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Abstract

Distributed tracing (DT) is an important aspect of modern microservice operations. It
allows operators to troubleshoot problems by modeling the sequence of services a spe-
cific request traverses in the system. However, transmitting traces incurs significant
costs. This forces operators to use coarse-grained prefiltering or sampling techniques,
creating undesirable tradeoffs between cost and fidelity. We propose to circumvent
these issues using generative modeling to capture the semantic structure of collected
traces in a lossy-yet-succinct way. Realizing this potential in practice, however, is
challenging. Naively extending ideas from the literature on deep generative models
in timeseries generation or graph generation can result in poor cost-fidelity tradeoffs.
In designing and implementing Gen-T, we tackle key algorithmic and systems
challenges to make deep generative models practical for DT. We design a hybrid
generative model that separately models different components of DT data, and con-
ditionally stitches them together. Our system Gen-T, which has been integrated with
the widely-used OpenTelemetry framework, achieves a level of fidelity comparable
to that of 1:15 sampling, which is more fine-grained than the default 1:20 sampling
setting in the Opentelemetry documentation, while maintaining a cost profile equiv-
alent to that of 1:100 lossless-compressed sampling (i.e., a 7× volume reduction).

1 Introduction

Microservice architectures are emerging as a popular design paradigm for building scalable and
agile software systems being widely adopted by leading enterprises (e.g., Netflix [44], T-Mobile [65],
and Coca-Cola [11]). As these environments grow in complexity, there’s an increasing need for
observability (often shortened to “o11y”) tools to manage, diagnose, and optimize these systems. The
o11y market has been on a meteoric rise [47], [48].

Within o11y, distributed tracing (DT) is a critical capability for troubleshooting. Tracing captures the
fine-grained journey of a request as it travels through the services. Unlike local-view signals such as
metrics (e.g., traffic, CPU timeseries) and logs (e.g, text output from apps) [50], traces stitch together
the discrete steps into a coherent, end-to-end narrative [30]. For instance, the breakdown of time spent
in different tasks can help operators pinpoint inefficiencies [14]. Creating trace graphs that show which
components called each other allows developers to pinpoint common input pathways for root cause
analysis [42, 46].

In practice, however, the cost of transmitting traces results in operators disabling or reducing
tracing [45, 51]. Many rely on sampling to reduce cost [17, 53, 64]. Unfortunately, sampling forces
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operators into untenable tradeoffs between cost and fidelity. For instance, “head” sampling, selects
a subset of requests when they first arrive. This may capture frequent requests and miss interesting
details. On the other hand, “tail” sampling, requires operators to specify patterns of interesting requests
to retain they complete. This may not detect new issues, defeating the very purpose of tracing.

We revisit DT through the lens of deep generative modeling to offer better fidelity-flexibility-cost
tradeoffs. We observe that in many tracing use cases, operators are less concerned with individual
traces and more focused on structural patterns spanning subpopulations of traces [54, 31, 15].

Modeling DT data with generative models poses two main challenges. First, there are algorithmic
issues; existing generative algorithms are tailored either for time-series data [70, 56] or for graph
structures [5, 16]. However, distributed tracing combines these data modalities, presenting a unique
challenge. Second, making the system practical and integrating into existing tracing workflows [50],
requires balancing scalability, cost-efficiency, and latency.

We present Gen-T, a practical system for generative compression of traces that can be plugged directly
into existing distributed tracing workflows. We make the following contributions:

1. We exploit the unique structural properties of trace data to design a custom approach for trace
compression, that carefully combines graph and tabular techniques to produce a time-dependent
graph generative model.

2. We evaluate Gen-T using two widely-used demo applications: the serverless-focused Wildrydes [68],
AWS’s official guide, and HotROD [32], a staple example for distributed tracing. We compare Gen-T
against a suite of existing solutions (several of which are industry standards today): two tail-sampling
methods, and head-sampling combined with two distinct compression approaches: the generic gzip,
and the domain-specific Compressed Log Processor (CLP) [58]. Our evaluation suggests that Gen-T
achieves a level of fidelity comparable or better to that of 1:15 sampling, which is more fine-grained
than the default 1:20 sampling setting in the Opentelemetry documentation, while maintaining a
cost profile equivalent to that of 1:100 lossless-compressed sampling (i.e., a 7× volume reduction).

Our open-source implementation integrate Gen-T seamlessly into industry-standard OpenTelemetry
(OTEL) workflows. The generated data output by Gen-T follows OTEL schemas making it backward
compatible with existing tooling.

2 Preliminaries and Motivation

Background on O11y and Tracing In the era of microservices, understanding system behavior has
grown complex. This is the goal of Observability, or o11y: the ability to monitor various system com-
ponents to help operators and engineers troubleshoot issues. We exemplify this using OpenTelemetry
(OTEL)[50], an industry standard providing APIs, SDKs, and tools for o11y data management. The
process begins with code instrumentation, followed by data collection by the Collector[55]. This data is
sent to analysis platforms [30, 74, 49, 25] for further processing, alerting, and real-time detection, and
stored in databases like Elasticsearch [18], Apache Cassandra [3], Quickwit [57], or OpenObserve [49].

There are three canonical types of data in o11y: logs, metrics, and traces. Logs record textual events
from systems and applications, while metrics numerically measures the system (e.g. CPU utilization
and rate). Traces chronicle a request’s journey through microservices, making them essential for
identifying issues and optimizing system performance. Our focus is specifically on traces since they
are the most challenging and open question for o11y today.

In tracing, a span represents a system’s discrete work unit, marked with unique identifiers (spanId,
parentId, and traceId), timestamps, metadata, and a status indicating the operation’s outcome. A trace
combines these spans, representing a request’s complete journey through the system. Triggers, within
this context, clarify span dependencies, outlining the sequence of operations for a specific request.

Tracing systems typically provide two primary data views. The trace view, displayed in Figure 1, offers
insight into trigger correlations, vividly illustrating the complex flow and real-time interaction among
various services. Conversely, the timeline view, as shown in Figure 2, aids in identifying performance
bottlenecks, highlighting where delays or failures transpire in a transaction. Any model of DT data
must faithfully capture these graph structures and temporal correlations.
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Figure 1: A DAG view of a trace. Illustrating
the interaction between microservices. This flow
consists of 21 Opentelemetry spans per request.

Time

Figure 2: A timeline view of a trace. Illus-
trating duration breakdown. The grey boxes
indicate the duration of each component.

Status Quo While tracing is valuable, it incurs significant costs, which has become a pressing
industry-wide concern (e.g., Uber [67], Netflix [45], and Twitter [66]). While some efforts try to
reduce the storage cost (e.g., OpenObserve [49] and Quickwit [57]), the primary strain on resources
arises from transmitting traces.

To tackle this problem, several candidate proposals are being used. Firstly, lossless compression
methods, targeting high-quality data, face limitations due to data’s dynamic nature. The second class
involves sampling. Today’s industry best practices defines two types: head-based and tail-based
sampling [33, 51]. A summary comparison can be found in Table 1.

Alternative Cost Ad-hoc Accur-
Reduction Queries acy

Lossless Compress Low Y Best
Metrics / Sketching High N Best
Head-based Sample Med Y Low
Tail-based Sample Med N Varies

Table 1: Current alternatives for reducing
DT costs
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Figure 3: Generated timestamps using
graph models vs. real data and Gen-T.

Head-based sampling uniformly drops traces before collection, offering a predictable cost reduction
and a dataset suitable for general queries. However, this method can inadvertently omit vital data,
potentially skewing query outcomes. Conversely, tail-based sampling filters traces post-collection
based on predefined criteria (e.g., only traces with errors). This ensures a precise dataset based on
that criteria but can fall short for ad-hoc queries. Its cost-effectiveness is also dependent on the selected
criteria and the behavior of the observed system.

3 Our Approach

The ad-hoc nature of user queries in tracing means that compression techniques that make a priori as-
sumptions about specific patterns in the data are likely to fail. Moreover, traces consists of a large number
of small time-series data points with few repeated patterns, which limits the effectiveness of traditional
lossless or lossy compression approaches. Generative models can act as a form of lossy compression,
maintaining essential data features while reducing size [63, 7, 60]. However, existing generative models
are not well-suited to DT data, which combines both graph and temporal information. We show why
existing temporal- and graph-structured generative models do not solve the compression problem.

Time Series Models. Treating trace data as a time series is a conceivable approach where each element
contains extensive information about spans. However, experiments with models like TabFormer [69]
and NetShare [70] proved inadequate. We trained these models in default configurations, and evaluated
the similarity of graph structures using the Tree Edit Distance [71], which counts the modifications
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Figure 4: Overview of the Gen-T algorithmic architecture for generating a new trace. In total, we
learn 4 structures, of which 3 are neural networks (NNs) (in reality, we train 6 NNs, because the
models are GANs, which require training both a generator and a discriminator). The parameters
of 3 NNs (shown in boldface) are transmitted to the target service. In steps 5 and 6, gray arrows
labeled “(b)" denote a later iteration of the recursion, in which Gen-T populates the chain from
Svc 1 to Svc 2 in the DAG.

needed to align the synthetic trace structure. Our results show that the synthetic data’s graph topologies
didn’t align with the real data, showcasing an average TED of 45.5% for NetShare and 47.5% for
TabFormer. This stark discrepancy emphasizes that these models fail to capture the hierarchical
dependencies intrinsic in trace data, underscoring the necessity for an alternate modeling approach.

Graph generative models. We also evaluated graph generative models that can generate node
metadata, like Graphite [27]. Even a simplified training task with Graphite, focusing only on the
start timestamps, highlighted significant challenges. The model generated a very different timestamp
distribution from the real one (Figure 3), exposing its inability to effectively model temporal
correlations in trace data. Furthermore, the extensive disk space demands of existing graph generative
models, like GRAN [40] and GraphGen [24] made them ineffective for DT compression.

3.1 Design

At a high level, Gen-T generates a trace in six steps, shown in Figure 4. Briefly, they are: (1) Select
a DAG graph topology, G. (2) Conditioned on G, generate a random start time for the trace. (3) Identify
the root nodes of G. (4) Conditioned on the topology and the start time, populate the root nodes’
metadata (recall that each node represents a span, and thus contains many metadata fields that must
be populated). (5) Recursively extract chains whose head node’s metadata has already been filled;
the head node is the first node in the chain, with the smallest time stamp. (6) Given a chain whose
head node’s metadata is already filled, generate the metadata for the remaining unfilled nodes in the
chain. Return to (5) unless all nodes in G are filled.

To support this generation pipeline, we learn four different structures during training: (1) Topology
modeling consists of enumerating the set of all topologies in the source data, and the frequency with
which they occur. This histogram H is compressed losslessly. (2) Start time modeling learns a neural
network (NN) TG. Conditioned on a trace graph G (which is selected from the topology histogram H),
TG randomly generates a start time for the trace. (3) Root node metadata modeling learns a model
RG that generates metadata for any root node. RG is conditioned on the graph topology G and the
generated start time. (4) Recursive chain metadata modeling learns a model CG that takes as input a
partially-filled graph G, and a chain of fixed length, in which the head node’s metadata is already filled.
CG then generates the metadata of the remaining nodes, conditioned on that of the head of the chain.

We next explain each step in detail, and illustrate how Gen-T design navigates the fidelity-cost tradeoff.

(1) Topology modeling. We use “topology" to refer to a graph whose nodes are labeled with only
their service name (other metadata are not yet populated).
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Insight 1. In real-world microservices, the number of distinct graph topologies is typically small,
usually numbering at most a few hundred. In this regime, there is no need or benefit in using generative
graph models.

In distributed traces, the number of unique graph topologies is usually restricted to a few hundred.
Even though any microservice could theoretically trigger another, real-world requests often traverse
similar topologies. Hence, there is no need to deploy a deep generative model to create the hierarchical
edges within these topologies.

Compression Phase. We compute a histogram H that counts how many times each topology appears
in the source data. We also store the form of each topology. This information is compressed losslessly.

Generation Phase. For each generated trace, the provider chooses a topology G from H such that
aggregate synthetic topologies exactly match the counts in H .

(2) Start time generation. Our second step is to generate a start time for the trace. Instead of using the
startTime and endTime format from OpenTelemetry (OTEL), we opt for a gapFromParent time interval
and a duration (an illustration can be found in the appendix, Figure 7). While this representation is
easier to model, it requires us to generate a global start time for each trace. Refer to Appendix B for
an ablation test that measures the effect of this approach.

Compression Phase. We generate the start time using CTGAN, a popular tabular generative model
based on generative adversarial networks (GANs) [69]; as such, Figure 4 pairs TG with a discriminative
model TD because GANs require the training of both a generator and a discriminator. However, only
the generator parameters are transmitted. We used a generative model here rather than a discriminative
one for easier sampling from the (continuous) posterior distribution.

Generation Phase. The generated topology G from the histogram H is passed to TG. We sample from
distribution TG(G) to generate a start time for the trace.

(3) Root node metadata generation. At this point, the nodes in G contain only a service name; the
rest of their metadata fields, including inter-arrival times from parents, are empty. A natural approach
would be to generate metadata for all nodes conditioned on the selected graph G and the timestamp
t∼TG(G). However, this approach is inefficient because in typical trace graphs, different nodes fill
very different services based on their position in the graph; hence, modeling the full range of services
for every node increases the dimensionality (and hence, storage cost) of the model.
Insight 2. Entry point services, responsible for initial steps like authentication and quota control,
typically have no intersection with internal services that provide specific logical functionality. Hence,
we can learn separate models for entry points vs. other nodes to reduce model dimensionality.

Given this insight, we partition the graph G into root nodes, symbolizing system "entry points", and
everything else (step 3 of Figure 4).1 This separation of entry points allows us to employ a smaller
model with a reduced conditioning vector, tailored exclusively to the subset of entry point services.

We use a graph embedding layer (GCNConv [35]) to find a representative embedding of the topology.
Refer to Appendix B for an ablation test that measures the effect of this approach.

Compression Phase. We train a dedicated generative model only for the root nodes’ metadata, labeled
RG in Figure 4. We again use CTGAN [69], and train both a generator and a discriminator (Figure 4).
Only the parameters of the generator RG are transmitted to the target.

Generation Phase. The decompressor uses RG to generate metadata for each root node in the graph
G, conditioned on the trace start time and the graph embedding of the root node being populated.

(4) Recursive chain metadata generation. Finally, we learn a model to populate the empty internal
nodes’ metadata in the DAG. There are many ways to generate this metadata, such as by traversing
the graph in some predefined order and autoregressively generating each node’s metadata conditioned
on earlier nodes. However, such approaches significantly degrade fidelity and/or training cost.
Insight 3. Instead of using one model to generate the metadata of all internal nodes in a graph (e.g.,
using a time series model), we can learn a smaller tabular model that recursively generates metadata
only for local motifs. This captures local correlations on the graph, with orders of magnitude less
storage volume than comparable time series or graph models.

1At least one root nodes is guaranteed to exist because G is a DAG.
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Motivated by the concept of motifs in network science [20] and graph generative modeling [28], we
decompose the graph into smaller chains of nodes for simpler modeling. Each chain has a size of at
most C, and each edge in the DAG aligns with one chain, and timestamps increase from the head of
the chain (i.e., the first node) to the tail.

Compression Phase. We model the chains metadata recursively, starting with chains that emanate
from root nodes (an illustration can be found in the appendix, Figure 9). Specifically, we learn a tabular
generative model CG (again, this is instantiated with CTGAN [69] paired with a discriminator CD,
which is not transmitted). CG takes as input the graph G, the trace start time t∼ TG(G), a chain C,
and the metadata of the first node of C, which is represented using one-hot encoding for the categorical
columns and a variational Gaussian mixture model (VGM) [6] for the continuous columns. It outputs
the metadata of the remaining empty nodes in the chain.

Using the tabular CTGAN instead of a time series model to fill in the chains reduces the size of the
generative model by orders of magnitude. For example, a comparable time series model (e.g., NetShare
[70]) exhibits a storage cost of 60 MB, compared to the 695 KB model size of CTGAN.

Generation Phase. The decompressor receives the generator CG, and fill in blank nodes’ metadata
in the interior of the DAG (steps 5 and 6 in Figure 4). Starting with chains that emanate from the DAG’s
root(s), it generates metadata for all empty nodes in the chain(s); recall that the root nodes’ metadata
is already set from part (3). The decompressor then identifies chains with filled head nodes but empty
subsequent nodes’ metadata, and uses CG to complete them.

We ensure consistent chain construction based purely on topology. Any incomplete chains are padded
with null values to maintain the structure. If a chain merges with a previously-filled node, we use the
latest-generated metadata.

The end-to-end view of our setup in Opentelemetry, along with ablation tests and illustrations to our
insights, can be found in Appendix B.

4 Evaluation

4.1 Experimental Setup

Datasets. In our experiments, we utilized two popular demo applications: Wildrydes [68], a serverless
practices tutorial endorsed by AWS, and HotROD [32], Jaeger’s primary application for distributed
tracing demonstrations. Using AWS Distro for Opentelemetry [4],we collected spans into our dataset,
stored in an SQLite database totaling about 1GB of trace data. We generated four distinct datasets
for different workloads, each embodying distinct characteristics (such as variable error rates and high
rates of trace counts). Each workload has its dedicated SQL table. 2

Baselines. We tested Gen-T against several baselines: (1) Head Sampling without Compression:
This approach aligns with default OTEL Protocol settings. (2) Gzip with Head Sampling: This
combines Gzip, a general-propose compression method, with head sampling. Gzip is cited in OTEL
official benchmark [52] for its superior compression ratio, compared to other supported methods like
snappy and zstd. (3) Compressed Log Processor [58]: A recently proposed domain-specific lossless
compression method. In practice, we used the python logging library’s file handler [10], measuring
the resulting file final size. We did not compare against other lossy compression baselines, as we are
unaware of techniques that are compatible with o11y traces.

Evaluated Resources. We capture resource measurements using NVIDIA V100 on a n1-standard-8
Google Cloud instance with 8 CPUs and 30GB memory. As of September 2023, its us-west1 region
cost is $0.38/hour on-demand and $0.08/hour for a spot instance.

Fidelity Metrics. Measuring the fidelity of generative models is difficult [8]. O11y trace data presents
additional structural challenges and general-purpose metrics like FID score [29] are not meaningful in
an o11y context. We use a suite of realistic queries detailed in Appendix A. These queries are used only
for fidelity measurement and do not influence model training. We consider two user stories for these
evaluation. In the first user story, Post-release Testing, a user evaluates the impact of an entry point

2We are releasing the dataset open-source at https://gen-t-code.s3.us-west-2.amazonaws.
com/traces.zip.
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Figure 5: Gen-T E2E comparison to head sampling with gzip. Cribl [12] prices 1M traces
(∼ 2.9GB) at 0.85$. Monitoring score measures the results from Query 3 as an F1 score
indicating whether generated data contains the same events as the real data. Higher is better.

by studying all originating traces from a specific service. The goals include identifying all initiated
subtasks (Query 1) and obtaining a cost breakdown (Query 2). In the second user story, Monitor and
Troubleshoot, a user sets up a trace-based alert for a particular entry point (Query 3). An activated
alert prompts the user to investigate the root cause by plotting histograms of every attribute within
the entry point for traces with and without errors (Query 4).

4.2 End-to-End Cost-Fidelity Tradeoff

Gen-T offers high fidelity at a fraction of the operational cost of existing techniques. Our first
experimental scenario depicts an observed system generating 15K traces per minute. These traces
are aggregated every minute, and transmitted using Gen-T throughout the observability pipeline. We
vary the number of training epochs for the generative models, resulting in a trade-off between fidelity
and operational cost.

Our cost estimation is based on two two factors: GPU processing time and transmission charges. We
price the GPU usage at $0.25 per hour, consistent with GCP rate. Transmission is priced at $0.32 per
GB, following Cribl’s rates [12].

Figure 5 shows fidelity for a monitoring use case, measured via Query 3. We run the experiment 3
times; the error bars show standard error. Gen-T achieves a level of fidelity comparable to that of 1:15
sampling while maintaining a cost profile equivalent to that of 1:100 lossless-compressed sampling.

Concretely, the left-most Gen-T data point introduces additional GPU and processing time of under
a minute over the standard OTEL processing. This leads to an average total added latency of 1.5
minutes, considering both compression aggregation and processing and a single decompression in
the decompressor. The total size transmitted in each setup averaged 695KB.

Interestingly, despite CLP being designed for observability logs, its compression efficiency falls
short of broader methods like gzip. This could be due to the many unique identifiers present in each
trace, potentially interrupting the anticipated log patterns of CLP. Moreover, CLP’s objective to offer
queryable compressed data introduces constraints that are not necessary for other applications.

Gen-T rolling model adapts to changes as well as 1:5 sampling, at a fraction of the cost.
Microservice environments are dynamic, and commonly encounter changes in trace characteristics,
such as spikes in the number of traces and spikes in errors. Figure 6 presents the model fidelity when
these changes are introduced, for four different use cases (and their corresponding metrics).

To simplify the evaluation, we assume that each of these changes happens within its own distinct period
of aggregated traces, and we allow Gen-T to re-train on the altered data. The horizontal axis in Figure 6
demonstrates the (sequential) time periods, each characterized by a different dataset.

Figure 6 demonstrates that Gen-T is able to adapt to substantial changes in the microservice
environment. This level of adaptation is comparable to 1:5 sampling, all while maintaining a consistent
transmission volume of 695KB.
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at a constant the data volume of less than 700KB.

5 Related Work

Recent studies emphasize generative models tailored for small graphs [28], often used in molecular
design [5, 16, 59]. Unlike prior work focusing on novelty and validity, we aim for accurate system
representation. In this work, we build on the iterative graph-building methodologies presented in
[27, 39, 73], but focus on generating high-dimensional independent small graphs. Parallelly, generative
models tailored for timeseries data have gained traction in areas such as networking [41, 70, 56] and
sensors [7, 2], showcasing their ability to mimic various temporal patterns.

Monitoring and troubleshooting in systems is an expansive research area. Early efforts like [1] leveraged
sampled events to retrace system pathways and extract performance insights. The distributed tracing
concept evolved with X-Trace [19] and was augmented by solutions like PivotTracing [43], which
employed scalable map-reduce storage techniques to amplify observability. Various machine learning
investigations have focused on performance and metric collection [21, 22, 23, 26, 62, 61, 38, 34].
More recent research offers diverse perspectives on distributed tracing. For example, [9] proposes
dynamic instrumentation approaches, while Sifter [37] and [36] introduce real-time anomaly trace
identification methods. Finally, closely related to our work, Hindsight [72] suggests retrospective data
collection upon error detection. However, this method may face challenges, especially in serverless
or other low-resource microservice environments. Still, a noticable gap persists in research designed
to transmit the full trace data for in-depth, flexible query observability.

6 Conclusions

The microservice and o11y industry is at a crossroads as the cost of monitoring a complex system is
comparable or worse than that of building the system [51, 13]. This forces DevOps workflows to make
undesirable tradeoffs losing visibility due to cost concerns, especially in fine-grained tracing scenarios.
Our work offers operators a pragmatic alternative via generative modeling. Our key contribution is
a structure-aware synthesis of generative modeling ideas and a backwards-compatible implementation
to support fine-grained tracing use cases at a fraction of the cost of traditional approaches.
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A Queries for Fidelity Evaluation

We use the following queries to evaluate our results in section 4.

SELECT DISTINCT
( S1 . serviceName , S2 . se rv iceName )

FROM Spans as S1 , Spans as S2
Where S1 . s p a n I d = S2 . p a r e n t I d

Query 1: Discover all the trigger correlations in the system

SELECT S2 . serviceName , ROUND(
S2 . d u r a t i o n / S1 . d u r a t i o n , 1

) AS r a t i o , count ( * )
FROM Spans as S1 , Spans as S2
WHERE S1 . se rv iceName = ’ b i l l i n g ’

AND S1 . t r a c e I d = S2 . t r a c e I d
GROUP BY S2 . serviceName , r a t i o ;

Query 2: Find the relative duration histogram of every sub-task of the billing service
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Context Layer Neurons Activation TG RG CG

Start Time Embedding Passthrough 9 N/A - + +
Metadata Embedding Fully connected 32 Relu - - +

Graph Embedding GCNConv 32 N/A + + +
Noise Embedding Fully connected 128 Relu + + +
CTGAN Generator Fully connected 128 BatchNorm1d, Relu + + +
CTGAN Generator Fully connected 128 tanh + + +

CTGAN Discriminator Fully connected 128 LeakyRelu(0.2), drop(0.5) + + +
CTGAN Discriminator Fully connected 1 N/A + + +

Table 2: The layers configuration in our generators. TG is the start-time generator, RG is the
root node metadata generator and CG is the chain metadata generator.

64-Bit 
Timestamps

t0 t1 t2 t3 t4 t5

Normal 
Distributed

0 t1-t0 t2-t1 t3-t0 t4-t3 t5-t0

Gap from parent durationAbsolute time

Figure 7: Decoupling timestamps from high-dimensional metadata enables parallel training,
which increases GPU utilization and allows data-specific enhancements.

SELECT count ( * ) > 10
FROM Spans as S1 , Spans as S2
Where

S1 . se rv iceName = ’ b i l l i n g ’
AND S1 . t r a c e I d = S2 . t r a c e I d
AND S2 . e r r o r IS NOT NULL

Query 3: Binary query on traces, to decide whether to send an alarm

SELECT S1 . a t t r 1 , count ( * )
FROM Spans as S1 , Spans as S2
Where

S1 . se rv iceName = ’ b i l l i n g ’
AND S1 . t r a c e I d = S2 . t r a c e I d
AND S2 . e r r o r IS NOT NULL

GROUP BY S1 . a t t r 1
Query 4: Diversity query to find histogram of entry point’s attributes for failed traces

B Detailed Design

B.1 Ablation Test

To assess the impact of the insights outlined in section 3, we evaluated our model across three different
configurations:
Trace Topology Conditioning: In this scenario, we used One-Hot encoding instead of GCNConv
to condition the trace topology. Such a configuration masks the individual components of the trace
topology. This means the model lacks the ability to discern proximity between similar or intersecting
topologies, forcing it to relearn similar triggers for every distinct topology. This evaluation showcase
that this approach boost fidelity across some metrics by as much as 20%.
Hierarchical Correlation: We evaluated the fidelity when omitting the data of the triggering node.
In this configuration, each row in the tabular data represented a single node from the graph. Although
a consistent traversal on the graph provides implicit hierarchy for chain building, this configuration
deprives the model of the explicit hierarchical relationships.

13



G
en

-T

G
en

-T

G
en

-T

G
en

-T

1-
H

 C
on

d.

1-
H

 C
on

d.

1-
H

 C
on

d.

1-
H

 C
on

d.

N
o 

C
on

d.

N
o 

C
on

d.

N
o 

C
on

d.

N
o 

C
on

d.

A
bs

ol
ut

e 
Ti

m
e

A
bs

ol
ut

e 
Ti

m
e

A
bs

ol
ut

e 
Ti

m
e

A
bs

ol
ut

e 
Ti

m
e

Ablation test

0.0

0.5

1.0

S
co

re

Monitoring
(F1 )

Trigger
Discovery

(F1 )

Attributes
(F1 )

Duration
Histogram
(EMD )

Figure 8: The effect of our insights on the fidelity, evaluated on metrics defined in section 4
.

Figure 9: Our approach transforms the DAG’s hierarchical dependencies into a union of
bounded-size chains. We then generate each chain’s metadata conditioned on the pre-existing
metadata of the chain head. Smaller chain lengths reduce the dimensionality of the data that
needs to be generated (i.e., they have lower training and volume cost), while longer chains
improve fidelity by capturing longer-range correlations across the graph.
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Figure 10: The observability flow. Gen-T replaces existing high-throughput links with a new
transmission protocol

Timestamp Handling: We show a decline in fidelity when the absolute timestamps weren’t separated
and instead included them as a part of the high-dimensional metadata for the nodes.
The results clearly demonstrate that each of these design decisions plays a pivotal role in enhancing
fidelity. Notably, the metric related to trigger discovery (Query 1), which relies solely on timeseries
data and trace topology, remains unaffected by manipulations in metadata generation. Furthermore, it
is evident that the remaining fidelity metrics are influenced by both timeseries and metadata properties.
Notably, the utilization of One-Hot encoding for trace topology, while only slightly inferior to Gen-T,
introduces a tradeoff by reducing transmission size by 3% and GPU time by 14%.

B.2 End-to-End View

Our end-to-end vision is illustrated in Figure 10.
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Figure 11: Gen-T learning pipeline. Traces are aggregated and split into sub-datasets, which
are used to learn/train models in parallel.

Compression Phase. Traditional observability pipelines typically process individual spans in a
continuous stream, whereas our approach operates on dataset of traces. We thus aggregate the trace
stream prior to learning the relevant models and structures. This data is then preprocessed into the
four sub-datasets: topology histogram, traces start time, root node metadata, and chain metadata.
These sub-datasets are passed to their respective training modules (Figure 11). All generative models
are learned in parallel on GPU, which is the bottleneck in wall-clock time and cost. Due to this
parallelization, combined with the optimizations described in section 3, we empirically achieve a GPU
utilization of 90% during training (30% per generative model).

To run Gen-T continuously, we aggregate traces at set intervals or sizes (e.g., 20K traces in section 4).
We warm-start the metadata generators using the previous period’s learned model weights, whereas
the start time generator (and of course the topology histogram) are best re-learned from scratch.

After training, the structures shown in red text in Figure 11 are transmitted to the target. Prior to transmis-
sion, we use gzip to further compress, for an additional ∼60% reduction in volume in our experiments.
We additionally re-generate the data at the compressor side with different random seeds to find the seed
with the best data quality. This seed is transmitted along with the compressed model parameters.

Generation Phase. The target decompresses the received models and uses them to re-generate a
representative synthetic dataset. The target consistently uses the transmitted seed to generate identical
data every time, ensuring alignment between the observability system and the database.

B.3 Implementation

We implemented Gen-T in 2,300 lines of python3.10 code, incorporating torch 1.11.0 and CUDA
11.0. Our underlying tabular generative model is CTGAN 0.7.4 [56], which we extended to support
conditional generation (320 LoC) as discussed in section 3. Gen-T can be seamlessly integrated Gen-T
into existing o11y flows; e.g., our integration with Opentelemtry Collector [55] and Jaeger [30] is
a simple configuration flag. Our compression phase is invoked when the OTEL Collector transmits the
spans to the o11y system and when the system forwards the spans to the database. Similarly, generation
is invoked when the o11y system or database receives the spans.

Our default configuration runs for 10 epochs, features a chain of length C=2, and utilizes CTGAN’s
generator with a single residual layer of dimension 128. Our full source code and dataset are made avail-
able at https://gen-t-code.s3.us-west-2.amazonaws.com/gen-t-code.zip.
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