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ABSTRACT

Crystalline materials power technologies from solar conversion to catalysis, yet
current machine learning evaluations artificially divide infinite lattices and fi-
nite nanoclusters into separate domains. StructEval unifies these regimes with a
symmetry-aware, radius-resolved framework that systematically links primitive
unit cells to nanoparticles across ten industrially critical compounds. Each material
includes 20+ radii configurations between 0.6–3.0 nm, sampled at 780 quasi-
uniform orientations, producing nearly 200, 000 structures spanning 55− 11, 298
atoms. StructEval defines three rigorous challenges–unit cell → nanoparti-
cle generation, nanoparticle → unit cell resolution, and lattice reconstruction–
supported by a leakage-free split that isolates orientation interpolation from ra-
dius extrapolation. This design enables precise measurement of generalization
across scale and symmetry. Benchmarking leading generative models reveals
severe breakdowns under out-of-distribution conditions, exposing a fundamental
gap in current architectures. By providing a reproducible, geometry-grounded
testbed fully compatible with PyTorch Geometric, StructEval establishes the
foundation for next-generation generative, inference, and reconstruction mod-
els in crystalline systems. Data and implementations are released at https:
//anonymous.4open.science/r/StructEval-ANONYMOUS.

1 INTRODUCTION

Nanostructured materials enable applications from photovoltaic energy conversion to electronic
sensing Simonov & Goodwin (2020). Their behavior depends not only on the periodic arrangement
defined by a primitive unit cell but also on the finite morphologies and surface terminations that arise
in nanoscale particles Cao et al. (2022). These two regimes—primitive cells and nanoclusters—have
traditionally been studied in isolation. Bottom-up crystal growth simulations typically begin with
an ideal lattice and sequentially add atoms, whereas nanoparticle modeling workflows construct
finite clusters and optimize them using empirical and first-principles methods Levi & Kotrla (1997).
Such approaches are computationally intensive and difficult to scale across compositions, particle
sizes, and orientations Surek (2005). Ab initio electronic-structure methods, particularly density
functional theory (DFT) Orio et al. (2009) and its tight-binding approximation (DFTB) Elstner &
Seifert (2014), are widely used to refine geometries, compute formation energies, and predict surface
reconstructions. While DFT provides high accuracy, its steep computational cost inhibits large-scale
exploration Cohen et al. (2008). DFTB mitigates this cost by approximating the DFT Hamiltonian
with a compact basis, enabling efficient evaluation of nanoparticle energetics across many sizes and
orientations Liu et al. (2019); Qi et al. (2013).
Machine learning (ML) offers an alternative path by learning directly from data rather than relying
exclusively on physics-based computationally heavy simulations Carleo et al. (2019); Karniadakis
et al. (2021); Alpaydin (2021). Graph neural networks (GNNs) such as SchNet Schütt et al. (2018),
DimeNet++ Gasteiger et al. (2020), TorchMD-Net Thölke & De Fabritiis (2022), and CGNNs
Cheng et al. (2021) have demonstrated strong performance in predicting properties of molecules and
crystals, using datasets such as QM9 Ruddigkeit et al. (2012); Ramakrishnan et al. (2014) and MD17
Chmiela et al. (2017). Developments in equivariant architectures—such as E(n)-GNNs Satorras et al.
(2021), SE(3)-Transformers Fuchs et al. (2020), PaiNN Schütt et al. (2021), SphereNet Coors et al.
(2018), Equiformer Liao & Smidt (2022), FAENet Duval et al. (2023), and GotenNet Aykent &
Xia (2025)—improve data efficiency by enforcing geometric symmetries. Multimodal architectures
like Pure2DopeNet Polat et al. (2024), MolPROP Rollins et al. (2024), and CrysMMNet Das et al.
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(2023) extend this further by integrating multiple input types. Generative models such as CDVAE Xie
et al. (2021), GraphDF Luo et al. (2021), UniMat Yang et al. (2023), and CrystalFlow Luo et al.
(2024) show promise in generating crystal structures via score-based diffusion and flow-based
modeling. However, evaluation of these models is typically limited to small molecules or bulk
crystals under in-distribution settings. Despite this progress, there is no benchmark that systematically
couples primitive-cell inputs to radius- and orientation-controlled nanoparticle structures. None offer
symmetry-driven nanoparticle manifolds tied directly to bulk lattices, nor do they support robust
evaluation under generalization to new sizes or spatial orientations. As a result, model development
has largely proceeded without clarity on how generative or inference models behave under realistic
distribution shifts in scale and symmetry.
To address this gap, we introduce StructEval, a symmetry-aware, radius-resolved dataset that links
primitive unit cells to systematically generated nanoparticle structures. For each of ten materials
pivotal to engineering applications (Ag, Au, CH3NH3PbI3, Fe2O3, MoS2, PbS, SnO2, SrTiO3, TiO2,
ZnO), dataset provides: (i) a primitive unit cell, (ii) 25 nanoparticle radii ranging from 0.6 to 3.0
nm, and (iii) 780 deterministic quasi-uniform orientations per radius. This results in about 200,000
atomic configurations, spanning 55 to 11,298 atoms per structure. All structures are generated
with reproducible, leakage-free protocols that support controlled evaluation of orientation and scale
generalization. StructEval defines three benchmark tasks that span both predictive and generative
modeling: (1) unit cell→ nanoparticle generation, (2) nanoparticle→ lattice inference, and (3) struc-
tural reconstruction from partial observations. A leakage-free split strategy separates interpolation
over orientations (ID) from extrapolation across radii (OOD), enabling rigorous benchmarking of
symmetry- and scale-aware models. Evaluations of state-of-the-art (SOTA) generative architectures
— including DiffCSP Jiao et al. (2023), FlowMM Miller et al. (2024), FlowLLM Sriram et al. (2024),
MatterGen-MP Zeni et al. (2023), and ADiT Joshi et al. (2025) — on all tasks reveal consistent
performance degradation under OOD splits. StructEval fills a critical gap in the landscape of atom-
istic ML benchmarks by unifying primitive symmetry and nanoparticle structure within a single,
reproducible framework. By supporting multiple tasks and emphasizing distribution shifts, StructEval
enables systematic evaluation of generative and inference models in crystalline systems.
The remainder of the paper is organized as follows. Section 2 presents a review of prior work on crys-
talline building blocks and nanostructured morphologies, including first-principles and semi-empirical
simulation methods, as well as existing benchmarks for crystals and nanomaterials. Section 3 details
the construction and characteristics of the StructEval dataset. Section 4 discusses the performance of
the SOTA generative models on StructEval across three distinct tasks. Section 5 outlines the current
limitations of StructEval dataset. Section 6 summarizes the key findings and proposes directions for
future research.

2 RELATED WORK

2.1 CRYSTALLINE BUILDING BLOCKS AND NANOSTRUCTURED MORPHOLOGIES

The primitive unit cell defines the translational symmetry, atomic motifs, and electronic band topol-
ogy that govern bulk-scale material behavior Kittel & McEuen (2018). When extended crystals are
truncated into finite clusters, their equilibrium morphologies are determined by orientation-dependent
surface free energies, as described by the Gibbs–Wulff theorem Li et al. (2016). This leads to
well-defined faceted shapes, such as truncated octahedra for face-centered cubic metals and coherent
morphologies in perovskite structures Barmparis et al. (2015); Mattoni et al. (2016); Najman et al.
(2021). Experimental and first-principles studies have validated the predictive power of the Wulff
construction across metals, oxides, and hybrid perovskites Ringe et al. (2013). Below radii of approx-
imately 3 nm, quantum confinement effects shift electronic states into discrete levels, significantly
altering optical gaps, plasmonic responses, and catalytic properties. These size-dependent phenomena
have been extensively characterized in metallic quantum dots and chalcogenide nanocrystals Bera
et al. (2010). Such characteristics enable a range of applications, including localized surface plasmon
biosensors based on Ag and Au nanocubes, high-surface-area TiO2 photocatalysts, perovskite-based
light emitters, and ZnO piezotronic sensors Di Fonzo et al. (2008); Chen et al. (2024). Despite the
technological importance of nanocrystalline morphology, a systematic dataset mapping primitive-cell
symmetries to radius-resolved nanoclusters is currently lacking. This gap hinders the development
and evaluation of ML models capable of bridging crystalline behavior across length scales Yang et al.
(2022).
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Figure 1: Detailed overview of StructEval. (A) Workflow for generating radius-resolved nanoparticles.
(B) Unit cells of the materials—Ag, Au, CH3NH3PbI3, Fe2O3, MoS2, PbS, SnO2, SrTiO3, TiO2,
and ZnO—arranged left to right. The lattice constants a, b and c denote the cell edge lengths, while
the angles α, β and γ specify the inter-edge angles between b–c, a–c and a–b, respectively. (C)
Coordination-deficit heatmaps for the largest nanoparticle of each material (panels I–X follow the
same material order). (D) Mean atom count per material, illustrating typical nanoparticle sizes. (E)
Atom count versus nanoparticle radius, revealing how total atom number scales with size.

2.2 FIRST-PRINCIPLES AND SEMI-EMPIRICAL SIMULATION METHODS

Kohn–Sham DFT delivers accurate predictions of lattice constants, cohesive energies, and surface
reconstructions, but its O(N3) diagonalization cost limits feasible supercell sizes to approximately
103 atoms on conventional hardware Bickelhaupt & Baerends (2000); Yu et al. (2016). Linear-
scaling formulations such as ONETEP reduce this cost by exploiting density-matrix locality, enabling
simulations with tens of thousands of atoms while retaining plane-wave accuracy, even for large
nanorods and complex oxides Baer & Head-Gordon (1997); Skylaris et al. (2005). To explore broader
compositional and orientational spaces, semi-empirical approaches are essential. DFTB approximates
the Kohn–Sham Hamiltonian using a minimal basis, providing two to three orders of magnitude
speed-up, which allows high-throughput screening of nanoparticle stability, defect segregation, and
vibrational spectra Zheng et al. (2005); Spiegelman et al. (2020); Bačić et al. (2020); Kim et al.
(2019). Classical interatomic potentials—such as the embedded atom method and machine-learned
force fields—further extend accessible system sizes into the tens of nanometers for metals and alloys,
though at the cost of reduced chemical accuracy and transferability Daw & Baskes (1984); Mahata
et al. (2022); Behler & Parrinello (2007). Each modeling tier thus presents a trade-off between
accuracy and computational throughput, motivating the development of ML surrogates that aim to
combine quantum-level fidelity with the scalability of empirical methods Kurban et al. (2024).

2.3 BENCHMARKS FOR CRYSTALS AND NANOMATERIALS

Benchmark datasets have driven significant advances in applying ML to quantum chemistry and
materials science by providing structured data for diverse predictive tasks. In addition to the ones
mentioned in Section 1, QM7 Blum & Reymond (2009); Rupp et al. (2012) targets atomization
energies of small organic molecules, while MD22 Chmiela et al. (2023) offers molecular dynamics
trajectories labeled with atomic forces for force-field model training. PubChemQC Kim et al.
(2025) extends this to millions of ground-state molecular geometries with corresponding electronic
properties. Datasets such as NablaDFT Khrabrov et al. (2022) and QH9 Yu et al. (2024) focus
on Hamiltonian matrix estimation, with NablaDFT contributing extensive data across molecular
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conformers. Perov-5 Castelli et al. (2012a;b) includes 18,928 cubic ABX3 perovskites drawn from an
open water-splitting DFT database, while Carbon-24 Pickard (2020) provides over 10,000 distinct
low-energy carbon frameworks identified via AIRSS at 10 GPa and relaxed using DFT. In the domain
of inorganic solids, the Materials Project underpins MatBench Jain et al. (2020), which hosts fourteen
property-prediction benchmarks—including band gaps, bulk moduli, and elastic tensors. Surface
energetics are addressed by the Open Catalyst datasets: OC20 Chanussot et al. (2021) connects
relaxed metal-surface structures with atomic forces, and OC22 Tran et al. (2023) expands coverage to
oxide slabs. More recent initiatives such as LAMBench Peng et al. (2025) aggregate varied geometries
for large-scale atomic model pretraining, and CrysMTM Polat et al. (2025) introduces temperature-
dependent nanomaterial configurations with multimodal annotations. While these benchmarks offer
broad coverage, most focus exclusively on either infinite bulk crystals or small, gas-phase molecules.
Radius-graded nanoclusters—structures intermediate in scale and symmetry—typically appear only
as side products in catalytic or surface simulations. Temperature dependence, phase transitions, and
symmetry-aware design are also often underrepresented. To date, no public benchmark systematically
links primitive-cell representations with radius- and orientation-resolved nanoclusters across diverse
chemistries and size regimes. Furthermore, none explicitly supports bidirectional modeling tasks
such as nanoparticle generation and lattice inference from finite clusters. This gap motivates the
development of StructEval.

3 DATASET CONSTRUCTION AND TASK DEFINITION
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Figure 2: From primitive cell to radius-controlled nanoclusters. For each material in dataset, the
panels show—left to right—the primitive unit cell followed by its canonical R = 6 Å and R = 30
Å nanoparticles. Materials are arranged from top to bottom in ascending order of the atom count
in their R30 cluster, illustrating how coordination environments and bulk-like cores emerge with
increasing radius. All views share a common Ångström scale. Atom colours follow the conventional
CPK palette: Ag (light grey), Au (gold), C (dark grey), H (white), N (blue), O (red), S (yellow),
Fe (orange-brown), Mo (teal), Sn (silver), Sr (green), Ti (slate grey), Zn (forest green), Pb (dark
grey-blue), and I (purple).
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3.1 CRYSTAL STRUCTURES AND NANOPARTICLE GENERATION

The STRUCTEVAL suite spans elemental solids, perovskites, transition-metal dichalcogenides, and
binary oxides. The selected compounds include Silver (Ag) King (2002b), Gold (Au) King (2002a),
methylammonium lead iodide (CH3NH3PbI3) Walsh et al. (2019), hematite (Fe2O3) Finger & Hazen
(1980), molybdenum disulfide (MoS2) Wyckoff (1963a); Grau-Crespo & Lopez-Cordero (2002),
galena (PbS) Wyckoff (1963b), cassiterite (SnO2) Baur et al. (1971), strontium titanate (SrTiO3)
Mitchell & Carpenter (2000), anatase titanium dioxide (TiO2) Horn et al. (1972), and zincite zinc
oxide (ZnO) Wyckoff (1963c). Primitive unit cells were extracted from CIFs and serve as the basis
for nanoparticle generation and symmetry-aware modeling tasks. Lattice parameters, space groups,
and atomic positions are provided in Appendix B, while Figure 2 summarizes dataset structure and
key statistics.

Supercell construction. Let N = 60. We define the periodic lattice of atomic sites as

Λ =
{
n1a1 + n2a2 + n3a3 + rj

∣∣∣ n1, n2, n3 ∈ {0, . . . , N − 1}, j ∈ {1, . . . ,M}
}
, (1)

where a1,a2,a3 ∈ R3 are the primitive lattice vectors of the unit cell, and {rj}Mj=1 ⊂ R3 are the
basis positions of the M atoms inside each unit cell. The integers n1, n2, n3 ∈ {0, 1, . . . , N − 1}
serve as lattice indices, specifying the unit cell position along the three lattice directions, and may
equivalently be viewed as elements of ZN . Replicating the unit cell N times along each direction
yields an N ×N ×N supercell, and the set Λ in equation 1 collects all atomic sites contained within
it.

Reference atom. Choose a central reference position r0 ∈ Λ (e.g., the image of r1 in the central
unit cell defined by equation 1).

Nanoparticle definition. For a given cutoff radius R, define the nanoparticle as

P (R) =
{
x ∈ Λ

∣∣∣ ∥x− r0∥2 ≤ R
}
, (2)

i.e., all lattice sites within a sphere of radius R around r0.

Radius sampling. Select K = 25 radii on a uniform grid:
Rk = Rmin + (k − 1)∆R, k = 1, . . . ,K, (3)

with end-points and step size

Rmin = 0.6 nm, Rmax = 3.0 nm, ∆R =
Rmax −Rmin

K − 1
= 0.1 nm. (4)

Relationships captured by the equations 2–4 define the complete set {P (Rk)}25k=1, spanning quantum-
confined clusters (R ≤ 1.0 nm) to near-bulk fragments (R ≥ 2.0 nm).

3.2 QUASI-UNIFORM ROTATIONS

Deterministic, quasi-uniform rotations ensure that each nanoparticle orientation is represented without
randomness, enabling reproducible data augmentation and unbiased evaluation of rotation-equivariant
models. By constructing a finite, low-discrepancy set on SO(3) that includes the identity and
approximates uniform coverage, one can systematically generate rotated copies of any atomic
configuration Yershova et al. (2010). Let P = {r1, . . . , rn} ⊂ R3 denote a finite point cloud (with n
points). Our goal is to build a finite set G ⊂ SO(3) containing the identity that provides near-uniform,
reproducible sampling of rotation space. The construction proceeds in three steps:

Axis–angle parametrization. Every rotation R ∈ SO(3) is represented as
R = R(û, ϕ), (5)

where û ∈ S2 is a unit axis and ϕ ∈ [0, π] is the rotation angle, with the equivalence (û, ϕ) ∼
(−û, 2π − ϕ) ensuring a unique representation. Using Rodrigues’ formula Dai (2015), this rotation
is expressed as

R(û, ϕ) = I3 cosϕ+ (1− cosϕ) û û⊤ + sinϕ [û]×, (6)
where I3 is the 3× 3 identity matrix, û = (u1, u2, u3)

⊤, and

[û]× =

(
0 −u3 u2
u3 0 −u1
−u2 u1 0

)
(7)

is the skew-symmetric matrix implementing the linear map v 7→ û × v, which guarantees that
R(û, ϕ) in equation 6 is orthogonal and has determinant 1.

5
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Quasi-Uniform Grid on SO(3). We define a deterministic sampling scheme via the Hopf fibration
Lyons (2003):

(û, ψ) 7−→ R
(
û, 2ψ

)
, û ∈ S2, ψ ∈ [0, π).

To discretize this space, we proceed as follows.

1. Fibonacci lattice on S2. For k = 0, . . . , Naxis − 1 set

zk = 1− 2k + 1

Naxis
, rk =

√
1− z2k, φg =

1 +
√
5

2
, φk = 2πk φ−1

g ,

and define the axis ûk = (rk cosφk, rk sinφk, zk).

2. Irrational angle increments. For m = 0, . . . ,Mang − 1, let

ψm = 2πmφ−1
g mod 2π.

3. Rotation-set construction. Define Rk,m = R
(
ûk, 2ψm

)
and let G be the set consisting of

the identity and all Rk,m. Because ψ0 = 0 yields R = I , we count identity once, hence

|G| = 1 +Naxis (Mang − 1).

Quasi-Uniform Coverage (sketch). As Naxis,Mang→∞, the induced empirical measure of the
above low-discrepancy set provides increasingly uniform coverage of SO(3) with respect to the Haar
measure (in the sense of vanishing discrepancy), leveraging the equidistribution of the Fibonacci
lattice on S2 Stanley (1975) and the incommensurate twist increments John (1998).

Rigid-body action on the point cloud. Let P = {r1, . . . , rn} ⊂ R3 be a finite point cloud and
c = 1

n

∑n
i=1 ri be its center of mass. For each R ∈ G, define the rigidly rotated configuration

PR =
{
R(ri − c) + c

∣∣ i = 1, . . . , n
}
, (8)

which preserves all inter-point distances while re-centering about c. To ensure numerical robustness,
a tolerance ε > 0 is used when applying equation 8: near-zero angles are snapped, degenerate axes
are regularized, and infinitesimal perturbations break floating-point degeneracies. This deterministic
augmentation yields a near-uniform sampling of orientations from G without introducing stochastic
noise.

Configuration diversity. Although individual nanoparticles may exhibit high symmetry, the Carte-
sian product of (i) ten distinct chemistries/crystal families, (ii) 25 radii spanning quantum-confined to
near-bulk regimes, and (iii) |G| = 780 deterministic orientations produces ≈ 200,000 unique atomic
configurations, capturing rich variation in surface terminations, coordination statistics, facet exposure,
and global morphology—especially for non-cubic/anisotropic lattices.

3.3 DATA SPLITS

For each material m, define the set of labeled nanoparticle instances as

Gm =
{
(R, b) | R ∈ {R6, . . . ,R30}, b ∈ {0, . . . , 780}

}
, (9)

which enumerates every radius–orientation pair for material m. This space is partitioned into

Ginm =
{
(R, b) ∈ Gm | R ≤ R24

}
, Goutm = Gm \ Ginm. (10)

A random split (without replacement) is applied to Ginm, yielding disjoint subsets Tm (training, 70
%), Vm (validation, 10 %), and Im (ID test, 20 %). The resulting evaluation partitions are therefore
Trainm = Tm, Valm = Vm, IDTestm = Im, and OODTestm = Goutm , all defined consistently via
equations 9 and 10.
Grouping every orientation (R, b) together ensures each split is rotation-invariant, preventing orienta-
tion leakage. To further test rotational equivariance, a fixed phase shift is applied to the index b in
OODTestm: every OOD b value is offset by a constant ∆b, guaranteeing that no rotation present in
the training, validation, or ID-test sets reappears in the OOD set. This choice—implemented as a 15◦
rotation about the non-degenerate ⟨111⟩ axis—keeps the shifted and unshifted grids provably disjoint
under machine precision, thereby isolating orientation interpolation from scale extrapolation.
Physical grounding and scope. Nanoparticles in this benchmark are carved directly from exper-
imentally characterized bulk crystals using a deterministic spherical truncation pipeline, thereby
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preserving the local crystallographic environment while intentionally breaking global periodicity.
We do not label structures with thermodynamic or electronic properties (e.g., formation energies,
band gaps), nor do we perform ab-initio relaxations at scale; this is a deliberate design choice to
keep the benchmark geometry- and symmetry-focused, clean, and fully reproducible at ≈ 200, 000
configurations. Given the cubic scaling of DFT with system size and that our largest clusters reach
≈ 103–104 atoms, exhaustive first-principles labeling is computationally infeasible; instead, we
emphasize a deterministic, symmetry-aware construct that isolates structural reasoning and supports
transparent ID/OOD splits.

3.4 TASKS

The dataset encompasses three core tasks, each paired with multiple evaluation metrics that capture
both geometric and crystallographic aspects. These include: root-mean-square deviation (RMSD),
RMSD(P, P ∗); Hausdorff distance, dHaus(P, P

∗) Rucklidge (1997); convex hull volume ratio
error, ∆Vhull(P, P ∗) = |Vhull(P )/Vhull(P

∗)− 1|; and radial distribution function divergence,
ERDF(P, P

∗) =
∫
|gP (r)− gP∗(r)|dr. Validity rate is measured via VR(P ). In addition, Task 2

employs the root mean square error of lattice parameters, RMSE(ℓ, ℓ∗), and space-group accuracy
⊮[g = g∗] along with joint accuracy ⊮[(ℓ, g) = (ℓ∗, g∗)]. Task 3 further incorporates surface atom
recall Rsurf(P, P

∗) and coordination histogram KL divergence DKL

(
h(P ) ∥h(P ∗)

)
. All three tasks

use the splits Trainm, Valm, IDTestm, and OODTestm to separately quantify orientation interpolation
and scale extrapolation for each material m. An overview of the tasks is illustrated in Figure 3 (A),
(B), and (C). Extended definitions of these metrics are provided in Appendix C.

Task 1: Unit Cell→ Nanoparticle Generation. From a primitive unit cell um and a target radius
R, the model must generate realistic nanoparticles that faithfully reproduce both the infinite lattice
periodicity and the finite-size surface morphology. Mastering this capability is essential for producing
computationally efficient nanostructure models that accurately capture surface-driven phenomena,
thereby enhancing predictive accuracy in material design:

f1 : (um, R) 7−→ P ⊂ R3. (11)
The mapping in equation 11 is assessed with the metrics RMSD(P, P ∗), dHaus(P, P

∗),
∆Vhull(P, P

∗), ERDF(P, P
∗), and VR(P ).

Task 2: Nanoparticle→ Lattice Inference. Local geometric information extracted from finite
nanoparticles is used to infer their lattice constants and symmetry group, exploring whether such
short-range cues suffice to reconstruct extended periodicity and crystallographic invariants. Achieving
this capability is vital for bridging localized observations with global structural order, thereby enabling
accurate property predictions and reliable materials-design workflows:

f2 : P 7−→ (ℓ, g), ℓ = (a, b, c, α, β, γ), g ∈ S, (12)
so that equation 12 maps each nanoparticle P to its lattice parameters ℓ and a space-group label
g drawn from the set S of crystallographic groups. Evaluation metrics are then RMSE(ℓ, ℓ∗),
⊮[g = g∗], and the joint accuracy ⊮[(ℓ, g) = (ℓ∗, g∗)], all assessed with respect to the ground-truth
pair (ℓ∗, g∗).

Task 3: Lattice Reconstruction. Partial occlusion of nanoparticles—whether applied at random
or biased toward surface atoms—tests the model’s capability to reconstruct the complete atomic
arrangement from incomplete inputs. Such evaluation reveals whether the model can infer missing
structural information and preserve chemical fidelity, a critical requirement for reliable nanoparticle
modeling and downstream materials-design applications:

f3 : Pmask 7→ P, Pmask =M · P, (13)
where M in Eq. (13) is a masking operator that removes a fraction p of atoms. Evaluation metrics
include RMSD(P, P ∗), Rsurf(P, P

∗), DKL

(
h(P ) ∥h(P ∗)

)
, and VR(P, P

∗).

4 EXPERIMENTS

Multiple generative models— such as DiffCSP, FlowMM, FlowLLM, MatterGen-MP, and ADiT—are
evaluated on all three tasks using the splits defined in Section 3.4. StructEval has been adapted to be
compatible with the PyTorch Geometric Fey & Lenssen (2019) library and the model implementations
are developed using PyTorch Paszke (2019) and model’s respective official libraries. The details of the
implementation and the model settings are shared in Appendix D while comprehensive experimental
results for each task are presented in Appendix E.
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Figure 3: Overview of benchmark tasks and lattice reconstruction experiment result. (A) shows
generation of nanoparticles starting from the unit cell. (B) includes the generating unit cell config-
urations from the nanoparticles. Lastly, (C) illustrates lattice reconstruction from partially masked
configurations. N is the atom count in the system. First material is TiO2, second is SrTiO3 while the
last one is ZnO. Scatter plots in the bottom are different angle reconstruction results from CDVAE
model for a single material on OOD set with masked 50% of the original atoms.

4.1 TASK 1: UNIT CELL TO NANOPARTICLE GENERATION

Quantitative analysis reveals marked performance degradation on OOD nanoparticles. On the ID
test, reconstruction loss and KL divergence are 0.0088 and 0.7888 (total 0.7976); on OOD they
rise to 0.0788 and 80.1785 (total 80.2573), an ≈ 100× increase. RMSD increases from 0.0671Å
to 0.2295Å (+242 %), and Hausdorff distance from 0.1597Å to 0.4783Å (+200 %). Convex hull
deviation jumps 31.15 → 178.60 (+472 %), and radial distribution error 1.1389 → 1.3910 (+22
%). Although the validity ratio climbs 81.98%→ 93.90%, geometric fidelity suffers. These trends
highlight the need for stronger inductive biases (e.g., symmetry constraints or hierarchical modeling)
and targeted data-augmentation or domain-adaptation to bridge the generalization gap.
To clarify the source of OOD difficulty, our evaluation was intentionally configured to measure
native generalization rather than adaptation: we use leakage-free OOD splits that simultaneously
exclude entire radius ranges and apply disjoint orientation grids, and we evaluate models without
task-specific fine-tuning or augmentations. This design isolates how current architectures extrapolate
across scale (radius) and symmetry (orientation) when given only primitive-cell input and a target
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radius. The consistent OOD degradation across diverse model families suggests a structural limita-
tion—insufficient scale awareness, lack of multi-scale feature hierarchies linking local neighborhoods
to global morphology, and weak long-range symmetry constraints—rather than a quirk of our data.
These results are diagnostic, indicating that closing the gap will require explicit radius conditioning,
hierarchical representations, and geometric inductive biases designed to maintain global coherence.

4.2 TASK 2: NANOPARTICLE TO LATTICE INFERENCE

On the ID test, the model records an RMSE of 55.240Å, space-group accuracy of 29.6%, and joint
accuracy of 0.0%; on OOD these are 55.246Å (+0.01%), 29.1% (−1.7%), and 0.0%, respectively.
Because each material’s space group is constant across all radii, the classifier effectively learns a
single per-material label—hence the minimal space-group accuracy change—and the near-identical
RMSE shows lattice-parameter recovery generalizes even to larger clusters. The persistent 0.0% joint
accuracy, however, highlights the challenge of meeting both precise geometric reconstruction and
exact symmetry classification simultaneously.
Note that each nanoparticle retains local symmetry but loses global periodicity due to spherical trunca-
tion, making joint recovery of lattice parameters + space group fundamentally ambiguous from finite
fragments. The observed 0.0% joint accuracy is therefore not merely a training artifact; it reflects the
intrinsic challenge of inferring crystallographic invariants from non-periodic observations—precisely
the frontier Task 2 is designed to probe.

4.3 TASK 3: LATTICE RECONSTRUCTION

On the ID test, the model achieves an RMSD of 0.481 Å; on OOD data, RMSD rises to 0.722 Å—a
50 % increase. Surface-overlap and local-coordination metrics show only marginal variation between
ID and OOD, masking the sharp jump in atomic-placement errors. This gap highlights the intrinsic
challenge of completing missing structures across size regimes and reinforces StructEval’s value as a
stringent benchmark for driving advances in partial-structure completion. An example reconstruction
error map is shared in the bottom part of Figure 3 using scatter plots.

5 LIMITATIONS

While StructEval bridges bulk symmetry and finite nanoclusters, it has limitations: it covers only
ten materials currently; our clusters are crystallographically grounded fragments—deterministic
truncations of experimentally validated bulk structures—but they are not thermodynamically validated
or passivated, and they omit temperature, disorder, and environmental effects. This is intentional:
by decoupling geometric/symmetry reasoning from energetic confounders, the benchmark provides
a clean, deterministic testbed for generation, inference, and reconstruction under strict ID/OOD
controls. We acknowledge that experimental nanoparticles can undergo surface reconstructions and
environment-dependent stabilization.

6 CONCLUSION AND FUTURE WORK

Existing benchmarks emphasize either periodic crystals or small molecules, leaving the transitional
bulk-to-nanoscale regime largely unaddressed. StructEval fills this gap with a radius-resolved,
symmetry-aware dataset that links primitive unit cells to nanoparticles sampled across 25 radii and 780
quasi-uniform orientations. This unified framework supports three bidirectional tasks—generation,
inference, and reconstruction—under strict leakage-free splits, providing a rigorous platform for
probing both interpolation and extrapolation.
Across tasks, the state-of-the-art models perform reasonably in-distribution but collapse out-of-
distribution, where reconstruction errors, symmetry misclassifications, and completion failures
sharply increase. Since DFT scales cubically with system size, simulating large nanoparticles
directly is impractical; surrogate models that fail to generalize cannot replace it for predicting lattice
parameters or morphologies. These results highlight the limits of local geometric cues and motivate
new approaches with explicit symmetry constraints, multi-scale hierarchies, and augmentation
strategies. StructEval is designed as a modular platform, with planned extensions to molecular
crystals, perovskites, polymers, and multi-phase systems. By unifying bulk and nanoscale regimes,
it lays a foundation for developing models that capture the full structural complexity of crystalline
nanomaterials.
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