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Abstract

Previous deep learning approaches for survival analysis have primarily relied
on ranking losses to improve discrimination performance, which often comes at
the expense of calibration performance. To address such an issue, we propose
a novel contrastive learning approach specifically designed to enhance discrimi-
nation without sacrificing calibration. Our method employs weighted sampling
within a contrastive learning framework, assigning lower penalties to samples with
similar survival outcomes. This aligns well with the assumption that patients with
similar event times share similar clinical statuses. Consequently, when augmented
with the commonly used negative log-likelihood loss, our approach significantly
improves discrimination performance without directly manipulating the model
outputs, thereby achieving better calibration. Experiments on multiple real-world
clinical datasets demonstrate that our method outperforms state-of-the-art deep
survival models in both discrimination and calibration. Through comprehensive
ablation studies, we further validate the effectiveness of our approach through
quantitative and qualitative analyses.

1 Introduction

Deep learning models have gained significant attention in survival analysis (also known as time-to-
event analysis), which focuses on predicting and understanding the occurrence of an adverse event
(e.g., death) as a function of time. The utility of survival models is typically evaluated through two
key aspects: discrimination and calibration. Discrimination measures a model’s ability to differentiate
between patients with varying risks, prioritizing those more likely to experience the event. Calibration,
on the other hand, assesses how well a model’s predictions align with the observed event distribution.
In other words, a well-calibrated model offers predictions that closely match actual survival outcomes,
offering crucial prognostic value to clinicians.

In an effort to enhance the discriminative power of survival models, ranking loss functions [1, 2, 3, 4]
are frequently employed. These functions aim to maximize a relaxed proxy of the concordance index
(C-index), a well-established metric for evaluating the quality of patient rankings based on the risk
predictions of survival models [5]. However, a notable improvement in discriminative power often
comes at the expense of calibration performance, which can negatively affect the clinical utility of
predicted survival outcomes. For example, a poorly calibrated model that overestimates risk may
lead to unnecessary treatment or testing for patients. Conversely, underestimating risk may result in
patients with adverse conditions not receiving appropriate care.

Contrastive learning [6, 7, 8] is a framework that aims to learn an embedding space where similar
samples are mapped to nearby locations, while dissimilar samples are pushed farther apart. Notably,
although commonly used in an unsupervised fashion, this framework shares a fundamental principle
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with ranking losses: both focus on the relative ranking of samples for better discrimination. However,
unlike ranking losses, which directly modify differences in model outputs, contrastive learning
operates on the relative distances of representations in the embedding space. This distinction offers
the potential to overcome misalignment issues caused by direct comparisons and modifications of
model outputs inherent in the ranking-based approaches. To leverage this potential and further
enhance survival models, we propose incorporating informed sampling into the contrastive learning
framework. By assigning lower penalties to potential false negative pairs based on the similarity
of their survival outcomes, we instill an inductive bias in the model, encouraging it to learn that
samples with similar event times likely share similar clinical statuses. This allows us to achieve
strong discrimination without directly comparing or manipulating model outputs, thus potentially
improving calibration as well.

Contribution. In this paper, we propose a novel contrastive learning approach, specifically designed
for survival analysis, to enhance both discrimination and calibration performance.2 Motivated by the
assumption that patients with similar event times share similar clinical status, we contrast samples in
the latent space based on their survival outcomes. However, unlike standard contrastive methods, we
leverage the model output solely for maximum likelihood estimation (MLE), thereby promoting better
calibration. This is achieved by incorporating importance sampling into our contrastive learning
framework, where we assign weights proportional to the differences in survival outcomes. This
guides our model to learn appropriate similarity relationships between clinical features relevant to
survival analysis. Through experiments on multiple real-world clinical datasets, we demonstrate
the superiority of our method in both discrimination and calibration performance, outperforming
state-of-the-art deep survival models. We further provide comprehensive quantitative and qualitative
analyses through ablation studies to showcase the impact of our novel contrastive learning approach
tailored for survival analysis.

2 Related Works

2.1 Deep Learning Approaches to Survival Analysis

Deep learning-based survival models have garnered significant attention due to their ability to
provide non-parametric estimations of the underlying discrete-time survival distribution, particularly
conditional hazard or survival functions. Negative log-likelihood (NLL) has been widely used
in survival analysis to estimate various survival quantities, such as conditional hazard functions
[9, 10, 11], probability mass functions of event times [1], or survival functions [4]. MLE, based on
NLL, provides unbiased estimates of these quantities under the assumption of ignorable censoring,
where the event and censoring are independent given the input features. Building on this foundation,
recent deep learning-based survival models often incorporate auxiliary losses alongside the NLL loss
to further enhance model performance.

Ranking Loss. Ranking loss, often augmented with the NLL loss, has been widely employed in
recent deep survival models to enhance the discriminative power of survival predictions [1, 2, 3, 4].
These ranking loss functions, which are differentiable approximations or upper bounds of the negative
C-index [12], are typically based on exponential [1, 2], log-sigmoid [4, 13], or linear [3] functions.
In particular, these approaches directly utilize model outputs, such as conditional hazard or survival
functions, to establish pairwise ordering of comparable individual risks for better discrimination.
However, since ranking loss primarily focuses on samples with earlier event times (often ignoring
censored samples), these models may struggle to capture the full distributional characteristics of
time-to-event outcomes. This can adversely affect calibration performance, potentially leading to
inaccurate predictions regarding the observed time-to-event outcomes [2].

Calibration Loss. In healthcare applications, while achieving high discriminative power through
ranking loss is crucial, well-calibrated predictions are equally important for effective clinical decision-
making. Notably, recent approaches [14, 2] have prioritized enhancing calibration by minimizing
the rank probability score (RPS), a prediction error metric specifically tailored for survival analysis.
Furthermore, the authors in [15] have introduced a novel approach that transforms D-Calibration [16]
into a differentiable objective, calculating the squared difference between observed and predicted
events across multiple time intervals. In contrast to these methods, our proposed approach does not

2Source code for ConSurv is available in https://github.com/dongzza97/ConSurv

2

https://github.com/dongzza97/ConSurv


explicitly incorporate a calibration loss function. Nevertheless, it achieves comparable or even superior
calibration performance, demonstrating the effectiveness of our contrastive learning framework in
implicitly preserving calibration alongside discrimination.

2.2 Contrastive Learning

Contrastive learning [6, 7, 17] is a framework that learns an embedding space that effectively
discriminates among samples, by mapping positive pairs (similar samples) closer together, while
pushing negative pairs (dissimilar samples) farther apart. While contrastive learning has made
significant progress, our review of related work will focus on methods that explore various strategies
for injecting inductive bias to enhance representation learning.

Exploiting Continuous Labels. Inspired by the success of incorporating label information into
contrastive learning for classification tasks [8], recent research has extended this concept to regression
tasks by exploiting continuous label information for constructing positive and negative pairs. Zha
et al. [18] employ hard thresholding on label differences to generate positive and negative samples,
capitalizing on the idea that samples with similar target values should be mapped closer in the latent
space. Kerdabadi et al. [19] apply a similar approach in a dynamic time-to-event setting, defining
positive pairs as those within a specific time window and weighting negative pairs proportionally to
their time difference. However, this weighting scheme’s heavy reliance on absolute time differences
can destabilize the contrastive loss during training.

Weighting Negative Samples. Recent works have significantly improved contrastive learning by
incorporating inductive bias in the selection of negative samples. This includes focusing more weights
on hard negatives that challenge the model for more effective discrimination [20, 21, 22, 23] and
avoiding potential false negatives that might mislead the model [24, 25]. Many of these studies address
negative sample selection by employing informed sampling techniques to identify informative hard
negatives or potential false negatives. Notably, Robinson et al. [20] leverage importance sampling by
proposing a similarity-based distribution that prioritizes hard-to-distinguish negative samples.

3 Problem Formulation

3.1 Preliminary: Discrete-Time Survival Analysis

Suppose we are given a discrete-time survival dataset comprising N patients, denoted as D =
{(xi, τi, δi)}Ni=1. Each patient i is represented by the input feature xi ∈ X where X is the input
space, and the observed survival outcomes, τi ∈ T and δi ∈ {0, 1}. Here, τi and δi indicate the time
elapsed until either an event of our interest (e.g., death) or censoring (e.g., lost to follow-up) occurs
and whether the event was observed or not (i.e., right-censored), respectively. Throughout, we treat
survival time as discrete and the time horizon as finite such that the set of possible survival times is
defined as T = {0, . . . , Tmax} with a pre-defined maximum time horizon Tmax.

The conditional hazard function, λ : X × T → [0, 1], is the instantaneous risk of the event at time t
given feature x and is defined as λ(t|x) = P(T = t|T ≥ t,x). Then, we can represent the survival
function S : X × T → [0, 1] as follows:

S(t|x) = P(T > t|x) =
∏
t′≤t

(1− λ(t′|x)) (1)

which is a non-increasing function of t, indicating the probability of the event occurring after
time t given feature x. Equivalently, we could estimate the risk function, R : X × T → [0, 1],
which represents the probability of the event occurring at or before time t given feature x, i.e.,
R(t|x) = P(T ≤ t|x) = 1− S(t|x).

Then, we can achieve likelihood-based estimates for the hazard function, λ̂, by minimizing the
following negative NLL loss:

LNLL = −
N∑
i=1

[
δi log p̂(τi|xi) + (1− δi) log Ŝ(τi|xi)

]
(2)

where p̂(t|x) = λ̂(t|x)Ŝ(t− 1|x) represents the estimate for the probability of an event occurring
at time t, i.e., P(T = t|x). Here, (2) exploits two pieces of information from the survival data: (i)

3



when the event is observed (i.e., δi = 1), we know that the event occurred at time τi, and (ii) when
the event is not observed (i.e., δi = 0), we are aware that the event will occur after time τi.

3.2 Ranking Loss for Survival Analysis

Ranking loss specifically targets enhancing the discriminative power of survival models, which is
crucial for better distinguishing between patients based on their risk. Suppose we are given the risk
function, R, that quantifies the risk of a given patient with x at any time t. We aim to penalize
instances where the risks assigned to a pair of patients are incorrectly ordered (i.e., assigning a lower
risk to patient i who died before patient j). This can be achieved by the ranking loss, which is
formally given as follows:

LRank =
∑
i ̸=j

Ai,j · I
(
R(τi|xi) < R(τi|xj)

)
≈
∑
i ̸=j

Ai,j · η
(
R(τi|xi), R(τi|xj)

)
, (3)

where η is a function that relaxes the non-differentiable indicator function, I. Here, Ai,j = I(δi =
1, τi < τj) indicates acceptable pairs whose assigned risks are comparable.

Different deep survival models have employed various types of quantities for implementing the
ranking loss. For example, Lee et al. [1] have applied the risk function, R, and set η(x, y) =
exp(−(x− y)/κ), a convex function that both penalizes the wrongly ordered pairs and encourages
the correctly ordered pairs. The same convex function has been employed utilizing the survival
function, S [2]. Similarly, Steck et al. [13] utilizes η(x, y) = log σ(y − x), which is a lower bound
of the C-index, with the risk function, R. Chi et al. [3] employ the hazard function h with a linear
ranking function η(x, y) = −(x− y).
Challenges. While combining NLL with ranking loss shows a notable improvement in discriminative
power, it often comes at the expense of calibration performance, potentially harming the clinical
utility of predicted survival outcomes. We suspect this is primarily due to how ranking loss directly
modifies model outputs to order predicted risks, potentially leading to misalignment with the actual
risk distribution. In this paper, we propose a different approach. Our method focuses on increasing
discriminative power not by directly utilizing survival outcomes but by exploiting the embedding
space through our novel contrastive learning framework. This approach preserves the calibration
performance achieved by the NLL loss while enhancing discriminative capabilities.

4 Method

To address the challenges described above, we propose a novel Contrastive learning approach to a
deep Survival model, which we refer to as ConSurv. The proposed method consists of three key
components as illustrated in Figure 1:

• Encoder (parameterized by θ), fθ : X → H, takes features x ∈ X as input and outputs latent
representations, i.e., h = fθ(x).

• Projection head (parameterized by ψ), gψ : H → Rd, maps latent representations h to the
embedding space where contrastive learning is applied, i.e., z = gψ(h).

• Hazard network (parameterized by ϕ), fϕ : H× T → [0, 1], predicts the hazard rate at each time
point t ∈ T given the input latent representation h, i.e., λ̂(t|x) = fϕ(h, t) = fϕ(fθ(x), t).

Motivated by the core concept of contrastive learning frameworks, we aim to differentiate each
sample from other semantically different samples based on their survival outcomes. This allows us to
overcome the limitation of ranking loss, which arises from the direct comparison of model outcomes
in the form of risk/survival functions. Instead, we contrast samples in the latent space based on
their survival outcomes and utilize the model outcome solely for the NLL loss to encourage better
calibration.

4.1 Contrastive Learning for Survival Analysis

Our novel contrastive learning framework imposes lower penalties on potential false negative samples
based on the similarities in their survival outcomes. More specifically, given an anchor sample, we
define potential false negatives as samples with a small difference in the corresponding time-to-event.
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Figure 1: An illustration of the network architecture for ConSurv.

This inherently aligns with our inductive bias that patients with similar survival outcomes should
share similar clinical status, which manifests through similar representations.

For each anchor sample x ∼ pX , the noise-contrastive estimation (NCE) objective aims to learn
mapping f = gψ ◦ fθ utilizing a positive sample with the same semantic meaning, i.e., x+ ∼ p+,
and negative samples with (supposedly) different semantic meanings, i.e., x− ∼ q, as follows [20]:

E x∼pX
x+∼pX+

[
− log

es(x,x
+)

M · Ex−∼q[es(x,x
−)]

]
(4)

where M is the scaling term which is set to the batch size and s : X × X → [−1, 1] is the
similarity score between two samples. Here, we use cosine similarity in the embedding space, i.e.,
s(x,x′) = f(x)⊤f(x′)

∥f(x)∥∥f(x′)∥ . For notational convenience, we omit the corresponding temperature ν and

write es(x,x
+) to denote es(x,x

+)/ν .

The key aspect in (4) for obtaining embeddings with discriminative power lies in how we select
negative samples that the anchor sample should be distinguished from. To reflect the differences in
the time-to-events in the embedding space, we design a novel negative distribution, q, by utilizing the
available information from survival outcomes.

Importance Sampling using Survival Outcomes. To accurately distinguish patients based on their
time-to-event outcomes, we fully utilize the time-to-event information for designing q based on the
following inductive bias: similar patients are more likely to experience the event at similar time points
than the ones who are not. Hence, given an anchor (x, τ) and a negative sample (x−, τ−), we define
the weight function as follows:

w(τ−; τ) = 1− e−|τ−τ−| / σ (5)

where σ > 0 is a temperature coefficient. From this point forward, we will slightly abuse the notation
and write w(x−;x) to denote w(τ−; τ) to be consistent with the notation used for the negative
distribution. This function is a variant of the Laplacian kernel, where the weight increases as the
time difference increases. That is, we assign larger weights for samples with large differences in the
time-to-events, and smaller weights for samples with small time differences. Utilizing the weight
function in (5), we can define the negative distribution, q, as:

q(x−;x) =
1

Z
w(x−;x)p(x−), (6)

where Z is the normalizing constant. Then, using the importance sampling technique, we can
approximate the expectation of the similarity score of negative samples drawn from the negative
distribution in (6) as:

Ex−∼q

[
es(x,x

−)
]
= Ex−∼p

[
q(x−;x)

p(x−)
· es(x,x

−)

]
≈ 1

Z ·M

M∑
j=1

w(x−
j ;x) · e

s(x,x−
j ) (7)
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where the normalizing constant for the empirical distribution can be given as Z = 1
M

∑M
j=1 w(x

−
j ;x).

Overall, the survival outcome-aware NCE (SNCE) loss in (8), mitigating the effect of potential false
negatives that have similar survival outcomes, can be given as the following:

LSNCE =

N∑
i=1

[
− log

es(xi,x
+
i )

1
Z

∑M
j=1 w(x

−
j ;xi) · e

s(xi,x
−
j )

]
. (8)

4.2 Handling Right-Censoring

However, in a survival dataset, there exist samples that are right-censored, offering partial information
about the corresponding survival outcomes which indicates that the event will occur sometime after
the censoring time. Consequently, not every pair in the survival dataset has comparable survival
outcomes. Specifically, there are three different cases of sample pairs to consider:

• Case 1: Both samples are uncensored (i.e., have observed events). We can directly compare the
two time-to-events of any given pair.

• Case 2: One is uncensored and the other is censored. Similar to the acceptable pairs in ranking
loss, we can only compare a pair when sample i experiences an event while sample j is censored
after that event time (implying no event has occurred by that time), i.e., τi < τj .

• Case 3: Both samples are censored. No comparison is possible as we do not know when the actual
events have occurred for both samples.

Considering these cases, we redefine the weight function considering the right-censoring as
w̃(τj ; τi) = Ii,j · w(τj ; τi) where Ii,j indicates the comparable cases as follows:

Ii,j =

{
1 if (δi = 1, δj = 1) ∨ ((δi = 1, δj = 0) ∧ (τi < τj) ∧ (|τi − τj | ≥ α))
0 otherwise

where α is a hyperparameter that represents a margin to ensure a minimum time difference. Please
see Appendix C.3 for more details about the effect of α.

4.3 Network Description

In this subsection, we provide a detailed network description of ConSurv and outline the learning
procedure using a discrete-time survival dataset, D = {(xi, τi, δi)}Ni=1.

Negative Log-likelihood. Based on the encoder and the hazard network, we can provide the estimated
hazard function given the input feature x at each time point t ∈ T as λ̂(t|x) = fϕ(fθ(x), t). As our
hazard estimate is defined as a function of time given an input feature, we can naturally model the
time-varying effect of input features (thus, more complex relations) on risk/survival functions. Then,
we can compute the NLL loss, Lθ,ϕNLL, in (2) by plugging in fϕ(fθ(x), t) into p̂ and Ŝ as follows:

p̂(τ |x) = fϕ(fθ(x), τ)
∏

t′≤τ−1

(
1− fϕ(fθ(x), t′)

)
, Ŝ(τ |x) =

∏
t′≤τ

(
1− fϕ(fθ(x), t′)

)
. (9)

Contrastive Learning. To train the proposed method using our contrastive loss introduced in (8), we
construct augmented samples based on the state-of-the-art contrastive learning framework specifically
designed for tabular data [26]. For each sample in a batch of M samples, we construct a corrupted
version of the original sample following the marginal corruption process. So, given xi as an anchor,
we set the corrupted sample, i.e., x̃i, as positive and all the other corrupted samples, i.e., x̃j for j ̸= i,
as negative. By passing the original, positive, and negative samples through f = gψ ◦ fθ, we can
compute our survival outcome-based contrastive learning loss function as defined in (8).

Overall, we can estimate the hazard function by training ConSurv with a loss function that combines
the NLL loss and the SNCE loss as the following:

Lθ,ϕ,ψTotal = L
θ,ϕ
NLL + βLθ,ψSNCE, (10)

where β is a balancing coefficient that trade-offs between the two loss terms; the effect of β is
provided in C.3. Please find the pseudo-code of ConSurv in H.
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Table 1: Discrimination and calibration of survival models: mean and standard deviation values for
CI, IBS, and DDC, along with the number of successful D-calibration tests.3

METABRIC NWTCO
METHOD CI ↑ IBS ↓ DDC ↓ D-CAL CI ↑ IBS ↓ DDC ↓ D-CAL

COXPH 0.662±0.015 0.170±0.013 0.108±0.009 10 0.712±0.031 0.101±0.010 0.567±0.036 10
DEEPSURV 0.645±0.014 0.188±0.019 0.160±0.051 10 0.645±0.087 0.090±0.017 0.642±0.087 9
DEEPHIT 0.636±0.039 0.205±0.017 0.289±0.004 0 0.713±0.009 0.140±0.048 0.616±0.030 4
DRSA 0.635±0.017 0.260±0.036 0.199±0.027 0 0.700±0.037 0.272±0.050 0.295±0.127 0
DCS 0.598±0.015 0.243±0.022 0.090±0.050 0 0.677±0.031 0.098±0.015 0.173±0.051 6
X-CAL 0.658±0.009 0.189±0.018 0.068±0.041 0 0.677±0.038 0.146±0.023 0.133±0.074 4

LNLL 0.608±0.046 0.244±0.047 0.086±0.055 5 0.711±0.051 0.102±0.006 0.464±0.049 10
LNLL & LNCE 0.660±0.002 0.191±0.014 0.115±0.031 8 0.716±0.048 0.100±0.009 0.289±0.012 8
LNLL & LRank 0.643±0.010 0.267±0.025 0.155±0.050 0 0.723±0.042 0.210±0.026 0.551±0.037 0

CONSURV 0.688±0.017 0.183±0.019 0.097±0.025 6 0.729±0.052 0.090±0.011 0.222±0.029 10

GBSG FLCHAIN
METHOD CI ↑ IBS ↓ DDC ↓ D-CAL CI ↑ IBS ↓ DDC ↓ D-CAL

COXPH 0.677±0.010 0.177±0.003 0.220±0.037 10 0.800±0.009 0.100±0.006 0.302±0.016 10
DEEPSURV 0.674±0.006 0.179±0.003 0.203±0.024 10 0.798±0.010 0.084±0.011 0.294±0.010 10
DEEPHIT 0.642±0.058 0.207±0.003 0.354±0.052 1 0.798±0.009 0.168±0.003 0.500±0.004 0
DRSA 0.679±0.002 0.283±0.014 0.402±0.083 0 0.779±0.010 0.226±0.025 0.318±0.044 0
DCS 0.693±0.006 0.180±0.009 0.166±0.010 5 0.786±0.012 0.105±0.008 0.251±0.050 0
X-CAL 0.687±0.006 0.179±0.002 0.087±0.018 3 0.791±0.006 0.110±0.010 0.302±0.097 3

LNLL 0.675±0.018 0.174±0.002 0.126±0.025 0 0.794±0.017 0.104±0.005 0.273±0.015 9
LNLL & LNCE 0.687±0.008 0.184±0.003 0.193±0.006 0 0.797±0.012 0.111±0.011 0.302±0.043 8
LNLL & LRank 0.687±0.012 0.342±0.034 0.359±0.117 0 0.796±0.014 0.184±0.016 0.334±0.056 0

CONSURV 0.696±0.006 0.175±0.002 0.180±0.017 0 0.810±0.011 0.072±0.057 0.291±0.055 9

SUPPORT SEER
METHOD CI ↑ IBS ↓ DDC ↓ D-CAL CI ↑ IBS ↓ DDC ↓ D-CAL

COXPH 0.605±0.006 0.196±0.006 0.262±0.009 0 0.857±0.021 0.009±0.001 0.966±0.004 10
DEEPSURV 0.599±0.011 0.196±0.007 0.258±0.033 0 0.760±0.037 0.010±0.001 1.000±0.000 10
DEEPHIT 0.502±0.007 0.272±0.003 0.336±0.005 0 0.843±0.021 0.020±0.001 0.825±0.002 0
DRSA 0.573±0.007 0.263±0.019 0.285±0.097 0 0.810±0.113 0.023±0.022 0.650±0.174 0
DCS 0.597±0.009 0.211±0.012 0.169±0.043 0 0.860±0.022 0.010±0.001 0.903±0.037 9
X-CAL 0.604±0.006 0.207±0.013 0.182±0.029 0 0.844±0.033 0.011±0.006 0.907±0.029 9

LNLL 0.607±0.005 0.196±0.008 0.122±0.014 0 0.853±0.017 0.009±0.001 0.962±0.008 10
LNLL & LNCE 0.609±0.006 0.193±0.006 0.130±0.025 0 0.855±0.018 0.009±0.001 0.965±0.006 10
LNLL & LRank 0.610±0.005 0.294±0.007 0.232±0.015 0 0.863±0.017 0.120±0.003 1.000±0.000 0

CONSURV 0.618±0.006 0.192±0.005 0.144±0.021 0 0.865±0.014 0.004±0.003 0.961±0.007 10

5 Experiment

In this section, we evaluate the performance of ConSurv and multiple survival models using several
real-world clinical datasets. Further details about all the experiments are available in Appendix D.

5.1 Experiment Setup

Datasets. We compare our proposed method and the benchmarks with the following four commonly
used real-world clinical datasets: METABRIC, NWTCO, GBSG, FLCHAIN, SUPPORT, and SEER.
For detailed descriptions of these datasets, please refer to D.1.

Benchmarks. We compare ConSurv with six survival models that were selected based on their
respective loss functions, which are critical for understanding trends in survival analysis performance.
The evaluated models are based on i) partial log-likelihood including CoxPH [27] and DeepSurv
[28], ii) ranking loss including DeepHit [1] and DRSA [10], and iii) calibration loss including DCS
[2] and X-CAL [15]. Detailed methodological descriptions are provided in Appendix D.3.

Performance Metric. We evaluate the discriminative performance of ConSurv and benchmarks using
the integrated time-dependent C-index (CI) [29] across all time points, where higher values indicate
better performance. For calibration, we utilize the integrated Brier score (IBS) [30] and distributional
divergence for calibration (DDC) [2], where lower values indicate better performance. Additionally,
D-Calibration (D-CAL) [31] assesses calibration with results reported based on p-values; those
exceeding 0.05 are noted as statistically significant. Comprehensive details on IBS, DDC, and D-CAL

3Table 1 presents the performance results obtained using 10 random seeds. For enhanced stability verification,
we conducted additional experiments with 25 random seeds. Please refer to Table 10 in appendix C.5.
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Figure 2: t-SNE visualization for latent representations learned with LNLL only, LSNCE only, and
ConSurvfor the METABRIC dataset, colored by event times (for uncensored samples).

Figure 3: Calibration plots for ConSurv in comparison with benchmarks for the METABRIC dataset.

are provided in Appendix D.2. In Appendix C.1, we further provide time-dependent C-index [5] and
time-dependent Brier score [30] at different time points.

5.2 Quantitative Analysis Results

We report the CI, BS, DDC, and D-CAL of our proposed method and the benchmarks in Table 1.
The results in Table 1 demonstrate that our method significantly outperforms all the benchmarks
in discriminating among individual risks at the evaluated all time points, consistently across the
four real-world clinical datasets. ConSurv achieves such gains in the discriminative performance
while providing the best or comparable calibration performance. Notably, as evidenced by the
metrics IBS, DDC, and D-CAL, our method yields exceptional calibration performance. Contrarily,
ranking loss-based models such as DeepHit and DRSA, which are designed primarily to enhance
discriminative power, usually exhibit poor calibration. Even without being specifically designed
through the loss function for calibration, our model outperforms benchmarks such as DCS and
X-CAL, which incorporate loss functions used to enhance calibration power. This indicates that our
approach inherently balances both discriminative and calibration power effectively.

Ablation Study. We conduct an ablation study to better understand the contribution of different
loss functions within our framework employing the following variants of ConSurv: (i) LNLL only,
(ii) LNLL & LNCE, (iii) LNLL & LRank , and (iv) ConSurv (i.e., LNLL & LSNCE). Table 1 highlights the
performance trade-offs between discrimination and calibration power when different loss functions are
utilized in survival models. Using only NLL loss typically leads to lower discriminative performance
while maintaining reasonably good calibration. Augmenting a ranking loss to the NLL significantly
enhances discriminative performance but decreases calibration. In contrast, our proposed SNCE loss
significantly enhances the model’s performance compared to (i) using NLL only and (iii) using NLL
with ranking loss. This suggests that the SNCE loss not only boosts discriminative power but also
preserves or even improves the model’s calibration. Additionally, when compared to (ii) using NLL
with InfoNCE, which pushes all negative pairs away equally, we confirm that ConSurv, which assigns
weights to negative samples based on their time difference until the event, ensures better performance.
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Figure 4: Comparison of the survival curves across various
patient subgroups for the METABRIC dataset.

Table 2: Wasserstein distances from
KM curves across various patient sub-
groups for the METABRIC dataset.

Subgroup ER HER2

+ - + -

CoxPH 0.030 0.108 0.063 0.089
DeepSurv 0.033 0.115 0.066 0.101
DeepHit 0.063 0.082 0.146 0.156
DRSA 0.181 0.293 0.233 0.328
DCS 0.130 0.146 0.087 0.178

X-CAL 0.136 0.165 0.105 0.180
ConSurv 0.024 0.077 0.044 0.089

5.3 Qualitative Analysis Results

5.3.1 Effect of Contrastive Learning

To further demonstrate how survival outcome-aware contrastive learning promotes discrimination
among samples in the latent space, we compare two-dimensional t-SNE visualizations of latent repre-
sentations trained with LNLL only, LSNCE only and ConSurv (i.e., LNLL & LSNCE) for the METABRIC
dataset in Figure 2. Here, we only display uncensored samples with event times for clarity. Figure
2 shows that when trained with LNLL alone, latent representations are mixed regardless of their
corresponding event times. However, incorporating LSNCE into the loss function significantly im-
proves the alignment of representations with event time information, enabling the predictor to better
discriminate the risks associated with each sample. Notably, even when trained solely with LSNCE,
latent representations exhibit a clear alignment with event times. This finding strongly suggests that
our contrastive learning approach effectively encourages discrimination by capturing and reflecting
the underlying event time information. (See Appendix C.2 for more datasets.)

5.3.2 Calibration Plot

Figure 3 shows calibration plots comparing the calibration of ConSurv with the deep learning-based
survival models. Here, we evaluate calibration by matching predicted cumulative densities to observed
event frequencies at the quantiles of the predicted cumulative density. In these plots, the x=y line
represents the ideal state where predicted probabilities perfectly match the observed outcomes. The
evaluated survival models show different trends depending on the loss function used for training.
The ranking-based models (i.e., DeepHit and DRSA), which directly manipulate the model outputs,
experimentally demonstrated the lowest calibration power. Contrarily, the calibration-based models
(i.e., X-CAL and DCS), designed to improve calibration power, show relatively better calibration but
do not match the calibration performance of DeepSurv, likely due to the assumption of proportional
hazards. Compared to these survival models trained based on three different types of loss functions,
our proposed method demonstrates calibration performance that is similar or even superior.

5.3.3 Subgroup Analysis

We further validate the calibration performance of the survival models by comparing their survival
plots with the Kaplan-Meier (KM) curve, a non-parametric estimate of the survival function at a
population level. For this comparison, we examine two binary hormone receptor statuses in the
METABRIC dataset: estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2),
which are crucial for determining hormone therapies and can result in significantly different prognoses
for breast cancer patients. In Figure 4, we average the survival functions of different survival models
based on the subgroups of patients with the corresponding feature values (e.g., ER+ vs ER-). The
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results confirm that our method aligns well with the KM curve compared to other deep learning-based
survival models, especially those with ranking loss.

To quantitatively assess calibration performance across different subgroups, we compare the survival
predictions of each model with KM curves for each subgroup using the Wasserstein distance. This
metric is well-suited for comparing survival curves as it considers both the overall shape and the
discrepancies in predicted survival probabilities at each time point. The results in Table 2 demonstrate
that our proposed model achieves well-calibrated predictions within each subgroup. (See Appendix
C.4.2 for more subgroups.)

6 Conclusion

In this paper, we propose ConSurv, a novel contrastive learning approach for deep survival analysis.
Our method leverages weighted sampling to incorporate the intuitive assumption that patients with
similar event times likely share similar clinical statuses. Unlike most existing deep survival models,
ConSurv does not directly manipulate hazard or survival predictions during contrastive learning.
This approach allows our method to maintain well-calibrated predictions based on the negative
log-likelihood loss. Experiments on multiple real-world datasets demonstrate the superiority of our
method over state-of-the-art deep survival models, particularly in achieving superior calibration
performance compared to ranking loss-based models.
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A Notations

The notations used in this work are listed in Table 3.

Table 3: Table of Notations.
Notation Description

Ai,j The indicator for acceptable pairs in the ranking loss
α The margin to ensure a minimum time difference
β The balancing coefficient between the loss function
δi The Event indicator for patient i
D The survival dataset
fϕ The hazard network function
fθ The encoder function
gψ The projection head function
H The latent representation space
λ The conditional hazard function
LNLL The negative log-likelihood loss
LRank The ranking loss
LSNCE The survival outcome-based contrastive learning loss
M The number of samples in a batch
R The risk function
S The survival function
σ The temperature coefficient for the weight function
ν The temperature coefficient for the SNCE loss
T The set of all possible discrete survival times
τi The observed survival time for patient i
Tmax The maximum time horizon
x̃i The corrupted version of the original sample xi
w The weight function
Z The normalization constant
xi The input feature vector for patient i
X The input feature space

B Augmentation Method

In our experiments with tabular datasets, we compared augmentation methods, focusing on traditional
noise injection (NI) and the state-of-the-art method, SCARF [26]. For noise injection, we introduced
random Gaussian noise into the latent space, determining the optimal corruption rate through a
hyperparameter search consistent with SCARF. SCARF consistently showed performance that was
similar to or better than NI. Consequently, we adopted SCARF as our primary augmentation method
for our experiments.

Table 4: Ablation study on the different tabular augmentation methods.
METABRIC NWTCO

METHOD CI ↑ IBS ↓ DDC ↓ D-CAL ↑ CI ↑ IBS ↓ DDC ↓ D-CAL ↑
NI 0.650 0.096 0.052 0.003 0.704 0.059 0.250 0.137
SCARF 0.688 0.094 0.097 0.089 0.729 0.078 0.222 0.360

GBSG FLCHAIN
METHOD CI ↑ IBS ↓ DDC ↓ D-CAL ↑ CI ↑ IBS ↓ DDC ↓ D-CAL ↑
NI 0.681 0.157 0.070 0.000 0.788 0.088 0.247 0.096
SCARF 0.696 0.138 0.180 0.004 0.810 0.084 0.291 0.204

SUPPORT SEER
METHOD CI ↑ IBS ↓ DDC ↓ D-CAL ↑ CI ↑ IBS ↓ DDC ↓ D-CAL ↑
NI 0.612 0.204 0.149 0.000 0.842 0.014 0.975 0.999
SCARF 0.625 0.195 0.155 0.000 0.854 0.009 0.960 0.999
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C Additional Results

Table 5: Comparison of time-dependent C-index.

METABRIC NWTCO
Methods 25% 50% 75% 25% 50% 75%

CoxPH 0.653±0.024 0.645±0.018 0.637±0.018 0.718±0.026 0.711±0.025 0.706±0.026

DeepSurv 0.643±0.034 0.620±0.024 0.607±0.029 0.640±0.081 0.636±0.079 0.634±0.078

DeepHit 0.605±0.045 0.659±0.044 0.603±0.032 0.717±0.023 0.723±0.023 0.704±0.024

DRSA 0.639±0.030 0.605±0.020 0.592±0.022 0.713±0.020 0.706±0.019 0.704±0.019

DCS 0.646±0.030 0.615±0.023 0.606±0.024 0.675±0.026 0.657±0.020 0.643±0.029

X-CAL 0.661±0.025 0.632±0.018 0.619±0.019 0.687±0.026 0.650±0.029 0.628±0.034

ConSurv 0.686±0.028 0.660±0.021 0.645±0.023 0.718±0.025 0.709±0.024 0.705±0.025

GBSG FLCHAIN
Methods 25% 50% 75% 25% 50% 75%

CoxPH 0.714±0.027 0.678±0.019 0.664±0.018 0.796±0.019 0.793±0.015 0.790±0.014

DeepSurv 0.700±0.056 0.668±0.047 0.654±0.043 0.787±0.028 0.783±0.027 0.780±0.028

DeepHit 0.630±0.045 0.626±0.030 0.609±0.028 0.796±0.020 0.793±0.014 0.785±0.014

DRSA 0.725±0.687 0.687±0.015 0.671±0.016 0.776±0.023 0.776±0.016 0.772±0.013

DCS 0.720±0.025 0.687±0.015 0.674±0.017 0.788±0.024 0.783±0.019 0.779±0.018

X-CAL 0.727±0.025 0.680±0.016 0.676±0.017 0.793±0.021 0.788±0.015 0.784±0.016

ConSurv 0.723±0.030 0.689±0.019 0.676±0.020 0.796±0.022 0.791±0.017 0.786±0.015

SUPPORT SEER
Methods 25% 50% 75% 25% 50% 75%

CoxPH 0.603±0.006 0.607±0.006 0.609±0.006 0.865±0.018 0.890±0.023 0.855±0.022

DeepSurv 0.603±0.009 0.605±0.009 0.608±0.010 0.838±0.007 0.835±0.021 0.836±0.002

DeepHit 0.516±0.007 0.489±0.008 0.521±0.007 0.847±0.016 0.841±0.020 0.827±0.020

DRSA 0.586±0.009 0.583±0.007 0.580±0.009 0.840±0.073 0.839±0.077 0.820±0.083

DCS 0.604±0.008 0.602±0.009 0.602±0.009 0.864±0.019 0.863±0.023 0.858±0.023

X-CAL 0.610±0.006 0.608±0.006 0.608±0.007 0.840±0.023 0.839±0.019 0.833±0.018

ConSurv 0.616±0.006 0.617±0.006 0.618±0.006 0.870±0.017 0.866±0.020 0.862±0.020

C.1 Performance on Time-dependent C-index and Brier score

While the CI and IBS provide valuable overall assessments of a given survival model (over the entire
time horizon), these metrics cannot fully capture variations in model performance across different
time points. To address this, we included time-dependent performance evaluations, namely the
time-dependent C-index [5] and the time-dependent Brier score[30] at three different time points
(i.e., 25%, 50%, and 75% percentiles of time-to-events as in [32, 33, 34]. It is worth highlighting that
utilizing these time-dependent metrics may reveal subtle differences that might be obscured when
using CI and IBS alone. As shown in Table 5 and 6, we demonstrate the superiority of our method in
discriminative power while preserving calibration. To evaluate the performance of survival models at
various time points, we select the 25%, 50%, and 75%-percentile of each dataset.

C.2 Effect of Contrastive Learning

In Figure 5, When using LNLL alone, representations tend to cluster tightly in a narrow space
regardless of time. However, when applying LSNCE (contrastive learning with a time weight) to LNLL
, representations of features with similar times are more likely to be positioned close to each other.

C.3 Sensitive Analysis

Sensitive Analysis on Coefficient α. α is the margin to ensure a minimum time difference between
samples in acceptable pairs. All the weights for the entire sample are precomputed. For setting the
margin, we calculate the percentile for only the weights corresponding to Case 2 mentioned in section
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Figure 5: t-SNE visualization for latent representations learned with LNLL only, LSNCE only, and
ConSurv for the FLCHAIN and SUPPORT datasets, colored by event times (for uncensored samples).

Table 6: Comparison of time-dependent Brier score.

METABRIC NWTCO
Methods 25% 50% 75% 25% 50% 75%

CoxPH 0.167±0.009 0.215±0.014 0.236±0.038 0.111±0.009 0.114±0.008 0.114±0.008

DeepSurv 0.173±0.010 0.228±0.016 0.249±0.048 0.121±0.011 0.124±0.011 0.125±0.012

DeepHit 0.181±0.009 0.256±0.010 0.263±0.026 0.151±0.009 0.143±0.008 0.154±0.009

DRSA 0.264±0.041 0.343±0.038 0.337±0.079 0.281±0.030 0.294±0.039 0.310±0.051

DCS 0.190±0.020 0.265±0.038 0.293±0.083 0.119±0.010 0.107±0.011 0.122±0.024

X-CAL 0.180±0.012 0.234±0.021 0.254±0.057 0.113±0.009 0.106±0.013 0.137±0.036

ConSurv 0.166±0.009 0.221±0.015 0.255±0.045 0.111±0.009 0.113±0.008 0.113±0.009

GBSG FLCHAIN
Methods 25% 50% 75% 25% 50% 75%

CoxPH 0.145±0.010 0.211±0.007 0.219±0.010 0.074±0.006 0.112±0.006 0.133±0.007
DeepSurv 0.146±0.011 0.212±0.009 0.221±0.013 0.076±0.007 0.114±0.009 0.137±0.011

DeepHit 0.168±0.012 0.242±0.008 0.250±0.006 0.096±0.005 0.181±0.004 0.244±0.004

DRSA 0.210±0.016 0.322±0.022 0.349±0.020 0.141±0.013 0.251±0.027 0.323±0.031

DCS 0.153±0.010 0.210±0.006 0.218±0.010 0.079±0.008 0.119±0.008 0.147±0.014

X-CAL 0.150±0.011 0.207±0.007 0.217±0.012 0.080±0.005 0.117±0.007 0.144±0.012

ConSurv 0.146±0.009 0.209±0.008 0.217±0.010 0.077±0.006 0.115±0.007 0.136±0.008

SUPPORT SEER
Methods 25% 50% 75% 25% 50% 75%

CoxPH 0.219±0.003 0.197±0.008 0.180±0.009 0.005±0.001 0.009±0.001 0.014±0.001
DeepSurv 0.220±0.004 0.198±0.009 0.180±0.010 0.005±0.001 0.010±0.001 0.016±0.001

DeepHit 0.340±0.005 0.282±0.003 0.240±0.005 0.016±0.000 0.020±0.001 0.026±0.001

DRSA 0.285±0.013 0.269±0.022 0.249±0.021 0.011±0.006 0.021±0.016 0.034±0.026

DCS 0.222±0.006 0.209±0.015 0.202±0.017 0.005±0.001 0.010±0.001 0.015±0.002

X-CAL 0.220±0.005 0.207±0.016 0.201±0.018 0.006±0.001 0.011±0.002 0.019±0.003

ConSurv 0.219±0.005 0.195±0.010 0.177±0.010 0.005±0.001 0.009±0.001 0.015±0.001

4.2. By defining this minimum time difference, the margin aids in reducing the ambiguity in survival
outcomes, leading to a more precise comparison of patient risks. Specifically, this enhancement is
vital for improving the model’s discrimination capabilities, as it removes potential false negative
samples with little difference in their survival outcomes. In Table 7, to determine the sensitivity of the
ConSurv with respect to the value of α, we report the performance results on four datasets by varying
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Figure 6: Comparison of time differences based on censoring times and those based on the (unob-
served) ground-truth event times. Time differences are computed for each sample with an event
with respect to the censoring time and event time of its corresponding comparable censored samples.
(Samples are listed in ascending order of their event times.)

the value of α according to the following percentiles of time differences: {5.0, 7.0, 10.0, 12.0, 14.0}.
Additionally, we compare the performance metrics with no margin (i.e., α = 0).

Effect of Margin α. In Figure 6, we compare time differences based on censoring times and the
(unobserved) ground-truth event times. For each event sample, we compute the time differences
between its event time and: 1) the (observed) censoring time of its corresponding comparable
censored sample, and 2) the (unobserved) ground-truth event time of that same censored sample.

To show this effect, we have conducted an experiment using additional synthetic data by adapting the
time-to-event generation process in DeepHit [1] for both event times Ti and censoring times Ci:

Ti ∼ exp
(
(10xi1)

2 + 5xi3
)
, Ci ∼ exp

(
(10xi2)

2 + 5xi4
)

(11)
Here, we randomly generated 1,000 random samples, where a sample is censored when Ti > Ci.

Without a margin, censored samples with censoring times close to event times may be incorrectly
treated as having similar event times, leading to very low weight assignments. To avoid this, we
introduce a margin to exclude such samples when computing our contrastive loss. Overall, the margin
in |τi − τj | ≥ α helps prevent failures in accurately distinguishing risk between comparable censored
samples.

Sensitive Analysis On Coefficient β. β is the balancing coefficient in our overall loss function
where increased β makes the impact of LSNCE more dominant. Table 8 shows that when β (using
the optimal α for each dataset) is relatively small (here, β = 0.01), contrastive loss struggles to
effectively learn similarities between survival outcomes, leading to poor discrimination performance.
However, increasing the β ratio consistently improves performance. This suggests that our proposed
contrastive learning approach does not prevent the survival model from learning effectively guided by
the NLL loss.
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Table 7: Impact of margin (α) on performance metrics.
METABRIC NWTCO

METHOD CI ↑ IBS ↓ DDC ↓ D-CAL ↑ CI ↑ IBS ↓ DDC ↓ D-CAL ↑
α = 0 0.695 0.088 0.100 0.256 0.765 0.065 0.481 0.001
α = 5 0.687 0.089 0.098 0.243 0.751 0.068 0.480 0.012
α = 7 0.691 0.088 0.083 0.134 0.773 0.059 0.463 0.503
α = 10 0.707 0.084 0.093 0.528 0.756 0.069 0.573 0.061
α = 12 0.692 0.088 0.083 0.671 0.751 0.067 0.497 0.703
α = 14 0.692 0.086 0.064 0.230 0.753 0.069 0.506 0.159

GBSG FLCHAIN
METHOD CI ↑ IBS ↓ DDC ↓ D-CAL ↑ CI ↑ IBS ↓ DDC ↓ D-CAL ↑
α = 0 0.691 0.153 0.201 0.000 0.779 0.100 0.306 0.731
α = 5 0.693 0.153 0.199 0.000 0.771 0.100 0.254 0.929
α = 7 0.695 0.151 0.182 0.000 0.783 0.090 0.280 0.693
α = 10 0.694 0.154 0.224 0.000 0.779 0.100 0.270 0.963
α = 12 0.673 0.157 0.241 0.000 0.778 0.095 0.258 0.919
α = 14 0.670 0.159 0.236 0.000 0.777 0.098 0.310 0.929

SUPPORT SEER
METHOD CI ↑ IBS ↓ DDC ↓ D-CAL ↑ CI ↑ IBS ↓ DDC ↓ D-CAL ↑
α = 0 0.592 0.205 0.150 0.000 0.883 0.008 0.962 0.999
α = 5 0.605 0.198 0.142 0.000 0.886 0.007 0.948 0.999
α = 7 0.604 0.202 0.145 0.000 0.874 0.012 0.984 0.991
α = 10 0.610 0.196 0.144 0.000 0.889 0.004 0.933 0.999
α = 12 0.608 0.197 0.147 0.000 0.879 0.008 0.954 0.999
α = 14 0.598 0.203 0.149 0.000 0.877 0.007 0.952 0.999

Table 8: Impact of margin (β) on performance metrics.
METABRIC NWTCO

METHOD CI ↑ IBS ↓ DDC ↓ D-CAL ↑ CI ↑ IBS ↓ DDC ↓ D-CAL ↑
β = 0.01 0.673 0.089 0.148 0.254 0.747 0.069 0.493 0.043
β = 0.1 0.682 0.124 0.109 0.320 0.759 0.091 0.470 0.095
β = 1.0 0.706 0.086 0.093 0.524 0.773 0.078 0.222 0.428
β = 10.0 0.652 0.166 0.096 0.405 0.759 0.093 0.344 0.397
β = 100.0 0.743 0.071 0.463 0.352 0.743 0.071 0.463 0.352

GBSG FLCHAIN
METHOD CI ↑ IBS ↓ DDC ↓ D-CAL ↑ CI ↑ IBS ↓ DDC ↓ D-CAL ↑
β = 0.01 0.655 0.149 0.150 0.015 0.746 0.063 0.493 0.353
β = 0.1 0.677 0.171 0.156 0.012 0.775 0.108 0.364 0.543
β = 1.0 0.703 0.138 0.180 0.075 0.816 0.096 0.338 0.465
β = 10.0 0.686 0.169 0.139 0.002 0.777 0.107 0.354 0.537
β = 100.0 0.694 0.170 0.363 0.057 0.743 0.071 0.551 0.057

SUPPORT SEER
METHOD CI ↑ IBS ↓ DDC ↓ D-CAL ↑ CI ↑ IBS ↓ DDC ↓ D-CAL ↑
β = 0.01 0.594 0.180 0.134 0.000 0.831 0.016 0.983 0.999
β = 0.1 0.603 0.185 0.139 0.000 0.842 0.020 0.982 0.999
β = 1.0 0.610 0.183 0.132 0.000 0.854 0.010 0.975 0.999
β = 10.0 0.605 0.194 0.145 0.000 0.832 0.016 0.984 0.999
β = 100.0 0.601 0.179 0.152 0.000 0.821 0.021 0.988 0.999
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C.4 Calibration

C.4.1 Calibration Plot

Figure 7 shows calibration plots of ConSurv in comparison with the benchmarks on all the evaluated
datasets. Here, similar to our observation in Section 5.3.2, ConSurv consistently exhibits calibration
performance that is similar to or better than the benchmarks, effectively balancing discriminative and
calibration power.

Figure 7: Calibration plots for ConSurv in comparison with benchmarks.
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C.4.2 Subgroup Analysis

In this section, we show that our model learns well about the differences between subgroups on real-
world datasets, with good calibration performance by comparing the averaged survival predictions
and the observed KM estimation within each subgroup. In Figure 8, we subgroup patients based on
cellularity, which is a categorical variable representing the degree of density of cells in the tumor.
Similarly, in Figure 9 (a), we partition patients based on the size of the tumor (with + indicating 70%
or more and - indicating 30% or less of the total size), which have a significant impact on the event.
In Figure 9 (b), we examine binary hormone receptor statuses progesterone receptor (PR).

Our results show that our method closely aligns with the KM curve, outperforming other deep learning-
based survival models, especially those with ranking loss. We assess calibration performance using
the Wasserstein distance to compare survival predictions with KM curves across different subgroups.
In Table 9 indicate that our model provides well-calibrated predictions within each subgroup.

Figure 8: Comparison of the survival curves across various patient subgroups in the METABRIC
dataset.

Figure 9: Comparison of the survival curves across various patient subgroups in the METABRIC
dataset.

Table 9: Subgroup-level Wasserstein distances on the METABRIC dataset.

Subgroup
cellularity PR size

1 2 3 + - + -

CoxPH 0.039 0.044 0.067 0.049 0.067 0.076 0.044
DeepSurv 0.044 0.048 0.080 0.054 0.074 0.105 0.089
DeepHit 0.101 0.074 0.020 0.043 0.102 0.233 0.033
DRSA 0.215 0.168 0.203 0.205 0.276 0.118 0.234
DCS 0.125 0.060 0.168 0.154 0.126 0.091 0.124

X-CAL 0.113 0.143 0.184 0.159 0.148 0.060 0.176
ConSurv 0.018 0.044 0.063 0.043 0.042 0.060 0.025
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C.5 Evaluating Performance Across Extended Seeds

For enhanced stability verification, we conducted additional experiments with 25 random seeds in
Table 10.

Table 10: Discrimination and calibration of survival models: mean and standard deviation values for
CI, IBS, and DDC, along with the number of successful D-calibration tests.

METABRIC NWTCO
METHOD CI ↑ IBS ↓ DDC ↓ D-CAL CI ↑ IBS ↓ DDC ↓ D-CAL

COXPH 0.645±0.019 0.175±0.028 0.111±0.024 25 0.716±0.025 0.108±0.008 0.515±0.022 25
DEEPSURV 0.625±0.025 0.183±0.029 0.103±0.026 25 0.640±0.080 0.117±0.011 0.792±0.011 24
DEEPHIT 0.604±0.019 0.204±0.018 0.292±0.017 0 0.717±0.028 0.143±0.024 0.657±0.024 12
DRSA 0.604±0.032 0.249±0.038 0.178±0.060 0 0.709±0.019 0.281±0.041 0.218±0.065 0
DCS 0.612±0.029 0.206±0.043 0.054±0.039 2 0.642±0.036 0.119±0.018 0.209±0.043 19
X-CAL 0.632±0.027 0.182±0.023 0.065±0.037 2 0.622±0.037 0.128±0.025 0.191±0.079 12

LNLL 0.642±0.022 0.197±0.030 0.077±0.020 13 0.707±0.024 0.109±0.008 0.556±0.041 23
LNLL & LNCE 0.659±0.020 0.193±0.029 0.080±0.022 21 0.715±0.024 0.108±0.009 0.563±0.054 22
LNLL & LRank 0.652±0.022 0.247±0.030 0.177±0.020 0 0.717±0.027 0.137±0.008 0.653±0.050 0

CONSURV 0.665±0.023 0.186±0.021 0.110±0.024 23 0.718±0.025 0.107±0.008 0.554±0.045 24

GBSG FLCHAIN
METHOD CI ↑ IBS ↓ DDC ↓ D-CAL CI ↑ IBS ↓ DDC ↓ D-CAL

COXPH 0.662±0.179 0.181±0.007 0.183±0.037 25 0.790±0.012 0.103±0.005 0.287±0.013 25
DEEPSURV 0.653±0.042 0.182±0.009 0.153±0.066 24 0.779±0.028 0.106±0.006 0.287±0.021 25
DEEPHIT 0.633±0.032 0.205±0.006 0.342±0.023 3 0.795±0.023 0.170±0.005 0.492±0.018 0
DRSA 0.668±0.016 0.278±0.018 0.402±0.055 0 0.772±0.012 0.230±0.024 0.369±0.034 0
DCS 0.677±0.017 0.181±0.008 0.124±0.025 10 0.779±0.016 0.113±0.009 0.363±0.136 5
X-CAL 0.675±0.017 0.181±0.010 0.166±0.020 8 0.783±0.015 0.112±0.008 0.402±0.105 3

LNLL 0.668±0.019 0.179±0.006 0.154±0.029 0 0.783±0.014 0.106±0.004 0.264±0.028 19
LNLL & LNCE 0.669±0.020 0.179±0.007 0.155±0.026 0 0.786±0.013 0.106±0.004 0.283±0.042 22
LNLL & LRank 0.687±0.019 0.280±0.007 0.263±0.025 0 0.785±0.014 0.146±0.005 0.303±0.024 0

CONSURV 0.677±0.020 0.179±0.007 0.160±0.026 18 0.796±0.014 0.105±0.004 0.280±0.036 23

SUPPORT SEER
METHOD CI ↑ IBS ↓ DDC ↓ D-CAL CI ↑ IBS ↓ DDC ↓ D-CAL

COXPH 0.604±0.006 0.191±0.005 0.262±0.013 0 0.858±0.018 0.009±0.005 0.966±0.003 25
DEEPSURV 0.603±0.090 0.192±0.007 0.245±0.036 0 0.814±0.020 0.010±0.000 1.000±0.000 25
DEEPHIT 0.503±0.009 0.272±0.003 0.337±0.006 0 0.840±0.033 0.020±0.001 0.836±0.003 0
DRSA 0.570±0.009 0.259±0.015 0.486±0.084 0 0.834±0.078 0.021±0.015 0.671±0.135 0
DCS 0.598±0.008 0.207±0.012 0.175±0.032 0 0.860±0.020 0.010±0.001 0.911±0.044 21
X-CAL 0.603±0.007 0.204±0.012 0.181±0.025 0 0.837±0.040 0.015±0.006 0.900±0.049 18

LNLL 0.606±0.006 0.193±0.008 0.123±0.019 0 0.854±0.016 0.009±0.001 0.867±0.009 25
LNLL & LNCE 0.608±0.007 0.192±0.007 0.127±0.021 0 0.859±0.017 0.012±0.003 0.964±0.006 25
LNLL & LRank 0.617±0.007 0.173±0.008 0.231±0.024 0 0.862±0.017 0.139±0.001 1.000±0.000 0

CONSURV 0.616±0.005 0.190±0.006 0.148±0.023 0 0.864±0.016 0.009±0.001 0.863±0.006 25

D Dataset Description and Experimental Setup

D.1 Real-World Datasets

Table 11: Descriptive statistics of the real-world datasets
Dataset No. Uncensored No. Censored No. Features (real, binary, categorical)

METABRIC 888 (55.2%) 1093 (44.8%) 21(6,0,15)
NWTCO 571 (14.2%) 3457 (85.8%) 6 (1,4,1)
GBSG 1267 (56.8%) 965 (43.2%) 7 (4,2,1)

FLCHAIN 4562 (69.9%) 1962 (30.0%) 8(4,2,2)
SUPPORT 6036 (68.1%) 2837 (31.9%) 14 (8,3,3)

SEER 604(1.11%) 53940(98.9%) 12(4,5,3)

Table 11 shows baseline statistics of the real-world datasets. METABRIC [35] comprises clinical
features and gene expression profiles (overall 21 features) used to determine the risk of breast cancer
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subgroups for 1,981 patients. Among the total number of patients, 1,093 (55.2%) are censored, and
888 (44.8%) are uncensored. NWTCO [36] is a study related to Wilms’ tumor, containing 4,023
patients with 6 clinical and histology features. Among the total number of patients, 3,457(85.8%) are
censored and 571(14.2%) are uncensored. GBSG [37] investigates the effects of hormone treatment
on recurrence-free survival time, with the event of interest being breast cancer recurrence. The
dataset consists of 21 clinical and tumor-related features for 2,232 patients. Among them, 965
(43.2%) are censored and 1,267 (56.8%) are uncensored. FLCHAIN [38] contains subjects from
a study of the relationship between serum-free light chain and mortality, where each subject is
described by 8 features. Among 6,524 subjects, 1,962 (30.1%) are censored and 4,562 (69.9%) are
uncensored. SUPPORT [39] focuses on the survival time of seriously ill hospitalized adults. The
dataset consists of 14 clinical features for 8,873 patients, having 2,837 (31.9%) censored and 6,036
(68.1%) uncensored. SEER [40] provides data on prostate cancer patients, containing 12 clinical
and cancer-related features for 54,544 patients. Among them, 604 (1.11%) are uncensored and
53,940 (98.9%) are censored. We split the data into train, test, and validation sets with a ratio of
0.64:0.20:0.16, and then apply min-max normalization to the input features.

D.2 Performance Metrics

Integrated Brier Score (IBS) is metric to evaluate the mean squared error between the predicted
survival curve with step function of the observed event. The IBS is the integration of the Brier score
across all time points.

Distributional Divergence for Calibration (DDC) is a novel metric introduced in [2] to assess the
calibration quality of survival models. This metric computes the divergence between the empirical
distribution of estimated survival probabilities at the observed event times and a uniform distribution.
Specifically, DDC utilizes the Kullback-Leibler (KL) Divergence between these two distributions.

• It first bins the estimated survival probabilities Ŝ(ti|xi) at the observed event times into ten
equal-width intervals across the [0,1] range.

• It then calculates the KL divergence DKL(P ∥ Q) between this binned distribution P and a
theoretical uniform distribution Q.

• DDC is scaled so that its values range between 0 and 1, with lower values indicating better
calibration. A perfectly calibrated model, where the estimated probabilities perfectly match a
uniform distribution, would yield a DDC value of 0.

DDC serves as a more nuanced measure compared to traditional metrics like the Brier score or C-index
because it directly evaluates how closely the distribution of the model’s probabilistic predictions
matches the expected uniform distribution of true probabilities. This direct assessment helps in
determining whether the model’s predictions are systematically biased or well-aligned with actual
outcomes.

D-Calibration (D-CAL) assesses how well predicted survival probabilities align with observed
outcomes based on a goodness-of-fit test. D-CAL bins the predicted survival probabilities at the true
event times into ten equal-width intervals from 0 to 1, and performs a chi-squared test to ascertain the
uniformity of the distribution. As suggested in [31], we reports p-values from the D-CAL test and the
number of datasets with p-values greater than 0.05.

D.3 About Benchmarks

Benchmarks. We compare ConSurv with six survival models including one traditional statistical
method and four state-of-the-art deep learning methods: CoxPH [27] is a commonly used statistical
method under the proportional hazard assumption4, DeepSurv [28] is an extension of the Cox model
which utilizes a DNN to predict individual hazard rates5, DeepHit [1] is a DNN model which directly
models the joint distribution of the event times6, DRSA [10] is an RNN-based model which predicts
the likelihood of the true event occurrence and estimates the survival rate over time7, DCS [2] is
an RNN-based model that estimates calibrated individualized survival curves while maximizing the

4Python package scikit-survival
5https://github.com/havakv/pycox
6https://github.com/chl8856/DeepHit
7https://github.com/rk2900/DRSA
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discriminative power8, and X-CAL [15] is a survival model designed to focus on the calibration
performance by directly utilizing a differentiable version of D-CAL as a part of the objectives.
9 Especially with DCS and X-CAL, we made every effort to faithfully reproduce the code with
hyperparameter optimization, as the original code had several errors and we were unable to use it for
our experiments.

E Implementation

We discuss implementation of ConSurv below. The source code for ConSurv is available in
https://github.com/dongzza97/ConSurv. Throughout the experiments, training ConSurv and its
variants takes approximately 60 minutes to 2 hours on a single GPU machine.10

E.1 Hyperparameter Specification

We perform a random search for hyperparameter optimization – including the batch size, hidden
dimension, depth, learning rates, corruption rates, σ, α, and ν – on the validation set and choose
the settings with the best performance for ConSurv on each dataset. Table 12 describes the model
specifications for the evaluated datasets. The candidates for random search can be given as {32, 64,
128, 256}, {16, 32, 64}, and {3, 4, 5} for batch size, hidden dim, and depth respectively. We carefully
choose the σ, α and ν for LSNCE over {0.25, 0.5, 0.75}, {5.0, 7.0, 10.0, 12.0, 14.0} and {0.03, 0.05,
0.07}. Corruption rates are selected from a range of 0.1 to 0.9. To train multiple components in our
network simultaneously, we need to find different learning rates for each network fθ, gψ, and fϕ,
where the learning rate is chosen from a set {1e-3, 1e-4}.

Table 12: Hyperparameter specifications
Dataset Hidden Dim Batch Size Depth Learning Rate Corruption Rate σ α ν

METABRIC 32 16 4 1e-4, 1e-4 0.5 0.75 10.0 0.07
NWTCO 8 32 5 1e-4, 1e-3 0.7 0.75 7.0 0.05
GBSG 8 32 5 1e-4, 1e-3 0.7 0.75 7.0 0.05

FLCHAIN 16 128 3 1e-3, 1e-3 0.8 0.25 7.0 0.03
SUPPORT 32 64 4 1e-3, 1e-3 0.7 0.25 10.0 0.07

SEER 32 256 5 1e-4, 1e-4 0.4 0.75 0.0 0.03

F Broader Impact

In this work, we highlight the direct and indirect influence of our approach through experiments on
real-world clinical datasets. The use of these datasets was in accordance with the guidance of the
respective data providers and domain experts. We acknowledge the potential for both positive and
negative impacts associated with survival analysis techniques. While these methods can provide
valuable insights for personalized treatment and risk stratification, we emphasize the importance of
careful interpretation and validation by domain experts before applying these predictions in clinical
practice. Misuse or misunderstanding of survival analysis could lead to unintended consequences for
individuals or groups, such as inequitable access to care or discriminatory practices. Therefore, we
advocate for transparency, accountability, and ongoing dialogue among researchers, clinicians, and
the public to ensure the responsible and ethical use of survival analysis in healthcare.

G Limitation and Future Work

Survival analysis datasets often include features where a clear event time is not available, indicating
a significant number of censored patients. This makes it challenging to assign weights based on
time differences and to compare them against each other. Therefore, utilizing such data for learning

8https://github.com/MLD3/Calibrated-Survival-Analysis
9https://github.com/rajesh-lab/X-CAL

10The specification of the machine is CPU: INTEL XEON Gold 6240R, GPU: NVIDIA RTX A6000
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purposes presents difficulties. Overcoming these limitations requires further research. Potential
avenues include modifying models to account for such uncertainties or developing alternative learning
approaches. Additionally, there is a need for new evaluation metrics or model developments that
consider the characteristics of such data.

Furthermore, the tabular datasets we utilized often lack diverse augmentation techniques. Future
research could explore augmentation methods suitable for survival datasets to enhance contrastive
learning performance. For example, techniques considering temporal variations or reflecting uncertain-
ties in events could be investigated. Such research endeavors are expected to enhance understanding in
the fields of survival analysis and contrastive learning, contributing to improved model performance.

H Pseudo-code for ConSurv

Algorithm 1 Pseudo-code for the ConSurv

Input: Dataset D = {(xi, τi, δi)}Ni=1, batch size M , margin α, coefficient β
encoder θ, projection head ψ, hazard network ϕ, learning rate η1, η2.

Output: ConSurv parameters (θ, ψ, ϕ)

Initialize parameters (θ, ψ, ϕ)
repeat

Sample a mini-batch of {(xi, τi, δi)}Mi=1 ∼ D
for i = 1, ...,M do

Draw augmentation function: s∼S
Augmentation pair: xi,x+

i ←− xi, s(xi)
Latent representation: hi,h+

i ←− fθ(xi), fθ(x
+
i )

Map to the embedding space: zi, z+i ←− gψ(hi), gψ(h
+
i )

end for
for all i = 1 · · · , 2M and j = 1 · · · , 2M do

Cosine similarity in the embedding space: s(xi,xj) = z⊤i zj/(∥zi∥∥zj∥)

Weight function for negative distribution: w(τ−j ; τi) = 1− e
−|τi−τ

−
j

|
σ

Redefined weight function considering the right-censoring: w̃(τ−j ; τi) = Ii,j · w(τ−j ; τi)
end for
Update the encoder and projection head parameter θ, ψ:

(θ, ψ)←− (θ, ψ)− η1∇(θ,ψ)

(
1

2M

∑2M
i=1 β ·

[
− log es(xi,x

+
i

)

1
Z

∑2M
j=1 I[i̸=j]w̃(x−

j ;xi)·e
s(xi,x

−
j

)

])

for i = 1, ...,M do
Compute latent representations: hi ← fθ(xi)

Compute estimates for survival function: Ŝi(τi|xi)←
∏
t≤τi(1− fϕ(hi, t))

Compute estimates for probability mass
function: p̂i(τi|xi)← fϕ(hi, τi)

∏
t<τi

(1− fϕ(hi, t))
end for

Update the encoder and hazard network parameters (θ, ϕ):

(θ, ϕ)← (θ, ϕ)− η2∇(θ,ϕ)

(
− 1

M

∑M
i=1δi log p̂(τi|xi) + (1− δi) log Ŝ(τi|xi)

)
until convergence
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction correctly describe the paper’s
contributions. We provide experiments in Section 5 to support these claims.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We have provided Limitations after the conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: In (6), we demonstrate how importance sampling can be used to approximate
the negative distribution of our loss function, defined in (8).
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Full experimental details are provided in Appendix D, and implementation
details are provided in Appendix E.1. We have included our code in the supplementary
material and plan to make it publicly available on GitHub upon acceptance.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our code is currently included in the supplementary material and will be made
available on GitHub upon acceptance. Detailed instructions are provided in the readme.md
file within the supplementary material. Real-world datasets used in our experiments are
cited with their respective references; no new datasets were generated for this work.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Complete experimental details, including training procedures and the hyperpa-
rameter configurations tested and selected for each dataset, are provided in Appendix E.1.
Train/validation/test splits and preprocessing steps for each dataset are detailed in Appendix
D.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In Section 5, we report the mean and standard deviation across five random
training/validation/testing splits.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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Answer: [Yes]
Justification: We conduct all the experiments on a local machine with CPU: Xeon Intel
Xeon Gold 6240R and GPU: NVIDIA RTX A6000. Please refer to Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This paper fully complies with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have included a Broader Impact statement following the Conclusion. Given
that both this research field and our specific work are still in the early stages of development
and not yet deployed, we do not anticipate any immediate adverse effects.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our research does not entail such risks, as elaborated in the Broader Impact
statement. We engage in foundational exploration of methodologies and do not proceed
with deploying a fully trained model.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have appropriately referenced all methodologies and datasets used in our
study. Whenever necessary, we have provided the licenses for datasets in the Dataset Details
(Appendix D.1) and Implementation Details (Appendix E). Furthermore, we specify the
date of access for any dataset or method utilized.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our novel contribution lies in our methodology and its practical application.
The code accompanying this paper is available in the supplementary materials and will be
made publicly accessible on GitHub upon acceptance.
Guidelines:
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our research does not rely on crowdsourcing; all datasets utilized are publicly
accessible.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Since we employed openly accessible datasets that have been deidentified,
there is no necessity for IRB approval for our study.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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