pixel-
aligned mapping module

Methods PJ↓ PV↓
refine(A time) 8.31 8.42
refine(Three times) 8.12 8.22

Ours 7.83 7.93

4.2 ABLATION STUDIES

We conduct ablation studies under various settings on FreiHAND (Zimmermann et al., 2019) to
investigate the key components of our model. We use ResNet-18 as the backbone and report the
results using PA-MPJPE and PA-MPVPE. Table 1 shows all the comparisons. Our final model (last
row) improves the baseline with the global feature (1st row) by 26%.

Effectiveness of Mapping Module for Graph Convolution To establish the relationships between
the 2D pixels and 3D vertices, We utilize the pixel-aligned feature mapping module. To verify the
efficacy, we construct baselines based on GCN and compare their reconstruction accuracy in Table 1
with the variant of our method. Similar to (Kulon et al., 2020), we implement a baseline that directly
repeats the global feature and concatenates it to the mesh vertices (1st row) and a baseline that maps
the global feature to the vertex features by MLP layers(2nd row). For fair comparisons, we construct
our variant with the pixel-aligned module which has the same architecture for the mesh decoder with
these two baselines and do not add the 2D supervision (3rd row). Table 1 shows that the pixel-aligned
module improves the reconstruction performance by a large margin, about 18% and 8%.

Effectiveness of Attention and Mapping Module for Attention Adding attention to graph
convolution can complement the long-range information aggregation and hence improve the network
capacity. To verify this, we compare a network using the graph convolution only (2nd row) and a
network with an attention module in between graph convolution layers (5th row) in Table 1. The
results show that the attention mechanism can improve the mesh reconstruction with only global
features. Based on the same graph attention architecture, adding the mapping module can further
improve the performance by 0.9mm in PA-MPJPE.

Effectiveness of 2D Auxiliary Supervision We analyze how feature maps affect. We implement
two models with the same architecture: one has 2D supervision from silhouette and 2D pose (4th row)
and one without (3rd row). It shows that the feature maps with supervision are helpful for improving
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Table 4: Performance comparison with the state-of-the-art methods on the FreiHAND dataset.↓ means the
lower the better, ↑ means the higher the better. The unit of PA-MPJPE/PA-MPVPE is mm.

Methods PA-MPJPE↓ PA-MPVPE↓ F@5mm↑ F@15mm↑
(Hasson et al., 2019) 13.3 13.3 0.429 0.907
(Zimmermann et al., 2019) 10.9 11.0 0.516 0.934
(Kulon et al., 2020) 8.4 8.6 0.614 0.966
Pose2Mesh(Choi et al., 2020) 7.7 7.8 0.674 0.969
I2LMeshNet(Moon & Lee, 2020) 7.4 7.6 0.681 0.973
(Tang et al., 2021) 7.1 7.1 0.706 0.977
(Chen et al., 2021b) 6.9 7.0 0.715 0.977
METRO(Lin et al., 2021b) 6.8 6.7 0.717 0.981
Graphormer(Lin et al., 2021a) 6.0 5.9 0.764 0.986

Ours with METRO 6.1 6.2 0.757 0.984
Ours with GCN 5.9 6.0 0.766 0.985

performance. As 3D mesh annotation is expensive to acquire while 2D pose can be relatively cheap
to label, we expect our method can benefit more from extra 2D auxiliary supervision.

Adding Skip Connections in Different Decoder Layers To analyze the finer local features in
the mesh reconstruction, variants of our method are constructed by gradually removing the skip
connections in the last decoding layer and the results of these variants are shown in Table 2. Note
that, all approaches do not add the self-attention module. We observe a gradual reduction in the errors
when multi-scale mesh-alignment evidences are removed from decoder layers. It proves that our skip
connection design improves accuracy by leveraging multi-scale information.

Effectiveness of Coarse-to-fine for Pixel-aligned Mapping Module We reproduced (Tang et al.,
2021) pipeline with our mesh decoder architecture to compare with another pixel-aligned-based
method. Rather than regress hand mesh vertices in a coarse-to-fine manner like ours, they use the
full mesh to refine. In the first row, we follow their pipeline to refine the rough mesh one time, and
for a more intuitive comparison with our method, we refine the mesh three times. Table 3 shows our
coarse-to-fine manner can achieve better results for both two cases.

The Generality of Mapping Module and Skip Connections We verify that our pixel-aligned
mapping module and skip connections are not only effective for our approach but also can improve
the performance of other non-parametric models. Based on METRO (Lin et al., 2021b) which are
transformer-based methods, we re-implement their networks with our design. We provide the details
of network architecture in the appendix due to the space limitation. As Table 4 shows, pixel-aligned
mapping module and skip connections can improve the METRO by a large margin.

4.3 COMPARISONS WITH STATE-OF-THE-ART

We follow the former works (Zimmermann et al., 2019; Hasson et al., 2019; Kulon et al., 2020; Choi
et al., 2020; Moon & Lee, 2020; Lin et al., 2021b;a) to quantitatively compare our method with
state-of-the-art methods on the FreiHAND eval set. For GCN, we re-design our 2D feature extractor
as CMR (Chen et al., 2021b) for further performance improvement. For Transformer, we design the
architecture as introduced in 4.2. As shown in Table 4, All of our approaches achieve state-of-the-art
for all the metrics. It demonstrates that our designs can be effective for both non-parametric models.

Qualitative Results Figure 3 shows reconstructed meshes from several testing examples of Frei-
HAND. On the left side, our method aligns the meshes better to the input images than the baseline
with global features only. On the right side, decoded meshes in different scales are shown. Notice
that the meshes from the last layers adjust both the global locations to align the mesh to the inputs
(e.g., the meshes in the 3rd row) and the geometry of the meshes (e.g., the thickness and smoothness
of the meshes).

Figure 4 shows three typical failure cases of our method. In the first row, when the hand is severely
occluded and the hands are not bounded by the crop size, some parts of the hand out of the image, our
method fails to recover a correct hand mesh. In the second row, we observe when only a small portion
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Figure 3: Left: comparison of the baseline with global features and our method; Right: Example meshes from
M4 to M1.

Figure 4: Failure cases of our method.

of the hand is visible, our method predicts the wrong 2D pose and silhouette as well as the hand mesh.
Referring to the last row, although the overall shape seems to be reasonable, it is difficult to obtain an
accurate 3D mesh due to the heavy self-occlusion. The self-occlusion is one of the biggest challenges
for 3D hand mesh reconstruction or pose estimation.

5 CONCLUSIONS

We present a new pipeline to reconstruct a hand from a single RGB image. Specifically, we introduce
a simple and compact architecture that can help align the mesh to the image, together with adding the
self-attention module to improve vertices interactions. Comprehensive experiments show our method
achieves the state-of-the-art on the FreiHAND dataset and verifies the effectiveness of our proposed
key components. We further demonstrated that our design can also improve the performance of
the transformer-based method. It shows that our proposed components have great generality for
non-parametric models.
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