BENEATH THE SURFACE: EXPOSING AND MITIGATING SURFACE LEARNING IN LARGE LANGUAGE MODELS

Anonymous authors

000

001

002003004

010 011

012

013

014

015

016

017

018

019

021

023

024

025

026

027

028

029

031

032

033 034

035

037

040

041

042

043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

As Large Language Models (LLMs) continue to evolve, assessing their genuine comprehension of underlying knowledge is crucial to ensure the reliability in realworld applications. To evaluate what LLMs learn, we first introduce ME-Test suite, including Mathematical and English grammar examinations, where each question is equipped with relevant knowledge to guide the model. Building upon this, we construct a sequence of questions with increasing difficulty based on Cognitive Load theory, enabling the model to perform continuous problem-solving using the dialogue history. Through a comprehensive evaluation, we uncover a phenomenon of Surface Learning behavior on LLMs similar to student learning behavior in Education Psychology. The behavior indicates that although the models seem to know the formulas and strategies required to solve specific types of problems on the surface, they do not truly comprehend the essence of these concepts, resulting in surface-level short-term benefits rather than in-depth learning. Further to mitigate surface learning behavior of LLMs, we propose a longterm strategy for both training-free and post-training scenarios. In training-free scenario, inspired by Self-Concept theory, LLMs are prompted with goal-setting and planning beforehand as well as feedback afterward to improve the ability in reasoning process. To better activate the underlying knowledge during the posttraining process, we propose behavior correction strategy to re-rank samples based on the designed self-cognition indicators of LLMs. This strategy prevents models from relying on easy-to-find paradigms to maximize rewards or minimize losses in the initial training stage, rather than undertaking actual reasoning. Extensive experiments of Supervised and Reinforcement Fine-Tuning (SFT, RFT) conducted on LLMs demonstrate the effectiveness of the strategy.

1 Introduction

With the evolution and proliferation of Large Language Models (LLMs) (Xu & Poo, 2023), it is crucial to assess whether LLMs genuinely comprehend the underlying knowledge, which can contribute to ensuring reliability and faithfulness in real-world applications (Chowdhery et al., 2023; Zhang et al., 2023). As shown in left sub-figure of Figure 1, LLMs, like a student, exploits underlying knowledge (i.e. formulas) involved in the mathematical question and provide answers accordingly. By further deepening the grasp of complex concepts and rigorous relationships behind formulas, LLMs can solve numerous similar problems rather than merely imitating contexts (Qin et al., 2023). In this paper, we shift the focus from quantifying how much LLMs learn to assessing what they learn (Chang et al., 2024), which provides deeper insights into their knowledge acquisition.

To this end, we supplement the existing mathematical datasets with relevant formulas to evaluate whether LLMs grasp the underlying knowledge, and introduce an English grammar dataset which contains questions of different grades and different knowledge points. Furthermore, since problemsolving typically follows the principle of progressive learning from simple to complex drawing on Cognitive Load theory (Sweller, 2011), we construct a sequence of questions with increasing difficulty, enabling the model to perform continuous problem-solving based on the multi-turn dialogue history. Through comprehensive evaluations, we observe that while the model is familiar with formulas and strategies required to solve specific types of problems, it struggles to comprehend their underlying information and is incapable of applying formulas to resolve more complex problems. We incorporate three respective behavior of surface learning: **rote learning, ignoring background**

055

056

060

061

062

063

064

065

066

067

068

069

071

072 073

074

075

076

077

078

079

081

082

083

084

085

087

880

089

090

091

092

094 095

096

098

099

100

101

102

103

104

105

106

107

Figure 1: In the left sub-figure, the sequence of questions with increasing difficulty enables LLMs to perform continuous problem-solving based on the dialogue history. LLM can output the correct formula but with incorrect reasoning process, failing to comprehend the formula and demonstrating surface learning behavior. In the right sub-figure, we propose a long-term strategy to mitigate surface learning behavior in training-free and post-training scenarios.

information, and **focusing on answer paradigms**. Parallel to the student behavior (Dolmans et al., 2016; Geirhos et al., 2020) in Education Psychology (Marton & Säljö, 1976), students as surface learners, direct their attention towards learning the text itself and keep to a rote-learning strategy other than truly mastering (Svensson, 1977; Marton & Dahlgren, 1976), resulting in surface-level short-term benefits rather than in-depth learning.

Based on findings of surface learning in LLMs, we propose a long-term strategy to improve the performance of LLMs in different scenarios. Specifically, in the training-free scenario, inspired by Self-Concept theory in Psychology, as surface learners, it is suggested that student be provided with an opportunity for goal-setting and planning beforehand as well as feedback afterward (Marsh, 1990; Alexander, 2004). We introduce this **Self-Concept Planning** to prompt settings and discover the effects for different LLMs. Nevertheless, the performance gains from training-free methods remain limited, and the model still struggles to flexibly apply knowledge to challenging problems. To address it, we adopt post-training techniques specifically targeting these hard tasks, aiming to activate and schedule knowledge effectively. During the post-training process, it is crucial to ensure that the model truly utilizes knowledge to solve problems, rather than surface learning. However, we find that LLM exploits easy-to-find paradigms that conform to the reward model to obtain the reward scores during Reinforcement Fine-Tuning (RFT) process (Weng, 2024; Skalse et al., 2022). As shown in Figure 2, the problem-solving paradigms (highlighted in gray) are utilized in the model response, but there is no actual reasoning process. Therefore, we propose a Behavior Correction strategy with designed self-cognition indicators I. The training samples are re-ranked based on I, thereby preventing LLMs from reasoning through the easy-to-find answer paradigms. Meanwhile, we also introduce this strategy to perform Supervised Fine-Tuning (SFT) on query-answer pairs. Although it lacks the same capacity as RFT in learning the reasoning mechanism due to the absence of explicit reasoning process, the relevant formulas or knowledge points incorporated contribute to enhancing the model's proficiency in knowledge utilization. Experiments conducted on LLMs demonstrate the effectiveness of this strategy.

2 RELATED WORK

Improving LLMs has been a hot topic in recent years, which could be divided into prompt engineering (Wei et al., 2022b; Dong et al., 2024), fine-tuning (Trad & Chehab, 2024), and reinforcement learning (Tie et al., 2025). Among them, prompt engineering is a widely used method to enhance the performance of LLMs without modifying the model parameters. For instance, In-Context Learning (ICL) (Wei et al., 2022a; Schaeffer et al., 2023) helped LLMs to learn from several demonstration examples within a given context. Chain-of-Thought (CoT) (Wei et al., 2022b) proposed helped LLMs promote the reasoning process and explainability, rather than simply providing answers. Since then, variants of COT such as Tree-of-Thought (ToT) (Yao et al., 2023a), Graph-of-Thought (GoT) (Besta et al., 2024), Memory-of-Thought (MoT) (Li & Qiu, 2023), Skeleton-of-Thought (SoT) (Ning et al., 2023) and Exchange-of-thought (EoT) (Yin et al., 2023) were proposed to improve the reasoning process. In addition to training-free methods, Supervised Fine-Tuning (SFT) (Devlin et al., 2019; Lv et al., 2024) adjusted parameters of LLMs and adapted a pre-trained model to specific downstream tasks through supervised learning. When labeled data are limited, PEFT (Houlsby et al., 2019; Han et al., 2024), such as LoRA (Hu et al., 2022) and Adapter (He et al., 2022), optimized a

 small subset of parameters or inserted lightweight modules, reducing computational costs and improving training efficiency without sacrificing performance. To further enhance the performance of LLMs, Reinforcement Learning (RL) (Christiano et al., 2017) was employed to optimize the model's responses based on feedback from human evaluators or reward functions, such as Proximal Policy Optimization (PPO) (Schulman et al., 2017), Direct preference optimization (DPO) (Rafailov et al., 2023), Group Relative Policy Optimization (GRPO) (Shao et al., 2024), Decoupled Clip and Dynamic sAmpling Policy Optimization (DAPO) (Yu et al., 2025), etc.

Exploring multiple behaviors of LLMs in improvement process helps to ensure faithfulness and reliability in real-world applications. Some research revealed that LLMs tended to hallucinate, generating incorrect or nonsensical information (Zhang et al., 2023; Chowdhery et al., 2023). LLMs also had the tendency to trust users and favor authoritative roles (Sharma et al., 2024; Zhao et al., 2025). The shortcut learning behavior of LLMs, which refers to the reliance of LLMs on certain words in prompt or spurious correlations in contexts, was explored through prompt perturbation or benchmark construction (Yuan et al., 2024; Tang et al., 2023). Moreover, in the settings of multi-turn dialogue settings, some studies (Collins et al., 2024; Du et al., 2024; Wang et al., 2023a) evaluated the performance of LLMs in the mathematical reasoning, multi-agent debate tasks. Similarly, in the RL process, LLMs were found to be prone to reward hacking (Skalse et al., 2022; Weng, 2024). This meant they exploited loopholes in the reward function to achieve high rewards without genuinely solving the task. Meanwhile, LLMs fine-tuned with Reinforcement Learning from Human Feedback (RLHF-LLMs) could over-rely on aligned preferences without truly reasoning (Wen et al., 2024; Amodei et al., 2016). In this paper, we explore the surface learning behavior of LLMs through knowledge supplements. By introducing RFT to mitigate surface learning behavior, we find that LLMs exploit easy-to-find paradigms to obtain rewards (e.g., reward hacking).

3 PROBLEM DEFINITION

In this paper, given the question q, prompt \wp , LLM M aims to generate a probability of target y conditioning on the prompt \wp , which can be written as: $P(y|q,\wp) = \prod_{t=1}^T P(y_t|q,\wp,y_{< t})$, where the T is the generated token length. In the generated y, there are reasoning analysis r, answer a. Under different settings, the underlying knowledge f (formulas or knowledge points) related to the question is adopted as part of input, helping evaluate the surface-level and deep-level mastery of knowledge by LLMs. We aim to deeply evaluate the extent of $P(r, a|\wp, q)$ and $P(r, a|f, \wp, q)$ in the paper, i.e., the capacity of LLMs to comprehend underlying knowledge.

4 SURFACE LEARNING BEHAVIOR & LONG-TERM STRATEGY

4.1 ME-TEST SUITE CONSTRUCTION

Since the DeepMind Mathematics dataset (Saxton et al., 2018) is categorized by difficulty levels <u>EASY</u>, <u>MEDIUM</u>, and <u>HARD</u>, we employ it to generate sequences of questions for evaluating mathematical problem-solving capabilities of LLMs. These questions are based on a national school mathematics curriculum for students up to age 16. LLMs are assessed on simple computations through the subsets **Add**ition and **Sub**traction, and **Mul**tiplication and **Div**ision; and on complex multi-step computations through the subsets **Factor** and **Remainder**. To determine whether LLMs comprehend underlying knowledge, we define and supplement a set of corresponding formulas $F = \{F^a, F^m, F^f, F^r\}$. For example, the Factor subset F^f consists of formulas $\{F_1^f, ..., F_{l_f}^f\}$, where l_f represents the number of relevant formulas.

In addition to mathematical problems that require strong reasoning skills, we collect multiple-choice and fill-in-the-blank Question-Answering (QA) data that demand English (Eng) grammar knowledge (Zheng et al., 2021). These questions are sourced from the National Middle School Entrance Examination (NMSE) and the National College Entrance Examination (NCEE) in China, targeting JUNIOR and SENIOR high school students¹. Existing QA dataset rarely incorporate relevant knowledge. Nevertheless, grammar data itself comprises authoritative answers and knowledge points that do not demand additional annotations. It includes 41 grammar knowledge points and

¹https://www.eol.cn/

Question	Given relevant formulas of question: {} Question: Is 7 a factor of 16608980?
Question	Question: Is 7 a factor of 16608980?
	<think></think>
	To solve this problem, let's break it down step by step.
	First, we can use Formula 7.6 to check if 16608980 is divisible by 7. We add the last two digits to twice the rest: 80 + (2 * 1660) = 80 + 3320 3
	3400. Since 3400 is not divisible by 7, we can rule out this possibility.
Response	Next, we can use Formula 7.7 to check if 16608980 is divisible by 7. We start from the last digit and alternate multipliers of 1, 3, 2, -1, -3, -2 in
Коорольо	a repeating cycle: 0 , $(1*8) = 8$, $(3*9) = 27$, $(2*8) = 16$, $(-1*7) = -7$, $(-3*0) = 0$. Since 0 is not divisible by 7, we can rule out this possibility.
	Next, we can use Formula 7.1 to check if 16608980 is divisible by 7. We group the digits in threes from right to left: 0, 8, 8 and 6, 0, 9. We
	calculate the alternating sum: $(0-8+8)+(6-0+9)=0+15=15$, which is not divisible by 7. We can rule out this possibility.
	<u> </u>
	<answer>False</answer>

Figure 2: At the beginning of the training process, LLM finds the answer paradigms and easily obtain the reward score (correct answers and formats), but there is no actual reasoning involved. The underlined represents incorrect reasoning. The correct reasoning using the formula is as follows: 80+(2*1660898), 0+(8*3)+(9*2)+(8*-1)+0+(6*-2)+6*1+1*3=31, 980-608+16=388. The relevant formulas definitions can be found in Appendix D.

a total of 13,620 questions. We carry out comprehensive evaluations on 15,000 questions of each Mathematical subset and 13,620 English grammar questions, thereby forming the ME-Test suite. Relevant formulas and grammar knowledge could be found in Appendix D.

4.2 EVALUATION ON SURFACE LEARNING

To conduct a thorough evaluation of LLMs' capabilities, we employ diverse LLMs from: (1) Opensource models: LLaMA3.1 (8B, 70B) (Team, 2024), and Qwen2.5 (7B, 14B) (Yang et al., 2024). (2) Closed-source models: GPT-40 (Hurst et al., 2024). (3) Reasoning LLMs: DeepSeek-R1 (Guo et al., 2025), o3-mini². Recent studies (Tang et al., 2023; Liu et al., 2024) often adopt perturbations or provide incorrect solutions to assess the model's ability. Nevertheless, these methods mislead LLMs (Wang et al., 2023a; Cohn & Hernandez-Orallo, 2023), definitely resulting in a decline in the model's performance. We evaluate LLMs' ability by starting from formulas or knowledge embedded within questions through various prompt settings as follows: (1) **Van**illa: output relevant formulas and answer; (2) \mathbf{F} : given relevant formulas to question, output answer; (3) $\neg \mathbf{F}$: given irrelevant formulas to question, output answer. All the settings require LLMs to output the reasoning process.

4.3 Long-Term Strategy

As shown in right sub-figure of Figure 1, we propose a long-term strategy to mitigate surface learning behavior of LLMs, which mainly consists of Self-Concept Planning in training-free scenario and Behavior Correction strategy in post-training process.

4.3.1 Self-Concept Planning without Training

Inspired by self-concept theory in Education Psychology, surface learners perform somewhat better in structured, well-defined situations which provided an opportunity for goal-setting and planning beforehand and feedback afterward (Marsh, 1990). Therefore, we introduce this Self-Concept Planning strategy to force the model to concentrate on understanding underlying knowledge behind the question, other than just answering the question, and motivate LLMs to self-assess and provide feedback. In training-free settings, we design a series of prompts to guide LLMs in the reasoning process, which also offers a cognitive perspective on reasons behind the effectiveness of these methods, e.g., CoT (Wei et al., 2022c), CoT-SC (Wang et al., 2023b), Divide and Conquer (Cui et al., 2024; Zhou et al., 2023; Qi et al., 2023), ToT (Yao et al., 2023b), etc. We list all detailed prompt settings in Appendix D.

4.3.2 Behavior Correction with Post-Training

Since the performance gains from training-free methods remain limited, and the model still struggles to flexibly apply knowledge to challenging problems. In addition to surface learning behavior of LLMs, they perform poorly on the hard questions in the evaluation results. To tackle these issues,

²https://openai.com/index/openai-o3-mini/

we employ post-training techniques on hard questions in ME-Test suite, which are not only more challenging but also demand a deeper comprehension of the underlying knowledge.

During the training process, we find that the model exhibit surface learning behavior at the initial stage of training as shown in Figure 2. **To obtain the reward scores, LLM exploit answer paradigms by using formulas which contains correct answers and formats.** However, there is no actual reasoning involved, LLM still fails in understanding the concepts within the formulas. This can be attributed to the training paradigm of the model. Since the pre-trained model itself contains a powerful knowledge base of parameters, post-training helps the model activate and manage knowledge instead of re-learning it. In the post-training process, model maximizes the reward function or minimizes the loss function to optimize parameters, which will lead the model to prefer seeking simple methods to solve problems, and exhibit shortcut learning behavior (Geirhos et al., 2020; Skalse et al., 2022).

To address this, we propose a Behavior Correction (BC) strategy that reorders training samples based on constructed self-cognition indicators I_i . Inspired by research (Lampinen et al., 2024) that **models more strongly and densely concentrate on features that are simpler to compute or learned first**, we construct I_i on each i^{th} sample to steer learning toward more informative samples, promoting deeper reasoning. For RFT, we employ GRPO (Shao et al., 2024) to obtain a group of rewards $\{r_{i1}, \ldots, r_{iG}\}$ corresponding to outputs $\{o_{i1}, \ldots, o_{iG}\}$ on a sample, the I_i^r can be defined as:

$$I_i^r = \frac{\min_{1 \le g \le G} r_{ig} + \text{mean}_{1 \le g \le G} r_{ig}}{\text{std}_{1 \le g \le G} r_{ig}}.$$
(1)

We re-rank the samples in ascending order based on $I_i^{\ r}$, thereby preventing the model priorities from learning the easy-to-find answer paradigms to obtain reward scores. Besides, to assess whether the model exhibits similar behavior during the **SFT process**, we define the self-cognition indicator I_i^s as the loss on i^{th} samples in the early training, and re-rank the samples in descending order. Earlier-ranked samples reflect model uncertainty, while later-ranked samples are deterministic—meaning the model is either fully confident or completely unsure. For the data within the hard subsets that possess **the same level of difficulty and low discrimination**, the behavior correction approach is employed to assist the model in exploring multiple problem-solving strategies and preventing it from being trapped in the optimization process by rapidly finding a set of problem-solving templates. The detailed explanation of I^r can be found in Appendix B.2.

5 EXPERIMENTS

In this section, we first assess the performance of LLMs in comprehending underlying knowledge by employing a multi-turn dialogue setting, which incorporates authoritative formulas or key knowledge points for a comprehensive evaluation. Meanwhile, we compare this with a single-turn setting to analyze the impact of sequential questioning. Then, we experiment with self-concept planning to explore whether surface learning can be mitigated in the training-free scenario. We also compare different strategies to assess the effectiveness of behavior correction strategy in the post-training process. The ME-Test suite and the associated code are available for further study and research³.

5.1 EXPERIMENTAL SETUP

In the evaluation, multi-turn dialogues can be constructed by sequentially appending messages with the "assistant" role, as outlined in the official documentation for most LLMs. We set the max_tokens of DeepSeek-R1⁴ and max_output_tokens of o3-mini⁵ are 8K. During the post-training process, GRPO (Shao et al., 2024) for reinforcement fine-tuning of LLaMA3.2-3B and Qwen2.5-7B on 3 × A800-80G and 8 × A800-80G GPUs respectively. We set num_generations to 10, learning_rate to 1e-6, and max_completion_length to 1024 and 4096, accordingly. Additionally, LLaMA3.1-8B and Qwen2.5-14B are employed to perform fine-tuning on A6000-40G GPU using the Low-Rank Adapters (LoRA) parameter-efficient tuning method (Hu et al., 2022), at a rank of 16 and alpha of

³https://anonymous.4open.science/r/SL-BC1D/

⁴https://api-docs.deepseek.com/

⁵https://openai.com/api/

Table 1: Experimental results of various LLMs with the Accuracy in multi-turn evaluation. As the difficulty increases, the performance of LLMs obviously drops. However, whether the formulas are related to the problem or not, the provision of formulas does not necessarily improve or reduce the performance. **Bold** indicates the highest results, while underlined indicates the lowest results.

	LLM	Setting		Add_Sub			Mul_Div			Factor	
		Setting	Easy	Medium	Hard	Easy	Medium	Hard	Easy	Medium	Hard
		Van	0.624	0.508	0.370	0.608	0.330	0.185	0.640	0.641	0.639
	LLaMA3.1-8B	F	0.382	0.301	0.200	0.594	0.327	0.183	0.756	0.712	0.695
	LLaWA3.1-oD	$\neg F$	0.108	0.087	0.056	0.362	0.259	0.161	0.751	0.661	0.633
		\forall F	0.386	0.307	0.209	0.570	0.319	0.184	0.740	0.694	0.667
		Van	0.886	0.793	0.652	0.809	0.549	0.322	0.764	0.726	0.721
	LLaMA3.1-70B	F	0.859	0.794	0.626	0.812	0.578	0.336	0.857	0.742	0.696
Open-	LLaMA3.1-70B	$\neg F$	0.835	0.796	0.659	0.831	0.575	0.344	0.594	0.486	0.456
Source		\forall F	0.856	<u>0.780</u>	<u>0.614</u>	0.817	0.571	0.324	0.503	0.411	0.396
LLMs		Van	0.854	0.766	0.676	0.840	0.601	0.386	0.638	0.636	0.573
	Owen2.5-7B	F	0.362	0.363	0.337	0.816	0.658	0.467	0.667	0.526	0.470
	Qwen2.5-7B	$\neg F$	0.321	0.244	0.228	0.776	0.632	0.452	0.649	0.509	0.453
		\forall F	0.341	0.346	0.315	0.812	0.657	0.464	0.626	<u>0.491</u>	0.466
	Qwen2.5-14B	Van	0.905	0.898	0.818	0.880	0.709	0.524	0.850	0.773	0.767
		F	0.911	0.907	0.862	0.845	0.698	0.519	0.894	0.859	0.828
		$\neg F$	0.880	0.861	0.823	0.850	0.697	0.523	0.962	0.892	0.853
		\forall F	0.900	0.890	0.853	0.852	0.698	<u>0.515</u>	0.924	0.853	0.840
Closed-		Van	0.874	0.876	0.876	0.948	0.841	0.609	0.607	0.570	0.574
Source	GPT-40	F	0.882	0.880	0.883	0.951	0.849	0.611	0.904	0.854	0.859
LLMs	01 1-40	$\neg F$	0.743	0.780	<u>0.770</u>	0.950	0.856	0.616	0.909	0.867	0.857
LLWIS		\forall F	0.799	0.793	0.796	0.962	0.863	0.616	0.826	0.783	0.780
		Van	0.920	0.890	0.865	0.998	0.999	0.984	0.930	0.890	0.845
	DeepSeek-R1	F	0.970	0.915	0.880	0.992	0.992	0.986	0.965	0.900	0.855
	DeepSeek-K1	$\neg F$	0.960	0.945	<u>0.860</u>	0.992	0.982	<u>0.980</u>	0.995	0.980	0.955
Reasoning		\forall F	0.930	0.938	0.940	0.990	0.994	0.984	0.999	0.999	0.997
LLMs		Van	0.965	0.970	0.975	0.868	0.778	0.686	0.980	0.960	0.910
	o3-mini	F	0.890	0.890	0.885	0.842	0.702	0.606	0.960	0.975	0.664
	05-111111	$\neg F$	0.649	0.497	0.342	0.834	0.752	0.662	0.910	0.940	0.528
		\forall F	0.868	0.750	0.655	0.758	0.622	<u>0.546</u>	0.888	0.813	0.753

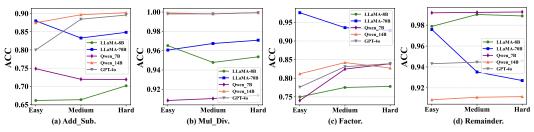


Figure 3: Experimental results of LLMs in predicting relevant formulas on mathematical questions. Contrary to prediction answers, as the difficulty increases, the performance of LLMs on formula prediction remains unchanged or improves.

32, over 10 epochs. To balance training costs, we employ fp16 precision, gradient accumulation strategy, and set the maximum length to 2048. AdamW optimizer (Loshchilov & Hutter, 2018), a 0.1 dropout, and a cosine annealed learning rate of 1e-4 are incorporated. We introduce hard subsets in ME-Test suite which contains senior grammar subset and mathematical reasoning tasks (Factor and Remainder) to achieve post-training. Each subset includes 2,000 randomly selected training samples and 1,000 test samples drawn from the remaining pool. We evaluate the LLMs' knowledge comprehension and reasoning abilities in both **Van** and **F** settings.

5.2 EXPERIMENTAL ANALYSIS

5.2.1 Surface Learning Behavior

The main performance of LLMs on ME-Test suite is shown in Table 1 and Figure 4. First, it can be obviously seen that the performance of LLMs declines as the difficulty increases, which aligns with the cognitive load theory. In vanilla setting, LLMs are asked to output formulas relevant to the question. The experimental results can be found in Figure 3, which is contrary to the results on

answers. As the difficulty increases, the performance of LLMs on formula prediction either remains unchanged or improves. This indicates the first behavior of surface learning in LLMs:

1. Rote Learning

LLMs learn the formulas for different types of mathematical problems on the surface, but do not understand the mathematical concepts within the formulas, failing to apply them and solve problems that seem more intricate.

Then, it can be observed that LLMs typically perform best in the vanilla and F settings on different subsets. However, on factor subset, Qwen-14B performs the best under the $\neg F$ setting. LLaMA-70B exhibits the poorest performance in the $\forall F$ setting on add_sub and factor subsets. The second behavior of surface learning in LLMs can be concluded as:

2. Ignore Background Knowledge

During the learning process, LLMs only focus on answering and aligning labels blindly, ignoring understanding the logical knowledge behind question. The provision of relevant or irrelevant formulas does not necessarily improve or reduce the model's performance.

Contrary to the situation where LLMs fail in understanding formula concepts to solve math problems, LLMs rely more on concepts when addressing English grammar problems. The performance of all LLMs declines with given irrelevant formulas. LLMs tend to rely more on the spurious correlations between solutions and grammar concepts, and offer incorrect solutions based on grammar knowledge while disregarding the question itself. This represents the third behavior of surface learning in LLMs:

3. Focusing on Answer Paradigms

LLMs provide the problem-solving strategy on the surface, but learn spurious correlations between concepts and solutions in fact.

In addition to the above primary behaviors of surface learning in LLMs, we find that Qwen-14B exhibits the best performance among all except for GPT-40 and reasoning models in general. Particularly on Remainder subset, as presented in Table 2, Qwen-14B achieves about 20% higher accuracy than GPT-40 in multi-sound setting. LLaMA-8B and Qwen-7B, with smaller number of parameters, still demonstrate limited abilities in Remainder subset, which involves multi-step reasoning.

In the Factor subset, LLM demonstrates varying degrees of comprehension on formulas in different types of math problems. For instance, although Qwen-14B seems to perform well, the presence of irrelevant formulas leads to an enhancement in the model's performance, suggesting that Qwen-14B merely remembers corresponding correlations between questions and answers, but has a restricted understanding on related concepts.

In the reasoning LLMs, due to the task avoidance behavior of o3-mini (Zhou et al., 2024), the performance of DeepSeek-R1 is more robust. Furthermore, in English grammar questions, GPT-40 performs best, while LLaMA-8B performs worst. In different settings, LLaMA-8B performs its best results when provided with relevant or all formulas. This reflects that the model has, to a certain extent, learned the correlations between concepts and solutions, and requires more well-defined background knowledge to mitigate surface learning.

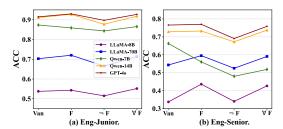


Figure 4: Experimental results of LLMs on English Junior and Senior grammar questions.

5.2.2 Multi-turn vs. Single-turn

Based on the cognitive load theory, we construct sequences of questions with increasing difficulty and allow LLMs to give multi-turn responses based on the dialogue history, enabling the model to conduct continuous problem-solving. Considering the complexity of dialogue interaction, we

Table 2: Experimental results of LLMs in multi-turn and single-turn settings on Remainder subset. Remainder computation only concerns one formula, and thus there are no other settings.

		LLaM	43.1-8B	LLaM	LLaMA3.1-70B		Qwen2.5-7B		Qwen2.5-14B		GPT-40		nini
	Remainder	Van	F	Van	F	Van	F	Van	F	Van	F	Van	F
Multi- turn	Easy Medium Hard	0.261 0.116 0.059	0.603 0.285 0.116	0.898 0.632 0.313	0.950 0.641 0.324	0.300 0.123 0.060	0.462 0.205 0.077	0.966 0.782 0.511	0.936 0.755 0.494	0.691 0.509 0.311	0.698 0.514 0.319	0.645 0.430 0.295	0.618 0.445 0.308
Single- turn	Easy Medium Hard	0.604 0.307 0.122	0.537 0.296 0.162	0.631 0.386 0.218	0.634 0.327 0.136	0.796 0.376 0.118	0.482 0.190 0.085	0.934 0.583 0.308	0.939 0.698 0.386	0.922 0.718 0.357	0.968 0.827 0.493	0.788 0.810 0.835	0.935 0.880 0.813

Table 3: Experimental results of LLMs in single-turn evaluation. Similar to findings in multi-turn evaluation, as the difficulty increases, the performance of LLMs obviously drops. All models exhibit surface learning behavior.

			Llama3.1-8B				Qwen2.5-7B			Qwen2.5-14B			GPT-40				
		Van	F	$\neg F$	∀ F	Van	F	¬ F	∀F	Van	F	¬ F	∀ F	Van	F	¬ F	∀F
Add_Sub	Easy Medium Hard	0.779 0.666 0.512	0.633 0.504 0.352	0.549 0.405 0.324	0.597 0.422 <u>0.274</u>	0.932 0.884 0.793	0.895 0.833 0.722	0.870 0.791 0.687	0.875 0.804 0.717	0.969 0.919 0.833	0.933 0.883 <u>0.809</u>	0.939 0.880 0.810	0.912 0.887 0.837	0.957 0.953 0.910	0.917 0.907 0.865	$\frac{0.841}{0.831} $ $\frac{0.783}{0.783}$	0.856 0.839 0.801
Factor	Easy Medium Hard	0.871 0.740 0.694	0.820 0.741 0.722	0.743 0.651 0.616	0.718 0.659 0.645	0.946 0.870 0.793	0.851 0.784 0.726	0.756 0.700 0.663	0.870 0.802 0.736	0.964 0.899 0.864	0.917 0.841 0.813	0.909 0.862 0.822	0.961 0.898 0.857	0.961 0.895 0.827	0.894 0.835 0.810	0.940 0.866 0.840	0.912 0.855 0.824

additionally evaluate the performance of LLMs in single-turn setting. As shown in Tables 2 and 3, LLMs perform better in the single-turn setting, but their performance declines when provided with either relevant (F) or irrelevant $(\neg F)$ formulas in most cases. This suggests that, despite overall performance gains, LLMs exhibit stronger surface learning behavior. In multi-turn setting, the model needs to understand the information in historical dialogues and effectively utilize the information for the response of current round, which is beneficial for helping the model to learn and conduct continuous problem-solving. While in single-turn evaluations, the rote learning behavior of LLMs becomes more pronounced, i.e., answering but not understanding mathematical concepts in formulas. Besides, in Appendix B.8, we present statistics on LLM output token lengths, which show no linear relationship with model performance.

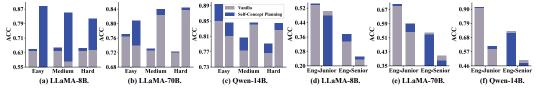


Figure 5: Performance Comparisons of LLMs in the settings of Vanilla and Self-concept planning strategy on Factor (a, b, c) and Eng datasets (d, e, f). In each group of columns, the left and right values respectively denote the performance in predicting answer and formulas/knowledge.

5.2.3 CAN LONG-TERM STRATEGY HELP?

Self-Concept Planning without Training. As illustrated in Section 4.3, we introduce this strategy based on the advocacy in Educational Psychology. The experimental results are presented in Figure 5. Self-Concept Planning strategy can pay a crucial role in enhancing the performance of predicting answers and relevant formulas on mathematical problems. In general, compared with LLaMA-70B, the performance of LLaMA-8B in formula prediction and that of Qwen-14B in answer prediction are significantly improved. Due to the third behavior "focusing on answer paradigms" in surface learning, the model captures the spurious correlations between concepts and solutions during the RLHF process and focus on alignment. This strategy could help to address English grammar problems under some settings compared to solving math problems. Therefore, it is challenging to directly eliminate the behavior through the prompt strategy and activate the reasoning ability of the base model itself. More experiments compared with ToT are provided in Appendix B.4.

Behavior Correction with Post-Training. To further mitigate the surface learning behavior and improve the reasoning ability of LLMs, we propose Behavior Correction (BC) strategy in post-training. To evaluate the effectiveness of this strategy using I^r and I^s , we additionally fine-tune with random samples (w/o I^r , w/o I^s) and adopt the method of inverting the I metric (Inverse-BC) for both RFT and SFT (w/ I^r , w/ I^s). As shown in Figure 6, we

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452 453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474 475

476 477

478

479

480

481

482

483

484

485

adopt Mathematical and English hard subsets to make post-training, where "F" denotes the setting of the given formulas. LLaMA3.2-3B and Qwen2.5-7B are employed to achieve RFT.

It can be observed that adopting I^r has achieved growth in most hard problems. The method of shuffling the training samples (RFT, w/o I^r) results in the model's performance with given formulas consistently being lower than that of the vanilla setting. This indicates that LLM finds the answer paradigm during the training process but fails to solve the reasoning problems on the test sets with given formulas, presumably because it does not fully comprehend the formulas. However, behavior correction strategy performs better with given formulas on test sets, suggesting that the strategy can reduce the model's tendency to use paradigms to obtain reward scores during training, alleviate the surface learning behavior of LLM in the reinforcement learning process, and thereby truly uti-

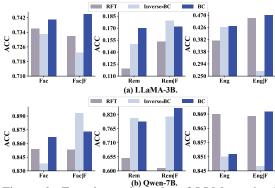


Figure 6: Experimental results of LLMs on hard subsets are compared with basic RFT method (w/o I^r) and the RFT method with inverse I^r (w/ I^r). Behavior correction strategy (w/ I^r) can improve the ability of LLMs compared with other baselines.

lize the formulas to solve problems. **More reasoning comparisons and case studies in RFT** versus baselines could be found in Appendices B.5 and B.6.

As shown in Figure 7, we employ LLaMa3.1-8B and Qwen2.5-14B to achieve SFT on hard questions. Given that the data solely comprises query-answer pairs and lacks any explicit reasoning process, the improvement achieved through fine-tuning the model is limited. This process is more analogous to conducting instruction fine-tuning. When compared to randomly shuffling the data (SFT) and adopting the Inverse-BC for reranking training data, adopting the behavior correction strategy can effectively improve the model's performance in most settings. Specifically, for LLaMA-8B, behavior correction strategy enables the model to perform better compared to the vanilla setting when provided with relevant formulas. Regarding Qwen-14B, English grammar questions typically do not require multi-step reasoning. Under the vanilla setting, although the model

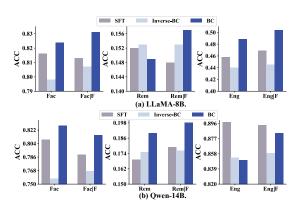


Figure 7: Experimental results of LLMs on hard subsets are compared with basic SFT method (w/o I^s) and the SFT method with inverse I^s (w/ I^s). Behavior correction strategy (w/ I^s) can improve the ability of LLMs compared with other baselines.

with re-ranking based on I^s performs worse than w/o I^s in Eng, I^s helps the model in improving its reasoning ability. This improvement allows the model to perform better when given formulas and enables it to master grammar knowledge more effectively.

6 CONCLUSION

In this paper, by exploring the performance of various LLMs in solving Mathematical reasoning and English grammar problems, we found that LLMs exhibited surface learning behaviors similar to student behavior in Education Psychology, which could incorporate as rote learning, ignoring background knowledge, and focusing on answer paradigms. LLMs seemed to know what formulas and strategies needed to be adopted for solving different problems on the surface, but they did not truly grasp the essence of these concepts, where LLMs merely memorized but failed to apply solutions flexibly. Further to mitigate surface learning behavior of LLMs, we proposed long-term strategy which contained self-concept planning and behavior correction strategy in training-free and post-training scenarios, respectively. Extensive experiments on ME-Test suite demonstrated the effectiveness of the strategy.

REPRODUCIBILITY STATEMENT

In Section 5, we include anonymous downloadable source code and dataset, comprehensive specific prompts in different settings can be found in Appendix D.

REFERENCES

- Patricia A Alexander. A model of domain learning: Reinterpreting expertise as a multidimensional, multistage process. In *Motivation, emotion, and cognition*, pp. 287–312. 2004.
- Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Concrete problems in ai safety. *arXiv preprint arXiv:1606.06565*, 2016.
- Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of thoughts: Solving elaborate problems with large language models. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 17682–17690, 2024.
- Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. *ACM Transactions on Intelligent Systems and Technology*, 15(3):1–45, 2024.
- Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language modeling with pathways. *Journal of Machine Learning Research*, 24(240): 1–113, 2023.
- Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforcement learning from human preferences. *Advances in neural information processing systems*, 30, 2017.
- Anthony G Cohn and Jose Hernandez-Orallo. Dialectical language model evaluation: An initial appraisal of the commonsense spatial reasoning abilities of llms. *arXiv preprint arXiv:2304.11164*, 2023.
- Katherine M Collins, Albert Q Jiang, Simon Frieder, Lionel Wong, Miri Zilka, Umang Bhatt, Thomas Lukasiewicz, Yuhuai Wu, Joshua B Tenenbaum, William Hart, et al. Evaluating language models for mathematics through interactions. *Proceedings of the National Academy of Sciences*, 121(24):e2318124121, 2024.
- Wendi Cui, Zhuohang Li, Damien Lopez, Kamalika Das, Bradley Malin, Sricharan Kumar, and Jiaxin Zhang. Divide-conquer-reasoning for consistency evaluation and automatic improvement of large language models. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track*, pp. 334–361, 2024.
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.
- Diana HJM Dolmans, Sofie MM Loyens, Hélene Marcq, and David Gijbels. Deep and surface learning in problem-based learning: a review of the literature. *Advances in health sciences education*, 21:1087–1112, 2016.
- Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu, Zhiyong Wu, Baobao Chang, et al. A survey on in-context learning. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 1107–1128, 2024.
- Mengnan Du, Fengxiang He, Na Zou, Dacheng Tao, and Xia Hu. Shortcut learning of large language models in natural language understanding. *Communications of the ACM*, 67(1):110–120, 2023.

- Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving factuality and reasoning in language models through multiagent debate. In *Forty-first International Conference on Machine Learning*, 2024.
 - Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. *Nature Machine Intelligence*, 2(11):665–673, 2020.
 - Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
 - Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao Huang. Lightrag: Simple and fast retrieval-augmented generation. *arXiv preprint arXiv:2410.05779*, 2024.
 - Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-efficient fine-tuning for large models: A comprehensive survey. *Transactions on Machine Learning Research*, 2024.
 - Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a unified view of parameter-efficient transfer learning. In *International Conference on Learning Representations*, 2022.
 - Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp. In *International conference on machine learning*, pp. 2790–2799. PMLR, 2019.
 - Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. In *International Conference on Learning Representations*, 2022.
 - Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint arXiv:2410.21276*, 2024.
 - Andrew Kyle Lampinen, Stephanie CY Chan, and Katherine Hermann. Learned feature representations are biased by complexity, learning order, position, and more. *Transactions on Machine Learning Research*, 2024.
 - Xiaonan Li and Xipeng Qiu. Mot: Memory-of-thought enables chatgpt to self-improve. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 6354–6374, 2023.
 - Zhiheng Li, Ivan Evtimov, Albert Gordo, Caner Hazirbas, Tal Hassner, Cristian Canton Ferrer, Chenliang Xu, and Mark Ibrahim. A whac-a-mole dilemma: Shortcuts come in multiples where mitigating one amplifies others. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR*, pp. 20071–20082, 2023.
 - Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and Percy Liang. Lost in the middle: How language models use long contexts. *Transactions of the Association for Computational Linguistics*, 12:157–173, 2024.
 - Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Conference on Learning Representations, ICLR*, 2018.
 - Kai Lv, Yuqing Yang, Tengxiao Liu, Qipeng Guo, and Xipeng Qiu. Full parameter fine-tuning for large language models with limited resources. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 8187–8198, 2024.
 - Herbert W Marsh. Causal ordering of academic self-concept and academic achievement: a multi-wave, longitudinal panel analysis. *Journal of educational psychology*, 82(4):646, 1990.
 - Ference Marton and Lars Owe Dahlgren. On non-verbatim learning: Iii. the outcome space of some basic concepts in economics. *Scandinavian Journal of Psychology*, 17(1):49–55, 1976.

- Ference Marton and Roger Säljö. On qualitative differences in learning: I—outcome and process. British journal of educational psychology, 46(1):4–11, 1976.
 - Xuefei Ning, Zinan Lin, Zixuan Zhou, Zifu Wang, Huazhong Yang, and Yu Wang. Skeleton-of-thought: Large language models can do parallel decoding. In *The Twelfth International Conference on Learning Representations*, 2023.
 - Jingyuan Qi, Zhiyang Xu, Ying Shen, Minqian Liu, Di Jin, Qifan Wang, and Lifu Huang. The art of socratic questioning: Recursive thinking with large language models. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 4177–4199, 2023.
 - Longhu Qin, Jiayu Liu, Zhenya Huang, Kai Zhang, Qi Liu, Binbin Jin, and Enhong Chen. A mathematical word problem generator with structure planning and knowledge enhancement. In *Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 1750–1754, 2023.
 - Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances in neural information processing systems*, 36:53728–53741, 2023.
 - David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical reasoning abilities of neural models. In *International Conference on Learning Representations*, 2018.
 - Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language models a mirage? *Advances in Neural Information Processing Systems*, 36:55565–55581, 2023.
 - John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
 - Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.
 - Mrinank Sharma, Meg Tong, Tomasz Korbak, David Duvenaud, Amanda Askell, Samuel R Bowman, Newton Cheng, Esin Durmus, Zac Hatfield-Dodds, Scott R Johnston, et al. Towards understanding sycophancy in language models. In *The Twelfth International Conference on Learning Representations*, 2024.
 - Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and characterizing reward gaming. *Advances in Neural Information Processing Systems*, 35:9460–9471, 2022.
 - Lennart Svensson. On qualitative differences in learning: Iii. study skill and learning. *British Journal of Educational Psychology*, 1977.
 - John Sweller. Cognitive load theory, 2011.
 - Ruixiang Tang, Dehan Kong, Longtao Huang, and Hui Xue. Large language models can be lazy learners: Analyze shortcuts in in-context learning. In *Findings of the Association for Computational Linguistics: ACL 2023*, pp. 4645–4657, 2023.
 - Meta LLaMA Team. Introducing meta llama 3: The most capable openly available llm to date. https://ai.meta.com/blog/meta-llama-3/, 2024.
 - Guiyao Tie, Zeli Zhao, Dingjie Song, Fuyang Wei, Rong Zhou, Yurou Dai, Wen Yin, Zhejian Yang, Jiangyue Yan, Yao Su, et al. A survey on post-training of large language models. *arXiv preprint arXiv:2503.06072*, 2025.
 - Fouad Trad and Ali Chehab. Prompt engineering or fine-tuning? a case study on phishing detection with large language models. *Machine Learning and Knowledge Extraction*, 6(1):367–384, 2024.
 - Boshi Wang, Xiang Yue, and Huan Sun. Can chatgpt defend its belief in truth? evaluating llm reasoning via debate. In *Findings of the Association for Computational Linguistics: EMNLP* 2023, pp. 11865–11881, 2023a.

- Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models. In *The Eleventh International Conference on Learning Representations*, 2023b.
- Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models. *Transactions on Machine Learning Research*, 2022a.
- Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in Neural Information Processing Systems*, 35:24824–24837, 2022b.
- Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural information processing systems*, 35:24824–24837, 2022c.
- Jiaxin Wen, Ruiqi Zhong, Akbir Khan, Ethan Perez, Jacob Steinhardt, Minlie Huang, Samuel R Bowman, He He, and Shi Feng. Language models learn to mislead humans via rlhf. *arXiv* preprint arXiv:2409.12822, 2024.
- Lilian Weng. Reward hacking in reinforcement learning. https://lilianweng.github.io/posts/2024-11-28-reward-hacking/, 2024.
- Bo Xu and Mu-ming Poo. Large language models and brain-inspired general intelligence. *National Science Review*, 10(10):nwad267, 2023.
- An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint arXiv:2412.15115*, 2024.
- Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. *Advances in Neural Information Processing Systems*, 36:11809–11822, 2023a.
- Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. *Advances in neural information processing systems*, 36:11809–11822, 2023b.
- Zhangyue Yin, Qiushi Sun, Cheng Chang, Qipeng Guo, Junqi Dai, Xuan-Jing Huang, and Xipeng Qiu. Exchange-of-thought: Enhancing large language model capabilities through cross-model communication. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 15135–15153, 2023.
- Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at scale. *arXiv preprint arXiv:2503.14476*, 2025.
- Yu Yuan, Lili Zhao, Kai Zhang, Guangting Zheng, and Qi Liu. Do llms overcome shortcut learning? an evaluation of shortcut challenges in large language models. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 12188–12200, 2024.
- Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang, Yulong Chen, et al. Siren's song in the ai ocean: A survey on hallucination in large language models. *arXiv preprint arXiv:2309.01219*, 2023.
- Lili Zhao, Yang Wang, Qi Liu, Mengyun Wang, Wei Chen, Zhichao Sheng, and Shijin Wang. Evaluating large language models through role-guide and self-reflection: A comparative study. In *The Thirteenth International Conference on Learning Representations*, 2025.
- Zilong Zheng, Shuwen Qiu, Lifeng Fan, Yixin Zhu, and Song-Chun Zhu. Grice: A grammar-based dataset for recovering implicature and conversational reasoning. In *Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021*, pp. 2074–2085, 2021.

Haoxi Zhong, Chaojun Xiao, Cunchao Tu, Tianyang Zhang, Zhiyuan Liu, and Maosong Sun. Jec-qa: a legal-domain question answering dataset. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pp. 9701–9708, 2020.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Claire Cui, Olivier Bousquet, Quoc V Le, et al. Least-to-most prompting enables complex reasoning in large language models. In *The Eleventh International Conference on Learning Representations*, 2023.

Lexin Zhou, Wout Schellaert, Fernando Martínez-Plumed, Yael Moros-Daval, Cèsar Ferri, and José Hernández-Orallo. Larger and more instructable language models become less reliable. *Nature*, 634(8032):61–68, 2024.

CONTENTS

The Use of Large Language Models (LLMs) **B** More Analysis B.5 B.6 B.7 More Fine-tuning Results on Multi-turn & Single-turn Evaluations **Broader Impacts D** More Settings D.10 Definitions of Grammar Knowledge in English Grammar Tests

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, we study large language models as our primary subject and use them solely as a tool to refine our writing.

B MORE ANALYSIS

B.1 SURFACE LEARNING VS. SHORTCUT LEARNING

Shortcut learning was initially defined as relying heavily on non-robust features—so-called "shortcuts"—that yield strong performance on standard benchmarks but fail to generalize to more challenging test settings (Geirhos et al., 2020). Subsequently, in classification tasks, it has been more precisely characterized as models exploiting spurious correlations between certain features and labels in the training data, rather than learning the underlying true patterns (Du et al., 2023; Li et al., 2023). However, in more complex generative tasks, shortcut learning lacks a clear definition. In this paper, we comprehensively evaluate and define Surface Learning in large language models—a typical and respective form of shortcut learning behavior—where models exhibit three representative behaviors indicating they have learned surface associations between questions and solution

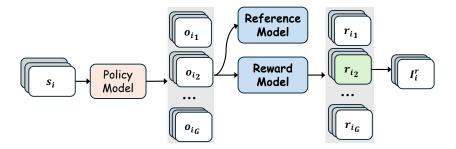


Figure 8: The I^r computation representation in GRPO. We can obtain a group of rewards $\{r_{i1}, r_{i2}, \ldots, r_{iG}\}$ corresponding to the outputs $\{o_{i1}, o_{i2}, \ldots, o_{iG}\}$ on i^{th} sample, where G denotes the num_generations. Suppose r_{i2} is the generation with the lowest reward in the generation group, indicating that the model does not use the answer paradigm to steal scores for this generation successfully. Meanwhile, we add the mean and standard deviation of the generation group to comprehensively consider all the reward scores of the generations on this sample, forming the self-cognition indicator of LLM for this sample.

paradigms, without genuinely understanding the underlying knowledge or solving the tasks. Additionally, Reward hacking (Weng, 2024) discussed in this paper can also be summarized as a kind of shortcut learning. The third typical behavior in surface learning-focusing on answer paradigms, is the typical behavior of the model after reward hacking in reinforcement learning.

B.2 Self-Cognition Indicator Analysis

As shown in Figure 8, in the GRPO framework, for the i^{th} sample, we can obtain a group of rewards $\{r_{i1}, r_{i2}, \ldots, r_{iG}\}$ corresponding to the outputs $\{o_{i1}, o_{i2}, \ldots, o_{iG}\}$. Suppose r_{i2} is the generation with the lowest reward in the generation group, indicating that model fails in the question, and also showing that the model does not utilize the answer paradigm to obtain scores successfully. Meanwhile, the mean and standard deviation of the generation group are added to comprehensively consider all the reward scores of the generations on this sample. The larger the standard deviation of reward scores within a group, the greater the variation among outputs (i.e., high intra-group diversity). Such samples are uncertain and offer more learning potential during post-training.

Self-cognition indicator is designed to prioritize learning uncertain and oscillating samples-those performed low I^r with scattered rewards (high std), low overall performance (low mean), or large reward fluctuations (low min). In contrast, prioritizing training deterministic samples with high I^r (low std, i.e., always learned or never learned) can lead two problems: (1) It will not trigger any parameter updates, i.e., no invalid calculations. (2) It gets trapped in a local optimum, and the model repeatedly generates similar low-quality paths. If such deterministic samples are given priority for training, it will cause the model to learn the answer paradigms and engage in surface learning, hindering true reasoning development. Instead, we focus on prioritized training of uncertain or oscillating samples, that is, the ones with high variance, with the worst-generated ones among multiple generations, the model shows uncertainty regarding such samples. Prioritizing these samples can help the model training by enabling it to explore more and better reasoning paths.

B.3 More evaluations on domain dataset

To explore the surface learning performance of LLMs in more scenarios, we additionally conduct experiments on the JEC-QA dataset (Zhong et al., 2020), a challenging domain-specific benchmark for Legal Professional Certification QA. This dataset requires comprehending and applying specialized legal knowledge, representing a significantly different scenario compared to the ME-test. We evaluate on 1,000 Knowledge-Driven (KD) questions, which include annotated legal knowledge. The experimental results of different LLMs on JEC-QA are shown in Figure 9 and 10.

The experimental results show that the findings of surface learning behavior persist in different scenarios. The performance of almost all LLMs does not necessarily improve even when relevant

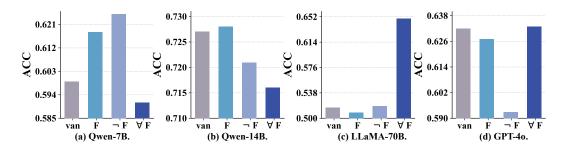


Figure 9: Experimental results of LLMs on legal domain dataset-JEC-QA. All LLMs perform surface learning behavior.

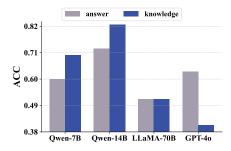


Figure 10: The performance of different LLMs in answering and predicting legal knowledge of questions on JEC-QA.

knowledge (F) is provided; Qwen-7B and LLaMA-70B even achieve the best results when given irrelevant knowledge $(\neg F)$. Moreover, the Qwen series performs relatively better at predicting legal knowledge for a question than answering questions, which indicates that they know the knowledge behind the question on the surface, but struggle to comprehend and apply it. This reinforces that surface learning is a common behavior of LLMs across different problem types. Besides, performance trends hold: Qwen series generally performs well on domain-specific knowledge; models like LLaMA-70B and GPT-40, which show overall poor performance, also demonstrate weaker knowledge comprehension capabilities.

B.4 More experiments on Self-Concept Planning

Table 4: The comparison of baselines in Factor subset, where self-concept planning achieves better overall performance while generating fewer tokens by reducing unnecessary outputs through deep knowledge understanding (a, f represent performance on answering and predicting formula).

	Ea	Easy		Medium		rd	avg. input	avg. output
	a	f	a	f	a	f		
Vanilla	85.04	81.18	77.34	84.20	76.74	82.74	7379.03	366.34
ТоТ	85.60	84.60	82.70	85.90	78.40	84.60	28702.24	3756.05
Self-Concept Planning	89.36	86.64	80.64	84.64	79.12	84.48	7578.53	260.3

As illustrated in Section 4, all settings including "Vanilla" setting require LLMs to output the reasoning process. In addition to the direct comparisons made in Figure 5, we also conduct additional experiments using ToT (Yao et al., 2023a) to enable a more comprehensive comparison. We perform BFS algorithm in ToT with Qwen2.5-14B. For computational efficiency, we sample 3 independent thoughts, apply a vote strategy to evaluate 3 states, and keep the best answer. The experimental results are shown in Table 4, self-concept planning achieves better overall performance while

generating fewer tokens per question by reducing unnecessary outputs through deep knowledge understanding. However, ToT consumes excessive tokens during multi-turn evaluations and has yet to see meaningful efficiency improvements.

B.5 More experiments on Behavior Correction Strategy

To fully compare the performance of the behavior correction strategy with baselines in improving the reasoning ability. In addition to reporting accuracy, we also follow the approach (Guo et al., 2024) and conduct a multi-metric comparison of the reasoning processes of RFT models under three training mechanism (RFT, Inverse-BC, BC) across different subsets. These comparisons are based on correctly answered questions. We adopt GPT-40 and prompts as follows to evaluate the reasoning process of Qwen2.5-7B under different RFT strategies based on three criteria: Comprehensiveness, Diversity, and Empowerment:

You are an expert tasked with evaluating two reasoning processes to the same question based on three criteria: Comprehensiveness, Diversity, and Empowerment:

---Goal---

You will evaluate two reasoning processes to the same question based on three criteria: Comprehensiveness, Diversity, and Empowerment.

- Comprehensiveness: How much detail does the reasoning process provide to cover all aspects and details of the question?
- Diversity: How varied and rich is the reasoning process in providing different perspectives and insights on the question?
- Empowerment: How well does the reasoning process help the reader understand and solve the question?

For each criterion, choose the better reasoning process (either Reasoning 1 or Reasoning 2) and explain why. Then, select an overall winner based on these three categories.

Table 5: The performance comparison of Inverse-BC strategy $(-I^r)$ and BC strategy (I^r) across four evaluation dimensions.

	Fact	or	Facto	r F	Remai	nder	Remainder $ F $		
	Inverse -BC	ВС	Inverse -BC	ВС	Inverse -BC	ВС	Inverse -BC	ВС	
Comprehensive	22.2	76.7	23.0	76.6	21.9	78.0	47.4	52.6	
Diversity	29.9	60.3	28.8	62.8	24.7	53.6	33.9	58.9	
Empowerment	21.1	77.6	26.3	73.0	27.6	72.0	41.5	58.5	
Overall	22.7	76.2	23.9	75.4	23.3	76.5	44.3	55.7	

Table 6: The performance comparison of RFT (w/o I^r) and BC strategy (I^r) across four evaluation dimensions.

	Fac	Factor		$\operatorname{or} F$	Rema	inder	$\operatorname{Remainder} F$		
	RFT	BC	RFT	BC	RFT	BC	RFT	BC	
Comprehensive	41.7	57.9	35.9	63.8	22.5	77.5	38.8	61.2	
Diversity	36.1	48.5	33.7	57.9	26.1	54.1	46.2	46.9	
Empowerment	44.7	54.9	40.8	59.1	32.7	67.3	45.8	54.2	
Overall	43.9	55.8	36.9	62.9	14.8	73.6	42.4	57.6	

As shown in Tables 5 and 6, the win rates of different strategies on math problems are reported; outcomes not classified as wins or losses are counted as ties. The behavior correction strategy demonstrates better performance across multiple dimensions, **encourages the model to explore**

```
972
                                  Given relevant formulas of question:
973
                   Question Remainder = Dividend - Divisor * Quotient; Quotient = Dividend / Divisor (Quotient retains the integer part).
                                  What is the remainder when 13065121 is divided by 424?
974
                                  <think>
975
                                   To find the remainder when 13065121 is divided by 424, we can use the formula: Remainder = Dividend - Divisor * Quotient.
976
                                   First, we need to determine the quotient when 13065121 is divided by 424. The quotient will be the integer part of the
                                  division result. Quotient = 13065121/424. Perform the division: 13065121/424 ≈30768.99974.
977
                                  The integer part of this division is 30768. So, the quotient is 30768.
978
                                  Next, we calculate the product of the divisor and the auotient: Divisor * Quotient = 424 * 30768.
                                  We perform the multiplication: 424 * 30768 = 424 * (30000 + 700 + 60 + 8) = 424 * 30000 + 424 * 700 + 424 * 60 + 424 *
979
                                  8 = 12720000 + 296800 + 25440 + 3392 = 13065120
980
                                  Now, we subtract this product from the dividend to get the remainder: Remainder = 13065121 - 13065120 = 1
981
                                  Thus, the remainder when 13065121 is divided by 424 is 1.
982
                                  <answer>1</answer>
983
984
                                  To find the remainder when 13065121 is divided by 424, we can use the formula for the remainder: Remainder = Dividend -
985
                                  Divisor * Quotient.
                                  First, we need to determine the quotient when 13065121 is divided by 424. The quotient is the integer part of the division
986
                                  of 13065121 by 424. We perform the division: Quotient = 13065121/424.
987
                                  Performing the division: 13065121/424 = 30817.99976744186
                                  The integer part of this division is 30817. Now, we can find the remainder using the formula: Remainder = 13065121 - 424
988
989
                                  Next, we calculate 424 * 30817: 424 * 30817 = 424 * (30800 + 17) = 424 * 30800 + 424 * 17. 424 * 30800 = 424 * (30000
                                  + 800) = 424 * 30000 + 424 * 800. 424 * 30000 = 12720000, 424 * 800 = 339200. 424 * 30800 = 12720000 + 339200 =
                                  13059200 424 * 17 = 7192 424 * 30817 = 13059200 + 7192 = 13066392
991
                                  Now, we find the remainder: Remainder = 13065121 - 13066392 = -1271
992
                                   Since the remainder should be a non-negative number less than the divisor, we add the divisor to -1271:
                                                    = <mark>-1271 + 424 = -847 + 424 = -423 + 424 = 1</mark>. So, the remainder when 13065121 is divided by 424 is 1.
993
                                  </think>
994
                                  <answer>1</answer>
995
                                  <think>
                                  To find the remainder when 13065121 is divided by 424, we can use the division algorithm which states that for any
996
                                  integers a and b (where b > 0), there exist unique integers q (the quotient) and r (the remainder) such that: a = bq + r,
997
                                  where 0 < r < b. Here, a = 13065121 and b = 424. We need to determine r
                                  First, calculate the quotient q: q = 13065121/424. Perform the division: 13065121/424 ≈ 30817.19. Taking the integer part
998
                                  of this result gives us: q = 30817.
999
                                  Next, compute the product of the quotient and the divisor: 424 * 30817. We perform the multiplication step-by-step: 424
                                   * 30817 = 424 * (30800 + 17) = 424 * 30800 + 424 * 17. Calculate each term separately: 424 * 30800 = 424 * (308 * 100)
1000
                    W/ I" = (424 * 308) * 100. First, find 424 * 308: 424 * 308 = 424 * (300 + 8) = 424 * 300 + 424 * 8. 424 * 300 = 127200. 424 *
                                  8 = 3392, 424 * 308 = 127200 + 3392 = 130592. \ Now \ multiply \ by \ 100: 130592 * 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 424 * 17: 100 = 13059200. \ Next, \ calculate \ 42
                                  424 * 17 = 424 * (10 + 7) = 424 * 10 + 424 * 7. 424 * 10 = 4240. 424 * 7 = 2968. 424 * 17 = 4240 + 2968 = 7208. Add
                                  these results together: 13059200 + 7208 = 13066408.
                                  Finally, subtract this from the original number to find the remainder: 13065121 - 13066408 = -1287
1004
                                  Since the remainder should be non-negative and less than 424, add 424 repeatedly until the result is within the required
                                  range: -1287 + 424 * 3 = -1287 + 1272 = -15. -15 + 424 = 409. Thus, the remainder is: 409.
                                  </think>
                                  <answer>409</answer>
```

Figure 11: The case in Remainder test set is to compare different RFT methods on complex reasoning question. Base RFT ($w/o\ I^r$) and RFT with inverse $I^r\ (w/-I^r)$ methods both employ numerous repetitive answer paradigms and output incorrect reasoning processes and answers. However, behavior correction strategy (w/I^r) can provide the accurate answer. Despite there is a step error during the reasoning process, the behavior correction strategy can handle the complex question due to a solid grasp of the knowledge.

more diverse and robust reasoning paths. It further validates the effectiveness of the Behavior Correction strategy, robustly support refining LLM reasoning and knowledge comprehension.

B.6 CASE ANALYSIS

1008

1009

1010

1011

1012

1013

1014 1015 1016

1017

1018

1023

1024

1025

In RFT, we design a new indicator I^r to re-rank samples, which aims to prevent LLMs from exploiting easy-to-find answer paradigms to solve problems. Although the model can follow a certain paradigm when answering questions, the behavior of stealing the reward scores by utilizing the paradigm will result in the model not truly applying the knowledge to answer questions in the RFT process. As shown in Figures 11 and 12, we list the performance of the behavior correction strat-

```
1026
                       Given relevant formulas of question:
1027
                       Formula31.1: If the last digit is multiplied by 3 and subtracted from the rest, yielding a result divisible by 31,
1028
           Question then the number is divisible by 31.
                       Is 31 a factor of 125401261?
1029
                       <think
1030
                       To determine if 31 is a factor of 125401261 using Formula 31.1, we need to follow these steps:
1031
                       1. Separate the last digit from the rest of the number.
1032
                        2. Multiply the last digit by 3
1033
                       Subtract this product from the rest of the number.
                       4. Check if the result is divisible by 31.
1034
                       Let's apply these steps to the number 125401261.
1035

    Separate the last digit: The last digit is 1, and the rest of the number is 12540126.

1036
                       2. Multiply the last digit by 3: 1 * 3 = 3.
                       3. Subtract this product from the rest of the number: 12540126 - 3 = 12540123.
                       Now, we need to check if 12540123 is divisible by 31. We can do this by performing the division: 12540123/31
                       Using long division or a calculator, we find that: 12540123/31 = 40484
1039
                       Since the result is an integer, 12540123 is divisible by 31. Therefore, according to Formula 31.1, the original
                       number 125401261 is also divisible by 31.
                       </think
1041
                       <answer>True</answer>
                       <think>
1043
                       To determine if 31 is a factor of 125401261, we can use the provided formula which states that for a number
                       to be divisible by 31, when you multiply its last digit by 3 and subtract it from the rest of the number, the
                       result should also be divisible by 31.
                       Let's apply this step-by-step on our given number 125401261:
1046
                       1. Separate the last digit: The last digit is 1.
1047
                       2. Multiply the last digit by 3:1*3=3.
                       3. Subtract this product from the remaining number: 12540126 - 3 = 12540123.
1048
                       Now check divisibility of new number (12540123) by 31 or repeat process until clear:
1049
                       - Last digit of 12540123 is 3; multiply by 3 → 9; subtract: 1254012 - 9 = 12540114
1050
                        - Continue similarly till easy division testable or confirm non-divisibility.
                       But simpler direct calculation/standard method might show easier factoring or remainder tests. Checking
1051
                       divisibility directly or via small steps confirms: 125401261/31 gives exact quotient without remainder, thus
1052
                       confirming divisibility rules hold true here. Thus, yes, 31 fits as factor per tested logic.
                       </think>
                       <answer>True</answer>
                       <think>
                       To determine if 31 is a factor of 125401261 using the given formula, we need to follow these steps:
                       1. **Identify the last digit**: The last digit of 125401261 is 1.
                       2. **Multiply the last digit by 3**: 1 * 3 = 3.
1058
                       3. **Subtract this product from the rest of the number**:
                         - Remove the last digit (1) from 125401261, leaving 12540126.
                          - Subtract 3 from 12540126: 12540126 - 3 = 12540123. Now, check if 12540123 is divisible by 31.
                       4. **Divisibility test for 31**: Perform the division of 12540123 by 31.
                         - Calculate 12540123/31. Performing the division: 12540123/31 \approx 404810.41935. Since the result is not an
                       integer, 12540123 is not divisible by 31
1062
                       Therefore, based on the formula, 125401261 is not divisible by 31.
1063
                       </think>
1064
                       <answer>False</answer>
```

Figure 12: The case in Factor test set is to compare different RFT methods on complex reasoning question. Base RFT (w/o I^r) and RFT with inverse I^r (w/ $-I^r$) methods both employ numerous repetitive answer paradigms and output incorrect reasoning processes and answers. However, behavior correction strategy (w/ I^r) can provide the accurate answer. It also uses the steps within the steps to solve the question, and the reasoning process is logically clear.

1067

1068

1069

1070

1071

1074 1075

1077

1078

1079

egy in answering questions and applying knowledge when given formulas compared to the baseline methods.

As shown in Figure 11, this case shows a remainder calculation that requires the model to perform step-by-step reasoning by applying the formula. The base RFT (w/o I^r) and RFT with inverse I^r (w/ $\cdot I^r$) methods both employ numerous repetitive answer paradigms (highted in gray) and output incorrect reasoning process and answers (highlight in green with red color). On the contrary, the behavior correction strategy (w/ I^r) can provide the accurate answer, despite there is a step error

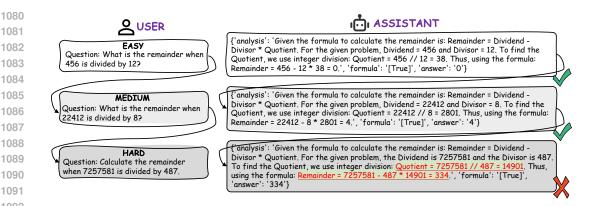


Figure 13: Due to surface learning, GPT-40 cannot apply the formula of Remainder to tackle hard question. Since remainder computation only concerns a single formula, "**Remainder = Dividend** - **Divisor * Quotient, Quotient = Dividend / Divisor**", LLMs are prompted to judge whether the formula is relevant to the question.

during the reasoning process. LLM corrects it at the final reasoning, making use of the knowledge that the remainder and quotient are integers. Meanwhile, the model also summarizes the formula and formalizes it in the form of "a = bq + r", flexibly applying the knowledge. It can contribute to a solid grasp of the knowledge to handle complex questions. As shown in Figure 12 to solve the Factor problem, compared to baseline methods, behavior correction strategy can flexibly apply knowledge and utilize the steps within the steps to solve the question. The reasoning process is logically clear.

In addition to the performance presentation of reinforcement fine-tuned LLM on Remainder subset, we present the case of GPT-40 on Remainder in the evaluation process of surface learning behavior in Figure 13. Although GPT-40 can solve easy and medium-level questions in sequences, it fails when dealing with hard-level question. As illustrated in Section 5.2.1, although LLMs seem to know the formulas and strategies required to solve specific types of problems on the surface, they fail to understand underlying knowledge behind the question and to handle seemingly intricate questions.

B.7 More Fine-tuning Results on Multi-turn & Single-turn Evaluations

We conduct SFT experiments on 4000 hard samples of add_sub and factor subsets, the training data is equally distributed across four settings: Van, F, \neg F, \forall F in a 1:1:1:1 ratio. The remaining data is employed as test sets to assess the performance of the fine-tuned LLM in both single-turn and multiturn settings. Experimental setup remain the same in Section 5.1. The experimental results are presented in Tables 7 and 8, and we have the following findings: (1) As illustrated in section 5.2.3, the DeepMind dataset lacks a reasoning process, containing only questions and answers, which limits the model's ability to learn long-context dependencies and reasoning. (2) While simple SFT data improves performance in single-turn settings, it significantly harms performance in multi-turn settings. SFT requires high-quality CoT data and stepwise training. However, long multi-turn contexts can lead to gradient explosions and demand multiple attempts for effective fine-tuning. (3) In a single-turn evaluation, LLM fails to improve the performance under setting of F, indicating that SFT merely enables the model to acquire spurious relationships. LLM fails to learn the knowledge underlying the formula in prompts and apply the knowledge (surface learning).

B.8 More Comparison of Tokens Output

As shown in Figure 9, different LLMs produce varying output token lengths across subsets, and the output length generally increases with task difficulty. The longest outputs occur when models are given either relevant formulas (F) or all formulas (\forall F), whereas the shortest outputs appear under the irrelevant-formula setting (\neg F), where model performance is generally poor (see Table 1). Notably, Qwen-14B achieves the best performance on the factor subset while producing the fewest output tokens, further illustrating that model performance and output length are often not linearly correlated—longer outputs do not necessarily indicate better performance.

Table 7: Experimental results of comparisons between LLaMA3.1-8B and fine-tuned LLaMA3.1-8B in multi-turn evaluation settings. Fine-tuning on query-answer pairs leads to a significant decline in the multi-turn dialogue ability of the model, which may be related to the length and single relationship of the training data. **Bold** indicates the highest results, while <u>underlined</u> indicates the lowest results.

			LLaMA	A3.1-8B		FT LLaMA3.1-8B					
		Van	F	¬F	∀ F	Van	F	¬F	∀F		
Add_Sub	Easy Medium Hard	0.611 0.504 0.374	0.382 0.301 0.200	$\begin{array}{c} \underline{0.108} \\ \underline{0.087} \\ \underline{0.056} \end{array}$	0.386 0.307 0.209	0.246 0.220 0.196	0.351 0.318 0.265	$\begin{array}{c} \underline{0.230} \\ \underline{0.210} \\ \underline{0.187} \end{array}$	0.323 0.293 0.254		
Factor	Easy Medium Hard	$\begin{array}{ c c } \hline 0.640 \\ \hline 0.641 \\ \hline 0.639 \\ \hline \end{array}$	0.756 0.712 0.695	0.751 0.661 <u>0.633</u>	0.740 0.694 0.667	0.238 0.229 0.227	0.241 0.230 0.226	$\begin{array}{c} 0.237 \\ \hline 0.229 \\ \hline 0.225 \end{array}$	0.239 0.230 <u>0.225</u>		

Table 8: Experimental results of comparisons between LLaMA3.1-8B and fine-tuned LLaMA3.1-8B in single-turn evaluation settings. Fine-tuning on query-answer pairs helps improve the model's ability in the single-turn scenario, but it does not alleviate its surface learning behavior. Under the setting of given formula, the model performs even worse. **Bold** indicates the highest results, while underlined indicates the lowest results.

			LLaM	A3.1-8B		FT LLaMA3.1-8B					
		Van	F	¬F	$\forall F$	Van	F	$\neg F$	$\forall F$		
Add_Sub	Easy Medium Hard	0.779 0.666 0.512	0.633 0.504 0.352	0.549 0.405 0.324	0.558 0.422 <u>0.264</u>	0.986 0.950 0.859	0.978 0.944 0.851	0.978 0.943 0.856	$\begin{array}{c} \underline{0.975} \\ \underline{0.937} \\ \underline{0.843} \end{array}$		
Factor	Easy Medium Hard	0.871 0.740 0.694	0.820 0.741 0.722	0.743 0.651 0.616	$\begin{array}{r} \underline{0.584} \\ \underline{0.553} \\ \underline{0.523} \end{array}$	0.857 0.819 0.820	0.806 0.814 0.818	$0.848 \\ \underline{0.812} \\ \underline{0.817}$	0.843 0.820 0.818		

Table 9: Average output token length over each subset across different settings.

IIM-	I		Add_Sub			Mul_Div			Factor	
LLMs	Settings	Easy	Medium	Hard	Easy	Medium	Hard	Easy	Medium	Hard
	Van	138.41	153.06	163.53	98.58	107.70	112.27	194.01	187.27	190.74
I I aMA 2 1 0D	F	128.97	158.37	179.15	112.60	120.63	130.12	90.59	94.39	106.19
LLaMA3.1-8B	¬ F	115.54	134.10	150.43	115.41	120.02	123.94	85.92	91.02	100.27
	\forall F	130.01	156.48	175.59	119.87	123.17	127.20	135.19	163.52	179.67
	Van	96.07	110.08	119.06	66.09	73.73	76.58	98.82	142.37	163.71
LLaMA3.1-70B	F	124.22	154.33	179.93	96.43	109.17	121.08	153.12	234.74	282.23
LLawins.1-70D	¬ F	98.80	110.56	128.09	71.99	77.91	83.09	120.59	230.76	272.00
	∀ F	119.41	147.61	178.63	99.09	108.96	122.04	184.01	279.43	507.05
	Van	87.26	90.56	97.03	64.53	69.92	74.37	106.02	111.68	119.41
Owen2.5-7B	F	121.50	150.48	177.91	82.98	98.28	111.08	133.03	164.23	184.00
Qwell2.5-7D	¬ F	106.66	134.19	158.23	64.60	75.18	81.82	85.68	104.68	119.16
	∀ F	125.71	152.27	179.41	79.69	93.48	102.72	134.15	160.34	190.63
	Van	83.39	93.02	101.55	64.53	69.92	74.37	100.10	125.80	139.93
Owen2.5-14B	F	139.83	169.69	197.61	82.98	98.28	111.08	136.52	165.72	170.99
Qwell2.3-14D	¬ F	110.29	129.45	152.50	64.60	75.18	81.82	93.05	111.86	126.38
	∀ F	136.49	165.86	192.45	79.69	93.48	102.72	138.90	161.20	165.63
	Van	67.96	74.09	80.83	57.92	59.67	62.00	105.44	121.61	132.78
GPT-40	F	125.94	145.78	166.53	83.22	88.73	93.65	124.14	139.25	154.54
G1 1-40	¬ F	105.40	120.77	137.27	71.54	76.56	82.59	104.14	120.23	135.47
	∀ F	128.74	147.34	167.87	84.84	88.34	95.29	121.28	136.13	150.43

C BROADER IMPACTS

In the current research for LLMs, the paper carries a significant broader impact, primarily reflected in the surface learning behavior uncovered, self-concept planning in training-free scenario and behavior correction strategy for post-training proposed to mitigate surface learning. Through mathematical reasoning and grammatical reasoning, as well as the underlying knowledge, we discover the surface learning behavior, which is mainly manifested in three aspects: rote learning, ignoring background knowledge and focusing on answering paradigms. The paper provides research findings from a new perspective for further studying the reliability and knowledge reserve of LLMs.

To further alleviate the surface learning behavior of LLMs, this paper not only provides solutions in the training-free scenario, but also proposes novel behavior correction strategy in post-training process to help the models reduce the reliance on answer paradigms for reasoning. In the training-free scenario, based on the self-concept theory, this paper expands the prompt setting of LLMs in three aspects: goal-setting, planning beforehand, feedback afterward. It can not only help the model improve its reasoning performance, but also offers reasons behind the effectiveness of a series of variants on COT (e.g. CoT-SC, Divide and Conquer, etc.) from the perspective of cognitive science. In the post-training scenario, through the novel behavior correction strategy and the designed indicators, LLMs can effectively activate and schedule the knowledge of base LLMs. This enables LLMs to truly leverage knowledge rather than simply adopting the easy-to-find answer paradigm for reasoning.

Additionally, the broader impact of this paper is manifested in several other aspects: (1) Trustworthy AI Development: By exploring and mitigating surface learning behaviors, our framework advances the pursuit of actual knowledge understanding over answer paradigm. This shift is crucial for deploying LLMs in high-stakes domains (e.g., education, legal analysis) where reliance on surface paradigms could propagate harmful biases or factual errors. (2) Cognitive AI Alignment: The Self-Concept Planning strategy bridges cognitive science with prompt engineering. This cross-disciplinary alignment fosters LLMs that reason with human-compatible logical structures, enhancing their utility in real-world applications. (3) Sustainable LLM Optimization: The Self-Concept Planning in training-free scenario and Behavior Correction strategy in post-training process both alleviate the surface learning behavior of LLM, and promote the ability of LLM to learn knowledge and apply knowledge-a critical step to achieve sustainable learning systems.

D More Settings

D.1 VANILLA SETTING

```
1222
1223
      [SYSTEM] Given definitions of relevant formulas:
1224
      Formulas: {}
1225
1226
      Please provide the highly relevant formulas to the math question and
1227
      provide the answer.
1228
1229
      Ouestion: {}
1230
      Now you need to output the formula and answer in list format with your
1231
      analysis. Your output is a JSON-formatted string that is compressed into
1232
      a single line. Here is an example of an output:
1233
1234
      example: {}
```

D.2 F or $\neg F$ Setting

```
Given relevant formulas of question:
Formulas: {}
Question: {}
```

```
1242
1243
Now you need to output the answer in list format with your analysis. Your output is a JSON-formatted string that is compressed into a single line.
Here is an example of an output:

1246
1247
example: {}
```

D.3 $\forall F$ Setting

```
1250
1251
      Given relevant formulas of question:
1252
      Formulas: {}
1253
1254
      Given irrelevant formulas of question:
1255
1256
      Formulas: {}
1257
      Question: {}
1258
1259
      Now you need to output the answer in list format with your analysis. Your
1260
       output is a JSON-formatted string that is compressed into a single line.
1261
       Here is an example of an output:
1262
      example: {}
1263
```

D.4 VANILLA SETTING IN ENGLISH GRAMMAR TESTS

```
Please read the following English grammar question carefully, give the most relevant knowledge points to the question and the answer:

Question: {}

Please output the answer in json format. Here is an example output:

example: {}
```

D.5 SELF-CONCEPT PLANNING

```
1277
1278
      Main Task: Figure out the key knowledge relevant to the question.
1279
      Subtask: Please provide the highly relevant formula as possible to the
1280
      math question and the answer.
1281
1282
      Question: {}
1283
      Step 1: Rate your understanding from 1 to 10.
1284
1285
      Step 2: If the rating is below {}, repeat the Main Task to enhance
1286
      understanding.
1287
1288
      Step 3: Reassess your understanding after further exploration.
1289
      Now you need to output the formula and answer in list format with your
1290
      analysis.
1291
1292
      Your output is a JSON-formatted string that is compressed into a single
1293
      line.
1294
      example: {}
1295
```

D.6 DEFINITIONS OF FORMULAS IN ADD_SUB

Formula 1: Addend + Addend = Sum.

1300 Formula 2: Minuend - Subtrahend = Difference.

Formula 3: Adding two numbers with different signs: The result is the absolute value of the difference between the two numbers; the sign of the result is the same as the original sign of the number with the larger absolute value.

Formula 4: Adding two numbers with the same sign: The result is the sum of the absolute values of the two numbers; the sign of the result is the same as the original sign of the two numbers.

Formula 5: Subtracting two numbers with different signs: The result is the sum of the absolute values of the two numbers; the sign of the result is the same as the original sign of the minuend.

Formula 6: Subtracting two numbers with the same sign: The result is the absolute value of the difference between the two numbers. If the minuend is greater than the subtrahend, the sign is positive; if the minuend is less than the subtrahend, the sign is negative.

Formula 7: Decimal points must be aligned when performing addition or subtraction, meaning that digits in the same place value should be added or subtracted together.

D.7 DEFINITIONS OF FORMULAS IN MUL_DIV

Formula1: Multiplicand * Multiplier = Product.

Formula2: Dividend / Divisor = Quotient.

Formula3: The product or quotient of two negative numbers is a positive number.

Formula4: The product or quotient of two numbers with different signs is always a negative number.

Formula5: Any number multiplied by 0 equals 0.

Formula6: Any number divided by 1 equals itself; Any nonzero number divided by itself equals 1.

Formula7: Multiplying a decimal by 10, 100, 1000, etc. Multiplying a decimal by these numbers is equivalent to moving the decimal point to the right.

Formula8: Dividing a decimal by 10, 100, 1000, etc. Dividing a decimal by these numbers is equivalent to moving the decimal point to the left.

D.8 DEFINITIONS OF FORMULAS IN FACTOR

Formula 2.1: The last digit is an even number (0, 2, 4, 6, 8), indicating that it is divisible by 2.

Formula3.1: If the sum of the digits is divisible by 3, then the number itself is divisible by 3.

```
1350
      Formula3.2: Subtract the quantity of the digits 2, 5, and 8 in the number
1351
       from the quantity of the digits 1, 4, and 7 in the number. If result is
1352
      divisible by 3, then the number itself is divisible by 3.
1353
      Formula3.3: Subtracting twice the last digit from the rest gives a
1354
      multiple of 3. If result is divisible by 3, then the number itself is
1355
      divisible by 3.
1356
1357
      Formula4.1: If the last two digits are divisible by 4, then the number
1358
      itself is divisible by 4.
1359
      Formula4.2: When the tens digit is even, if the ones digit is 0, 4, or 8,
1360
       then the number is divisible by 4.
1361
1362
      Formula4.3: When the tens digit is odd, if the ones digit is 2 or 6, then
       the number is divisible by 4.
1363
1364
      Formula4.4: If the sum of the ones digit and double the tens digit is
1365
      divisible by 4, then the number itself is divisible by 4.
1366
1367
      Formula5.1: If the last digit is 0 or 5, then the number is divisible by
1368
1369
      Formula6.1: A number that is divisible by both 2 and 3 is also divisible
1370
      by 6.
1371
1372
      Formula 7.1: When grouped in threes from right to left, if the alternating
1373
       sum is divisible by 7, then the number is divisible by 7.
1374
      Formula 7.2: If the units digit is multiplied by 2 and subtracted from the
       other digits, the result must be divisible by 7 for the number to be
1376
      divisible by 7.
1377
      Formula 7.3: If the units digit is multiplied by 5 and added to the the
1378
      other digits, the result must be divisible by 7 for the number to be
1379
      divisible by 7.
1380
1381
      Formula 7.4: If the highest digit is multiplied by 3 and added to the next
1382
       highest digit, replacing the first two digits with the result must yield
       a number divisible by 7.
1383
1384
      Formula 7.5: If adding the last two digits to twice the rest, yields a
1385
      result divisible by 7, then the number is divisible by 7.
1386
1387
      Formula 7.6: Starting from the last digit and alternating multipliers of
      1, 3, 2, -1, -3, -2 (in a repeating cycle), if the sum is divisible by 7,
1388
       then the number is divisible by 7.
1389
1390
      Formula8.1: If the hundreds digit is even and the last two digits form a
1391
      number divisible by 8, then the entire number is divisible by 8.
1392
      Formula8.2: If the hundreds digit is odd, the number obtained by the last
1393
       two digits must be 4 times an odd number, then the number is divisible
1394
      by 8.
1395
1396
      Formula8.3: If adding the last digit to twice the rest, results in a
1397
      number divisible by 8, then the number is divisible by 8.
1398
      Formula8.4: If the last three digits form a number divisible by 8, then
1399
      the entire number is divisible by 8.
1400
1401
      Formula8.5: If four times the hundreds digit plus two times the tens
1402
```

digit plus the units digit yields a result divisible by 8, then the

1403

number is divisible by 8.

```
1404
      Formula9.1: If the sum of the digits is divisible by 9, then the number
1405
      itself is also divisible by 9.
1406
1407
      Formula10.1: The last digit is, the number is divisible by 10.
1408
      Formula10.2: If the number is divisible by 2 and by 5, then the number is
1409
       divisible by 10.
1410
1411
      Formulal1.1: If the alternating sum of the digits from highest to lowest
1412
      is divisible by 11, then the number is divisible by 11.
1413
      Formula11.2: When grouped in pairs from right to left, if the sum of each
1414
       group is divisible by 11, then the number is divisible by 11.
1415
1416
      Formulal1.3: If the last digit subtracted from the rest yields a result
      divisible by 11, then the number is divisible by 11.
1417
1418
      Formulal1.4: Add 10 times the last digit to the rest. if the result is
1419
      divisible by 11, then the number is divisible by 11.
1420
1421
      Formulal1.5: When the number has an even number of digits, add the first
1422
      and subtract the last digit from the rest yields a result divisible by
      11, then the number is divisible by 11.
1423
1424
      Formula11.6: When the number has an odd number of digits, if subtract the
1425
       first and last digit from the rest yields a result divisible by 11, then
1426
       the number is divisible by 11.
1427
      Formula12.1: A number that is divisible by both 3 and 4 is also divisible
1428
       by 12.
1429
1430
      Formula12.2: If the last digit is subtracted from twice the rest and the
1431
      result is divisible by 12, then the number is divisible by 12.
1432
      Formula13.1: When grouped in threes from right to left, if the
1433
      alternating sum is divisible by 13, then the number is divisible by 13.
1434
1435
      Formula13.2: If subtract the last two digits from four times the rest,
1436
      yielding a number divisible by 13, then the number is divisible by 13.
1437
      Formula13.3: If subtract 9 times the last digit from the rest, and the
1438
      result is divisible by 13, then the number is divisible by 13.
1439
1440
      Formula13.4: If the last digit is multiplied by 9 and the result is
1441
      subtracted from the rest, yielding a number divisible by 13, then the
      number is divisible by 13.
1442
1443
      Formula14.1: A number that is divisible by both 2 and 7 is also divisible
1444
       by 14.
1445
1446
      Formula14.2: If the last two digits added to twice the rest yield a
      result divisible by 14, then the number is divisible by 14.
1447
1448
      Formula15.1: A number that is divisible by both 3 and 5 is also divisible
1449
       by 15.
1450
1451
      Formula16.1: If the thousands digit is even and the number formed by the
      last three digits is divisible by 16, then the entire number is divisible
1452
       by 16.
1453
1454
      Formula16.2: If the thousands digit is odd, the number formed by the last
1455
       three digits is 8 times an odd number, then the entire number is
1456
      divisible by 16.
```

```
1458
      Formula16.3: If the last two digits added to four times the rest yield a
1459
      result divisible by 16, then the number is divisible by 16.
1460
1461
      Formula16.4: If the last four digits form a number divisible by 16, then
      the entire number is divisible by 16.
1462
1463
      Formula17.1: If the last digit is multiplied by 5 and subtracted from the
1464
       rest, yielding a result divisible by 17, then the number is divisible by
1465
       17.
1466
      Formula17.2: if the result of adding 12 times the last digit to the rest
1467
      is divisible by 17, then the number is divisible by 17.
1468
1469
      Formula17.3: If the last two digits are subtracted from twice the rest
1470
      and the result is divisible by 17, then the number is divisible by 17.
1471
      Formula18.1: A number that is divisible by both 2 and 9 is also divisible
1472
       by 18.
1473
1474
      Formula19.1: If sum of twice the last digit and the rest, yielding a
1475
      result divisible by 19, then the number is divisible by 19.
1476
      Formula19.2: If sum of 4 times the last two digits and the rest, yielding
1477
       a result divisible by 19, then the number is divisible by 19.
1478
1479
      Formula20.1: If the last digit is 0 and the tens digit is even, then the
1480
      number is divisible by 20.
1481
      Formula20.2: If the last two digits form a number divisible by 20, then
1482
      the entire number is divisible by 20.
1483
1484
      Formula 20.3: A number that is divisible by both 4 and 5 is also divisible
1485
       by 20.
1486
      Formula21.1: If subtracting twice the last digit from the rest gives a
1487
      multiple of 21, then the number is divisible by 21.
1488
1489
      Formula21.2: If the sum of 19 times the last digit and the rest gives a
1490
      multiple of 21, then the number is divisible by 21.
1491
      Formula21.3: A number that is divisible by both 3 and 7 is also divisible
1492
       bv 21.
1493
1494
      Formula22.1: A number that is divisible by both 2 and 11 is also
1495
      divisible by 22.
1496
      Formula23.1: If the last digit is multiplied by 7 and added to the rest,
1497
      yielding a result divisible by 23, then the number is divisible by 23.
1498
1499
      Formula23.2: If the last two digits are multiplied by 3 and added to the
1500
      rest, yielding a result divisible by 23, then the number is divisible by
      23.
1501
1502
      Formula23.3: If the last three digits are multiplied by 2 and subtracted
1503
      from the rest, yielding a result divisible by 23, then the number is
1504
      divisible by 23.
1505
      Formula24.1: A number that is divisible by both 3 and 8 is also divisible
1506
       by 24.
1507
```

(00, 25, 50, or 75), then the entire number is divisible by 25.

Formula 26.1: A number that is divisible by both 2 and 13 is also divisible by 26.

1508

1509

1510

1511

Formula25.1: If the last two digits form a number that is divisible by 25

Formula26.2: If subtracting 5 times the last digit from twice the rest of the number gives a multiple of 26, then the entire number is divisible by 26. Formula27.1: When grouped in threes, if the sum of each group is divisible by 27, then the number is divisible by 27. Formula27.2: If the last digit is multiplied by 8 and subtracted from the rest, yielding a result divisible by 27, then the number is divisible by Formula27.3: If the last two digits are subtracted from eight times the rest, yielding a result divisible by 27, then the number is divisible by Formula28.1: A number that is divisible by both 4 and 7 is also divisible by 28. Formula29.1: If the last digit is multiplied by 3 and added to the rest, yielding a result divisible by 29, then the number is divisible by 29. Formula29.2: If the last two digits are multiplied by 9 and added to the rest, yielding a result divisible by 29, then the number is divisible by Formula29.3: If the last three digits are multiplied by 2 and subtracted from the rest, yielding a result divisible by 29, then the number is divisible by 29. Formula 30.1: A number that is divisible by both 3 and 10 is also divisible by 30.

D.9 DEFINITION OF FORMULA IN REMAINDER

Remainder = Dividend - Divisor \star Quotient; Quotient = Dividend / Divisor (Quotient retains the integer part).

Formula31.1: If the last digit is multiplied by 3 and subtracted from the

rest, yielding a result divisible by 31, then the number is divisible by

D.10 DEFINITIONS OF GRAMMAR KNOWLEDGE IN ENGLISH GRAMMAR TESTS

Parts of Speech:

[Verb, Non-finite Verb, Modal Verb, Adjective, Adverb, Numeral, Conjunction, Pronoun, Preposition, Noun, Article]

Clause:

31.

[Attributive Clause, Appositive Clause, Predicative Clause, Object Clause, Subject Clause, Cause Adverbial Clause, Adverbial Clause, Time Adverbial Clause, Condition Adverbial Clause, Result Adverbial Clause, Concession Adverbial Clause, Purpose Adverbial Clause, Place Adverbial Clause)

Tense:

[Past Continuous Tense, Present Continuous Tense, Past Perfect Tense, Present Perfect Tense, Future-in-the-Past Tense, Simple Past Tense, Simple Present Tense, Simple Future Tense]