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ABSTRACT

Experience Replay (ER) is central to off-policy reinforcement learning, but its
reliance on massive buffers creates prohibitive storage and sampling costs. We in-
troduce SLED, a self-supervised dataset distillation framework that replaces con-
ventional replay with a compact, learnable synthetic dataset. SLED progressively
shifts the agent’s training from real interactions to a small, self-evolving knowl-
edge base by decoupling data writing from training sampling. On the writing side,
a temporal schedule gradually substitutes real trajectories with optimized synthetic
samples, leaving the buffer composed solely of distilled data. On the sampling
side, a quota-based strategy shapes the training distribution, enabling a seamless
transition from “real-dominated” to “synthetic-dominated” updates without alter-
ing the base algorithm. To preserve the long-term utility of synthetic data, SLED
adopts an online-validated evolutionary optimization scheme: candidate synthetic
datasets undergo brief parallel training trials, followed by real-environment evalu-
ation, yielding a dataset-level fitness signal that guides their continual refinement.
The framework is plug-and-play with mainstream off-policy methods. Overall,
SLED systematically extends the idea of dataset distillation to the non-stationary
regime of reinforcement learning, providing a practical alternative to large-scale
replay buffers. Extensive experiments on DMControl, Habitat, and Atari con-
firm that SLED delivers superior efficiency and scalability over existing ER ap-
proaches, demonstrating its broad effectiveness across diverse domains. Our code
is available at https://anonymous.4open.science/r/Sled-25F2/.

1 INTRODUCTION

Experience replay (ER) is a foundational component of modern reinforcement learning
(RL) Andrychowicz et al. (2020); Levine et al. (2016); Todorov et al. (2012); Jiang et al. (2024);
Zhao & Tresp (2018); Fang et al. (2019), significantly enhancing sample efficiency by allowing
agents to reuse past experiences and decorrelate consecutive updates Schaul et al. (2015). In
off-policy algorithms such as Soft Actor-Critic (SAC) Haarnoja et al. (2018), ER is implemented
through a large replay buffer, which typically stores millions of transitions. These transitions are
drawn uniformly or based on heuristic priorities to compute updates for the policy and critic. The
scalability and flexibility of such buffers have made ER a standard technique in sparse reward sig-
nals Hare (2019); Silver et al. (2017), high-dimensional state spaces Andrychowicz et al. (2020);
Levine et al. (2016); Ibrahimi et al. (2012); Wang et al. (2024a), and low sample efficiency Yarats
et al. (2021); Wang et al. (2024b); Schrittwieser et al. (2020) environments.

Despite its widespread adoption, conventional ER suffers from several fundamental limitations that
hinder its applicability in real-world systems Dulac-Arnold et al. (2019). First, storing and sam-
pling from massive buffers incurs substantial memory and latency costs, which are prohibitive for
resource-constrained platforms such as mobile devices or embedded controllers. Second, uniform
sampling often leads to inefficient training Kompella et al. (2022), since most transitions contribute
little to learning progress. Third, while prioritized experience replay (PER) Schaul et al. (2015) im-
proves over uniform sampling, it relies on static heuristics such as temporal-difference (TD) error.
These heuristics are highly sensitive to noise and fail to adapt to non-stationary dynamics or sparse
rewards, thereby limiting overall learning efficiency.
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To address these challenges, we ask whether a large replay buffer can be replaced by a compact,
learnable dataset that preserves its essential learning signal while sharply reducing memory and
sampling overhead. Building on advances in dataset distillation Wang et al. (2018); Liu et al. (2022)
for supervised learning Lei & Tao (2023), we introduce SLED, Self-supervised Dataset Distillation
for Lightweight Experience Replay, a plug-and-play framework that replaces large replay buffers
with a compact, learnable synthetic dataset Dϕ in a standard off-policy loop. The core idea is a
finely-tuned process of train–distill–replace: a unified buffer is progressively shifted from real in-
teractions to synthetic transitions, while the learner’s training curriculum is meticulously sculpted
to ensure a smooth migration from real-dominated to synthetic-dominated batches. This raises two
coupled challenges: (i) migrating dependence from massive real data to a small synthetic set with-
out disrupting learning, and (ii) continually optimizing Dϕ under nonstationarity so it consistently
supplies high-value signals.

SLED achieves this through two pillars of fine-grained control. First, a decoupled dual-scheduling
mechanism (§3.1) enables precise management of the learning process by separating the buffer’s
physical contents from the training curriculum. A temporal write schedule β(t) orchestrates the
gradual replacement of real transitions with synthetic ones, while a separate, quota-based sampling
schedule α(t) precisely dictates the real-to-synthetic ratio in each minibatch. This deliberate curricu-
lum management provides an alternative to reactive heuristics like PER, leaving the base learner un-
changed. Second, an online-validated evolutionary strategy (§3.2) provides continuous, fine-grained
optimization of Dϕ’s utility under non-stationarity. Candidate datasets undergo brief parallel train-
ing trials and real-environment evaluation to produce a dataset-level fitness signal; mirrored pertur-
bations yield a black-box gradient estimate, and updates are projected onto valid domains to ensure
stability. These components integrate seamlessly into standard off-policy algorithms (§3.3), yield-
ing an efficient learning paradigm driven by a compact, self-evolving replay. Beyond design, we
provide theoretical analysis showing that SLED bounds and controls a value-weighted discrepancy
between real- and synthetic-trained policies, with a return-gap bound scaling linearly in 1/(1− γ).
Empirically, across DMControl, Habitat, and Atari, SLED consistently matches or surpasses Priori-
tized ER while requiring only a fraction of the storage and incurring negligible wall-clock overhead,
demonstrating that large-scale replay can be effectively replaced by compact, self-evolving synthetic
datasets. In summary, our contributions are as follows:

• We introduce an online experience distillation paradigm for non-stationary off-policy RL,
which elevates a compact, learnable synthetic set to a first-class replay substrate.

• We develop an online validated evolutionary optimization at the dataset level, combining
brief parallel training trials and fixed protocol evaluation with mirrored perturbations and
validity projections on action, reward, and termination fields to ensure stability under non-
stationarity.

• We provide theoretical analysis showing that SLED bounds a value-normalized distribu-
tional mismatch between real and distilled training distributions, yielding a return-gap
bound that scales linearly with 1/(1− γ)

• We demonstrate plug-and-play effectiveness across DMControl, Habitat, and Atari: SLED
matches or surpasses other ER baselines while using only a fraction of the storage, signifi-
cantly improving sample efficiency with negligible additional wall-clock cost.

2 PRELIMINARIES

Off-Policy Reinforcement Learning. We consider a standard reinforcement learning setting de-
fined by a Markov decision process (MDP) (S,A, P, r, γ) with discount factor γ ∈ [0, 1). The
agent seeks a policy πθ(a |s) that maximizes the expected discounted return:

J(πθ) = Eπθ, P

[ ∞∑
t=0

γt r(st, at)
]
. (1)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

In the off-policy regime, we approximate the action-value function Qπ(s, a) with a critic Qψ(s, a)
and train it jointly with the policy (actor) πθ. Interaction with the environment produces transition
tuples x = (s, a, r, s′, d), where d ∈ {0, 1} denotes termination.

Experience Replay and its Limitations. Modern off-policy algorithms (e.g., SAC, TD3) rely on an
experience replay buffer Breal to store past transitions, enabling sample reuse and decorrelated up-
dates. While large buffers (e.g., N ! ∼!106) improve stability, they also introduce substantial memory
and sampling overhead, which is particularly problematic in real-time or resource-constrained set-
tings. Moreover, uniform sampling is inefficient, as many transitions contribute little to learning
progress. Prioritized experience replay (PER) alleviates this by emphasizing high TD-error sam-
ples, but it depends on fixed heuristics that are noise-sensitive and often brittle in non-stationary or
sparse-reward environments.

Synthetic Dataset Distillation. To address these issues, we introduce a compact, learnable synthetic
dataset Dϕ = {(sj , aj , rj , s′j , dj)}mj=1 with size m ≪ N . Each transition in Dϕ is parameterized
by ϕ and iteratively optimized using online learning signals, while being constrained to valid state,
action, and reward domains. During training, both the actor and critic are updated on mini-batches
that mix real samples from Breal with synthetic samples from Dϕ. This allows Dϕ to serve as a
high-value, compact “condensed memory.” Optimization of Dϕ is guided by an online evaluation
mechanism that directly maximizes the expected return of a temporarily trained policy when evalu-
ated on the real task; details are provided in the subsequent methodology section.

3 METHODOLOGY

We propose SLED, a plug-and-play framework that replaces large replay buffers with a compact
synthetic dataset. Its design rests on three pillars: (i) a decoupled dual-scheduling mechanism that
separates storage from the training curriculum (§3.1); (ii) an online-validated evolutionary strategy
that maintains the utility of the synthetic dataset under nonstationarity (§3.2); and (iii) seamless
integration into standard off-policy algorithms without altering their update rules (§3.3). We next
describe each component in detail.

Figure 1: Overview of SLED. The agent interacts with the environment to generate transitions.
Writes to the unified FIFO buffer occur as real with probability β(t) and as synthetic (from Dϕ) with
probability 1 − β(t). During training, a mini-batch of size m is formed by quota-based stratified
sampling: mreal = ⌊α(t)m⌋ samples are drawn from the buffer’s real sub-population and mD =
m − mreal from Dϕ (backfilled from Dϕ if real is insufficient). These are fed to the policy and
critic update, while an ES optimizer asynchronously refines Dϕ via online validation. The key is the
full decoupling of the writing schedule β(t) (storage composition) from the sampling schedule α(t)
(training curriculum), which prevents short-term buffer fluctuations from contaminating the training
distribution and enables a smooth transition from a full replay buffer to a compact distilled dataset.
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3.1 CORE MECHANISM OF SLED

Motivation. Large replay buffers improve sample diversity but incur considerable storage and main-
tenance costs; replacing real experience entirely with a small synthetic dataset can introduce distri-
butional mismatch and training instability. Our objective, without changing the base algorithm’s
update rules, is to achieve: (i) memory friendliness with eventual convergence to Dϕ-only; (ii) a
controllable training distribution with a smooth transition; and (iii) a simple implementation that is
easy to reproduce.

Decoupled Schedules. Large-scale replay buffers impose heavy storage and maintenance costs, yet
directly replacing them with a small synthetic set can trigger abrupt distribution shifts and desta-
bilize learning. Our key insight is to decouple what is physically stored in the buffer from what
the learner consumes during training. When storage and sampling are tied: for example, when
the write ratio immediately dictates the sample ratio: any fluctuation in buffer composition prop-
agates directly into the training distribution. This coupling amplifies noise, causing oscillations in
the learning signal. By introducing independent schedules for writing and sampling, SLED ensures
that buffer churn does not leak into the training process, enabling a smooth and stable shift from
real to synthetic experience. We realize this decoupling through two independent schedules, which
serve as the primary levers for fine-grained control. A write schedule β(t) governs the physical
composition of the buffer, gradually shifting storage from real to synthetic transitions. In parallel,
an independent sampling schedule α(t) shapes the training curriculum by explicitly controlling the
real-to-synthetic ratio in each minibatch. Although both schedules are typically monotone (real→
synthetic), they need not be identical: β(t) ensures smooth replacement at the storage level, while
α(t) provides direct control over the learner’s input distribution. Crucially, minibatch quotas follow
α(t) independently of the buffer’s current physical composition induced by β(t); see Eq. 2–7.

Writing Schedule β(t): Controlling Buffer Composition. Let Bt denote the unified buffer at time
t with capacity C. The buffer operates in a FIFO (First In First Out) manner: one item is written per
step; when full, the oldest item is evicted. Each newly written entry at step t comes from either real
interaction or Dϕ with probabilities governed by β(t):

Pr
[
x∈ real

]
= β(t), Pr

[
x∈Dϕ

]
= 1− β(t), β(t) ∈ [0, 1]. (2)

Under this FIFO model, the expected fraction of real samples in the buffer, ρreal(t), evolves as

ρreal(t+1) =
(
1− 1

C

)
ρreal(t) +

1

C
β(t). (3)

This recursion acts as a low-pass filter on β(t), damping short-term shocks in buffer composition.
Its closed-form solution, for ρreal(0) ∈ [0, 1], makes the smoothing and limit behavior explicit:

ρreal(t) =
(
1− 1

C

)t
ρreal(0) +

1
C

t−1∑
k=0

(
1− 1

C

)k
β(t− 1− k).

If more than one item is written per step (e.g., parallel environments with an average of κ items per
step), replace 1/C by κ/C; the qualitative conclusions below remain unchanged. Eq. 3 is a low-pass
recursion on β(t), so buffer composition changes smoothly even if β(t) momentarily fluctuates.
Proposition 1 (Asymptotic Property of Buffer Composition). Assume a unified FIFO buffer of ca-
pacity C with one item written per step, initial fraction ρreal(0) ∈ [0, 1], and a write schedule
β(t) ∈ [0, 1] satisfying limt→∞ β(t) = 0. Let ρreal(t) denote the fraction of real samples in the
buffer at time t. Then

lim
t→∞

E
[
ρreal(t)

]
= 0, (4)

Based on Proposition 1, the expected real fraction vanishes asymptotically and the buffer converges
to Dϕ-only. As β(t)↓0, the buffer asymptotically becomes distilled-only storage, enabling memory
savings without abruptly cutting off real data early on. See Appendix A.1 for a proof.

Sampling Schedule α(t): Shaping the Training Curriculum. Independent of the writing side,
α(t) ∈ [0, 1] directly controls the quotas of real and Dϕ in each training mini-batch. Given a batch
size m, we apply quota-based stratified sampling:

mreal(t) =
⌊
mα(t)

⌋
, mD(t) = m−mreal(t). (5)
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When mα(t) is not an integer, the rounding via ⌊·⌋ induces at most a one-sample deviation (stochas-
tic rounding can further reduce bias). If real samples are insufficient, i.e., Nreal(t) < mreal(t), the
deficit is backfilled by Dϕ:

m⋆
real(t) = Nreal(t), m⋆

D(t) = m−m⋆
real(t). (6)

The target mini-batch training distribution is
πt(x) = α(t) preal(x) +

(
1− α(t)

)
pD(x), (7)

where preal and pD denote the distributions of real experience and synthetic data, respectively. (Both
can vary slowly over time due to buffer/ES updates.) The decoupled design yields two main benefits.
(i) No starvation: the backfilling rule in Eq. 6 guarantees that the learner always receives sufficient
data and can fully exploit all available real samples before transitioning. (ii) Stability: the low-pass
property of Eq. 3 smooths buffer-side shocks, while Eq. 7 gives precise curriculum control; together
they prevent short-term oscillations in the training distribution.
Proposition 2 (Upper Bound on Curriculum Deviation). Let π̂t be the empirical training distribu-
tion obtained by quota-based stratified sampling (without replacement), and let the target distribu-
tion be πt(x) = α(t)preal(x)+(1−α(t))pD(x). Denote the empirical sub-distributions by p̂real and
p̂D. Then the total variation distance between the empirical and target distributions satisfies

TV
(
π̂t, πt

)
≤ α(t) TV

(
p̂real, preal

)
+
(
1− α(t)

)
TV

(
p̂D, pD

)
. (8)

This shows that the deviation from the target curriculum is controlled by a convex combination of
the approximation errors of the two sub-distributions, weighted by α(t), with O(1/m) fluctuations
due to finite batch size. See Appendix A.2 for a proof.

Before running ES, we warm-start the synthetic dataset Dϕ with a small set of real transitions.
Concretely, we first run a short real-only phase with α(t) = β(t) = 1 to collect a temporary buffer
of recent interactions; then we select N representative transitions and copy them into Dϕ as the
initial entries. This yields a valid and informative starting point and avoids purely random noise
at t=0. Afterwards, Dϕ is refined by the online-validated ES in §3.2 (with projection to feasible
domains), while β(t) and α(t) are annealed from real-dominated to Dϕ-dominated storage and
training, respectively.

3.2 ES-BASED DATASET OPTIMIZATION WITH ONLINE VALIDATION

Having ensured a smooth transition of the training distribution, we now confront a more fundamen-
tal challenge: how to preserve the long-term utility of the synthetic dataset Dϕ under non-stationary
dynamics? Classical gradient-matching distillation is inadequate in this setting because the ultimate
objective: the agent’s downstream performance is non-differentiable with respect to Dϕ. This ob-
jective is only revealed after full training and evaluation, and is further confounded by the current
sampling regime and environment stochasticity. Consequently, direct gradients are unavailable and
surrogate gradients are unreliable, making gradient-matching unsuitable. This limitation motivates
an alternative view: treat Dϕ as a decision variable in a black-box optimization loop that is validated
online against real-environment performance, enabling dataset updates that remain aligned with the
end task despite non-stationarity.

Online-validated ES. Because our end goal is downstream performance that is non-differentiable
w.r.t. Dϕ, we adopt an evolution-strategies (ES) approach that treats the entire training-and-
evaluation process as a black-box objective. Instead of relying on gradients, ES iteratively improves
Dϕ by measuring the fitness of candidate datasets via brief parallel training trials run under the
current sampling regime, followed by evaluation with a fixed protocol. In this way, the optimization
directly targets the ultimate quantity of interest: downstream return.

To formalize the objective, let the learnable synthetic dataset be Dϕ = {(sj , aj , rj , s′j , dj)}Nj=1 with
N ≪ |Bt|, and let ϕ collect all learnable numeric fields. The goal is to maximize downstream
return under a fixed evaluation protocol. For any ϕ, define a brief parallel training trial as running
L training steps under the current sampling schedule α(t) while using Dϕ as the synthetic source.
Let S be a fixed set of evaluation seeds, and let TrialReturn(ϕ; s) denote the return obtained by
evaluating the learner (after the L-step trial) under seed s. The black-box objective is

J(ϕ) :=
1

|S|
∑
s∈S

Return(TrialReturn(ϕ; s)) . (9)
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As α(t) ↓ 0, the optimization naturally shifts its focus from the Real+Dϕ mixture to the Dϕ-only
regime. According to the evaluation protocol, every K steps, sample P pairs of mirrored perturba-
tions ϕ(±)

j = ϕ± ϵj . For each candidate, run a brief parallel training trial of L update steps under

the current α(t), then evaluate its return on S to obtain fitness values F (±)
j . To reduce variance, each

mirrored pair ϕ(+)
j , ϕ

(−)
j shares the same trial length L and evaluation seed set S (while S can be

periodically refreshed to mitigate overfitting to validation seeds).

Mirrored ES Update & Guarantee. Given these fitness values, we estimate the mirrored-ES gra-
dient and update:

ĝ =
1

2P σ

P∑
j=1

(
F

(+)
j − F

(−)
j

)
ϵj , ϕ← Proj

(
ϕ+ ηES ĝ

)
. (10)

Here Proj(·) enforces validity. To ensure data validity, we project the updated fields back to their
feasible domains (e.g., clip continuous actions and round discrete values). Further details (including
the parameterization of ϕ and the projection operators) are provided in the Appendix A.4.

Theorem 1 (Approximate performance guarantee of SLED distillation). Let πSLED be the final pol-
icy obtained in SLED when α(t) → 0 and ES converges to ϕ⋆, trained on Dϕ⋆ . Let πreal be the
optimal policy attainable with unlimited real data. Under standard regularity and Lipschitz as-
sumptions detailed in the Appendix A.3, the performance gap admits the bound∣∣J(πreal)− J(πSLED)

∣∣ ≤ Cγ
(
εapprox + εdiv(ϕ

⋆) + εES

)
. (11)

Here Cγ = c
1−γ , where c depends on the Lipschitz constant of the policy improvement operator and

on the reward bound.

The bound indicates that online-validated ES implicitly drives down the distributional mismatch
term εdiv, thereby supporting the final policy’s performance.

Algorithm 1 SLED (Self-Supervised Dataset Distillation)
1: Init: policy πθ, critic Qψ , buffer B (cap C), synthetic set Dϕ

2: Schedules: write β(t), sample α(t); ES interval K, trial length L, pop P
3: for env step t = 1 to T do
4: Interact with env to get xt = (s, a, r, s′, d)
5: Write: insert real with prob β(t), else from Dϕ (Eq. 2, 3)
6: Sample: form batch quotas by α(t) (Eq. 5, 6)
7: Training distribution πt(x) = α(t)preal + (1− α(t))pD (Eq. 7)
8: Update: run base off-policy update on mixed batch (no PER/IS)
9: if t mod K = 0 then

10: for j = 1..P do
11: Sample mirrored ϕ

(±)
j = ϕ± ϵj ; run brief trial (L steps), eval returns F (±)

j

12: end for
13: ĝ = 1

2Pσ

∑P
j=1(F

(+)
j − F

(−)
j )ϵj ; ϕ← Proj

(
ϕ+ ηESĝ

)
(Eq. 10)

14: end if
15: end for

3.3 PLUG-AND-PLAY INTEGRATION AND OVERHEAD

Integration. Built on the two pillars introduced earlier, namely decoupled scheduling (§3.1) and
online-validated ES (§3.2), SLED integrates as a cohesive drop-in module for standard off-policy
algorithms such as DQN and TD3 without modifying their losses, targets, or update rules and with-
out PER/IS. In practice, stratified mini-batches follow Eq. 5, with deficits in real samples backfilled
according to Eq. 6 using Dϕ, while the critic and actor are updated using the original algorithm on
the mixed batch. Every K steps, the ES procedure in §3.2 runs asynchronously to refine Dϕ through
brief parallel training trials and a fixed evaluation protocol. In short, β(t) governs what enters the
buffer, α(t) governs what the learner consumes, and ES safeguards the quality of Dϕ.
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Overhead: theoretical comparison. Let a transition occupy b bytes. A standard ER buffer of
capacity C uses MER = bC. Under SLED, we maintain a unified FIFO buffer Bt (cap. C) and a
compact synthetic set Dϕ of size N ≪ C; the write-side probabilities satisfy Pr[x ∈ real] = β(t)
and Pr[x∈Dϕ] = 1− β(t) (Eq. (2)), and the FIFO recursion (Eq. (3)) implies that, as β(t)↓0, the
buffer converges to Dϕ-only (Prop. 1). Intuitively, the decoupled schedules let the learner consume a
curriculum shaped by α(t) even while storage composition evolves via β(t), front-loading a small,
controllable distillation cost. Hence the effective training memory (what the learner consumes as
α(t) ↓ 0) satisfies limt→∞ Meff(t) = bN , giving a reduction ratio ∆eff

mem = 1 − N
C . For compute,

take one baseline mini-batch update as unit cost; SLED keeps the per-step learner update unchanged
and adds only the ES routine with amortized cost RES = PL

K (baseline-update equivalents per env
step). Compared to common variants we have: ER (uniform)≈ 1; ER (PER)≈ 1+κm logC (batch
size m, tree constant κ); HER (on-the-fly relabel k goals) ≈ 1 + k; SLED ≈ 1 + RES. Therefore
SLED is cheaper than PER when RES < κm logC and cheaper than HER when RES < k; in
the late phase α(t)→ 0 and β(t)→ 0, sampling shifts from random access on C to tensor slicing
on N ≪ C, further reducing access cost while ES is amortized by (PL)/K. In summary, SLED
trades a bounded RES term for a large effective-memory reduction and faster late-phase sampling;
with ES on a separate worker, the learner’s per-step time matches the baseline while retaining the
∆eff

mem = 1−N/C advantage.

4 EXPERIMENTS

We evaluate the proposed Self-Supervised Dataset Distillation (SLED) framework across three rep-
resentative benchmarks: DMControl Tassa et al. (2018), Atari, and Habitat. These environments
were selected to systematically examine SLED’s generality, sample efficiency, and integration ca-
pability across continuous control, discrete-action exploration, and vision-based navigation. All
models are trained under identical conditions using a shared infrastructure. Full experimental con-
figurations, hyperparameters, and implementation details are provided in Appendix B.

Baselines. We compare SLED against a suite of representative replay-based baselines that span
both classical and recent advances in experience management. Deep Q-Network (DQN) Mnih
et al. (2015) is a foundational value-based algorithm that introduced experience replay, sampling
uniformly from a buffer to stabilize Q-learning with a frozen target network. Soft Actor-Critic
(SAC) Haarnoja et al. (2018) serves as a standard off-policy baseline, using a large FIFO buffer
for uniform transition sampling in continuous control. Prioritized Experience Replay (PER) Schaul
et al. (2015) enhances sample efficiency by prioritizing transitions with large TD errors, assum-
ing they yield more informative updates. Hindsight Experience Replay (HER) Andrychowicz et al.
(2017) improves learning in sparse-reward environments by relabeling failed goals to create mean-
ingful learning signals. ReLo Sujit et al. (2023) proposes a learnability-based ranking scheme that
prioritizes transitions based on their ability to consistently reduce training loss. LaBER Lahire et al.
(2022) introduces a large-batch replay strategy that reweights samples according to gradient norm,
amplifying the signal from informative transitions. SynthER Lu et al. (2023) synthesizes new tran-
sitions using diffusion models trained on past experiences, enabling flexible augmentation without
extra environment interaction.

4.1 CONTINUOUS CONTROL IN DMCONTROL

We conduct an extensive evaluation on eight challenging tasks from the DeepMind Control Suite
(DMControl) Tassa et al. (2018), where all methods are trained for 4 million environment steps.
The results, presented in Fig. 2, demonstrate that SLED (red line) consistently achieves superiority
in both sample efficiency and final performance. Specifically, in high-difficulty locomotion tasks
such as cheetah-run, walker-run, and finger-spin, SLED not only learns faster but
also surpasses all baselines in final performance. In the majority of the remaining tasks, including
fish-swim and acrobot-swingup, SLED also performs within the top tier, significantly out-
performing classic methods like PER and HER .These findings strongly validate SLED as a powerful
and general-purpose framework. Through efficient generation and compression of synthetic expe-
rience, it achieves state-of-the-art performance and efficiency across a wide range of continuous
control problems.
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Figure 2: Average episode return on DMControl over 4M steps

4.2 EXPLORATION IN ATARI GAMES

We evaluate SLED on 7 Atari games Mnih et al. (2013), using DQN Mnih et al. (2015) as the base
algorithm with a 1M replay buffer and 2M training steps. SLED maintains a 10k-size synthetic
dataset, updated every 20k steps via Evolutionary Strategies. As shown in Table 1, SLED consis-
tently outperforms all baselines, especially in exploration-heavy games like Frostbite. Despite
using only 1% of the replay size, the distilled set captures high-utility transitions that improve credit
assignment and generalization. These results demonstrate SLED’s effectiveness in retaining mean-
ingful experiences under sparse and noisy feedback.

Table 1: Scores comparison on 7 Atari games (averaged over 5 seeds).
Method Alien Asterix Breakout Freeway Qbert MsPacman Frostbite

DQN 1,721.2 4,274.6 10.1 30.6 13,127.3 5,840.3 3,025.6
+ PER 4,204.2 31,527.3 14.0 33.7 16,256.5 6,519.1 4,380.1
+ LaBER 4,365.2 39,172.1 15.4 31.6 17,744.6 6,691.4 4,923.5
+ ReLo 4,312.9 38,432.4 16.0 37.6 19,013.2 6,613.1 4,892.7
+ SynthER 4,203.5 39,521.4 17.0 37.6 19,192.2 6,683.1 4,992.7
+ SLED 4,625.4 39,612.7 18.7 41.3 19,432.3 6,831.2 5,232.5

4.3 VISUAL NAVIGATION IN HABITAT

We further evaluate SLED on high-dimensional visual navigation in AI Habitat Savva et al. (2019);
Szot et al. (2021); Puig et al. (2023). Using SAC as the base learner, we compare against PER, HER,
and SynthER across three HM3D scenes Ramakrishnan et al. (2021), Residential, Office,
and Commercial, with agents observing egocentric RGB-D only; success is defined as reaching
the goal within a fixed step budget. Across 100 evaluation episodes per scene, SLED achieves
the highest success rates in all settings, exceeding the next best by more than 3.5% in the most
challenging Commercial scene (Table 2).

Table 2: Success rates (%) on Habitat navigation tasks.
Method Residential Office Commercial

SAC 31.7 ± 5.1 38.1 ± 1.9 42.2 ± 2.5
+ PER 48.0 ± 3.1 52.3 ± 2.8 51.7 ± 1.5
+ HER 50.2 ± 2.9 56.4 ± 2.6 53.0 ± 2.7
+ SynthER 54.3 ± 2.6 59.1 ± 2.1 57.8 ± 2.0
+ SLED 63.1 ± 2.1 66.1 ± 1.4 63.5 ± 1.9
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4.4 ABLATION STUDIES

We evaluate the contributions of SLED’s components on ALE/Breakout-v5 over 2M steps,
building upon a standard DQN agent. We compare the full model with three variants: w/o de-
coupling, which couples the sampling and writing schedules (α(t) = β(t)); w/o ES optimization,
which fixes the synthetic dataset Dϕ after initialization; and w/o synthetic dataset,which effectively
reverts to the baseline DQN. As shown in Table 3, we measure performance using the Final Score
and early sample efficiency (Score/200k), alongside costs like Total Time and peak GPU memory
(Peak (MiB)). The results show that while removing the decoupled schedules causes severe per-
formance degradation, the removal of ES optimization is even more detrimental, underscoring the
critical roles of both components. Furthermore, while the synthetic dataset and its ES optimization
introduce a minimal time overhead (+4 minutes), they are essential for achieving a higher final return
and superior sample efficiency.

Table 3: Ablation study of SLED components on ALE/Breakout-v5 over 2M steps.
Ablation Variant Final Score Score/200k Time Peak (MiB) N/C (%) RES

SLED (Full) 18.7 9.1 01:34 189 1% 0.04
w/o decoupling 10.5 5.2 01:31 189 1% 0.04
w/o ES optimization 8.8 4.9 01:32 183 1% -
w/o synthetic dataset 12.1 5.3 01:30 466 - -

5 RELATED WORK

Experience Replay. Experience Replay (ER) is a foundational mechanism in off-policy reinforce-
ment learning that improves sample efficiency by storing and reusing past transitions Lin (1992);
Mnih et al. (2013); Yang et al. (2024). Prioritized Experience Replay (PER)Schaul et al. (2015)
improves upon uniform sampling by favoring transitions with high TD error, leading to faster con-
vergence. Subsequent works expand PER by incorporating additional sampling heuristics, such as
topological structureHong et al. (2022), replay frequency Wei et al. (2021), and feature-level sim-
ilarity Yu et al. (2024); Yang et al. (2023b). Hindsight Experience Replay (HER)Andrychowicz
et al. (2017) enables goal-conditioned agents to learn from failure by relabeling goals post hoc, and
has been extended through curriculum learningFang et al. (2019) and decomposition-based relabel-
ing Luo et al. (2023); Zhao et al. (2025). Distributed variants like Ape-X Horgan et al. (2018); Yang
et al. (2023a) and IMPALA Espeholt et al. (2018) further improve scalability. ER is effective but
relies on massive buffers, raising costs and reducing sample relevance.

Dataset Distillation. Dataset distillation aims to learn a compact synthetic dataset that can approx-
imate the training utility of a much larger real dataset Wang et al. (2018). Most early works apply
gradient-matching techniques in supervised learning settings Zhao et al. (2021), while recent exten-
sions explore broader objectives such as feature alignment Cazenavette & Eriksson (2022) or trajec-
tory consistency Lee et al. (2022). In reinforcement learning, dataset distillation has been adapted for
experience replay compression and continual learning. DREAM Liu et al. (2022) distills Q-learning
transitions by matching the value gradients over synthetic and real samples. SLDR Zheng et al.
(2023) co-optimizes a small set of support trajectories alongside the policy. DIET Hu et al. (2023)
introduces distillation for multi-task RL with memory constraints. SLED applies gradient-free ES
distillation, avoiding differentiable-target limits and base modifications in non-stationary RL.

6 CONCLUSION

We introduced SLED, a plug-and-play framework that replaces large replay buffers with a com-
pact synthetic dataset by decoupling buffer composition β(t) from the training curriculum α(t).
An online-validated ES routine, using brief parallel training trials and mirrored perturbations, di-
rectly optimizes downstream return, while leaving base actor–critic updates unchanged and avoid-
ing PER/IS. Theoretically, the performance gap is bounded by a term scaling with Cγ = c

1−γ ;
empirically, SLED improves sample efficiency and convergence with a tiny memory footprint as
the buffer converges to distilled-only storage. Overall, SLED offers a lightweight, scalable path to
memory-efficient off-policy RL.
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A THEORETICAL ANALYSIS AND PROOFS

Notation. Let γ ∈ (0, 1) and Cγ ≜ 1
1−γ . For any policy π, let dπ be its γ-discounted state-

visitation distribution and Qπ its action-value. Rewards are bounded by |r| ≤ Rmax so that
∥Qπ∥∞ ≤ RmaxCγ . Throughout, ∥ · ∥1 and ∥ · ∥∞ denote L1 and sup norms, respectively. We
reuse equation labels from the main text when referenced (e.g., Eq. 2, Eq. 3, Eq. 5, Eq. 6, Eq. 7).

A.1 PROOF OF PROPOSITION 1 (ASYMPTOTIC BUFFER COMPOSITION)

Setup and notation. Let Xt ∈ {0, 1, . . . , C} denote the (random) number of real items in the
buffer at step t and ρreal(t) ≜ E[Xt]/C the expected fraction of real items. At step t, the incoming
item is real with probability β(t) and synthetic (from Dϕ) with probability 1 − β(t), cf. Eq. 2. We
analyze the steady-state (full-buffer) regime; before the buffer is full (t < C) one obtains the same
conclusion with a slightly different warm-up recursion (see Remark A.1).

Step 1 – One-step recursion in expectation. When the buffer is full, one oldest item is evicted and
one new item is written each step. Conditioning on Xt and using the law of total expectation yields

E[Xt+1 |Xt] = Xt − 1
C Xt + β(t), ⇒ ρreal(t+1) =

(
1− 1

C

)
ρreal(t) +

1
C β(t), (12)

which coincides with Eq. 3. This is an affine, time-varying, first-order stable filter.

Step 2 – Closed form (exponential moving average). Unrolling Eq. 12 gives, for any ρreal(0) ∈
[0, 1],

ρreal(t) =
(
1− 1

C

)t
ρreal(0) +

1
C

t−1∑
k=0

(
1− 1

C

)k
β(t− 1− k). (13)

Thus ρreal is an exponentially weighted moving average (EWMA) of β(·).
Step 3 – Limit as β(t) → 0. If limt→∞ β(t) = 0 and 0 < 1 − 1

C < 1, then (i) the homogeneous
term in Eq. 13 vanishes; (ii) the inhomogeneous term is a convolution of a summable geometric
kernel with a sequence converging to 0 and therefore vanishes by Toeplitz’s lemma. Hence

lim
t→∞

ρreal(t) = 0,

i.e., the buffer converges in expectation to Dϕ-only storage.

Step 4 – Parallel writers (generalization). If an average of κ ∈ (0, C] items are written per step
(e.g., E parallel envs), the recursion becomes

ρreal(t+1) =
(
1− κ

C

)
ρreal(t) +

κ
C β(t),

and all arguments go through with 1/C replaced by κ/C.

Variance and concentration (optional). Let the random real fraction be ρ̂real(t) ≜ Xt/C (so
that E[ρ̂real(t)] = ρreal(t)). Write

Xt+1 = Xt − Yt +Bt,

where Yt | Xt ∼ Bernoulli(Xt/C) (eviction) and Bt ∼ Bernoulli(β(t)) (write), with Bt ⊥
(Xt, Yt). Then

Var(Xt+1) = Var(Xt − Yt) + Var(Bt)

= Var(Xt) + Var(Yt)− 2Cov(Xt, Yt) + Var(Bt). (14)

Since E[Yt | Xt] = Xt/C,

Cov(Xt, Yt) = Cov
(
Xt,E[Yt | Xt]

)
= 1

C Var(Xt). (15)

Moreover, with pt ≜ Xt/C,

Var(Yt) = E
[
Var(Yt | Xt)

]
+Var

(
E[Yt | Xt]

)
= E

[
pt(1− pt)

]
+Var(pt) = E[pt]− E[pt]2 =

E[Xt]

C
− (E[Xt])

2

C2
≤ 1

4 , (16)
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where the last inequality is maximized at E[Xt]/C = 1/2. Combining Eq. 14–Eq. 16 and using
Var(Bt) ≤ 1

4 ,

Var(Xt+1) ≤
(
1− 2

C

)
Var(Xt) +

1
4 +Var(Bt) ≤

(
1− 2

C

)
Var(Xt) +

1
2 . (17)

Dividing Eq. 17 by C2 gives

Var
(
ρ̂real(t+1)

)
≤

(
1− 2

C

)
Var

(
ρ̂real(t)

)
+

1

2C2
. (18)

Hence, in steady state,

Var
(
ρ̂real

)
≤ 1

4C
, and fluctuations are sd

(
ρ̂real

)
= O

(
C−1/2

)
,

matching the empirical stability for large C. Since |Xt+1 − Xt| ≤ 1 almost surely in the full-
buffer regime, a standard Azuma–Hoeffding argument yields the same O(C−1/2) fluctuation scale
for ρ̂real(t).

Remark (warm-up). Before the buffer is full,

ρreal(t+1) = t
t+1 ρreal(t) +

1
t+1 β(t),

the usual online average. After t ≥ C, the FIFO recursion Eq. 12 applies; both regimes yield the
same limit when β(t)→0.

A.2 PROOF OF PROPOSITION 2 (TV BOUND FOR CURRICULUM DEVIATION)

Let the target training distribution at step t be

πt(x) = α(t) preal(x) +
(
1− α(t)

)
pD(x),

as in Eq. 7. Quota sampling with batch size m draws mreal(t) = ⌊mα(t)⌋ from the buffer and
mD(t) = m −mreal(t) from Dϕ (without replacement), with backfilling per Eq. 6 if real items are
insufficient. Let p̂real and p̂D be the empirical sub-distributions, and define

π̂t ≜ α̂t p̂real +
(
1− α̂t

)
p̂D, α̂t ≜

m⋆
real(t)

m
∈ [0, 1].

Step 1 – TV convexity and positive homogeneity. Total variation satisfies TV(p, q) = 1
2∥p −

q∥1 and is convex and positively homogeneous. With the same-weight auxiliary mixture π̃t ≜
α(t) p̂real + (1− α(t)) p̂D, we have

TV(π̂t, πt) ≤ TV(π̂t, π̃t) + TV(π̃t, πt) (19)

= 1
2

∥∥(α̂t − α(t))(p̂real − p̂D)
∥∥
1
+ 1

2

∥∥α(t)(p̂real − preal) + (1− α(t))(p̂D − pD)
∥∥
1

≤
∣∣α̂t − α(t)

∣∣+ α(t) TV(p̂real, preal) +
(
1− α(t)

)
TV(p̂D, pD). (20)

This yields the refined bound

TV(π̂t, πt) ≤ α(t)TV(p̂real, preal) +
(
1− α(t)

)
TV(p̂D, pD) +

∣∣α̂t − α(t)
∣∣ (21)

Step 2 – Rounding/backfilling correction. If the real stratum is sufficient, then∣∣α̂t − α(t)
∣∣ = ∣∣∣ ⌊mα(t)⌋m − α(t)

∣∣∣ ≤ 1
m .

Under backfilling (real scarce), α̂t = Nreal(t)/m ≤ mreal(t)/m and∣∣α̂t − α(t)
∣∣ ≤ mreal(t)−Nreal(t)

m ,
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which vanishes once real items are replenished (and trivially as α(t) ↓ 0). If one prefers the minimal
statement of Proposition 2, simply drop the nonnegative weight term in Eq. 21 to obtain

TV(π̂t, πt) ≤ α(t)TV(p̂real, preal) +
(
1− α(t)

)
TV(p̂D, pD). (22)

Step 3 – Finite-sample effect (remark). Within each stratum, without-replacement sampling enjoys
the same first-order concentration as i.i.d. sampling; hence

ETV(p̂real, preal) = O
(
m

−1/2
real

)
, ETV(p̂D, pD) = O

(
m

−1/2
D

)
,

so ETV(π̂t, πt) = O(m−1/2) and the rounding term contributes at most O(1/m) when the real
stratum is sufficient.

A.3 PROOF OF THEOREM 1 (APPROXIMATE PERFORMANCE GUARANTEE)

Standing assumptions. (i) Rewards are bounded: |r| ≤ Rmax, hence ∥Qπ∥∞ ≤ Rmax/(1 − γ).
(ii) The base policy-improvement operator is Lipschitz (the constant is absorbed into c below). (iii)
ES converges to a stationary point ϕ⋆ up to a finite-sample error summarized by εES (see Step 4).

Let πreal denote the policy attainable with unlimited real data, and let πSLED be the policy trained on
Dϕ⋆ when α(t)→0.

Goal. Show the linear-in-1/(1− γ) return-gap bound∣∣J(πreal)− J(πSLED)
∣∣ ≤ c

1− γ

(
εapprox + εdiv(ϕ

⋆) + εES

)
, (23)

where εapprox covers function-approximation / finite-training error of the base learner, and the value-
weighted divergence term is

εdiv(ϕ
⋆) ≜ Es∼dπSLED

[∑
a

∣∣πreal(a|s)− πSLED(a|s)
∣∣ · |Qπreal(s, a)|

]
. (24)

Step 1 – Symmetric performance-difference lemma. We use the symmetric form (see, e.g., TRPO
/ Kakade–Langford):

J(π)− J(π′) =
1

1− γ
Es∼dπ′

[∑
a

(
π(a|s)− π′(a|s)

)
Qπ(s, a)

]
. (25)

Setting π = πreal and π′ = πSLED gives

J(πreal)− J(πSLED) =
1

1− γ
Es∼dπSLED

[∑
a

(
πreal − πSLED

)
Qπreal

]
.

Step 2 – Value-weighted policy gap. By the triangle inequality,

∣∣J(πreal)− J(πSLED)
∣∣ ≤ 1

1− γ
Es∼dπSLED

[∑
a

∣∣πreal(a|s)− πSLED(a|s)
∣∣ |Qπreal(s, a)|

]

=
1

1− γ
εdiv(ϕ

⋆). (26)

This is the core value-weighted curriculum-mismatch term evaluated under the final state distribution
dπSLED , hence no extra change-of-measure penalty appears.

Step 3 – Base-learner approximation error. Let εapprox bound the residual due to function ap-
proximation, finite training, and algorithmic stochasticity: the policy produced by the base learner
from a given data distribution is L-Lipschitz (in the appropriate metric) with respect to its inputs,
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and the resulting performance error contribution scales as capprox
1−γ εapprox for some constant capprox

absorbed into c.

Step 4 – ES suboptimality. The mirrored-ES estimator is unbiased and has variance Õ(dϕ/(Pσ2));
finite population P , trial length L, and projection onto feasible domains yield an optimization sub-
optimality εES, whose contribution to the return scales at most linearly with 1/(1 − γ): cES

1−γ εES,
with cES absorbed into c.

Step 5 – Combine (linear scaling in 1/(1 − γ)). Adding Eq. 26–Step 4 and gathering constants
gives ∣∣J(πreal)− J(πSLED)

∣∣ ≤ c

1− γ

(
εdiv(ϕ

⋆) + εapprox + εES

)
(27)

where c depends only on reward bounds and Lipschitz constants (and is independent of γ). Hence
the return-gap exhibits a linear dependence on 1/(1− γ), as claimed.

Remark (on constants). If desired, one can make c explicit; for instance, with |r| ≤Rmax and a
base-learner Lipschitz constant Lpl, one may take c = 1 + Lpl + cES, which is independent of γ.
The factor 1/(1− γ) in Eq. 27 is therefore the only explicit dependence on the horizon, yielding the
stated linear scaling.

A.4 PROPERTIES OF THE MIRRORED-ES GRADIENT ESTIMATOR

We formalize the estimator used in the ES update Eq. 10. Let F (ϕ) denote the black-box objective
produced by the trial-and-evaluate pipeline in Eq. 9, and define its Gaussian-smoothed version

Fσ(ϕ) ≜ Eϵ∼N (0,σ2I)[F (ϕ+ ϵ)] .

Unless stated otherwise, expectations are w.r.t. the perturbations ϵ. Assume the objective is uni-
formly bounded on the feasible domain: |F (ϕ)| ≤Wmax.

At ES step t, draw i.i.d. ϵ1, . . . , ϵP ∼ N (0, σ2Idϕ) and form mirrored candidates ϕ
(±)
j = ϕ ± ϵj .

Let F (±)
j ≡ F (ϕ

(±)
j ), evaluated with common random numbers (CRN) within each pair (same trial

length and the same evaluation seed set S). The estimator used in the main text is

ĝmir =
1

2Pσ

P∑
j=1

(
F

(+)
j − F

(−)
j

)
ϵj , ϕ← Proj

(
ϕ+ ηESĝmir

)
. (10)

Main facts. With the setup above, ĝmir satisfies

(i) Unbiasedness: E[ĝmir] = ∇ϕFσ(ϕ). (28)

(ii) Second moment and variance: E
[
∥ĝmir∥22

]
≤ cm dϕ

P σ2
W 2

max +
dϕ
σ2

W 2
max, (29)

Var
(
ĝmir

)
≤ Cm dϕ

P σ2
W 2

max (30)

for absolute constants cm, Cm. When CRN is used within each mirrored pair, one can take cm = 1
and Cm = 2 (up to small constant slack), hence Var(ĝmir) = Õ

(
dϕ/(Pσ2)

)
.

Proof of Eq. 28. By Gaussian symmetry ϵ
d
= −ϵ,

E
[
(F (ϕ+ ϵ)− F (ϕ− ϵ)) ϵ

]
= 2E[F (ϕ+ ϵ) ϵ] .

By the multivariate Stein identity, for any smooth f and ϵ ∼ N (0, σ2I), E[f(ϵ) ϵ] = σ2 E[∇f(ϵ)].
Taking f(ϵ) = F (ϕ + ϵ) gives E[F (ϕ+ ϵ)ϵ] = σ2∇ϕE[F (ϕ + ϵ)] = σ2∇ϕFσ(ϕ). Divide by 2σ
and average over P i.i.d. pairs to obtain E[ĝmir] = ∇ϕFσ(ϕ).
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Proof of Eq. 30. Let Zj = 1
2σ

(
F (ϕ + ϵj) − F (ϕ − ϵj)

)
ϵj , so ĝmir =

1
P

∑P
j=1 Zj with E[Zj ] =

∇ϕFσ(ϕ). Using |F | ≤Wmax and E∥ϵ∥22 = dϕσ
2,

E∥Z1∥22 =
1

4σ2
E
[
(F (ϕ+ ϵ)− F (ϕ− ϵ))2∥ϵ∥22

]
≤ (2Wmax)

2

4σ2
dϕσ

2 = dϕW
2
max,

and with CRN the constant improves (captured by cm). By independence,

E∥ĝmir∥22 =
1

P
E∥Z1∥22 +

P − 1

P

∥∥EZ1

∥∥2
2
≤ cm dϕ

P
W 2

max +
∥∥∇ϕFσ(ϕ)∥∥22.

Finally, ∥∇ϕFσ(ϕ)∥2 ≤ 1
σ E[|F (ϕ + ϵ)| ∥ϵ∥2] ≤ Wmax

σ

√
dϕ, so ∥∇ϕFσ(ϕ)∥22 ≤

dϕ
σ2W

2
max, which

yields the stated second-moment bound; the variance bound follows from Var(ĝmir) =
1
P Var(Z1)

and the estimate Var(Z1) ≤ Cm
dϕ
σ2W

2
max.

Remark (projection). The update Proj(ϕ + ηESĝmir) enforces feasibility (e.g., clipping contin-
uous actions, rounding discrete fields). This projection does not affect the unbiasedness of ĝmir for
∇Fσ(ϕ); it only constrains the optimization path.

Remark (bias vs. the unsmoothed objective). Both one-sided and mirrored ES estimators are
unbiased for ∇Fσ(ϕ), the gradient of the Gaussian-smoothed objective. If F is L-Lipschitz (or
sufficiently smooth), the smoothing bias ∥∇Fσ(ϕ)−∇F (ϕ)∥ is O(σ), so decreasing σ trades bias
for variance in the usual way.

B BENCHMARK ENVIRONMENTS

We evaluate SLED across three representative benchmarks, DMControl, Atari, and Habitat, chosen
to probe generality across continuous control, discrete action exploration, and vision-based naviga-
tion. Together, these suites span low-dimensional proprioceptive control, high-dimensional pixel-
based decision making, and photorealistic embodied navigation. Unless otherwise specified, results
are averaged over 5 random seeds.

Figure 3: Average episode return on DMControl over 4M steps

DeepMind Control Suite (DMControl). The DMControl benchmark (Tassa et al., 2018) provides
a standardized set of physics-based continuous control tasks with MuJoCo dynamics. Besides the
main experiments, additional results are shown in Figure 3. We select eight challenging environ-
ments that cover locomotion, underactuated dynamics, and sparse manipulation:
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• Acrobot-Swingup (obs: 6, act: 1) – a two-link underactuated pendulum where rewards
only trigger when the tip is swung upright, testing long-horizon credit assignment.

• Cheetah-Run (obs: 17, act: 6) – periodic high-speed locomotion that requires coordinating
multiple joints for forward velocity.

• Finger-Spin (obs: 9, act: 2, sparse) – rotate a free-floating spinner continuously with sparse
binary rewards; exploration is particularly difficult.

• Finger-Turn-Hard (obs: 12, act: 2, sparse) – turn a spinner to match a precise goal angle
under sparse feedback, stressing precision control.

• Fish-Swim (obs: 24, act: 5) – locomotion in fluid-like dynamics with coupled joints, de-
manding smooth coordination.

• Hopper-Hop (obs: 15, act: 4) – single-legged hopping, highly unstable and sensitive to
balance errors.

• Reacher-Hard (obs: 6, act: 2, sparse) – reaching distant planar targets with very sparse
reward signals.

• Walker-Run (obs: 24, act: 6) – bipedal locomotion where stability and gait coordination
are required over long horizons.

Observations are low-dimensional proprioceptive state vectors; actions are continuous torques. Each
episode is capped at 1,000 steps, with agents trained for 4M environment steps. These tasks expose
both dense and sparse reward structures, under which SLED shows consistent sample efficiency
improvements (Fig. 2).

Atari Arcade Learning Environment. The Atari 2600 suite (Mnih et al., 2013) is a long-standing
benchmark for pixel-based reinforcement learning. We use DQN (Mnih et al., 2015) as the base
learner, with a 1M FIFO buffer and 2M training steps. Observations are 84×84 grayscale frames
with 4-frame stacking; actions are discrete joystick commands. We evaluate on seven diverse games:

• Alien – sparse rewards requiring exploration across large maps with many distractors.
• Asterix – fast-paced environment demanding precise timing and short-term credit assign-

ment.
• Breakout – sparse rewards and high variance: learning depends on rare contact.
• Freeway – binary reward for lane crossing; exploration bottleneck due to feedback.
• Q*bert – complex rules and changing reward semantics across multiple levels.
• MsPacman – partially observable mazes with moving stochastic opponents, requiring

long-term planning.
• Frostbite – highly exploration-heavy with sparse success conditions and stochastic haz-

ards.

SLED maintains a compact synthetic dataset Dϕ of 10k transitions, updated asynchronously every
20k steps via Evolutionary Strategies. Despite using only 1% of the replay size, SLED consistently
outperforms PER, LaBER, ReLo, and SynthER (Table 1), especially on exploration-heavy games
such as Frostbite.

Habitat Visual Navigation. We further evaluate in AI Habitat (Savva et al., 2019; Szot et al.,
2021; Puig et al., 2023), which provides photorealistic 3D indoor navigation tasks based on HM3D
scenes (Ramakrishnan et al., 2021). Agents observe egocentric RGB-D frames (256×256) and
relative goal coordinates; the action space consists of discrete movements (forward, turn, strafe,
stop). Success is defined as issuing a STOP action within 0.2 m of the goal, under a cap of 1,000
steps. We evaluate three scene categories:

• Residential – cluttered homes with narrow corridors and frequent occlusions.
• Office – multi-room layouts with long hallways and repetitive visual textures.
• Commercial – wide, open layouts such as malls or stores, with diverse lighting and open

spaces.
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We train SAC as the base learner, comparing against SAC+PER, SAC+HER, and SynthER. Evalu-
ation is averaged over 100 episodes per scene. As reported in Table 2, SLED achieves the highest
success rates across all settings, surpassing the next best method by more than 3.5% in the hard-
est Commercial scene, demonstrating its robustness under perceptual noise and complex spatial
layouts.

Overall, these three benchmarks stress complementary challenges: exploration under sparse rewards
(DMControl, Atari), sample efficiency with limited buffer size (Atari), and generalization under
visual complexity (Habitat). Across all, SLED improves performance by refining the replay pipeline
without altering the base learner’s update rules.

C FURTHER ANALYSIS ON ATARI

We focus all analyses on ALE/Breakout-v5 to isolate causal effects and to avoid cross-task con-
founds. Unless stated otherwise, we report the mean over 5 seeds. Beyond final score, we quantify
(i) early efficiency (Score@200k), (ii) learning stability via catastrophic drops (CD; # of ≥ 40%
score collapses after 500k frames), and (iii) area-under-curve up to 1M frames (AUC@1M), which
tracks how quickly usable performance accrues.

C.1 ABLATIONS AS A FACTORIAL STUDY (DECOUPLING × ES)

Rather than ablating modules one-by-one, we run a 2 × 2 factorial study to expose interactions
between decoupled schedules and ES-based optimization of Dϕ. Full SLED corresponds to (✓,✓);
vanilla DQN corresponds to (×,×).

Table 4: 2×2 factorial ablation on ALE/Breakout-v5 (2M frames). CD: catastrophic drops; ∆
vs. DQN.

Decouple ES Final Score@200k AUC@1M CD ∆ Final

× × 12.1 5.3 3.2 3.0 –
✓ × 10.5 5.2 2.9 4.2 −1.6
× ✓ 8.8 4.9 2.6 5.1 −3.3
✓ ✓ 18.7 9.1 5.8 0.8 +6.6

Observations. (1) Strong interaction: neither component alone beats DQN on final score, but their
combination yields a large gain ( +6.6 ). (2) Who does what? ES drives where the synthetic examples
sit in state–return space, while decoupling controls how often they are surfaced; both are necessary
to sustain high AUC@1M and suppress collapses (CD ↓ from 3.0 to 0.8). (3) Stability is the biggest
beneficiary of the full design, consistent with SLED feeding near-miss and reward-positive windows
at a steady cadence.

C.2 HYPERPARAMETER SENSITIVITY (JOINT GRID)

We vary the synthetic set size |Dϕ| ∈ {1k, 5k, 10k, 20k, 50k} and ES refresh interval K ∈
{10k, 20k, 50k, 100k} frames. Table 5 collapses the two prior 1-D sweeps into a compact grid.

Table 5: Joint sensitivity on ALE/Breakout-v5. We report Final / AUC@1M; bold =
row/column best.

|Dϕ| ES refresh interval K (frames)

10k 20k 50k 100k

1k 11.0 / 3.0 11.2 / 3.1 10.7 / 2.8 9.3 / 2.3
5k 16.6 / 5.1 16.8 / 5.2 16.1 / 4.9 14.7 / 4.1
10k 18.1 / 5.6 18.7 / 5.8 17.9 / 5.4 15.4 / 4.6
20k 18.0 / 5.7 18.9 / 5.9 18.2 / 5.5 15.6 / 4.7
50k 17.1 / 5.2 17.5 / 5.3 17.3 / 5.2 14.9 / 4.2

Takeaways. (1) Sweet-spot capacity: |Dϕ| = 10–20k offers the best trade-off; smaller sets un-
derfit the event diversity, larger sets add optimization noise with diminishing returns. (2) Refresh
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cadence: K = 20k is robust; too infrequent (100k) makes Dϕ stale (Final/AUC both drop). Too
frequent (10k) gives marginal AUC gains but higher overhead (see Sec. C.5). (3) The chosen default
(|Dϕ|=10k, K=20k) sits on the flat top of the response surface (good-and-safe setting).

C.3 REPLAY BUDGET STRESS TEST

How sensitive is SLED to the size of the real FIFO buffer? We shrink DQN’s buffer from 1M to
200k while keeping SLED’s |Dϕ|=10k and K=20k. Results in Table 6 show that SLED’s gains
grow as the FIFO shrinks,precisely the low-memory regime many practitioners face.

Table 6: Buffer-size stress test on ALE/Breakout-v5 (2M frames).
FIFO size 1000k 500k 200k

DQN (Final / AUC@1M) 12.1 / 3.2 10.8 / 2.9 9.7 / 2.5
DQN + SLED 18.7 / 5.8 18.5 / 5.7 18.2 / 5.5

The widening gap at 200k indicates that curated synthetic transitions compensate for the loss of raw
capacity, keeping informative events in circulation even when the FIFO cannot.

C.4 WHERE THE GAIN COMES FROM (SIGNAL DIAGNOSTICS)

To verify that SLED changes the training signal rather than merely adding data, we probe mini-
batch composition over the first 500k frames: (i) fraction of reward-positive samples; (ii) fraction
of near-miss samples (TD-error in top 15% but zero reward); (iii) median sample age (frames since
collection; higher = less staleness); (iv) label entropy of bootstrapped targets (a proxy for diversity).

Table 7: Replay diagnostics (first 500k frames; mean ± std over seeds). Higher is better for all
except CD.

Method Reward+ (%) Near-miss (%) Median age (k) Target entropy

DQN 3.2± 0.5 7.6± 1.1 12.4± 2.1 0.42± 0.05
DQN + SLED 9.7± 1.2 14.8± 1.6 23.9± 2.8 0.61± 0.06

The minibatch stream under SLED contains more useful events (reward+ and near-miss) and is less
myopic (older, more diverse samples). This aligns with the stability gains in Table 4 (CD ↓) and the
faster early progress.

C.5 COMPUTATIONAL OVERHEAD

Finally, we report the wall-clock and memory cost under the same codebase and GPU. For fairness,
we follow the overhead protocol used in practice: DQN uses a 1M FIFO; SLED uses a compact FIFO
of 200k plus |Dϕ|=10k (the cache ratio is 1%), matching the configuration used by practitioners
under memory budgets.

Table 8: Overhead on ALE/Breakout-v5 (2M frames).
Method Total time (min) Peak GPU (MiB) Final

DQN (1M FIFO) 90 466 12.1
DQN + SLED (200k FIFO + 10k Dϕ) 94 189 18.7

SLED adds ∼4 minutes (+4.4%) wall-clock while cutting peak memory by ∼60%. Sec-
tions C.2–C.3 show that the accuracy gains persist across a wide range of (|Dϕ|,K) and FIFO
sizes.

Summary. (1) Decoupling and ES are jointly necessary; the benefit is interaction-dominated. (2)
|Dϕ|=10–20k and K=20k are robust, sitting on a flat optimum. (3) As real FIFO capacity shrinks,
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SLED’s relative advantage grows. (4) Diagnostics confirm the mechanism: SLED reshapes the
minibatch stream toward rare-but-useful events and reduces training collapses.

D FURTHER ANALYSIS ON HABITAT

We conduct additional experiments on the Habitat benchmark to better understand how SLED op-
erates under high-dimensional RGB-D navigation. Unless otherwise specified, the base learner is
SAC, episodes are capped at 1,000 steps, success is defined as issuing a STOP action within 0.2 m
of the goal, and results are averaged over 5 random seeds.

D.1 FACTORIAL ABLATION: DECOUPLING × ES

We design a 2×2 factorial ablation to analyze the contributions and interactions between two core
components: (i) decoupled write and sample schedules, and (ii) ES-based optimization of the syn-
thetic dataset. Full SLED corresponds to (✓,✓), while the vanilla baseline is (×,×). Results are
averaged across Residential, Office, and Commercial scenes.

Table 9: Factorial ablation on Habitat (HM3D). SR: Success Rate; SPL: Success weighted by Path
Length; CD: catastrophic drops (number of episodes with SR collapse > 40% after mid-training).

Decouple ES SR (%) SPL Collisions Stop Err (m) CD

× × 54.2± 2.3 0.43± 0.02 7.8± 0.6 0.28± 0.02 5.1
✓ × 55.1± 2.2 0.44± 0.02 7.5± 0.5 0.27± 0.02 4.7
× ✓ 56.3± 2.5 0.45± 0.02 7.2± 0.6 0.26± 0.02 4.3
✓ ✓ 64.2± 1.8 0.51± 0.01 6.1± 0.4 0.23± 0.01 1.6

Observations. Neither component alone yields substantial gains, but their combination delivers
strong improvements (SR +10 points, SPL +0.08). Decoupling stabilizes the training signal, while
ES provides higher-quality synthetic transitions. Together, they significantly reduce catastrophic
collapses.

D.2 JOINT SENSITIVITY: SYNTHETIC CAPACITY × UPDATE FREQUENCY

We vary synthetic dataset size |Dϕ| ∈ {2k, 5k, 10k} and ES update interval K ∈ {5k, 20k, 50k}
environment steps. Results are averaged over all scene categories.

Table 10: Sensitivity analysis on Habitat. SR/SPL values are reported. Bold highlights the best
configuration.

|Dϕ| ES update interval K (steps)

5k 20k 50k

2k 60.1 / 0.48 60.5 / 0.49 58.9 / 0.47
5k 62.7 / 0.50 63.4 / 0.51 61.3 / 0.49
10k 64.0 / 0.51 64.2 / 0.51 62.1 / 0.50

Observations. Dataset sizes of 5k–10k perform best; smaller sets lack coverage, while larger sets
offer diminishing returns. The default K=20k is a balanced choice—frequent updates (5k) give
minor SPL gains at higher cost, while infrequent updates (50k) cause staleness and performance
drop.

D.3 CROSS-SCENE GENERALIZATION

We train on Residential+Office and test zero-shot on Commercial scenes to examine gen-
eralization under domain shift.

Observations. SLED provides the highest transfer performance, suggesting that the distilled dataset
preserves progress-critical transitions that generalize across layouts and textures.
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Table 11: Cross-scene transfer to Commercial. Mean ± 95% CI over 100 episodes.
Method SR (%) SPL

SAC 42.8± 2.4 0.36± 0.02
SAC+PER 49.9± 2.0 0.41± 0.02
SAC+HER 52.4± 1.9 0.43± 0.02
SynthER 57.2± 1.8 0.46± 0.01
SAC+SLED 61.1± 1.6 0.49± 0.01

D.4 REPLAY BUDGET STRESS TEST

We reduce the real FIFO buffer from 500k to 200k while keeping |Dϕ|=5k and K=20k.

Table 12: Replay buffer stress test. Smaller buffers magnify the benefits of SLED.
FIFO size Method SR (%) SPL

500k SAC 51.0 0.42
SAC+SLED 63.8 0.51

200k SAC 46.3 0.39
SAC+SLED 62.9 0.50

Observations. Under reduced memory budgets, vanilla SAC degrades significantly, while SLED
remains stable, demonstrating its robustness to buffer size constraints.

D.5 REPLAY DIAGNOSTICS

To understand how replay distribution changes, we log four metrics over the first 500k steps: frac-
tion of progress windows (distance-to-goal decreases without collision), fraction of near-miss turns
(close to goal but failed stop), median sample age, and target entropy.

Table 13: Replay diagnostics on Habitat (first 500k steps). Higher is better for all except collisions.
Method Progress (%) Near-miss (%) Median age (k) Target entropy

SAC 8.9 6.4 11.7 0.38
SAC+SLED 17.1 10.8 21.3 0.55

Observations. SLED rebalances replay toward more informative transitions: progress windows
nearly double, near-misses increase, samples are older on average (less myopic), and policy entropy
rises, indicating healthier exploration.

D.6 COMPUTATIONAL OVERHEAD

We report training wall-clock and peak GPU memory on identical hardware. For SLED, we pair a
200k FIFO with a 5k synthetic set.

Table 14: Overhead on Habitat. SLED achieves higher SR with lower memory and minimal extra
time.

Method Time (h) Peak GPU (MiB) Avg. SR (%)

SAC (500k FIFO) 12.4 5,320 50.4
SAC+SLED (200k FIFO + 5k Dϕ) 12.9 3,040 62.6

Summary. (1) Decoupling and ES exhibit strong interaction effects in Habitat. (2) A synthetic
dataset size of 5k–10k and update interval of 20k is a robust sweet spot. (3) SLED is resilient under
limited replay budgets. (4) Diagnostics confirm that performance gains stem from more informative
replay exposure, not from additional heuristics or reward shaping.
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E USE OF LLM

Large language models (LLMs) were used as assistive tools for text editing and improving the clarity
of exposition. They were not involved in the design of algorithms, implementation, or experimental
analysis. All technical content, theoretical results, and experimental findings were produced and
verified by the authors. We take full responsibility for the content of this paper. We only used LLMs
for language polishing.
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