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ABSTRACT

As Large Language Models (LLMs) continue to evolve, assessing their genuine
comprehension of underlying knowledge is crucial to ensure the reliability in real-
world applications. To evaluate what LLMs learn, we first introduce ME-Test
suite, including Mathematical and English grammar examinations, where each
question is equipped with relevant knowledge to guide the model. Building upon
this, we construct a sequence of questions with increasing difficulty based on Cog-
nitive Load theory, enabling the model to perform continuous problem-solving
using the dialogue history. Through a comprehensive evaluation, we uncover a
phenomenon of Surface Learning behavior on LLMs similar to student learn-
ing behavior in Education Psychology. The behavior indicates that although the
models seem to know the formulas and strategies required to solve specific types
of problems on the surface, they do not truly comprehend the essence of these
concepts, resulting in surface-level short-term benefits rather than in-depth learn-
ing. Further to mitigate surface learning behavior of LLMs, we propose a long-
term strategy for both training-free and post-training scenarios. In training-free
scenario, inspired by Self-Concept theory, LLMs are prompted with goal-setting
and planning beforehand as well as feedback afterward to improve the ability in
reasoning process. To better activate the underlying knowledge during the post-
training process, we propose behavior correction strategy to re-rank samples based
on the designed self-cognition indicators of LLMs. This strategy prevents models
from relying on easy-to-find paradigms to maximize rewards or minimize losses in
the initial training stage, rather than undertaking actual reasoning. Extensive ex-
periments of Supervised and Reinforcement Fine-Tuning (SFT, RFT) conducted
on LLMs demonstrate the effectiveness of the strategy.

1 INTRODUCTION

With the evolution and proliferation of Large Language Models (LLMs) (Xu & Poo, 2023), it is cru-
cial to assess whether LLMs genuinely comprehend the underlying knowledge, which can contribute
to ensuring reliability and faithfulness in real-world applications (Chowdhery et al., 2023; Zhang
et al., 2023). As shown in left sub-figure of Figure 1, LLMs, like a student, exploits underlying
knowledge (i.e. formulas) involved in the mathematical question and provide answers accordingly.
By further deepening the grasp of complex concepts and rigorous relationships behind formulas,
LLMs can solve numerous similar problems rather than merely imitating contexts (Qin et al., 2023).
In this paper, we shift the focus from quantifying how much LLMs learn to assessing what they
learn (Chang et al., 2024), which provides deeper insights into their knowledge acquisition.

To this end, we supplement the existing mathematical datasets with relevant formulas to evaluate
whether LLMs grasp the underlying knowledge, and introduce an English grammar dataset which
contains questions of different grades and different knowledge points. Furthermore, since problem-
solving typically follows the principle of progressive learning from simple to complex drawing on
Cognitive Load theory (Sweller, 2011), we construct a sequence of questions with increasing diffi-
culty, enabling the model to perform continuous problem-solving based on the multi-turn dialogue
history. Through comprehensive evaluations, we observe that while the model is familiar with for-
mulas and strategies required to solve specific types of problems, it struggles to comprehend their
underlying information and is incapable of applying formulas to resolve more complex problems.
We incorporate three respective behavior of surface learning: rote learning, ignoring background
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Is 26 a factor of 589?

Does 14 divide 1022685480?

To determine if 202286 is a multiple of 7, 
we need to check if the difference 
between twice the last digit and the rest 
of the number is divisible by 7. Twice the 
last digit is 2 *6 = 12. The rest of the 
number is 202286 - 12 = 202174. The 
difference between twice the last digit 
and the rest of the number is 12 – 74 = -62. 
Since -62 is not divisible by 7, 202286 is 
not a multiple of 7.

Does 7 divide 202286?

EASY

MEDIUM

HARD

USER ASSISTANT !!!!Does 7 divide 202286?

!!!!True

Q:

A:

1 Surface Learning 2 Long-term strategy

Surface 
Correlation u  structured, well-defined situations

u  goal-setting and planning beforehand
u  feedback afterward

! Behavior Correction
RFT or SFT

Self-cognition

x" ≻ $#… ≻ $$
Re-ranking Post-training

" Self-Concept Planning

For surface learner, it is 
suggested to be provided with:

!! or !"

Figure 1: In the left sub-figure, the sequence of questions with increasing difficulty enables LLMs
to perform continuous problem-solving based on the dialogue history. LLM can output the correct
formula but with incorrect reasoning process, failing to comprehend the formula and demonstrating
surface learning behavior. In the right sub-figure, we propose a long-term strategy to mitigate surface
learning behavior in training-free and post-training scenarios.

information, and focusing on answer paradigms. Parallel to the student behavior (Dolmans et al.,
2016; Geirhos et al., 2020) in Education Psychology (Marton & Säljö, 1976), students as surface
learners, direct their attention towards learning the text itself and keep to a rote-learning strategy
other than truly mastering (Svensson, 1977; Marton & Dahlgren, 1976), resulting in surface-level
short-term benefits rather than in-depth learning.

Based on findings of surface learning in LLMs, we propose a long-term strategy to improve the
performance of LLMs in different scenarios. Specifically, in the training-free scenario, inspired
by Self-Concept theory in Psychology, as surface learners, it is suggested that student be provided
with an opportunity for goal-setting and planning beforehand as well as feedback afterward (Marsh,
1990; Alexander, 2004). We introduce this Self-Concept Planning to prompt settings and discover
the effects for different LLMs. Nevertheless, the performance gains from training-free methods
remain limited, and the model still struggles to flexibly apply knowledge to challenging problems.
To address it, we adopt post-training techniques specifically targeting these hard tasks, aiming to
activate and schedule knowledge effectively. During the post-training process, it is crucial to ensure
that the model truly utilizes knowledge to solve problems, rather than surface learning. However,
we find that LLM exploits easy-to-find paradigms that conform to the reward model to obtain the
reward scores during Reinforcement Fine-Tuning (RFT) process (Weng, 2024; Skalse et al., 2022).
As shown in Figure 2, the problem-solving paradigms (highlighted in gray) are utilized in the model
response, but there is no actual reasoning process. Therefore, we propose a Behavior Correction
strategy with designed self-cognition indicators I . The training samples are re-ranked based on I ,
thereby preventing LLMs from reasoning through the easy-to-find answer paradigms. Meanwhile,
we also introduce this strategy to perform Supervised Fine-Tuning (SFT) on query-answer pairs.
Although it lacks the same capacity as RFT in learning the reasoning mechanism due to the absence
of explicit reasoning process, the relevant formulas or knowledge points incorporated contribute
to enhancing the model’s proficiency in knowledge utilization. Experiments conducted on LLMs
demonstrate the effectiveness of this strategy.

2 RELATED WORK

Improving LLMs has been a hot topic in recent years, which could be divided into prompt engi-
neering (Wei et al., 2022b; Dong et al., 2024), fine-tuning (Trad & Chehab, 2024), and reinforcement
learning (Tie et al., 2025). Among them, prompt engineering is a widely used method to enhance the
performance of LLMs without modifying the model parameters. For instance, In-Context Learning
(ICL) (Wei et al., 2022a; Schaeffer et al., 2023) helped LLMs to learn from several demonstration ex-
amples within a given context. Chain-of-Thought (CoT) (Wei et al., 2022b) proposed helped LLMs
promote the reasoning process and explainability, rather than simply providing answers. Since then,
variants of COT such as Tree-of-Thought (ToT) (Yao et al., 2023a), Graph-of-Thought (GoT) (Besta
et al., 2024), Memory-of-Thought (MoT) (Li & Qiu, 2023), Skeleton-of-Thought (SoT) (Ning et al.,
2023) and Exchange-of-thought (EoT) (Yin et al., 2023) were proposed to improve the reasoning
process. In addition to training-free methods, Supervised Fine-Tuning (SFT) (Devlin et al., 2019;
Lv et al., 2024) adjusted parameters of LLMs and adapted a pre-trained model to specific down-
stream tasks through supervised learning. When labeled data are limited, PEFT (Houlsby et al.,
2019; Han et al., 2024), such as LoRA (Hu et al., 2022) and Adapter (He et al., 2022), optimized a
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small subset of parameters or inserted lightweight modules, reducing computational costs and im-
proving training efficiency without sacrificing performance. To further enhance the performance
of LLMs, Reinforcement Learning (RL) (Christiano et al., 2017) was employed to optimize the
model’s responses based on feedback from human evaluators or reward functions, such as Proximal
Policy Optimization (PPO) (Schulman et al., 2017), Direct preference optimization (DPO) (Rafailov
et al., 2023), Group Relative Policy Optimization (GRPO) (Shao et al., 2024), Decoupled Clip and
Dynamic sAmpling Policy Optimization (DAPO) (Yu et al., 2025), etc.

Exploring multiple behaviors of LLMs in improvement process helps to ensure faithfulness and
reliability in real-world applications. Some research revealed that LLMs tended to hallucinate, gen-
erating incorrect or nonsensical information (Zhang et al., 2023; Chowdhery et al., 2023). LLMs
also had the tendency to trust users and favor authoritative roles (Sharma et al., 2024; Zhao et al.,
2025). The shortcut learning behavior of LLMs, which refers to the reliance of LLMs on certain
words in prompt or spurious correlations in contexts, was explored through prompt perturbation or
benchmark construction (Yuan et al., 2024; Tang et al., 2023). Moreover, in the settings of multi-turn
dialogue settings, some studies (Collins et al., 2024; Du et al., 2024; Wang et al., 2023a) evaluated
the performance of LLMs in the mathematical reasoning, multi-agent debate tasks. Similarly, in the
RL process, LLMs were found to be prone to reward hacking (Skalse et al., 2022; Weng, 2024).
This meant they exploited loopholes in the reward function to achieve high rewards without gen-
uinely solving the task. Meanwhile, LLMs fine-tuned with Reinforcement Learning from Human
Feedback (RLHF-LLMs) could over-rely on aligned preferences without truly reasoning (Wen et al.,
2024; Amodei et al., 2016). In this paper, we explore the surface learning behavior of LLMs through
knowledge supplements. By introducing RFT to mitigate surface learning behavior, we find that
LLMs exploit easy-to-find paradigms to obtain rewards (e.g., reward hacking).

3 PROBLEM DEFINITION

In this paper, given the question q, prompt ℘, LLM M aims to generate a probability of target y
conditioning on the prompt ℘, which can be written as: P (y|q, ℘) =

∏T
t=1 P (yt|q, ℘, y<t), where

the T is the generated token length. In the generated y, there are reasoning analysis r, answer a.
Under different settings, the underlying knowledge f (formulas or knowledge points) related to the
question is adopted as part of input, helping evaluate the surface-level and deep-level mastery of
knowledge by LLMs. We aim to deeply evaluate the extent of P (r, a|℘, q) and P (r, a|f, ℘, q) in the
paper, i.e., the capacity of LLMs to comprehend underlying knowledge.

4 SURFACE LEARNING BEHAVIOR & LONG-TERM STRATEGY

4.1 ME-TEST SUITE CONSTRUCTION

Since the DeepMind Mathematics dataset (Saxton et al., 2018) is categorized by difficulty levels
EASY, MEDIUM, and HARD, we employ it to generate sequences of questions for evaluating
mathematical problem-solving capabilities of LLMs. These questions are based on a national school
mathematics curriculum for students up to age 16. LLMs are assessed on simple computations
through the subsets Addition and Subtraction, and Multiplication and Division; and on complex
multi-step computations through the subsets Factor and Remainder. To determine whether LLMs
comprehend underlying knowledge, we define and supplement a set of corresponding formulas F =
{F a, Fm, F f , F r}. For example, the Factor subset F f consists of formulas {F1

f , ..., Flf
f}, where

lf represents the number of relevant formulas.

In addition to mathematical problems that require strong reasoning skills, we collect multiple-
choice and fill-in-the-blank Question-Answering (QA) data that demand English (Eng) grammar
knowledge (Zheng et al., 2021). These questions are sourced from the National Middle School
Entrance Examination (NMSE) and the National College Entrance Examination (NCEE) in China,
targeting JUNIOR and SENIOR high school students1. Existing QA dataset rarely incorporate rele-
vant knowledge. Nevertheless, grammar data itself comprises authoritative answers and knowledge
points that do not demand additional annotations. It includes 41 grammar knowledge points and

1https://www.eol.cn/
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<think>
To solve this problem, let's break it down step by step.
First, we can use Formula7.6 to check if 16608980 is divisible by 7. We add the last two digits to twice the rest: 80 + (2 * 1660) = 80 + 3320 = 
3400. Since 3400 is not divisible by 7, we can rule out this possibility.
Next, we can use Formula7.7 to check if 16608980 is divisible by 7. We start from the last digit and alternate multipliers of 1, 3, 2, -1, -3, -2 in 
a repeating cycle: 0, (1 * 8) = 8, (3 * 9) = 27, (2 * 8) = 16, (-1 * 7) = -7, (-3 * 0) = 0. Since 0 is not divisible by 7, we can rule out this possibility.
Next, we can use Formula7.1 to check if 16608980 is divisible by 7. We group the digits in threes from right to left: 0, 8, 8 and 6, 0, 9. We 
calculate the alternating sum: (0 - 8 + 8) + (6 - 0 + 9) = 0 + 15 = 15, which is not divisible by 7. We can rule out this possibility.
…
</think>
<answer>False</answer>

Given relevant formulas of question: {}
Question: Is 7 a factor of 16608980?Question

Response

Figure 2: At the beginning of the training process, LLM finds the answer paradigms and easily
obtain the reward score (correct answers and formats), but there is no actual reasoning involved. The
underlined represents incorrect reasoning. The correct reasoning using the formula is as follows:

80+(2*1660898), 0+(8*3)+(9*2)+(8*-1)+0+(6*-2)+6*1+1*3=31, 980-608+16=388. The relevant
formulas definitions can be found in Appendix D.

a total of 13,620 questions. We carry out comprehensive evaluations on 15,000 questions of each
Mathematical subset and 13,620 English grammar questions, thereby forming the ME-Test suite.
Relevant formulas and grammar knowledge could be found in Appendix D.

4.2 EVALUATION ON SURFACE LEARNING

To conduct a thorough evaluation of LLMs’ capabilities, we employ diverse LLMs from: (1) Open-
source models: LLaMA3.1 (8B, 70B) (Team, 2024), and Qwen2.5 (7B, 14B) (Yang et al., 2024).
(2) Closed-source models: GPT-4o (Hurst et al., 2024). (3) Reasoning LLMs: DeepSeek-R1 (Guo
et al., 2025), o3-mini2. Recent studies (Tang et al., 2023; Liu et al., 2024) often adopt perturbations
or provide incorrect solutions to assess the model’s ability. Nevertheless, these methods mislead
LLMs (Wang et al., 2023a; Cohn & Hernandez-Orallo, 2023), definitely resulting in a decline in the
model’s performance. We evaluate LLMs’ ability by starting from formulas or knowledge embedded
within questions through various prompt settings as follows: (1) Vanilla: output relevant formulas
and answer; (2) F: given relevant formulas to question, output answer; (3) ¬F: given irrelevant
formulas to question, output answer; (4) ∀F: given all available formulas, output answer. All the
settings require LLMs to output the reasoning process.

4.3 LONG-TERM STRATEGY

As shown in right sub-figure of Figure 1, we propose a long-term strategy to mitigate surface learning
behavior of LLMs, which mainly consists of Self-Concept Planning in training-free scenario and
Behavior Correction strategy in post-training process.

4.3.1 SELF-CONCEPT PLANNING WITHOUT TRAINING

Inspired by self-concept theory in Education Psychology, surface learners perform somewhat better
in structured, well-defined situations which provided an opportunity for goal-setting and planning
beforehand and feedback afterward (Marsh, 1990). Therefore, we introduce this Self-Concept Plan-
ning strategy to force the model to concentrate on understanding underlying knowledge behind the
question, other than just answering the question, and motivate LLMs to self-assess and provide
feedback. In training-free settings, we design a series of prompts to guide LLMs in the reasoning
process, which also offers a cognitive perspective on reasons behind the effectiveness of these meth-
ods, e.g., CoT (Wei et al., 2022c), CoT-SC (Wang et al., 2023b), Divide and Conquer (Cui et al.,
2024; Zhou et al., 2023; Qi et al., 2023), ToT (Yao et al., 2023b), etc. We list all detailed prompt
settings in Appendix D.

4.3.2 BEHAVIOR CORRECTION WITH POST-TRAINING

Since the performance gains from training-free methods remain limited, and the model still struggles
to flexibly apply knowledge to challenging problems. In addition to surface learning behavior of
LLMs, they perform poorly on the hard questions in the evaluation results. To tackle these issues,

2https://openai.com/index/openai-o3-mini/
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we employ post-training techniques on hard questions in ME-Test suite, which are not only more
challenging but also demand a deeper comprehension of the underlying knowledge.

During the training process, we find that the model exhibit surface learning behavior at the ini-
tial stage of training as shown in Figure 2. To obtain the reward scores, LLM exploit answer
paradigms by using formulas which contains correct answers and formats. However, there is
no actual reasoning involved, LLM still fails in understanding the concepts within the formulas.
This can be attributed to the training paradigm of the model. Since the pre-trained model itself
contains a powerful knowledge base of parameters, post-training helps the model activate and man-
age knowledge instead of re-learning it. In the post-training process, model maximizes the reward
function or minimizes the loss function to optimize parameters, which will lead the model to prefer
seeking simple methods to solve problems, and exhibit shortcut learning behavior (Geirhos et al.,
2020; Skalse et al., 2022).

To address this, we propose a Behavior Correction (BC) strategy that reorders training samples based
on constructed self-cognition indicators Ii. Inspired by research (Lampinen et al., 2024) that models
more strongly and densely concentrate on features that are simpler to compute or learned first,
we construct Ii on each ith sample to steer learning toward more informative samples, promoting
deeper reasoning. For RFT, we employ GRPO (Shao et al., 2024) to obtain a group of rewards
{ri1, . . . , riG} corresponding to outputs {oi1, . . . , oiG} on a sample, the Ii

r can be defined as:

Ii
r =

min1≤g≤G rig +mean1≤g≤Grig
std1≤g≤Grig

. (1)

We re-rank the samples in ascending order based on Ii
r, thereby preventing the model priorities from

learning the easy-to-find answer paradigms to obtain reward scores. Besides, to assess whether the
model exhibits similar behavior during the SFT process, we define the self-cognition indicator Iis

as the loss on ith samples in the early training, and re-rank the samples in descending order. Earlier-
ranked samples reflect model uncertainty, while later-ranked samples are deterministic—meaning
the model is either fully confident or completely unsure. For the data within the hard subsets that
possess the same level of difficulty and low discrimination, the behavior correction approach is
employed to assist the model in exploring multiple problem-solving strategies and preventing it from
being trapped in the optimization process by rapidly finding a set of problem-solving templates. The
detailed explanation of Ir can be found in Appendix B.2.

5 EXPERIMENTS

In this section, we first assess the performance of LLMs in comprehending underlying knowledge
by employing a multi-turn dialogue setting, which incorporates authoritative formulas or key knowl-
edge points for a comprehensive evaluation. Meanwhile, we compare this with a single-turn setting
to analyze the impact of sequential questioning. Then, we experiment with self-concept planning to
explore whether surface learning can be mitigated in the training-free scenario. We also compare
different strategies to assess the effectiveness of behavior correction strategy in the post-training
process. The ME-Test suite and the associated code are available for further study and research3.

5.1 EXPERIMENTAL SETUP

In the evaluation, multi-turn dialogues can be constructed by sequentially appending messages with
the “assistant” role, as outlined in the official documentation for most LLMs. We set the max tokens
of DeepSeek-R14 and max output tokens of o3-mini5 are 8K. During the post-training process,
GRPO (Shao et al., 2024) for reinforcement fine-tuning of LLaMA3.2-3B and Qwen2.5-7B on 3
× A800-80G and 8 × A800-80G GPUs respectively. We set num generations to 10, learning rate
to 1e-6, and max completion length to 1024 and 4096, accordingly. Additionally, LLaMA3.1-8B
and Qwen2.5-14B are employed to perform fine-tuning on A6000-40G GPU using the Low-Rank
Adapters (LoRA) parameter-efficient tuning method (Hu et al., 2022), at a rank of 16 and alpha of

3https://anonymous.4open.science/r/SL-BC1D/
4https://api-docs.deepseek.com/
5https://openai.com/api/
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Table 1: Experimental results of various LLMs with the Accuracy in multi-turn evaluation. As the
difficulty increases, the performance of LLMs obviously drops. However, whether the formulas are
related to the problem or not, the provision of formulas does not necessarily improve or reduce the
performance. Bold indicates the highest results, while underlined indicates the lowest results.

LLM Setting Add Sub Mul Div Factor
Easy Medium Hard Easy Medium Hard Easy Medium Hard

Open-
Source
LLMs

LLaMA3.1-8B

Van 0.624 0.508 0.370 0.608 0.330 0.185 0.640 0.641 0.639
F 0.382 0.301 0.200 0.594 0.327 0.183 0.756 0.712 0.695
¬ F 0.108 0.087 0.056 0.362 0.259 0.161 0.751 0.661 0.633
∀ F 0.386 0.307 0.209 0.570 0.319 0.184 0.740 0.694 0.667

LLaMA3.1-70B

Van 0.886 0.793 0.652 0.809 0.549 0.322 0.764 0.726 0.721
F 0.859 0.794 0.626 0.812 0.578 0.336 0.857 0.742 0.696
¬ F 0.835 0.796 0.659 0.831 0.575 0.344 0.594 0.486 0.456
∀ F 0.856 0.780 0.614 0.817 0.571 0.324 0.503 0.411 0.396

Qwen2.5-7B

Van 0.854 0.766 0.676 0.840 0.601 0.386 0.638 0.636 0.573
F 0.362 0.363 0.337 0.816 0.658 0.467 0.667 0.526 0.470
¬ F 0.321 0.244 0.228 0.776 0.632 0.452 0.649 0.509 0.453
∀ F 0.341 0.346 0.315 0.812 0.657 0.464 0.626 0.491 0.466

Qwen2.5-14B

Van 0.905 0.898 0.818 0.880 0.709 0.524 0.850 0.773 0.767
F 0.911 0.907 0.862 0.845 0.698 0.519 0.894 0.859 0.828
¬ F 0.880 0.861 0.823 0.850 0.697 0.523 0.962 0.892 0.853
∀ F 0.900 0.890 0.853 0.852 0.698 0.515 0.924 0.853 0.840

Closed-
Source
LLMs

GPT-4o

Van 0.874 0.876 0.876 0.948 0.841 0.609 0.607 0.570 0.574
F 0.882 0.880 0.883 0.951 0.849 0.611 0.904 0.854 0.859
¬ F 0.743 0.780 0.770 0.950 0.856 0.616 0.909 0.867 0.857
∀ F 0.799 0.793 0.796 0.962 0.863 0.616 0.826 0.783 0.780

Reasoning
LLMs

DeepSeek-R1

Van 0.920 0.890 0.865 0.998 0.999 0.984 0.930 0.890 0.845
F 0.970 0.915 0.880 0.992 0.992 0.986 0.965 0.900 0.855
¬ F 0.960 0.945 0.860 0.992 0.982 0.980 0.995 0.980 0.955
∀ F 0.930 0.938 0.940 0.990 0.994 0.984 0.999 0.999 0.997

o3-mini

Van 0.965 0.970 0.975 0.868 0.778 0.686 0.980 0.960 0.910
F 0.890 0.890 0.885 0.842 0.702 0.606 0.960 0.975 0.664
¬ F 0.649 0.497 0.342 0.834 0.752 0.662 0.910 0.940 0.528
∀ F 0.868 0.750 0.655 0.758 0.622 0.546 0.888 0.813 0.753

(a) Add_Sub.                                              (b) Mul_Div.                                                  (c) Factor.                                              (d) Remainder.

Figure 3: Experimental results of LLMs in predicting relevant formulas on mathematical questions.
Contrary to prediction answers, as the difficulty increases, the performance of LLMs on formula
prediction remains unchanged or improves.
32, over 10 epochs. To balance training costs, we employ fp16 precision, gradient accumulation
strategy, and set the maximum length to 2048. AdamW optimizer (Loshchilov & Hutter, 2018), a
0.1 dropout, and a cosine annealed learning rate of 1e-4 are incorporated. We introduce hard subsets
in ME-Test suite which contains senior grammar subset and mathematical reasoning tasks (Factor
and Remainder) to achieve post-training. Each subset includes 2,000 randomly selected training
samples and 1,000 test samples drawn from the remaining pool. We evaluate the LLMs’ knowledge
comprehension and reasoning abilities in both Van and F settings.

5.2 EXPERIMENTAL ANALYSIS

5.2.1 SURFACE LEARNING BEHAVIOR

The main performance of LLMs on ME-Test suite is shown in Table 1 and Figure 4. First, it can
be obviously seen that the performance of LLMs declines as the difficulty increases, which aligns
with the cognitive load theory. In vanilla setting, LLMs are asked to output formulas relevant to
the question. The experimental results can be found in Figure 3, which is contrary to the results on
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answers. As the difficulty increases, the performance of LLMs on formula prediction either remains
unchanged or improves. This indicates the first behavior of surface learning in LLMs:

1. Rote Learning
LLMs learn the formulas for different types of mathematical problems on the surface, but do
not understand the mathematical concepts within the formulas, failing to apply them and solve
problems that seem more intricate.

Then, it can be observed that LLMs typically perform best in the vanilla and F settings on different
subsets. However, on factor subset, Qwen-14B performs the best under the ¬F setting. LLaMA-
70B exhibits the poorest performance in the ∀F setting on add sub and factor subsets. The second
behavior of surface learning in LLMs can be concluded as:

2. Ignore Background Knowledge
During the learning process, LLMs only focus on answering and aligning labels blindly, ignoring
understanding the logical knowledge behind question. The provision of relevant or irrelevant
formulas does not necessarily improve or reduce the model’s performance.

Contrary to the situation where LLMs fail in understanding formula concepts to solve math prob-
lems, LLMs rely more on concepts when addressing English grammar problems. The performance
of all LLMs declines with given irrelevant formulas. LLMs tend to rely more on the spurious cor-
relations between solutions and grammar concepts, and offer incorrect solutions based on grammar
knowledge while disregarding the question itself. This represents the third behavior of surface learn-
ing in LLMs:

3. Focusing on Answer Paradigms
LLMs provide the problem-solving strategy on the surface, but learn spurious correlations between
concepts and solutions in fact.

In addition to the above primary behaviors of surface learning in LLMs, we find that Qwen-14B
exhibits the best performance among all except for GPT-4o and reasoning models in general. Partic-
ularly on Remainder subset, as presented in Table 2, Qwen-14B achieves about 20% higher accuracy
than GPT-4o in multi-sound setting. LLaMA-8B and Qwen-7B, with smaller number of parameters,
still demonstrate limited abilities in Remainder subset, which involves multi-step reasoning.

In the Factor subset, LLM demonstrates varying degrees of comprehension on formulas
in different types of math problems. For instance, although Qwen-14B seems to per-
form well, the presence of irrelevant formulas leads to an enhancement in the model’s
performance, suggesting that Qwen-14B merely remembers corresponding correlations be-
tween questions and answers, but has a restricted understanding on related concepts.

(a) Eng-Junior.        (b) Eng-Senior.        

(a) Eng-Junior.        (b) Eng-Senior.        

Figure 4: Experimental results of LLMs on En-
glish Junior and Senior grammar questions.

In the reasoning LLMs, due to the task avoid-
ance behavior of o3-mini (Zhou et al., 2024),
the performance of DeepSeek-R1 is more ro-
bust. Furthermore, in English grammar ques-
tions, GPT-4o performs best, while LLaMA-8B
performs worst. In different settings, LLaMA-
8B performs its best results when provided with
relevant or all formulas. This reflects that the
model has, to a certain extent, learned the cor-
relations between concepts and solutions, and
requires more well-defined background knowl-
edge to mitigate surface learning.

5.2.2 MULTI-TURN VS. SINGLE-TURN

Based on the cognitive load theory, we construct sequences of questions with increasing difficulty
and allow LLMs to give multi-turn responses based on the dialogue history, enabling the model
to conduct continuous problem-solving. Considering the complexity of dialogue interaction, we
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Table 2: Experimental results of LLMs in multi-turn and single-turn settings on Remainder subset.
Remainder computation only concerns one formula, and thus there are no other settings.

LLaMA3.1-8B LLaMA3.1-70B Qwen2.5-7B Qwen2.5-14B GPT-4o o3-mini
Remainder Van F Van F Van F Van F Van F Van F

Multi-
turn

Easy 0.261 0.603 0.898 0.950 0.300 0.462 0.966 0.936 0.691 0.698 0.645 0.618
Medium 0.116 0.285 0.632 0.641 0.123 0.205 0.782 0.755 0.509 0.514 0.430 0.445
Hard 0.059 0.116 0.313 0.324 0.060 0.077 0.511 0.494 0.311 0.319 0.295 0.308

Single-
turn

Easy 0.604 0.537 0.631 0.634 0.796 0.482 0.934 0.939 0.922 0.968 0.788 0.935
Medium 0.307 0.296 0.386 0.327 0.376 0.190 0.583 0.698 0.718 0.827 0.810 0.880
Hard 0.122 0.162 0.218 0.136 0.118 0.085 0.308 0.386 0.357 0.493 0.835 0.813

Table 3: Experimental results of LLMs in single-turn evaluation. Similar to findings in multi-turn
evaluation, as the difficulty increases, the performance of LLMs obviously drops. All models exhibit
surface learning behavior.

Llama3.1-8B Qwen2.5-7B Qwen2.5-14B GPT-4o
Van F ¬ F ∀ F Van F ¬ F ∀ F Van F ¬ F ∀ F Van F ¬ F ∀ F

Add Sub
Easy 0.779 0.633 0.549 0.597 0.932 0.895 0.870 0.875 0.969 0.933 0.939 0.912 0.957 0.917 0.841 0.856
Medium 0.666 0.504 0.405 0.422 0.884 0.833 0.791 0.804 0.919 0.883 0.880 0.887 0.953 0.907 0.831 0.839
Hard 0.512 0.352 0.324 0.274 0.793 0.722 0.687 0.717 0.833 0.809 0.810 0.837 0.910 0.865 0.783 0.801

Factor
Easy 0.871 0.820 0.743 0.718 0.946 0.851 0.756 0.870 0.964 0.917 0.909 0.961 0.961 0.894 0.940 0.912
Medium 0.740 0.741 0.651 0.659 0.870 0.784 0.700 0.802 0.899 0.841 0.862 0.898 0.895 0.835 0.866 0.855
Hard 0.694 0.722 0.616 0.645 0.793 0.726 0.663 0.736 0.864 0.813 0.822 0.857 0.827 0.810 0.840 0.824

additionally evaluate the performance of LLMs in single-turn setting. As shown in Tables 2 and
3, LLMs perform better in the single-turn setting, but their performance declines when provided
with either relevant (F ) or irrelevant (¬F ) formulas in most cases. This suggests that, despite
overall performance gains, LLMs exhibit stronger surface learning behavior. In multi-turn setting,
the model needs to understand the information in historical dialogues and effectively utilize the
information for the response of current round, which is beneficial for helping the model to learn and
conduct continuous problem-solving. While in single-turn evaluations, the rote learning behavior
of LLMs becomes more pronounced, i.e., answering but not understanding mathematical concepts
in formulas. Besides, in Appendix B.8, we present statistics on LLM output token lengths, which
show no linear relationship with model performance.

(a) LLaMA-8B.                     (b) LLaMA-70B.                      (c) Qwen-14B.                       (d) LLaMA-8B.         (e) LLaMA-70B.                   (f) Qwen-14B.      

Figure 5: Performance Comparisons of LLMs in the settings of Vanilla and Self-concept planning
strategy on Factor (a, b, c) and Eng datasets (d, e, f). In each group of columns, the left and right
values respectively denote the performance in predicting answer and formulas/knowledge.

5.2.3 CAN LONG-TERM STRATEGY HELP?

Self-Concept Planning without Training. As illustrated in Section 4.3, we introduce this strategy
based on the advocacy in Educational Psychology. The experimental results are presented in Figure
5. Self-Concept Planning strategy can pay a crucial role in enhancing the performance of predicting
answers and relevant formulas on mathematical problems. In general, compared with LLaMA-70B,
the performance of LLaMA-8B in formula prediction and that of Qwen-14B in answer prediction are
significantly improved. Due to the third behavior “focusing on answer paradigms” in surface learn-
ing, the model captures the spurious correlations between concepts and solutions during the RLHF
process and focus on alignment. This strategy could help to address English grammar problems
under some settings compared to solving math problems. Therefore, it is challenging to directly
eliminate the behavior through the prompt strategy and activate the reasoning ability of the base
model itself. More experiments compared with ToT are provided in Appendix B.4.

Behavior Correction with Post-Training. To further mitigate the surface learning behavior
and improve the reasoning ability of LLMs, we propose Behavior Correction (BC) strategy
in post-training. To evaluate the effectiveness of this strategy using Ir and Is, we addition-
ally fine-tune with random samples (w/o Ir, w/o Is) and adopt the method of inverting the
I metric (Inverse-BC) for both RFT and SFT (w/ -Ir, w/ -Is). As shown in Figure 6, we
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adopt Mathematical and English hard subsets to make post-training, where “F” denotes the set-
ting of the given formulas. LLaMA3.2-3B and Qwen2.5-7B are employed to achieve RFT.

(a) LLaMA-3B.        

(b) Qwen-7B.        
Figure 6: Experimental results of LLMs on hard
subsets are compared with basic RFT method (w/o
Ir) and the RFT method with inverse Ir (w/ -Ir).
Behavior correction strategy (w/ Ir) can improve
the ability of LLMs compared with other baselines.

It can be observed that adopting Ir has
achieved growth in most hard problems. The
method of shuffling the training samples
(RFT, w/o Ir) results in the model’s perfor-
mance with given formulas consistently being
lower than that of the vanilla setting. This in-
dicates that LLM finds the answer paradigm
during the training process but fails to solve
the reasoning problems on the test sets with
given formulas, presumably because it does
not fully comprehend the formulas. However,
behavior correction strategy performs better
with given formulas on test sets, suggest-
ing that the strategy can reduce the model’s
tendency to use paradigms to obtain reward
scores during training, alleviate the surface
learning behavior of LLM in the reinforce-
ment learning process, and thereby truly uti-
lize the formulas to solve problems. More reasoning comparisons and case studies in RFT versus
baselines could be found in Appendices B.5 and B.6.

(b) Qwen-14B.        

(a) LLaMA-8B.        

Figure 7: Experimental results of LLMs on hard
subsets are compared with basic SFT method (w/o
Is) and the SFT method with inverse Is (w/ -Is).
Behavior correction strategy (w/ Is) can improve
the ability of LLMs compared with other baselines.

As shown in Figure 7, we employ LLaMa3.1-
8B and Qwen2.5-14B to achieve SFT on
hard questions. Given that the data solely
comprises query-answer pairs and lacks any
explicit reasoning process, the improvement
achieved through fine-tuning the model is
limited. This process is more analogous
to conducting instruction fine-tuning. When
compared to randomly shuffling the data
(SFT) and adopting the Inverse-BC for re-
ranking training data, adopting the behavior
correction strategy can effectively improve
the model’s performance in most settings.
Specifically, for LLaMA-8B, behavior cor-
rection strategy enables the model to perform
better compared to the vanilla setting when
provided with relevant formulas. Regarding
Qwen-14B, English grammar questions typi-
cally do not require multi-step reasoning. Un-
der the vanilla setting, although the model
with re-ranking based on Is performs worse than w/o Is in Eng, Is helps the model in improv-
ing its reasoning ability. This improvement allows the model to perform better when given formulas
and enables it to master grammar knowledge more effectively.

6 CONCLUSION

In this paper, by exploring the performance of various LLMs in solving Mathematical reasoning
and English grammar problems, we found that LLMs exhibited surface learning behaviors similar
to student behavior in Education Psychology, which could incorporate as rote learning, ignoring
background knowledge, and focusing on answer paradigms. LLMs seemed to know what formulas
and strategies needed to be adopted for solving different problems on the surface, but they did
not truly grasp the essence of these concepts, where LLMs merely memorized but failed to apply
solutions flexibly. Further to mitigate surface learning behavior of LLMs, we proposed long-term
strategy which contained self-concept planning and behavior correction strategy in training-free and
post-training scenarios, respectively. Extensive experiments on ME-Test suite demonstrated the
effectiveness of the strategy.
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REPRODUCIBILITY STATEMENT

In Section 5, we include anonymous downloadable source code and dataset, comprehensive specific
prompts in different settings can be found in Appendix D.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, we study large language models as our primary subject and use them solely as a tool
to refine our writing.

B MORE ANALYSIS

B.1 SURFACE LEARNING VS. SHORTCUT LEARNING

Shortcut learning was initially defined as relying heavily on non-robust features—so-called “short-
cuts”—that yield strong performance on standard benchmarks but fail to generalize to more chal-
lenging test settings (Geirhos et al., 2020). Subsequently, in classification tasks, it has been more
precisely characterized as models exploiting spurious correlations between certain features and la-
bels in the training data, rather than learning the underlying true patterns (Du et al., 2023; Li et al.,
2023). However, in more complex generative tasks, shortcut learning lacks a clear definition. In
this paper, we comprehensively evaluate and define Surface Learning in large language models—a
typical and respective form of shortcut learning behavior—where models exhibit three represen-
tative behaviors indicating they have learned surface associations between questions and solution
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Figure 8: The Ir computation representation in GRPO. We can obtain a group of rewards
{ri1, ri2, . . . , riG} corresponding to the outputs {oi1, oi2, . . . , oiG} on ith sample, where G de-
notes the num generations. Suppose ri2 is the generation with the lowest reward in the generation
group, indicating that the model does not use the answer paradigm to steal scores for this gener-
ation successfully. Meanwhile, we add the mean and standard deviation of the generation group
to comprehensively consider all the reward scores of the generations on this sample, forming the
self-cognition indicator of LLM for this sample.

.

paradigms, without genuinely understanding the underlying knowledge or solving the tasks. Addi-
tionally, Reward hacking (Weng, 2024) discussed in this paper can also be summarized as a kind of
shortcut learning. The third typical behavior in surface learning-focusing on answer paradigms, is
the typical behavior of the model after reward hacking in reinforcement learning.

B.2 SELF-COGNITION INDICATOR ANALYSIS

As shown in Figure 8, in the GRPO framework, for the ith sample, we can obtain a group of rewards
{ri1, ri2, . . . , riG} corresponding to the outputs {oi1, oi2, . . . , oiG}. Suppose ri2 is the generation
with the lowest reward in the generation group, indicating that model fails in the question, and
also showing that the model does not utilize the answer paradigm to obtain scores successfully.
Meanwhile, the mean and standard deviation of the generation group are added to comprehensively
consider all the reward scores of the generations on this sample. The larger the standard deviation
of reward scores within a group, the greater the variation among outputs (i.e., high intra-group
diversity). Such samples are uncertain and offer more learning potential during post-training.

Self-cognition indicator is designed to prioritize learning uncertain and oscillating samples-those
performed low Ir with scattered rewards (high std), low overall performance (low mean), or large
reward fluctuations (low min). In contrast, prioritizing training deterministic samples with high Ir

(low std, i.e., always learned or never learned) can lead two problems: (1) It will not trigger any
parameter updates, i.e., no invalid calculations. (2) It gets trapped in a local optimum, and the
model repeatedly generates similar low-quality paths. If such deterministic samples are given prior-
ity for training, it will cause the model to learn the answer paradigms and engage in surface learning,
hindering true reasoning development. Instead, we focus on prioritized training of uncertain or oscil-
lating samples, that is, the ones with high variance, with the worst-generated ones among multiple
generations, the model shows uncertainty regarding such samples. Prioritizing these samples can
help the model training by enabling it to explore more and better reasoning paths.

B.3 MORE EVALUATIONS ON DOMAIN DATASET

To explore the surface learning performance of LLMs in more scenarios, we additionally conduct
experiments on the JEC-QA dataset (Zhong et al., 2020), a challenging domain-specific benchmark
for Legal Professional Certification QA. This dataset requires comprehending and applying special-
ized legal knowledge, representing a significantly different scenario compared to the ME-test. We
evaluate on 1,000 Knowledge-Driven (KD) questions, which include annotated legal knowledge.
The experimental results of different LLMs on JEC-QA are shown in Figure 9 and 10.

The experimental results show that the findings of surface learning behavior persist in different
scenarios. The performance of almost all LLMs does not necessarily improve even when relevant
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(a) Qwen-7B.  (b) Qwen-14B.                             (c) LLaMA-70B.                              (d) GPT-4o. 

Figure 9: Experimental results of LLMs on legal domain dataset-JEC-QA. All LLMs perform sur-
face learning behavior.

Qwen-7B Qwen-14B LLaMA-70B GPT-4o
0.38

0.49

0.60

0.71

0.82

A
C

C
answer knowledge

Figure 10: The performance of different LLMs in answering and predicting legal knowledge of
questions on JEC-QA.

knowledge (F ) is provided; Qwen-7B and LLaMA-70B even achieve the best results when given
irrelevant knowledge (¬F ). Moreover, the Qwen series performs relatively better at predicting legal
knowledge for a question than answering questions, which indicates that they know the knowledge
behind the question on the surface, but struggle to comprehend and apply it. This reinforces that
surface learning is a common behavior of LLMs across different problem types. Besides, perfor-
mance trends hold: Qwen series generally performs well on domain-specific knowledge; models
like LLaMA-70B and GPT-4o, which show overall poor performance, also demonstrate weaker
knowledge comprehension capabilities.

B.4 MORE EXPERIMENTS ON SELF-CONCEPT PLANNING

Table 4: The comparison of baselines in Factor subset, where self-concept planning achieves better
overall performance while generating fewer tokens by reducing unnecessary outputs through deep
knowledge understanding (a, f represent performance on answering and predicting formula).

Easy Medium Hard avg. input avg. output
a f a f a f

Vanilla 85.04 81.18 77.34 84.20 76.74 82.74 7379.03 366.34

ToT 85.60 84.60 82.70 85.90 78.40 84.60 28702.24 3756.05
Self-Concept

Planning 89.36 86.64 80.64 84.64 79.12 84.48 7578.53 260.3

As illustrated in Section 4, all settings including “Vanilla” setting require LLMs to output the rea-
soning process. In addition to the direct comparisons made in Figure 5, we also conduct additional
experiments using ToT (Yao et al., 2023a) to enable a more comprehensive comparison. We perform
BFS algorithm in ToT with Qwen2.5-14B. For computational efficiency, we sample 3 independent
thoughts, apply a vote strategy to evaluate 3 states, and keep the best answer. The experimen-
tal results are shown in Table 4, self-concept planning achieves better overall performance while
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generating fewer tokens per question by reducing unnecessary outputs through deep knowledge un-
derstanding. However, ToT consumes excessive tokens during multi-turn evaluations and has yet to
see meaningful efficiency improvements.

B.5 MORE EXPERIMENTS ON BEHAVIOR CORRECTION STRATEGY

To fully compare the performance of the behavior correction strategy with baselines in improving
the reasoning ability. In addition to reporting accuracy, we also follow the approach (Guo et al.,
2024) and conduct a multi-metric comparison of the reasoning processes of RFT models under three
training mechanism (RFT, Inverse-BC, BC) across different subsets. These comparisons are based
on correctly answered questions. We adopt GPT-4o and prompts as follows to evaluate the reasoning
process of Qwen2.5-7B under different RFT strategies based on three criteria: Comprehensiveness,
Diversity, and Empowerment:

You are an expert tasked with evaluating two reasoning processes to the
same question based on three criteria: Comprehensiveness, Diversity, and
Empowerment:

---Goal---
You will evaluate two reasoning processes to the same question based on
three criteria: Comprehensiveness, Diversity, and Empowerment.

- Comprehensiveness: How much detail does the reasoning process provide
to cover all aspects and details of the question?
- Diversity: How varied and rich is the reasoning process in providing
different perspectives and insights on the question?
- Empowerment: How well does the reasoning process help the reader
understand and solve the question?

For each criterion, choose the better reasoning process (either Reasoning
1 or Reasoning 2) and explain why. Then, select an overall winner based

on these three categories.

Table 5: The performance comparison of Inverse-BC strategy (−Ir) and BC strategy (Ir) across
four evaluation dimensions.

Factor Factor|F Remainder Remainder|F
Inverse

-BC BC Inverse
-BC BC Inverse

-BC BC Inverse
-BC BC

Comprehensive 22.2 76.7 23.0 76.6 21.9 78.0 47.4 52.6
Diversity 29.9 60.3 28.8 62.8 24.7 53.6 33.9 58.9
Empowerment 21.1 77.6 26.3 73.0 27.6 72.0 41.5 58.5
Overall 22.7 76.2 23.9 75.4 23.3 76.5 44.3 55.7

Table 6: The performance comparison of RFT (w/o Ir) and BC strategy (Ir) across four evaluation
dimensions.

Factor Factor|F Remainder Remainder|F
RFT BC RFT BC RFT BC RFT BC

Comprehensive 41.7 57.9 35.9 63.8 22.5 77.5 38.8 61.2
Diversity 36.1 48.5 33.7 57.9 26.1 54.1 46.2 46.9
Empowerment 44.7 54.9 40.8 59.1 32.7 67.3 45.8 54.2
Overall 43.9 55.8 36.9 62.9 14.8 73.6 42.4 57.6

As shown in Tables 5 and 6, the win rates of different strategies on math problems are reported;
outcomes not classified as wins or losses are counted as ties. The behavior correction strategy
demonstrates better performance across multiple dimensions, encourages the model to explore
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Given relevant formulas of question: 
Remainder = Dividend - Divisor * Quotient; Quotient = Dividend / Divisor (Quotient retains the integer part).
What is the remainder when 13065121 is divided by 424?

Question

w/o !!

w/ -!!

w/ !!

<think>
To find the remainder when 13065121 is divided by 424, we can use the formula: Remainder = Dividend - Divisor * Quotient.
First, we need to determine the quotient when 13065121 is divided by 424. The quotient will be the integer part of the 
division result. Quotient = 13065121/424. Perform the division: 13065121/424 ≈30768.99974.
The integer part of this division is 30768. So, the quotient is 30768.
Next, we calculate the product of the divisor and the quotient: Divisor * Quotient = 424 * 30768. 
We perform the multiplication: 424 * 30768 = 424 * (30000 + 700 + 60 + 8) = 424 * 30000 + 424 * 700 + 424 * 60 + 424 *
8 = 12720000 + 296800 + 25440 + 3392 = 13065120. 
Now, we subtract this product from the dividend to get the remainder: Remainder = 13065121 - 13065120 = 1 
Thus, the remainder when 13065121 is divided by 424 is 1.
</think>
<answer>1</answer>

<think>
To find the remainder when 13065121 is divided by 424, we can use the formula for the remainder: Remainder = Dividend -
Divisor * Quotient. 
First, we need to determine the quotient when 13065121 is divided by 424. The quotient is the integer part of the division 
of 13065121 by 424. We perform the division: Quotient = 13065121/424.
Performing the division: 13065121/424≈30817.99976744186.
The integer part of this division is 30817. Now, we can find the remainder using the formula: Remainder = 13065121 - 424 
* 30817. 
Next, we calculate 424 * 30817: 424 * 30817 = 424 * (30800 + 17) = 424 * 30800 + 424 * 17. 424 * 30800 = 424 * (30000 
+ 800) = 424 * 30000 + 424 * 800. 424 * 30000 = 12720000, 424 * 800 = 339200. 424 * 30800 = 12720000 + 339200 = 
13059200. 424 * 17 = 7192. 424 * 30817 = 13059200 + 7192 = 13066392.
Now, we find the remainder: Remainder = 13065121 - 13066392 = -1271
Since the remainder should be a non-negative number less than the divisor, we add the divisor to -1271: 
Remainder = -1271 + 424 = -847 + 424 = -423 + 424 = 1. So, the remainder when 13065121 is divided by 424 is 1.
</think>
<answer>1</answer>
<think>
To find the remainder when 13065121 is divided by 424, we can use the division algorithm which states that for any 
integers a and b (where b > 0), there exist unique integers q (the quotient) and r (the remainder) such that: a = bq + r, 
where  0 < r < b. Here, a = 13065121 and b = 424. We need to determine r.
First, calculate the quotient q: q = 13065121/424. Perform the division: 13065121/424 ≈ 30817.19. Taking the integer part 
of this result gives us: q = 30817.
Next, compute the product of the quotient and the divisor: 424 * 30817. We perform the multiplication step-by-step: 424 
* 30817 = 424 * (30800 + 17) = 424 * 30800 + 424 * 17. Calculate each term separately: 424 * 30800 = 424 * (308 * 100) 
= (424 * 308) * 100. First, find 424 * 308: 424 * 308 = 424 * (300 + 8) = 424 * 300 + 424 * 8.  424 * 300 = 127200. 424 * 
8 = 3392. 424 * 308 = 127200 + 3392 = 130592. Now multiply by 100: 130592 * 100 = 13059200. Next, calculate 424 * 17: 
424 * 17 = 424 * (10 + 7) = 424 * 10 + 424 * 7. 424 * 10 = 4240. 424 * 7 = 2968. 424 * 17 = 4240 + 2968 = 7208. Add 
these results together: 13059200 + 7208 = 13066408.
Finally, subtract this from the original number to find the remainder: 13065121 - 13066408 = -1287 
Since the remainder should be non-negative and less than 424, add 424 repeatedly until the result is within the required 
range: -1287 + 424 * 3 = -1287 + 1272 = -15. -15 + 424 = 409. Thus, the remainder is: 409.  
</think>
<answer>409</answer>

Figure 11: The case in Remainder test set is to compare different RFT methods on complex reason-
ing question. Base RFT (w/o Ir) and RFT with inverse Ir (w/ -Ir) methods both employ numer-
ous repetitive answer paradigms and output incorrect reasoning processes and answers . How-
ever, behavior correction strategy (w/ Ir) can provide the accurate answer. Despite there is a step
error during the reasoning process, the behavior correction strategy can handle the complex question
due to a solid grasp of the knowledge.

more diverse and robust reasoning paths. It further validates the effectiveness of the Behavior
Correction strategy, robustly support refining LLM reasoning and knowledge comprehension.

B.6 CASE ANALYSIS

In RFT, we design a new indicator Ir to re-rank samples, which aims to prevent LLMs from ex-
ploiting easy-to-find answer paradigms to solve problems. Although the model can follow a certain
paradigm when answering questions, the behavior of stealing the reward scores by utilizing the
paradigm will result in the model not truly applying the knowledge to answer questions in the RFT
process. As shown in Figures 11 and 12, we list the performance of the behavior correction strat-
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Given relevant formulas of question: 
Formula31.1: If the last digit is multiplied by 3 and subtracted from the rest, yielding a result divisible by 31, 
then the number is divisible by 31.  
Is 31 a factor of 125401261?

Question

w/o !!

w/ -!!

w/ !!

<think> 
To determine if 31 is a factor of 125401261, we can use the provided formula which states that for a number 
to be divisible by 31, when you multiply its last digit by 3 and subtract it from the rest of the number, the 
result should also be divisible by 31.
Let's apply this step-by-step on our given number 125401261:
1. Separate the last digit: The last digit is 1.
2. Multiply the last digit by 3: 1 * 3 = 3.
3. Subtract this product from the remaining number: 12540126 - 3 = 12540123.
Now check divisibility of new number (12540123) by 31 or repeat process until clear:
- Last digit of 12540123 is 3; multiply by 3 -> 9; subtract: 1254012 - 9 = 12540114
- Continue similarly till easy division testable or confirm non-divisibility.
But simpler direct calculation/standard method might show easier factoring or remainder tests. Checking 
divisibility directly or via small steps confirms: 125401261/31 gives exact quotient without remainder, thus 
confirming divisibility rules hold true here. Thus, yes, 31 fits as factor per tested logic.
</think>
<answer>True</answer>

<think> 
To determine if 31 is a factor of 125401261 using Formula 31.1, we need to follow these steps:
1. Separate the last digit from the rest of the number.
2. Multiply the last digit by 3.
3. Subtract this product from the rest of the number.
4. Check if the result is divisible by 31.
Let's apply these steps to the number 125401261.
1. Separate the last digit: The last digit is 1, and the rest of the number is 12540126.
2. Multiply the last digit by 3: 1 * 3 = 3.
3. Subtract this product from the rest of the number: 12540126 - 3 = 12540123.
Now, we need to check if 12540123 is divisible by 31. We can do this by performing the division: 12540123/31
Using long division or a calculator, we find that: 12540123/31 = 404843
Since the result is an integer, 12540123 is divisible by 31. Therefore, according to Formula 31.1, the original 
number 125401261 is also divisible by 31.
</think>
<answer>True</answer>

<think>
To determine if 31 is a factor of 125401261 using the given formula, we need to follow these steps:
1. **Identify the last digit**: The last digit of 125401261 is 1.
2. **Multiply the last digit by 3**: 1 * 3 = 3.
3. **Subtract this product from the rest of the number**:  
   - Remove the last digit (1) from 125401261, leaving 12540126.
  - Subtract 3 from 12540126: 12540126 - 3 = 12540123. Now, check if 12540123 is divisible by 31. 
4. **Divisibility test for 31**: Perform the division of 12540123 by 31.
  - Calculate 12540123/31. Performing the division: 12540123/31≈404810.41935. Since the result is not an 
integer, 12540123 is not divisible by 31.
Therefore, based on the formula, 125401261 is not divisible by 31.
</think>
<answer>False</answer>

Figure 12: The case in Factor test set is to compare different RFT methods on complex reasoning
question. Base RFT (w/o Ir) and RFT with inverse Ir (w/ -Ir) methods both employ numer-
ous repetitive answer paradigms and output incorrect reasoning processes and answers . How-
ever, behavior correction strategy (w/ Ir) can provide the accurate answer. It also uses the steps
within the steps to solve the question, and the reasoning process is logically clear.

egy in answering questions and applying knowledge when given formulas compared to the baseline
methods.

As shown in Figure 11, this case shows a remainder calculation that requires the model to perform
step-by-step reasoning by applying the formula. The base RFT (w/o Ir) and RFT with inverse Ir

(w/ -Ir) methods both employ numerous repetitive answer paradigms (highted in gray) and output
incorrect reasoning process and answers (highlight in green with red color). On the contrary, the
behavior correction strategy (w/ Ir) can provide the accurate answer, despite there is a step error
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Question: What is the remainder when 
456 is divided by 12?

{'analysis': 'Given the formula to calculate the remainder is: Remainder = Dividend - 
Divisor * Quotient. For the given problem, Dividend = 456 and Divisor = 12. To find the 
Quotient, we use integer division: Quotient = 456 // 12 = 38. Thus, using the formula: 
Remainder = 456 - 12 * 38 = 0.', 'formula': '[True]', 'answer': '0'}

Question: What is the remainder when 
22412 is divided by 8?

{'analysis': 'Given the formula to calculate the remainder is: Remainder = Dividend - 
Divisor * Quotient. For the given problem, Dividend = 22412 and Divisor = 8. To find the 
Quotient, we use integer division: Quotient = 22412 // 8 = 2801. Thus, using the formula: 
Remainder = 22412 - 8 * 2801 = 4.', 'formula': '[True]', 'answer': '4'}

Question: Calculate the remainder 
when 7257581 is divided by 487.

{'analysis': 'Given the formula to calculate the remainder is: Remainder = Dividend - 
Divisor * Quotient. For the given problem, the Dividend is 7257581 and the Divisor is 487. 
To find the Quotient, we use integer division: Quotient = 7257581 // 487 = 14901. Thus, 
using the formula: Remainder = 7257581 - 487 * 14901 = 334.', 'formula': '[True]', 
'answer': '334'}

USER ASSISTANT

EASY

MEDIUM

HARD

Figure 13: Due to surface learning, GPT-4o cannot apply the formula of Remainder to tackle hard
question. Since remainder computation only concerns a single formula, “Remainder = Dividend
- Divisor * Quotient, Quotient = Dividend / Divisor”, LLMs are prompted to judge whether the
formula is relevant to the question.

during the reasoning process. LLM corrects it at the final reasoning, making use of the knowledge
that the remainder and quotient are integers. Meanwhile, the model also summarizes the formula
and formalizes it in the form of “a = bq + r”, flexibly applying the knowledge. It can contribute to a
solid grasp of the knowledge to handle complex questions. As shown in Figure 12 to solve the Factor
problem, compared to baseline methods, behavior correction strategy can flexibly apply knowledge
and utilize the steps within the steps to solve the question. The reasoning process is logically clear.

In addition to the performance presentation of reinforcement fine-tuned LLM on Remainder subset,
we present the case of GPT-4o on Remainder in the evaluation process of surface learning behavior
in Figure 13. Although GPT-4o can solve easy and medium-level questions in sequences, it fails
when dealing with hard-level question. As illustrated in Section 5.2.1, although LLMs seem to know
the formulas and strategies required to solve specific types of problems on the surface, they fail to
understand underlying knowledge behind the question and to handle seemingly intricate questions.

B.7 MORE FINE-TUNING RESULTS ON MULTI-TURN & SINGLE-TURN EVALUATIONS

We conduct SFT experiments on 4000 hard samples of add sub and factor subsets, the training data
is equally distributed across four settings: Van, F, ¬ F, ∀ F in a 1:1:1:1 ratio. The remaining data is
employed as test sets to assess the performance of the fine-tuned LLM in both single-turn and multi-
turn settings. Experimental setup remain the same in Section 5.1. The experimental results are
presented in Tables 7 and 8, and we have the following findings: (1) As illustrated in section 5.2.3,
the DeepMind dataset lacks a reasoning process, containing only questions and answers, which lim-
its the model’s ability to learn long-context dependencies and reasoning. (2) While simple SFT
data improves performance in single-turn settings, it significantly harms performance in multi-turn
settings. SFT requires high-quality CoT data and stepwise training. However, long multi-turn con-
texts can lead to gradient explosions and demand multiple attempts for effective fine-tuning. (3) In
a single-turn evaluation, LLM fails to improve the performance under setting of F, indicating that
SFT merely enables the model to acquire spurious relationships. LLM fails to learn the knowledge
underlying the formula in prompts and apply the knowledge (surface learning).

B.8 MORE COMPARISON OF TOKENS OUTPUT

As shown in Figure 9, different LLMs produce varying output token lengths across subsets, and
the output length generally increases with task difficulty. The longest outputs occur when models
are given either relevant formulas (F) or all formulas (∀ F), whereas the shortest outputs appear
under the irrelevant-formula setting (¬ F), where model performance is generally poor (see Table
1). Notably, Qwen-14B achieves the best performance on the factor subset while producing the
fewest output tokens, further illustrating that model performance and output length are often not
linearly correlated—longer outputs do not necessarily indicate better performance.
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Table 7: Experimental results of comparisons between LLaMA3.1-8B and fine-tuned LLaMA3.1-
8B in multi-turn evaluation settings. Fine-tuning on query-answer pairs leads to a significant decline
in the multi-turn dialogue ability of the model, which may be related to the length and single rela-
tionship of the training data. Bold indicates the highest results, while underlined indicates the lowest
results.

LLaMA3.1-8B FT LLaMA3.1-8B
Van F ¬ F ∀ F Van F ¬ F ∀ F

Add Sub
Easy 0.611 0.382 0.108 0.386 0.246 0.351 0.230 0.323
Medium 0.504 0.301 0.087 0.307 0.220 0.318 0.210 0.293
Hard 0.374 0.200 0.056 0.209 0.196 0.265 0.187 0.254

Factor
Easy 0.640 0.756 0.751 0.740 0.238 0.241 0.237 0.239
Medium 0.641 0.712 0.661 0.694 0.229 0.230 0.229 0.230
Hard 0.639 0.695 0.633 0.667 0.227 0.226 0.225 0.225

Table 8: Experimental results of comparisons between LLaMA3.1-8B and fine-tuned LLaMA3.1-
8B in single-turn evaluation settings. Fine-tuning on query-answer pairs helps improve the model’s
ability in the single-turn scenario, but it does not alleviate its surface learning behavior. Under the
setting of given formula, the model performs even worse. Bold indicates the highest results, while
underlined indicates the lowest results.

LLaMA3.1-8B FT LLaMA3.1-8B
Van F ¬ F ∀ F Van F ¬ F ∀ F

Add Sub
Easy 0.779 0.633 0.549 0.558 0.986 0.978 0.978 0.975
Medium 0.666 0.504 0.405 0.422 0.950 0.944 0.943 0.937
Hard 0.512 0.352 0.324 0.264 0.859 0.851 0.856 0.843

Factor
Easy 0.871 0.820 0.743 0.584 0.857 0.806 0.848 0.843
Medium 0.740 0.741 0.651 0.553 0.819 0.814 0.812 0.820
Hard 0.694 0.722 0.616 0.523 0.820 0.818 0.817 0.818

Table 9: Average output token length over each subset across different settings.

LLMs Settings Add Sub Mul Div Factor
Easy Medium Hard Easy Medium Hard Easy Medium Hard

LLaMA3.1-8B

Van 138.41 153.06 163.53 98.58 107.70 112.27 194.01 187.27 190.74
F 128.97 158.37 179.15 112.60 120.63 130.12 90.59 94.39 106.19
¬ F 115.54 134.10 150.43 115.41 120.02 123.94 85.92 91.02 100.27
∀ F 130.01 156.48 175.59 119.87 123.17 127.20 135.19 163.52 179.67

LLaMA3.1-70B

Van 96.07 110.08 119.06 66.09 73.73 76.58 98.82 142.37 163.71
F 124.22 154.33 179.93 96.43 109.17 121.08 153.12 234.74 282.23
¬ F 98.80 110.56 128.09 71.99 77.91 83.09 120.59 230.76 272.00
∀ F 119.41 147.61 178.63 99.09 108.96 122.04 184.01 279.43 507.05

Qwen2.5-7B

Van 87.26 90.56 97.03 64.53 69.92 74.37 106.02 111.68 119.41
F 121.50 150.48 177.91 82.98 98.28 111.08 133.03 164.23 184.00
¬ F 106.66 134.19 158.23 64.60 75.18 81.82 85.68 104.68 119.16
∀ F 125.71 152.27 179.41 79.69 93.48 102.72 134.15 160.34 190.63

Qwen2.5-14B

Van 83.39 93.02 101.55 64.53 69.92 74.37 100.10 125.80 139.93
F 139.83 169.69 197.61 82.98 98.28 111.08 136.52 165.72 170.99
¬ F 110.29 129.45 152.50 64.60 75.18 81.82 93.05 111.86 126.38
∀ F 136.49 165.86 192.45 79.69 93.48 102.72 138.90 161.20 165.63

GPT-4o

Van 67.96 74.09 80.83 57.92 59.67 62.00 105.44 121.61 132.78
F 125.94 145.78 166.53 83.22 88.73 93.65 124.14 139.25 154.54
¬ F 105.40 120.77 137.27 71.54 76.56 82.59 104.14 120.23 135.47
∀ F 128.74 147.34 167.87 84.84 88.34 95.29 121.28 136.13 150.43
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C BROADER IMPACTS

In the current research for LLMs, the paper carries a significant broader impact, primarily reflected
in the surface learning behavior uncovered, self-concept planning in training-free scenario and be-
havior correction strategy for post-training proposed to mitigate surface learning. Through math-
ematical reasoning and grammatical reasoning, as well as the underlying knowledge, we discover
the surface learning behavior, which is mainly manifested in three aspects: rote learning, ignoring
background knowledge and focusing on answering paradigms. The paper provides research findings
from a new perspective for further studying the reliability and knowledge reserve of LLMs.

To further alleviate the surface learning behavior of LLMs, this paper not only provides solutions
in the training-free scenario, but also proposes novel behavior correction strategy in post-training
process to help the models reduce the reliance on answer paradigms for reasoning. In the training-
free scenario, based on the self-concept theory, this paper expands the prompt setting of LLMs in
three aspects: goal-setting, planning beforehand, feedback afterward. It can not only help the model
improve its reasoning performance, but also offers reasons behind the effectiveness of a series of
variants on COT (e.g. CoT-SC, Divide and Conquer, etc.) from the perspective of cognitive sci-
ence. In the post-training scenario, through the novel behavior correction strategy and the designed
indicators, LLMs can effectively activate and schedule the knowledge of base LLMs. This enables
LLMs to truly leverage knowledge rather than simply adopting the easy-to-find answer paradigm
for reasoning.

Additionally, the broader impact of this paper is manifested in several other aspects: (1) Trust-
worthy AI Development: By exploring and mitigating surface learning behaviors, our framework
advances the pursuit of actual knowledge understanding over answer paradigm. This shift is cru-
cial for deploying LLMs in high-stakes domains (e.g., education, legal analysis) where reliance on
surface paradigms could propagate harmful biases or factual errors. (2) Cognitive AI Alignment:
The Self-Concept Planning strategy bridges cognitive science with prompt engineering. This cross-
disciplinary alignment fosters LLMs that reason with human-compatible logical structures, enhanc-
ing their utility in real-world applications. (3) Sustainable LLM Optimization: The Self-Concept
Planning in training-free scenario and Behavior Correction strategy in post-training process both
alleviate the surface learning behavior of LLM, and promote the ability of LLM to learn knowledge
and apply knowledge-a critical step to achieve sustainable learning systems.

D MORE SETTINGS

D.1 VANILLA SETTING

[SYSTEM] Given definitions of relevant formulas:

Formulas: {}

Please provide the highly relevant formulas to the math question and
provide the answer.

Question: {}

Now you need to output the formula and answer in list format with your
analysis. Your output is a JSON-formatted string that is compressed into
a single line. Here is an example of an output:

example: {}

D.2 F OR ¬F SETTING

Given relevant formulas of question:

Formulas: {}

Question: {}
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Now you need to output the answer in list format with your analysis. Your
output is a JSON-formatted string that is compressed into a single line.
Here is an example of an output:

example: {}

D.3 ∀F SETTING

Given relevant formulas of question:

Formulas: {}

Given irrelevant formulas of question:

Formulas: {}

Question: {}

Now you need to output the answer in list format with your analysis. Your
output is a JSON-formatted string that is compressed into a single line.
Here is an example of an output:

example: {}

D.4 VANILLA SETTING IN ENGLISH GRAMMAR TESTS

Please read the following English grammar question carefully, give the
most relevant knowledge points to the question and the answer:

Question: {}

Please output the answer in json format. Here is an example output:

example: {}

D.5 SELF-CONCEPT PLANNING

Main Task: Figure out the key knowledge relevant to the question.

Subtask: Please provide the highly relevant formula as possible to the
math question and the answer.

Question: {}

Step 1: Rate your understanding from 1 to 10.

Step 2: If the rating is below {}, repeat the Main Task to enhance
understanding.

Step 3: Reassess your understanding after further exploration.

Now you need to output the formula and answer in list format with your
analysis.

Your output is a JSON-formatted string that is compressed into a single
line.

example: {}
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D.6 DEFINITIONS OF FORMULAS IN ADD SUB

Formula 1: Addend + Addend = Sum.

Formula 2: Minuend - Subtrahend = Difference.

Formula 3: Adding two numbers with different signs: The result is the
absolute value of the difference between the two numbers; the sign of the
result is the same as the original sign of the number with the larger

absolute value.

Formula 4: Adding two numbers with the same sign: The result is the sum
of the absolute values of the two numbers; the sign of the result is the
same as the original sign of the two numbers.

Formula 5: Subtracting two numbers with different signs: The result is
the sum of the absolute values of the two numbers; the sign of the result
is the same as the original sign of the minuend.

Formula 6: Subtracting two numbers with the same sign: The result is the
absolute value of the difference between the two numbers. If the minuend
is greater than the subtrahend, the sign is positive; if the minuend is
less than the subtrahend, the sign is negative.

Formula 7: Decimal points must be aligned when performing addition or
subtraction, meaning that digits in the same place value should be added
or subtracted together.

D.7 DEFINITIONS OF FORMULAS IN MUL DIV

Formula1: Multiplicand * Multiplier = Product.

Formula2: Dividend / Divisor = Quotient.

Formula3: The product or quotient of two negative numbers is a positive
number.

Formula4: The product or quotient of two numbers with different signs is
always a negative number.

Formula5: Any number multiplied by 0 equals 0.

Formula6: Any number divided by 1 equals itself; Any nonzero number
divided by itself equals 1.

Formula7: Multiplying a decimal by 10, 100, 1000, etc. Multiplying a
decimal by these numbers is equivalent to moving the decimal point to the
right.

Formula8: Dividing a decimal by 10, 100, 1000, etc. Dividing a decimal by
these numbers is equivalent to moving the decimal point to the left.

D.8 DEFINITIONS OF FORMULAS IN FACTOR

Formula2.1: The last digit is an even number (0, 2, 4, 6, 8), indicating
that it is divisible by 2.

Formula3.1: If the sum of the digits is divisible by 3, then the number
itself is divisible by 3.
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Formula3.2: Subtract the quantity of the digits 2, 5, and 8 in the number
from the quantity of the digits 1, 4, and 7 in the number. If result is

divisible by 3, then the number itself is divisible by 3.

Formula3.3: Subtracting twice the last digit from the rest gives a
multiple of 3. If result is divisible by 3, then the number itself is
divisible by 3.

Formula4.1: If the last two digits are divisible by 4, then the number
itself is divisible by 4.

Formula4.2: When the tens digit is even, if the ones digit is 0, 4, or 8,
then the number is divisible by 4.

Formula4.3: When the tens digit is odd, if the ones digit is 2 or 6, then
the number is divisible by 4.

Formula4.4: If the sum of the ones digit and double the tens digit is
divisible by 4, then the number itself is divisible by 4.

Formula5.1: If the last digit is 0 or 5, then the number is divisible by
5.

Formula6.1: A number that is divisible by both 2 and 3 is also divisible
by 6.

Formula7.1: When grouped in threes from right to left, if the alternating
sum is divisible by 7, then the number is divisible by 7.

Formula7.2: If the units digit is multiplied by 2 and subtracted from the
other digits, the result must be divisible by 7 for the number to be

divisible by 7.

Formula7.3: If the units digit is multiplied by 5 and added to the the
other digits, the result must be divisible by 7 for the number to be
divisible by 7.

Formula7.4: If the highest digit is multiplied by 3 and added to the next
highest digit, replacing the first two digits with the result must yield
a number divisible by 7.

Formula7.5: If adding the last two digits to twice the rest, yields a
result divisible by 7, then the number is divisible by 7.

Formula7.6: Starting from the last digit and alternating multipliers of
1, 3, 2, -1, -3, -2 (in a repeating cycle), if the sum is divisible by 7,
then the number is divisible by 7.

Formula8.1: If the hundreds digit is even and the last two digits form a
number divisible by 8, then the entire number is divisible by 8.

Formula8.2: If the hundreds digit is odd, the number obtained by the last
two digits must be 4 times an odd number, then the number is divisible

by 8.

Formula8.3: If adding the last digit to twice the rest, results in a
number divisible by 8, then the number is divisible by 8.

Formula8.4: If the last three digits form a number divisible by 8, then
the entire number is divisible by 8.

Formula8.5: If four times the hundreds digit plus two times the tens
digit plus the units digit yields a result divisible by 8, then the
number is divisible by 8.
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Formula9.1: If the sum of the digits is divisible by 9, then the number
itself is also divisible by 9.

Formula10.1: The last digit is, the number is divisible by 10.

Formula10.2: If the number is divisible by 2 and by 5, then the number is
divisible by 10.

Formula11.1: If the alternating sum of the digits from highest to lowest
is divisible by 11, then the number is divisible by 11.

Formula11.2: When grouped in pairs from right to left, if the sum of each
group is divisible by 11, then the number is divisible by 11.

Formula11.3: If the last digit subtracted from the rest yields a result
divisible by 11, then the number is divisible by 11.

Formula11.4: Add 10 times the last digit to the rest. if the result is
divisible by 11, then the number is divisible by 11.

Formula11.5: When the number has an even number of digits, add the first
and subtract the last digit from the rest yields a result divisible by
11, then the number is divisible by 11.

Formula11.6: When the number has an odd number of digits, if subtract the
first and last digit from the rest yields a result divisible by 11, then
the number is divisible by 11.

Formula12.1: A number that is divisible by both 3 and 4 is also divisible
by 12.

Formula12.2: If the last digit is subtracted from twice the rest and the
result is divisible by 12, then the number is divisible by 12.

Formula13.1: When grouped in threes from right to left, if the
alternating sum is divisible by 13, then the number is divisible by 13.

Formula13.2: If subtract the last two digits from four times the rest,
yielding a number divisible by 13, then the number is divisible by 13.

Formula13.3: If subtract 9 times the last digit from the rest, and the
result is divisible by 13, then the number is divisible by 13.

Formula13.4: If the last digit is multiplied by 9 and the result is
subtracted from the rest, yielding a number divisible by 13, then the
number is divisible by 13.

Formula14.1: A number that is divisible by both 2 and 7 is also divisible
by 14.

Formula14.2: If the last two digits added to twice the rest yield a
result divisible by 14, then the number is divisible by 14.

Formula15.1: A number that is divisible by both 3 and 5 is also divisible
by 15.

Formula16.1: If the thousands digit is even and the number formed by the
last three digits is divisible by 16, then the entire number is divisible
by 16.

Formula16.2: If the thousands digit is odd, the number formed by the last
three digits is 8 times an odd number, then the entire number is

divisible by 16.
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Formula16.3: If the last two digits added to four times the rest yield a
result divisible by 16, then the number is divisible by 16.

Formula16.4: If the last four digits form a number divisible by 16, then
the entire number is divisible by 16.

Formula17.1: If the last digit is multiplied by 5 and subtracted from the
rest, yielding a result divisible by 17, then the number is divisible by
17.

Formula17.2: if the result of adding 12 times the last digit to the rest
is divisible by 17, then the number is divisible by 17.

Formula17.3: If the last two digits are subtracted from twice the rest
and the result is divisible by 17, then the number is divisible by 17.

Formula18.1: A number that is divisible by both 2 and 9 is also divisible
by 18.

Formula19.1: If sum of twice the last digit and the rest, yielding a
result divisible by 19, then the number is divisible by 19.

Formula19.2: If sum of 4 times the last two digits and the rest, yielding
a result divisible by 19, then the number is divisible by 19.

Formula20.1: If the last digit is 0 and the tens digit is even, then the
number is divisible by 20.

Formula20.2: If the last two digits form a number divisible by 20, then
the entire number is divisible by 20.

Formula20.3: A number that is divisible by both 4 and 5 is also divisible
by 20.

Formula21.1: If subtracting twice the last digit from the rest gives a
multiple of 21, then the number is divisible by 21.

Formula21.2: If the sum of 19 times the last digit and the rest gives a
multiple of 21, then the number is divisible by 21.

Formula21.3: A number that is divisible by both 3 and 7 is also divisible
by 21.

Formula22.1: A number that is divisible by both 2 and 11 is also
divisible by 22.

Formula23.1: If the last digit is multiplied by 7 and added to the rest,
yielding a result divisible by 23, then the number is divisible by 23.

Formula23.2: If the last two digits are multiplied by 3 and added to the
rest, yielding a result divisible by 23, then the number is divisible by
23.

Formula23.3: If the last three digits are multiplied by 2 and subtracted
from the rest, yielding a result divisible by 23, then the number is
divisible by 23.

Formula24.1: A number that is divisible by both 3 and 8 is also divisible
by 24.

Formula25.1: If the last two digits form a number that is divisible by 25
(00, 25, 50, or 75), then the entire number is divisible by 25.

Formula26.1: A number that is divisible by both 2 and 13 is also
divisible by 26.
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Formula26.2: If subtracting 5 times the last digit from twice the rest of
the number gives a multiple of 26, then the entire number is divisible

by 26.

Formula27.1: When grouped in threes, if the sum of each group is
divisible by 27, then the number is divisible by 27.

Formula27.2: If the last digit is multiplied by 8 and subtracted from the
rest, yielding a result divisible by 27, then the number is divisible by
27.

Formula27.3: If the last two digits are subtracted from eight times the
rest, yielding a result divisible by 27, then the number is divisible by
27.

Formula28.1: A number that is divisible by both 4 and 7 is also divisible
by 28.

Formula29.1: If the last digit is multiplied by 3 and added to the rest,
yielding a result divisible by 29, then the number is divisible by 29.

Formula29.2: If the last two digits are multiplied by 9 and added to the
rest, yielding a result divisible by 29, then the number is divisible by
29.

Formula29.3: If the last three digits are multiplied by 2 and subtracted
from the rest, yielding a result divisible by 29, then the number is
divisible by 29.

Formula30.1: A number that is divisible by both 3 and 10 is also
divisible by 30.

Formula31.1: If the last digit is multiplied by 3 and subtracted from the
rest, yielding a result divisible by 31, then the number is divisible by
31.

D.9 DEFINITION OF FORMULA IN REMAINDER

Remainder = Dividend - Divisor * Quotient; Quotient = Dividend / Divisor
(Quotient retains the integer part).

D.10 DEFINITIONS OF GRAMMAR KNOWLEDGE IN ENGLISH GRAMMAR TESTS

Parts of Speech:

[Verb, Non-finite Verb, Modal Verb, Adjective, Adverb, Numeral,
Conjunction, Pronoun, Preposition, Noun, Article]

Clause:

[Attributive Clause, Appositive Clause, Predicative Clause, Object Clause
, Subject Clause, Cause Adverbial Clause, Adverbial Clause, Time
Adverbial Clause, Condition Adverbial Clause, Result Adverbial Clause,
Concession Adverbial Clause, Purpose Adverbial Clause, Place Adverbial
Clause]

Tense:

[Past Continuous Tense, Present Continuous Tense, Past Perfect Tense,
Present Perfect Tense, Future-in-the-Past Tense, Simple Past Tense,
Simple Present Tense, Simple Future Tense]
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Under review as a conference paper at ICLR 2026

Sentence Patterns and Structures:

[’Subject-Verb Agreement’, ’Sentence and Sentence Elements’, ’Exclamatory
Sentence’, ’Passive Voice’, ’Subjunctive Mood’, ’Imperative Sentence’, ’

Phrase and Idiom’, ’Situational Interaction’]
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