Teaching Language Models to Critique via Reinforcement Learning

Zhihui Xie“! Jie Chen”? Liyu Chen> Weichao Mao’ Jingjing Xu? Lingpeng Kong '
https://critic-rl.github.io

Abstract

Teaching large language models (LLMs) to cri-
tique and refine their outputs is crucial for build-
ing systems that can iteratively improve, yet it
is fundamentally limited by the ability to pro-
vide accurate judgments and actionable sugges-
tions. In this work, we study LLM critics for
code generation and propose CTRL, a framework
for Critic Training via Reinforcement Learning,
which trains a critic model to generate feedback
that maximizes correction performance for a fixed
generator model without human supervision. Our
results demonstrate that critics trained with CTRL
significantly enhance pass rates and mitigate com-
pounding errors across both base and stronger
generator models. Furthermore, we show that
these critic models act as accurate generative re-
ward models and enable test-time scaling through
iterative critique-revision, achieving up to 106.1%
relative improvements across challenging code
generation benchmarks.

1. Introduction

Recent advances in Large Language Models (LLMs) have
sparked interest in their potential for self-improvement
through iterative feedback mechanisms (Pan et al., 2023).
Methods like Reflexion (Shinn et al., 2024) and Self-Refine
(Madaan et al., 2024) demonstrate that LLMs can, in prin-
ciple, critique their own outputs and generate refined re-
sponses. This self-improvement paradigm offers a promis-
ing direction toward more autonomous Al systems that can
learn from their mistakes.

However, the effectiveness of such self-improvement mech-
anisms remains challenging in practice. Huang et al. (2023)
demonstrate that without appropriate external feedback,
such self-improvement loops may lead to performance

“Equal contribution 'The University of Hong Kong *Bytedance
Seed. Correspondence to: Zhihui Xie <zhxieml@gmail.com>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Critic
—e— CTRL Qwen2.5-Coder —x— GPT-40
Qwen2.5-Coder Generator GPT-40 Generator
e 26
16 > o *
./o/ /\°\./
./ 24 ()
14 /
— X o
© / —
312 & - 22
& x—
x/ X x\ X X
10 20 x = ~
8 x
18
0 2 a4 6 0 2 4 6

Critique-revision lteration Critique-revision Iteration

Figure 1. Performance scaling of our CTRL critic (finetuned on
Qwen2.5-Coder-32B-Ins, henceforth Qwen2.5-Coder) compared
to other critics across different generators on CodeContests. CTRL
demonstrates strong critiquing capabilities not only when paired
with its base model but also with a stronger generator (GPT-4o,
right). Shaded regions indicate standard error across 5 seeds.

degradation. To address this, existing approaches primarily
rely on reward models (Sun et al., 2023; Yuan et al., 2024)
or automated verification tools (Gou et al., 2023; Chen et al.,
2023). However, these mechanisms often fail to provide
actionable guidance — reward models compress complex
evaluation criteria into simplified numerical signals (Gao
et al., 2023; Pan et al., 2024), while verification tools gener-
ate low-level execution traces that do not directly translate
to high-level fixes (Zhong et al., 2024). Even in domains
like code generation (Li et al., 2022; Sun et al., 2024) where
such feedback mechanisms are readily available, previous
work (Zheng et al., 2024) as well as our experiment (Table 1)
reveal that such feedback alone struggles to drive meaning-
ful improvements. At the heart of this issue lies the feedback
bottleneck: feedback needs to both accurately discriminate
the correctness of solutions and provide informative yet
actionable suggestions for improvement.

To address these challenges, we propose CTRL (Critic
Training via Reinforcement Learning), a framework that
decouples the critic model from the task-performing model
(e.g., GPT-40) and focus on developing a specialized critic
that can effectively drive the task-performing model to-
ward optimal solution generation through iterative critique-
revisions (Figure 2). This decomposition naturally intro-
duces a well-defined proxy task for training the critic model:

https://critic-rl.github.io

Teaching Language Models to Critique via Reinforcement Learning

/—{ HUMAN

There is an infinite 2D plane.
You are given a positive integer k. You are also given a 2D array queries, which contains the following queries:

queries[i] = [x, y]: Build an obstacle at coordinate (x, y) in the plane. It is guaranteed that there is no obstacle at this
coordinate when this query is made.

After each query, you need to find the distance of the k*th nearest obstacle from the origin.

Return an integer array results where results[i] denotes the k*th nearest obstacle after query i, or results[i] == -1if there
are less than k obstacles.

Note that initially there are no obstacles anywhere.

The distance of an obstacle at coordinate (x, y) from the origin is given by |x| + |y|.

ASSISTANT

def resultsArray(self, queries: List[List[int]], k:
int) - List[int]:

min_heap = []

results = []

for x, y in queries:
distance = abs(x) + abs(y)
heapq.heappush(min_heap, distance)

if len(min_heap) >= k:
results.append(min_heap[k-1])
else:
results.append(-1)

return results

d CRITIC

Analysis:

The provided solution attempts to use a min-heap to keep track of the distances of obstacles from the origin. However, it
incorrectly assumes that accessing ‘min_heap(k-1]" will give the k-th smallest element directly. This is not the case
because heaps do not maintain sorted order beyond the root element; they only ensure that the smallest element is
always at the root. Therefore, attempting to access elements by index does not yield the correct k-th smallest value.

Furthermore, the approach does not efficiently handle the requirement to always return the k-th nearest obstacle after
each query, especially considering the large constraints where the number of queries can be up to \(2 \times 10°5\).

Improvement suggestions:
To address these issues, consider maintaining a balanced data structure that allows efficient insertion and retrieval of the
k-th smallest element. A balanced binary search tree or a more advanced structure like a skip list could potentially work,

ASSISTANT

def resultsArray(self, queries: List[List[int]], k:
int) > List[int]:

max_heap =[]

results = []

for x, y in queries:
distance = abs(x) + abs(y)

if len(max_heap) < k:
heapq.heappush(max_heap, -distance)
elif distance < -max_heap[0]:

but these might be complex to implement within the given constraints.

and the root of the heap will be the k-th smallest distance.

Overall judgment: Incorrect

Alternatively, focus on using a heap-based strategy more effectively. One possible approach involves maintaining a
max-heap of size k to store the k smallest distances encountered so far. When a new obstacle is added, calculate its
distance and compare it with the largest element in the heap (the root of the max-heap). If the new distance is smaller,
replace the largest element with the new distance. This ensures that the heap always contains the k smallest distances,

heapg.heappop(max_heap)
heapq.heappush(max_heap, -distance)

if len(max_heap) == k:
results.append(-max_heap[0])
else:
results.append(-1)

return results

Figure 2. Tllustration of the critique-correction process for a coding problem. Top: An initial solution is proposed by the task-performing
using a min-heap approach. Bottom: The critic identifies flaws in the implementation (incorrect heap access and inefficient query
handling) and suggests specific improvements, leading to a corrected max-heap solution. This example is taken from critiques of CTRL
on LiveCodeBench, which demonstrates how structured feedback from the critic can guide meaningful improvements in code generation.

while directly evaluating the quality of generated critiques
remains challenging, the effectiveness of a critic can be
measured by its ability to drive the task-performing model
toward correct outputs. Though such indirect optimization
signals lead to a large space of possible critiques and there-
fore high variance during training, we address this through a
two-stage pipeline: first synthesizing high-quality critiques
using execution feedback for supervised finetuning, then
optimizing the critic through Group Relative Policy Opti-
mization (GRPO; Shao et al. 2024).

Through extensive evaluations on diverse benchmarks
including CodeContests (Li et al., 2022), Live-
CodeBench (Jain et al., 2024), MBPP+ (Liu et al.,
2024a), and JudgeBench (Tan et al., 2024), we demonstrate
that training with CTRL significantly outperforms both
self-critique approaches and methods using stronger critic
models. Notably, we observe remarkable generalization
capabilities of the decoupled critic LLM across different
problem domains and model scales. Our experiments
demonstrate that relatively weaker critic models can
effectively guide stronger task-performing models such
as GPT-4o0 (Table 3), exhibiting a similar phenomenon
to weak-to-strong generalization (Christiano et al., 2018;
Burns et al., 2023), where weaker models can be trained to
effectively supervise more capable ones.

Furthermore, CTRL enables efficient test-time scaling (Fig-
ure 1). By providing targeted and actionable feedback, our

critic significantly reduces the number of revision itera-
tions needed, leading to both lower token consumption and
higher success rates. Our empirical analysis (Figure 4)
demonstrates that this efficiency stems from reduced error
compounding—the critic effectively identifies and corrects
mistakes early, guiding the model toward more direct solu-
tion paths without compromising solution quality.

Our work makes four key contributions: (1) We propose
CTRL, a novel framework that decouples critic LLMs from
task-performing models and trains them through two-stage
GRPO to guide code improvement. (2) Through extensive
evaluation on programming benchmarks, we demonstrate
that CTRL significantly outperforms both self-critique meth-
ods and approaches using stronger critic models. (3) We
establish that relatively weaker critic models can effectively
guide stronger task-performing models, demonstrating a
promising weak-to-strong generalization phenomenon in
LLM guidance. (4) We show that a trained critic enables
test-time scaling through iterative critique-revisions, achiev-
ing up to 106.1% and 23.5% relative Pass@ 1 improvements
on the challenging CodeContests benchmark when paired
with its base model and a stronger model, respectively.

2. Preliminaries and Motivation

The success of iterative improvement methods critically
depends on their ability to leverage feedback to improve

Teaching Language Models to Critique via Reinforcement Learning

solutions. Formally, let x be an input problem and y be a
candidate solution, with R(y) being the evaluation function
that returns 1 if y is correct and O otherwise. Starting with
an initial proposal distribution yo ~ 7 (- | x), the iterative
process generates subsequent solutions by incorporating
feedback f(- | x,y;) and produce the next solution ;.

In this context, the effectiveness of such feedback mecha-
nisms relies on two key capabilities: (1) discrimination - the
ability to evaluate and rank solutions, and (2) critiquing -
the ability to provide actionable feedback for improvement.
While discrimination has been extensively studied (Gao
et al., 2023), we focus on the critiquing ability and pro-
pose to characterize it through the transition dynamics of
a Markov chain (Meyn & Tweedie, 2012) governing the
correctness of the iteratively refined solutions { R(y;)}::

P(R(yo) = 1) = pinit,
P(R(yi+1) = 1| R(y:) = 1) = pec,
Yir1) = 1| R(y:) = 0) = pew,
where p. represents the critiquing ability to avoid turning

correct solutions into wrong ones, and p.y, captures the
helpfulness of the feedback in improving the solution.

Varying Critiquing Ability. To understand the impor-
tance of the critiquing ability, we conduct simulations
across different levels of critiquing strength while lever-
aging discrimination to aggregate the final solutions. We
consider pjni; = 0.1 and three scenarios: (1) No critiquing
(Pew = Dec), @ special case representing methods that in-
dependently sample from the base distribution, or equiv-
alently best-of-n sampling (Sessa et al., 2024); (2) Weak
critiquing (pec = 0.7, pew = 0.15); and (3) Strong cri-
tiquing (pce = 0.9, pew = 0.3). For each scenario, we
first generate n solutions based on the specified transition
dynamics, then apply the discrimination ability to select
the best promising solution, and plot the final correctness
probability against the number of attempts n. We present
more details in Appendix C.1.

Observations & Takeaways. As shown in Figure 3, our
analysis reveals several key findings: (1) Strong critiquing
abilities significantly improve success rates compared to no
critiquing, with performance gains visible even with weak
critiquing, aligning with recent empirical findings (Huang
et al., 2023). (2) Strong critiquing ability can compensate
for weaker discrimination — a system with weak discrim-
ination but strong critiquing feedback can outperform one
with stronger discrimination but no critiquing ability. (3)
The benefits of critiquing compound with more iterations,
while approaches with no critiquing plateau quickly. These
findings highlight that effective iterative improvement re-
quires careful attention to both discrimination and critiquing

- Strong Critiquing Weak Critiquing No Critiquing
HEEPY
0.8
W mmmr—— E |
0.7
0.6
S 0.5
Q
0.4
0.3
‘ Discrimination Ability
0.2 —@- Strong -Ml- Weak
0 10 20 30 40 50 60

Number of Attempts

Figure 3. Simulation results showing success probability (pcorrect)
as a function of the number of attempts, comparing different levels
of critiquing and discrimination ability.

abilities. While perfect abilities are not necessary, systemat-
ically improving these capabilities — particularly the ability
to generate actionable critiques — is crucial for realizing the
full potential of iterative refinement approaches.

3. Method

With analysis presented in Section 2, our goal is to teach
LLM:s the ability of critiquing without human supervision.
We propose CTRL, a two-stage training approach: (1) syn-
thesizing high-quality critiques by reasoning about execu-
tion feedback, then (2) refining the critic through reinforce-
ment learning. Once trained, the critic model can be used
at test time, paired with any generator models, to iteratively
refine solutions. A complete overview of the pipeline is pro-
vided in Appendix A, with critique samples in Appendix E.

3.1. Problem Statement

We focus on code generation as our primary domain as
it provides clear objective metrics through test cases, fol-
lowing previous work (McAleese et al., 2024). Given a
programming problem x (specified in natural language) and
a solution y (code implementation), our goal is to enable
iterative refinement of solutions, which centers on two key
components: (1) a generator model 7(y | x) that proposes
solutions, and (2) a critic model Cy(c|x, y) that provides
textural feedback c for improvement.

Assumptions. Let D = {(z;,7;)}}Y, be our training
dataset, where each problem z; is paired with unit tests
T;. We have access to a sandbox environment that executes
code against test cases, which serves as the evaluation func-
tion R(y) that returns 1 if y passes all tests, 0 otherwise.
Notably, the sandbox does not assist critique generation at
test time. While not required, we treat the generator model
as a black-box, allowing our approach to build upon existing

Teaching Language Models to Critique via Reinforcement Learning

strong generators without access to their parameters.

Objective. While directly measuring the helpfulness of
critiques remain challenging, we can define a proxy task
that evaluates whether the critique leads to improved so-
lutions. Given an initial solution ¢y ~ (- |), the critic
analyzes it and produces textual feedback c. The generator
then uses this feedback to revise the solution, producing an
improved output y. Let z = (x,y’) represent the problem-
solution pair. Our objective is to train the critic model Cjy to
maximize the expected solution quality:

j(e) = EZNDXﬂ,yNWQ(-\z)[R(y)]a (D

where mo(y | z) = Y. Colc | 2)m(y | z,c¢) denotes the
improved solution distribution through marginalization over
possible critiques. Notably, although Equation (1) defines a
single-turn critique-revision task, we observe that the trained
model generalizes to multi-turn revisions (Section 4.2).

Defining the Critique Space. We structure the critique
space into three components (Figure 2): (1) an analysis
of the solution’s strengths and weaknesses, (2) actionable
improvement suggestions, and (3) a final judgment of cor-
rectness (correct/incorrect). During inference, these compo-
nents enable iterative critique-revision, where the process
stops once the judgment indicates the solution is correct.
This design balances discrimination and critiquing, both
essential for iterative refinement, as discussed in Section 2.

3.2. Stage I: Execution-guided Critique Synthesis

Although conceptually straightforward, learning effective
critiques is challenging due to the large critique space, where
only a small fraction leads to successful revisions. Our
experiments with Qwen2.5-Coder (Hui et al., 2024) (Ta-
ble 1) show that models struggle to generate informative
critiques for self-improvement, aligning with previous find-
ings (Huang et al., 2023). Self-critique without additional
feedback yields minimal gains (7.88% — 8.36%) and rarely
converts incorrect solutions to correct ones, highlighting the
limited ability of models to correct their own mistakes.

Reasoning over Execution. While the initial critiquing
ability is limited, previous work (Ni et al., 2024) has shown
that LLMs can effectively reason over execution feedback.
Table 1 demonstrates that when LLMs reason over execution
feedback to generate critiques (Self-critique w/ Execution
Feedback), they achieve substantial improvements, as com-
pared to directly using raw execution feedback for revisions
(11.76% vs. 8.97%). This suggests that while directly using
raw execution feedback is inefficient, we can leverage the
model’s reasoning ability over execution feedback to help
generate more accurate and informative critiques.

Table 1. Critique-revision performance (Pass@1, %) on CodeCon-
tests. We fix the generator model to be Qwen2.5-Coder, and
compare zer-shot performance with critique-revision performance
using different feedback mechanisms. xk represents conducting
iterative critique-revision k times. Tusing unit tests for generation.

Pass@l Ay Ay

Zero-shot 7.88 0.00 0.00
Execution Feedback (EF)| 8.97 242 1.33

Self-critique w/ EFT 11.76 3.88 0.00
Self-critique 8.36 230 1.82
Critique w/ CTRLsfr 8.36 352 3.03

11.76 473 0.85
14.18 727 097
15.15 812 0.85

Critique w/ CTRL
Critiquex2 w/ CTRL
Critiquex3 w/ CTRL

Table 2. Discrimination performance (F1 score, %) on CodeCon-
tests.

Passed Failed Macro

Qwen2.5-Coder 88.21 34.16 61.19

CTRLsFT 95.54 41.26 68.55

CTRL 93.19 45.02 69.10
Critique Synthesis. Building on the above insight, we de-

velop a critique synthesis approach that leverages execution
feedback to train models in generating effective critiques.
Our approach samples high-quality synthesized critiques
from a hinted distribution Cy(c | z, h), where hints h are
constructed by analyzing initial solutions 3’ through sand-
box execution. We map different execution outcomes to
specific hint templates as shown in Table 7: (1) for pass-
ing solutions, we encourage concise positive feedback; (2)
for completely failing solutions, we suggest restarting from
scratch; and (3) for partially failing solutions, we provide
the exact error message and test case details to help pinpoint
the issue.

Supervised Finetuning. Similar to context distilla-
tion (Snell et al., 2022; Guan et al., 2024), we exclude these
hints and conduct supervised finetuning to encourage the
model to internalize the critiquing strategies. We observe
leveraging execution feedback for supervised finetuning is
beneficial mainly in two aspects: (1) it helps learn the for-
mat; (2) while it marginally improves the critique-revision
performance due to the high frequency of instructing correct
solutions to wrong (Table 1), it substantially boosts discrim-
ination by providing ground-truth correctness (Table 2).

3.3. Stage II: Reinforced Critique Generation

While our critique synthesis approach with predefined tem-
plates provides a strong foundation, it may not capture all
nuanced feedback scenarios required for complex program-
ming tasks. To overcome this limitation, we formulate

Teaching Language Models to Critique via Reinforcement Learning

critique generation as a reinforcement learning problem,
allowing the critic to adaptively learn feedback strategies
through direct optimization of solution improvement.

Our goal is to maximize the performance in Equation (1). To
optimize Cy, one natural approach is using policy gradient
methods (Sutton et al., 1999):

VoEyry [R(y)]
=VoEy 5. Co(elz)n(ylze) [B(Y)]

=Vy Z R(y) Z Cy(cl2)m(y|z,c)
=Y "R(y) Y VoCo(c|2)n(ylz,c)

The double summation over both solution space y and feed-
back space c introduces high variance in gradient estimates:

Var(Vy) = E[(Vo — E[Vo])?] o< V] - [C].

where |)| and |C| are the sizes of solution and critique
spaces respectively. In this scenario, using value networks
to predict credit assignment remains challenging, as we
observe significant instability when using Proximal Policy
Optimization (PPO; Schulman et al. 2017) — the learned
networks produce noisy estimates of critique quality. We
present detailed experimental observations in Appendix D.

Variance Reduction. To combat these variance issues, we
adopt Group Relative Policy Optimization (GRPO; Shao
et al. 2024) that avoids using value networks for learn-
ing credit assignment and reduces variance through group-
based relative advantages. Specifically, for each problem-
solution pair z = (z,y’), we sample a group of critiques
{c1,¢2, ..., cq} from Cy(-|z) and compute advantages:

R(yi) — MG
(oXe ’

A=

where y; ~ 7(:|z,¢;) is the improved solution generated
using critique c¢;, and pug and og are the mean and stan-
dard deviation of rewards within the group. This approach
normalizes rewards across different problem types and nat-
urally focuses training on problems where critique quality
can make a meaningful difference, as problems that are too
easy or too hard produce zero relative advantages. The final
training objective is:

T(0) = Eoip (e} ~Coyy (12) [
G
l . Cy(cil|2) o Co(cilz) _
g 2 (min (2 G An el (G2) 49)

— BDk(Co|Crr)|,

where clip, represents clipping the value to [1 — ¢, 1 + €]

and Dy (Cp||Crer) = ng((fll‘zz)) — log g:((jllj)) — 1 denotes

the KL regularization term that alleviates over-optimization.

4. Experiments

We conduct extensive experiments to evaluate our method’s
effectiveness across multiple benchmarks. Our evaluation
focuses on two key aspects: (1) the accuracy of the critic
in identifying solution correctness, and (2) the quality im-
provement achieved through critique-guided revisions.

4.1. Setup

Training Data. We use TACO (Li et al., 2023), a dataset
containing 26,443 programming problems collected from
competitive programming platforms like CodeForces and
LeetCode. Each problem includes a natural language de-
scription and multiple test cases. Due to noise in the original
dataset (malformed test cases and contaminated problems),
we filter the dataset to 18,820 problems for training, with
details presented in Appendix C.3.

Models. We base our critic model on the open-source
Qwen2.5-Coder-Ins (Hui et al., 2024) model. During train-
ing, we fix the generator model to be Qwen2.5-Coder-Ins
itself. For evaluation, we assess the trained critic’s perfor-
mance by pairing it with various generator models for initial
solution generation and subsequent revision, comparing
against other LLM critics such as GPT-4o.

Benchmarks. We evaluate our approach on three program-
ming benchmarks and one general-domain benchmark: (1)
CodeContests (Li et al., 2022), a collection of challenging
competitive programming problems; (2) LiveCodeBench
(24.08-24.11) (Jain et al., 2024), a curated set of recent
programming challenges designed to minimize data con-
tamination; (3) MBPP+ (Liu et al., 2024a), an extension
of the MBPP benchmark (Austin et al., 2021) focused on
fundamental programming tasks; and (4) JudgeBench (Tan
et al., 2024), where we evaluate the model’s effectiveness
as a generative reward model for comparing solution pairs.

Metrics. To evaluate critiquing ability, we use three met-
rics: Pass@ 1 measures the success rate of the final solutions,
A, represents the fraction of initially incorrect solutions that
become correct after revision, and A represents the frac-
tion of initially correct solutions that become incorrect after
revision. For discrimination ability, we employ F1 score
when evaluating single solutions, and accuracy when com-
paring paired solutions in Judgebench, as the latter involves
binary decisions between two alternatives.

Teaching Language Models to Critique via Reinforcement Learning

Table 3. Performance comparison across different generators and benchmarks. We evaluate different configurations, with critique-revision
representing an iterative process where a critic model provides feedback to guide solution improvement. Pass@1 shows the success
rate, while Ay and A indicate the percentage of wrong solutions being correctly revised and correct solutions being revised to wrong

solutions, respectively. Results are averaged over 5 random seeds.

CodeContests LiveCodeBench MBPP+ Average
Pass@l A; A, Pass@l A; A, Pass@l Ay A, Pass@1
Qwen2.5-Coder as Generator

Zero-shot 7.88 0.00 0.00 30.54 0.00 0.00 77.83 0.00 0.00 38.75
Single-turn Critique-revision

Critique w/ Qwen2.5-Coder 8.36 230 1.82 32.14 250 0.89 77.83 349 349 39.45
Critique w/ GPT-40 10.67 4.85 2.06 32.32 232 0.54 77.46 3.81 4.18 40.15
Critique w/ CTRL 11.76 473 0.85 33.21 3.39 071 78.84 243 143 41.27
Multi-turn Critique-revision

Critique x5 w/ Qwen2.5-Coder 9.21 376 242 29.64 214 3.04 76.03 381 5.61 38.30
Critique x5 w/ GPT-40 12.48 7.03 242 32.86 4.82 2.50 74.60 434 17.57 39.98
Critique x5 w/ CTRL 16.24 9.21 0.85 33.39 375 0.89 78.68 323 238 42.77

GPT-40 as Generator

Zero-shot 20.61 0.00 0.00 3232 0.00 0.00 71.67 0.00 0.00 43.53
Single-turn Critique-revision

Critique w/ Qwen2.5-Coder 20.24 352 3.88 35.36 3.93 0.89 76.67 0.85 1.85 44.09
Critique w/ GPT-40 20.97 230 194 34.82 2.68 0.18 77.41 1.01 1.27 44.40
Critique w/ CTRL 23.03 497 255 33.39 2.14 107 77.83 0.53 0.37 44.75
Multi-turn Critique-revision

Critique x5 w/ Qwen2.5-Coder 19.52 521 630 35.54 536 2.14 76.08 1.53 3.12 43.71
Critique x5 w/ GPT-40 20.61 339 339 35.18 321 0.36 76.61 2.06 3.12 44.13
Critique x5 w/ CTRL 25.45 7.88 3.03 34.11 321 143 77.94 0.79 0.53 45.83

Execution Sandbox. We employ SandboxFusion (Liu
et al., 2024b) as our execution environment, which provides
a unified interface for evaluating solutions across training
data and benchmarks through both function-based and stan-
dard input-output formats.

4.2. Evaluating Critics for Iterative Critique-revisions

To evaluate the effectiveness of CTRL, we present a compre-
hensive analysis of critique-revision strategies with different
feedback mechanisms on CodeContests in Table 1. The
discrimination performance of critics is shown in Table 2,
while results across different benchmarks and generators are
presented in Table 3.

RL Significantly Boosts Critiquing Ability. Table 1
shows that our RL-trained critic significantly outperforms
baseline approaches, achieving a 11.76% pass@1 rate com-
pared to 7.88% with zero-shot generation. This substantial
improvement builds upon a much reduced regression rate
A than its SFT counterpart (0.85% vs. 3.03%).

CTRL Enables Test-time Scaling. As shown in Table 1,
our approach enables test-time scaling through iterative
critique-revisions. Notably, despite training exclusively on
single-turn critiquing tasks, CTRL generalizes to multi-turn
settings. By increasing the number of iterations from one
to three (Critiquex3 w/ CTRL), we further improve the

Pass@1 rate from 11.76% to 15.15% while maintaining a
low regression rate A| of 0.85%. This demonstrates that
our critic provides consistently reliable feedback across
multiple revision iterations, unlike baseline approaches that
accumulate errors, as discussed below.

CTRL Mitigates Compounding Errors. Figure 4 further
illustrates this stability advantage - while both Qwen2.5-
Coder and GPT-40 show increasing error compounding rates
over iterations, CTRL maintains a significantly lower rate,
enabling reliable multi-round improvements.

CTRL Generalizes to Different Generators and Tasks.
While we train the critic model with Qwen2.5-Coder as the
generator, as shown in Table 3, our approach generalizes
well across different programming tasks. Notably, a weak
critic model trained against itself can assist stronger model
(GPT-40), providing evidence for scalable oversight (Chris-
tiano et al., 2018; Kenton et al., 2024).

Performance Scaling with Problem Difficulty. As
shown in Figure 5, our critique-revision approach demon-
strates increasingly substantial relative gains as both itera-
tion and problem difficulty increases, revealing that CTRL
is particularly effective for complex tasks, where iterative
refinement through targeted critique and revision yields the
most significant benefits compared to zero-shot generation.

Teaching Language Models to Critique via Reinforcement Learning

Critic
—e— CTRL Qwen2.5-Coder —x— GPT-40
3.0 Qwen2.5-Coder Generator 7 GPT-40 Generator
;\5 6
~ 25 *
3 — | 5
o 2.0 x\x/ x
= 4 /
<15 —
s 3 o~ 4
& 0740\./
o 1.0]
o p—— \.\ /.\ 2 X
gos o 1
0.0 = 0 %
0 2 4 6 0 2 4 6

Critique-revision lteration Critique-revision lteration
Figure 4. Compounding error analysis. Regression rate measures
the frequency of correct initial solutions being revised into incor-
rect ones. Shaded regions indicate standard error over 5 seeds.

4.3. Evaluating Critics as Generative Reward Models

One advantage of unifying textural feedback is to bal-
ance discrimination and critiquing abilities. To assess our
critics’ discrimination capabilities, we evaluate them on
JudgeBench (Tan et al., 2024), a comprehensive benchmark
containing 350 GPT-40 completions across categories span-
ning general knowledge, reasoning, mathematics, and cod-
ing. This setup presents a challenging out-of-distribution
test in two aspects: (1) our critics must evaluate outputs
from a more capable model than their training distribution,
and (2) they need to generalize to broader domains beyond
coding tasks. This evaluation scenario is particularly inter-
esting as it examines whether relatively weaker models can
be effectively trained to judge outputs from more powerful
models.

As shown in Figure 6, CTRL critic achieves competitive
performance compared to stronger models such as Claude-
3.5-Sonnet. Notably, while our critic is specifically trained
on programming tasks, it maintains comparable overall ac-
curacy (64.3%) while demonstrating superior performance

Critique revision Iteration

4 5 w6
+73.2%
25
¥
3\0,20 +161.1%
0}
T 15 | |
o
& o
8 10 +233.3%
|
. o
I
0
Easy Medium Hard

Figure 5. Comparison of pass@1 rates by problem difficulty with
CTRL critics on CodeContests. Results are averaged over 5 seeds.

90

mmm Coding Overall
80
X
= 70
o 64.364.3 64.364.3
©
5 59.4 59 5 59
3 60
e
< 52.452.3
50 I
40
A° 5O AP ot N et
1@ & oo o o oY
e«‘ o o \,9
'03 W C,Oé é\e’ﬁ [
o [Qo

a®

Figure 6. Model performance comparison on JudgeBench.

on coding-specific evaluations. This suggests that our CTRL
enables effective discrimination capabilities that generalize
beyond the training domain.

4.4. Analysis

To better understand how CTRL boosts iterative refinement,
we further conduct analyses on the similarity between orig-
inal and revised solutions, execution time changes, and
critique characteristics. Our findings reveal several key pat-
terns in how different critique methods influence the process
of critique-revision.

The Effect of Generator Ability. As a preliminary analy-
sis before finetuning experiments, we examine how model
sizes affect critique-revision performance using Qwen2.5-
Coder-Ins models (7B, 14B, and 32B) in an inference-only
setting, comparing zero-shot generation against critique-
revision with critiques generated by another critic model
conditioned on execution feedback. Table 4 reveals that
critic capability significantly influences improvement poten-
tial—while smaller critics (7B) often lead to performance
degradation, larger critics (32B) consistently yield better out-
comes, achieving up to 50% improvement when paired with

Table 4. Relative improvement (%) on CodeContests when com-
paring critique-revision (using critics conditioned on execution
feedback) against zero-shot generation, across different generator-
critic size combinations. Results are from inference-only experi-
ments before any finetuning.

Critic
Generator 7B 14B 39B Avg.
7B -33.33 2222 -11.11 -7.41
14B -9.09 -9.09 9.09 -3.03
32B 0.00 30.00 50.00 26.67
Avg. -14.14 1438 15.99

Teaching Language Models to Critique via Reinforcement Learning

Distribution of Solution Similarities Similarity Score Comparison

} [Self-critique 1.00

| ——- Self-critique Mean: 0.482
[CTRL
——- CTRL Mean: 0.313

e o
[C
S w

Similarity Score
o
N
w

o
o
S

=
o
-
N

-0.2 0.0 0.2 0.4 0.6 0.8
Similarity Score

Se\x-cr\i\"\“e R

Figure 7. Comparison of solution similarities between original and
revised code guided by CTRL on CodeContests. Left: Distribution
of similarity scores for self-critique and our CTRL method. Right:
Box plot showing the statistical distribution of similarity scores.
Lower scores indicate more substantial revisions.

similarly-sized generators. The results also highlight the im-
portance of critic-generator size relationships, as critics less
capable than their generators typically degrade performance.
These findings motivate us to focus our subsequent finetun-
ing experiments with CTRL on 32B models to maximize the
benefits of critique-revision.

CTRL Prevents Similar Revisions. We analyze how dif-
ferent critique methods influence solution revisions by mea-
suring code similarity scores between original and revised
solutions, as described in Appendix C.4. As shown in Fig-
ure 7, self-critique tends to make conservative modifications
with higher similarity scores (mean 0.482), while our CTRL
method proposes more substantial changes (mean 0.313).
This suggests CTRL is more willing to recommend major
structural revisions when needed, rather than just local opti-
mizations, which may explain its superior performance in
improving solution quality.

CTRL Trade-offs between Accuracy and Efficiency.
While our critique-revision approach improves solution ac-
curacy on LiveCodeBench, we observe a notable increase in
timeout rates. Solutions guided by CTRL exhibit a timeout
rate of 16.61%, higher than both zero-shot (10.54%) and
GPT-4o critic (8.93%). However, even with more timeouts,
CTRL still achieves better overall Pass@ 1 accuracy. This
suggests that our approach tends to generate more compre-
hensive solutions — while these may take longer to execute,
the solution quality is guaranteed.

5. Related Work

Self-Improvement of LLMs. Recent work has explored
various approaches for LLMs to improve their outputs au-
tonomously, including self-reflection (Shinn et al., 2023;
Feng et al., 2024), self-critique (Madaan et al., 2024; Shinn
et al., 2024), debates (Irving et al., 2018; Michael et al.,
2023; Khan et al., 2024), and training models to self-
correct (Welleck et al., 2022; Kumar et al., 2024). However,

Table 5. Timeout rate and Pass@1 (%) on LiveCodeBench. While
CTRL approach achieves higher pass rates, it tends to generate
more comprehensive solutions that take longer to execute.

Timeout Rate (|) Pass@1 (1)
Zero-shot 10.54 30.54
Critique w/ GPT-40 8.93 32.32
Critique w/ CTRL 16.61 33.21

Huang et al. (2023) demonstrates that without appropri-
ate external feedback, such self-improvement loops may
lead to performance degradation. Our work addresses these
challenges by learning specialized models that can provide
effective feedback for improvement.

LLM Critics. Several approaches have been proposed to
train LL.Ms as critics for various purposes, including gen-
erative reward models (Ankner et al., 2024; Xiong et al.,
2024) and scalable oversight (Saunders et al., 2022; Ken-
ton et al., 2024). These approaches either learn from hu-
man feedback (Wang et al., 2023; McAleese et al., 2024)
or much more capable models’ outputs (Xi et al., 2024),
with recent work exploring reinforcement learning to im-
prove feedback generation (Akyiirek et al., 2023; Yao et al.,
2023). Our approach differs in three key aspects: (1) lever-
aging execution feedback and model reasoning to synthesize
high-quality critiques, (2) introducing variance reduction
techniques to stabilize training, and (3) requiring only single-
round critique-revision interactions. Additional discussion
on related work is provided in Appendix B.

Scaling Test-Time Compute. Recent work has explored
various approaches to improve model performance at test
time without fine-tuning (Snell et al., 2024). While exist-
ing approaches focus on techniques like repeated sampling
with proper selection mechanisms (Brown et al., 2024) and
more sophisticated modular frameworks with existing mod-
els (Saad-Falcon et al., 2024), we instead investigate test-
time scaling through a decoupled critic model trained to
provides targeted feedback to guide solution improvements.
Notably, while Saad-Falcon et al. (2024) demonstrates that
strong models can serve as effective critics, their approach
struggles with code generation tasks.

6. Conclusion

We present CTRL, a reinforcement learning framework for
training critic LLMs to provide effective feedback for itera-
tive refinement. Our trained critic demonstrates significant
improvements over baselines across multiple benchmarks
and enables efficient test-time scaling through iterative
critique-revisions — notably, even when guiding stronger
generators. While this work focuses on improving pass

Teaching Language Models to Critique via Reinforcement Learning

rates, future directions include optimizing for efficiency and
safety, and extending our training pipeline towards multi-
turn critique revision. We hope this work inspires further
research into scalable LLM self-improvement through rein-
forcement learning.

Impact Statement

This work aims to advance the field of Machine Learning
by introducing a framework for training LLM critics. While
this research has the potential to improve the reliability
and robustness of Al systems, we have not identified any
immediate societal concerns requiring specific attention.
However, as with any Al technology, careful consideration
should be given to its broader deployment and potential
misuse.

References

Akyiirek, A. F., Akyiirek, E., Madaan, A., Kalyan, A., Clark,
P., Wijaya, D., and Tandon, N. RI4f: Generating natural
language feedback with reinforcement learning for re-
pairing model outputs. arXiv preprint arXiv:2305.08844,
2023.

Ankner, Z., Paul, M., Cui, B., Chang, J. D., and Am-
manabrolu, P. Critique-out-loud reward models. arXiv
preprint arXiv:2408.11791, 2024.

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski,
H., Dohan, D., Jiang, E., Cai, C., Terry, M., Le, Q., et al.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732, 2021.

Bradley, R. A. and Terry, M. E. Rank analysis of incom-
plete block designs: I. the method of paired comparisons.
Biometrika, 39(3/4):324-345, 1952.

Brown, B., Juravsky, J., Ehrlich, R., Clark, R., Le, Q. V.,
Ré, C., and Mirhoseini, A. Large language monkeys:
Scaling inference compute with repeated sampling. arXiv
preprint arXiv:2407.21787, 2024.

Burns, C., Izmailov, P, Kirchner, J. H., Baker, B., Gao, L.,
Aschenbrenner, L., Chen, Y., Ecoffet, A., Joglekar, M.,
Leike, J., et al. Weak-to-strong generalization: Eliciting
strong capabilities with weak supervision. arXiv preprint
arXiv:2312.09390, 2023.

Chen, X., Lin, M., Schirli, N., and Zhou, D. Teaching
large language models to self-debug. arXiv preprint
arXiv:2304.05128, 2023.

Christiano, P., Shlegeris, B., and Amodei, D. Supervis-
ing strong learners by amplifying weak experts. arXiv
preprint arXiv:1810.08575, 2018.

Cui, G., Yuan, L., Ding, N., Yao, G., Zhu, W., Ni, Y., Xie, G.,
Liu, Z., and Sun, M. Ultrafeedback: Boosting language
models with high-quality feedback, 2023.

Feng, X., Wan, Z., Fu, H,, Liu, B., Yang, M., Koushik,
G. A., Hu, Z., Wen, Y., and Wang, J. Natural language
reinforcement learning. arXiv preprint arXiv:2411.14251,
2024.

Gao, L., Schulman, J., and Hilton, J. Scaling laws for reward
model overoptimization. In International Conference on
Machine Learning, pp. 10835-10866. PMLR, 2023.

Gou, Z., Shao, Z., Gong, Y., Shen, Y., Yang, Y., Duan, N.,
and Chen, W. Critic: Large language models can self-
correct with tool-interactive critiquing. arXiv preprint
arXiv:2305.11738, 2023.

Guan, M. Y., Joglekar, M., Wallace, E., Jain, S., Barak,
B., Heylar, A., Dias, R., Vallone, A., Ren, H., Wei, J.,
et al. Deliberative alignment: Reasoning enables safer lan-
guage models. arXiv preprint arXiv:2412.16339, 2024.

Huang, J., Chen, X., Mishra, S., Zheng, H. S., Yu,
A. W., Song, X., and Zhou, D. Large language mod-
els cannot self-correct reasoning yet. arXiv preprint
arXiv:2310.01798, 2023.

Hui, B., Yang, J., Cui, Z., Yang, J., Liu, D., Zhang, L.,
Liu, T., Zhang, J., Yu, B., Lu, K., et al. Qwen2. 5-coder
technical report. arXiv preprint arXiv:2409.12186, 2024.

Irving, G., Christiano, P., and Amodei, D. Ai safety via
debate. arXiv preprint arXiv:1805.00899, 2018.

Jain, N., Han, K., Gu, A., Li, W.-D., Yan, F., Zhang, T.,
Wang, S., Solar-Lezama, A., Sen, K., and Stoica, I.
Livecodebench: Holistic and contamination free eval-
uation of large language models for code. arXiv preprint
arXiv:2403.07974, 2024.

Kenton, Z., Siegel, N. Y., Kramadr, J., Brown-Cohen, J., Al-
banie, S., Bulian, J., Agarwal, R., Lindner, D., Tang,
Y., Goodman, N. D., et al. On scalable oversight
with weak llms judging strong llms. arXiv preprint
arXiv:2407.04622, 2024.

Khan, A., Hughes, J., Valentine, D., Ruis, L., Sachan, K.,
Radhakrishnan, A., Grefenstette, E., Bowman, S. R.,
Rocktéschel, T., and Perez, E. Debating with more persua-
sive llms leads to more truthful answers. arXiv preprint
arXiv:2402.06782, 2024.

Kumar, A., Zhuang, V., Agarwal, R., Su, Y., Co-Reyes, J. D.,
Singh, A., Baumli, K., Igbal, S., Bishop, C., Roelofs,
R., et al. Training language models to self-correct via
reinforcement learning. arXiv preprint arXiv:2409.12917,
2024.

Teaching Language Models to Critique via Reinforcement Learning

Li,R., Fu,J., Zhang, B.-W., Huang, T., Sun, Z., Lyu, C., Liu,
G., Jin, Z., and Li, G. Taco: Topics in algorithmic code
generation dataset. arXiv preprint arXiv:2312.14852,
2023.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J.,
Leblond, R., Eccles, T., Keeling, J., Gimeno, F., Dal Lago,
A, et al. Competition-level code generation with alpha-
code. Science, 378(6624):1092-1097, 2022.

Liu, J., Xia, C. S., Wang, Y., and Zhang, L. Is your code
generated by chatgpt really correct? rigorous evaluation
of large language models for code generation. Advances
in Neural Information Processing Systems, 36, 2024a.

Liu, S., Zhu, H., Liu, J., Xin, S., Li, A., Long, R., Chen,
L., Yang, J., Xia, J., Peng, Z., et al. Fullstack bench:
Evaluating llms as full stack coder. arXiv preprint
arXiv:2412.00535, 2024b.

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao,
L., Wiegreffe, S., Alon, U., Dziri, N., Prabhumoye, S.,
Yang, Y., et al. Self-refine: Iterative refinement with self-

feedback. Advances in Neural Information Processing
Systems, 36, 2024.

McAleese, N., Pokorny, R. M., Uribe, J. F. C., Nitishinskaya,
E., Trebacz, M., and Leike, J. Llm critics help catch llm
bugs. arXiv preprint arXiv:2407.00215, 2024.

Meyn, S. P. and Tweedie, R. L. Markov chains and stochas-
tic stability. Springer Science & Business Media, 2012.

Michael, J., Mahdi, S., Rein, D., Petty, J., Dirani, J., Pad-
makumar, V., and Bowman, S. R. Debate helps super-
vise unreliable experts. arXiv preprint arXiv:2311.08702,
2023.

Ni, A., Allamanis, M., Cohan, A., Deng, Y., Shi, K., Sut-
ton, C., and Yin, P. Next: Teaching large language
models to reason about code execution. arXiv preprint
arXiv:2404.14662, 2024.

Pan, J., He, H., Bowman, S. R., and Feng, S. Spontaneous
reward hacking in iterative self-refinement. arXiv preprint
arXiv:2407.04549, 2024.

Pan, L., Saxon, M., Xu, W, Nathani, D., Wang, X.,
and Wang, W. Y. Automatically correcting large lan-
guage models: Surveying the landscape of diverse self-
correction strategies. arXiv preprint arXiv:2308.03188,
2023.

Saad-Falcon, J., Lafuente, A. G., Natarajan, S., Maru, N.,
Todorov, H., Guha, E., Buchanan, E. K., Chen, M.,
Guha, N, Ré, C., et al. Archon: An architecture search
framework for inference-time techniques. arXiv preprint
arXiv:2409.15254, 2024.

10

Saunders, W., Yeh, C., Wu, J., Bills, S., Ouyang, L., Ward, J.,
and Leike, J. Self-critiquing models for assisting human
evaluators. arXiv preprint arXiv:2206.05802, 2022.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Sessa, P. G., Dadashi, R., Hussenot, L., Ferret, J., Vieil-
lard, N., Ramé, A., Shariari, B., Perrin, S., Friesen, A.,
Cideron, G., et al. Bond: Aligning llms with best-of-n
distillation. arXiv preprint arXiv:2407.14622, 2024.

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Bi, X., Zhang,
H., Zhang, M., Li, Y., Wu, Y., et al. Deepseekmath: Push-
ing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

Sheng, G., Zhang, C., Ye, Z., Wu, X., Zhang, W., Zhang,
R., Peng, Y., Lin, H., and Wu, C. Hybridflow: A
flexible and efficient rlhf framework. arXiv preprint
arXiv:2409.19256, 2024.

Shinn, N., Cassano, F., Gopinath, A., Narasimhan, K., and
Yao, S. Reflexion: Language agents with verbal rein-
forcement learning. Advances in Neural Information
Processing Systems, 36:8634-8652, 2023.

Shinn, N., Cassano, F., Gopinath, A., Narasimhan, K., and
Yao, S. Reflexion: Language agents with verbal rein-
forcement learning. Advances in Neural Information
Processing Systems, 36, 2024.

Snell, C., Klein, D., and Zhong, R. Learning by distilling
context. arXiv preprint arXiv:2209.15189, 2022.

Snell, C., Lee, J., Xu, K., and Kumar, A. Scaling llm test-
time compute optimally can be more effective than scal-
ing model parameters. arXiv preprint arXiv:2408.03314,
2024.

Sun, Q., Chen, Z., Xu, F,, Cheng, K., Ma, C., Yin, Z.,
Wang, J., Han, C., Zhu, R., Yuan, S., et al. A survey
of neural code intelligence: Paradigms, advances and
beyond. arXiv preprint arXiv:2403.14734, 2024.

Sun, Z., Shen, Y., Zhang, H., Zhou, Q., Chen, Z., Cox,
D. D,, Yang, Y., and Gan, C. Salmon: Self-alignment
with principle-following reward models. CoRR, 2023.

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y.
Policy gradient methods for reinforcement learning with
function approximation. Advances in neural information
processing systems, 12, 1999.

Tan, S., Zhuang, S., Montgomery, K., Tang, W. Y., Cuadron,
A., Wang, C., Popa, R. A., and Stoica, I. Judgebench:
A benchmark for evaluating llm-based judges. arXiv
preprint arXiv:2410.12784, 2024.

Teaching Language Models to Critique via Reinforcement Learning

Wang, T., Yu, P, Tan, X. E., O’Brien, S., Pasunuru,
R., Dwivedi-Yu, J., Golovneva, O., Zettlemoyer, L.,
Fazel-Zarandi, M., and Celikyilmaz, A. Shepherd: A
critic for language model generation. arXiv preprint
arXiv:2308.04592, 2023.

Welleck, S., Lu, X., West, P., Brahman, F., Shen, T.,
Khashabi, D., and Choi, Y. Generating sequences by
learning to self-correct. arXiv preprint arXiv:2211.00053,
2022.

Xi, Z., Yang, D., Huang, J., Tang, J., Li, G., Ding, Y., He,
W., Hong, B., Do, S., Zhan, W., et al. Enhancing llm
reasoning via critique models with test-time and training-
time supervision. arXiv preprint arXiv:2411.16579, 2024.

Xiong, T., Wang, X., Guo, D., Ye, Q., Fan, H., Gu, Q.,
Huang, H., and Li, C. Llava-critic: Learning to evaluate
multimodal models. arXiv preprint arXiv:2410.02712,
2024.

Yao, W., Heinecke, S., Niebles, J. C., Liu, Z., Feng, Y., Xue,
L., Murthy, R., Chen, Z., Zhang, J., Arpit, D., et al. Retro-
former: Retrospective large language agents with policy
gradient optimization. arXiv preprint arXiv:2308.02151,
2023.

Ye, 7., Greenlee-Scott, F., Bartolo, M., Blunsom, P., Cam-
pos, J. A., and Gallé, M. Improving reward models with
synthetic critiques. arXiv preprint arXiv:2405.20850,
2024.

Yu, Y., Chen, Z., Zhang, A., Tan, L., Zhu, C., Pang, R. Y.,
Qian, Y., Wang, X., Gururangan, S., Zhang, C., et al. Self-
generated critiques boost reward modeling for language
models. arXiv preprint arXiv:2411.16646, 2024.

Yuan, W., Pang, R. Y., Cho, K., Sukhbaatar, S., Xu, J.,
and Weston, J. Self-rewarding language models. arXiv
preprint arXiv:2401.10020, 2024.

Zheng, K., Decugis, J., Gehring, J., Cohen, T., Negrevergne,
B., and Synnaeve, G. What makes large language models
reason in (multi-turn) code generation? arXiv preprint
arXiv:2410.08105, 2024.

Zhong, L., Wang, Z., and Shang, J. Ldb: A large language
model debugger via verifying runtime execution step-by-
step. arXiv preprint arXiv:2402.16906, 2024.

11

Teaching Language Models to Critique via Reinforcement Learning

A. Pipeline

As shown in Figure 8, our pipeline consists of two main training stages. (1) The SFT training stage first generates initial
solutions that are validated through execution feedback, followed by critique generation where the generator learns to
provide critiques based on execution feedback. These components are then used to train the final critic model through
supervised finetuning. (2) The RL training stage leverages the critic’s feedback to guide the generator in producing improved
solutions, which are validated in a sandbox environment.

DATA & ROLES SFT TRAINING 71 Context Distillation

Step 1: Initial Solution Generation S

Exec

[Prompt } [Unit Tests } [Prompt } Feedback }

Generator] [Solution } [Sandbox }

Step 2: Critique Generation

[LLM } [Generator J R T TExec -
[Prompt I Solution 1 _ Feedback _ _,‘ [Generator J [Critique J
[Sandbox } [Critic }
Step 3: Supervised Finetuning
SFT
[Prompt I Solution I Critique] [Critic }
[Prompt I Solution } [Critic } [Critique }

[Generator } [NewSqution

[Sandbox } [Pass?

Figure 8. Overview of our two-stage training pipeline CTRL.

B. Supplementary Discussion of Related Work

Table 6 categorizes prior methods into reward models, generative reward models, and critic models. Reward models
like Standard RM (Bradley & Terry, 1952) and SynRM (Ye et al., 2024) focus on discrimination by outputting scalar
rewards 7 but lack refinement or critique supervision. Generative reward models, such as CLoud (Ankner et al., 2024) and
Critic-RM (Yu et al., 2024), enhance discrimination by producing both rewards 7 and critiques ¢, but their critiques primarily
serve as a by-product for rewards rather than actionable refinement suggestions. Critic models, including UltraCM (Cui
et al., 2023), Shepherd (Wang et al., 2023), and CriticGPT (McAleese et al., 2024), focus on generating critiques but rely
heavily on human-annotated critique data, which limits scalability. In contrast, CTRL unifies discrimination and refinement
by generating actionable critiques without direct supervision, leveraging execution feedback and reinforcement learning to
enable scalable, iterative improvement.

Table 6. Comparison of reward models, generative reward models, and critic models.

Methods Input Output Discrimination Refinement Critique Supervision
Standard RM (Bradley & Terry, 1952) T,y r v X X
SynRM (Ye et al., 2024) z, Yy, C r v X v
UltraCM (Cui et al., 2023) T,y c X v v
Shepherd (Wang et al., 2023) T,y c X v v
CriticGPT (McAleese et al., 2024) T,y c X v v
CLoud (Ankner et al., 2024) T,y c,r v X v
Critic-RM (Yu et al., 2024) T,y c,r v X X
CTRL (Ours) T,y c v v X

C. Implementation Details
C.1. Simulation

In our simulation (Section 2), we model the iterative refinement process using a Markov chain with parameters pinit, Pec, and
Dew to represent the initial correctness, the probability of maintaining correctness, and the probability of turning incorrect

12

Teaching Language Models to Critique via Reinforcement Learning

solutions correct, respectively. Critiquing ability is controlled by varying p.. and p.y, (e.g., strong critiquing: p.. = 0.9,
Pew = 0.3; weak critiquing: p.. = 0.7, pew = 0.15), while discrimination ability is adjusted via true positive rate (TPR)
and false positive rate (FPR) (e.g., strong discrimination: TPR = 0.7, FPR = 0.2; weak discrimination: TPR = 0.6,
FPR = 0.3). For each setting, we simulate n refinement steps using Python, generating solutions based on refinement
probabilities, applying a classifier to predict correctness, and selecting the best solution from predicted correct ones. The
results are computed over 50,000 iterations and plotted to analyze the impact of critiquing and discrimination on final
success rates. Specifically, the two processes — only using discrimination and using both discrimination and critiquing — are
illustrated in Figure 9 to provide a clearer understanding of our simulation setup.

w/o Critiquing w/ Critiquing

Figure 9. Graphical models for refinement processes: (left) only using discrimination (best-of-n sampling) and (right) using both
discrimination and critiquing (sequential critique-revision).

C.2. Prompt Templates

Critique-revision. The generator model 7(y |) is implemented as a simple zero-shot generation process, where the
model generates a solution y directly from the problem statement = without additional context or feedback. The critic model
Cy(c | x,y), as described in the main paper, generates textual feedback c using a structured prompt that incorporates the
problem =z, the solution y, and explicit instructions to provide actionable and formatted suggestions. The improved solution
distribution 7(y | z,y’, ¢) is implemented as a two-turn process: in the first turn, the generator model drafts the initial
solution y’ conditioned on the problem z as the user message; in the second turn, the critique ¢ is presented as the user
message, and the model revises the solution, conditioned on z, ', and c.

Execution-guided Critique Generation. To generate high-quality critiques (Section 3.2), we leverage execution feedback
from a sandbox environment that evaluates the initial solution 3’ against the test cases T for the problem x. The execution
results are mapped to predefined hint templates, which guide the critique generation process. The critic model is prompted
with a structured template incorporating the problem x, the solution 3/, and the corresponding hint h, enabling it to produce
actionable and context-aware feedback. To prevent hallucination, critiques that explicitly reference the hints are filtered
out. This ensures that the generated critiques are grounded in observable failures while effectively supporting solution
refinement.

C.3. Training

Data Curation. Our data curation process starts with the TACO dataset (Li et al., 2023) and handles both function-based
and input-output-based programming problems. We filter out malformed problems by removing those containing image tags
and unusual HTML spans. For unit tests, we process them differently based on their type: function-based tests are converted
to assertion statements, while input-output tests are standardized into a sandbox format with stdin-stdout pairs. We exclude
problematic unit tests such as those with malformed string inputs (containing assignments or unexpected list operations) or
invalid function calls. To avoid contamination, we further exclude 47 problems that overlap with our evaluation benchmarks.
The final dataset is deduplicated based on problem descriptions, resulting in 18,820 problems.

Supervised Finetuning. We leverage the synthesized critiques to perform supervised finetuning (SFT) on the model,
enabling it to generate improved solutions. For each problem, we sample one initial solution and one corresponding
synthesized critique, and train the model on these problem-solution-critique pairs. The training process follows the

13

Teaching Language Models to Critique via Reinforcement Learning

Prompt Template for Critique Generation

You are tasked with analyzing an answer to a problem and providing constructive feedback. Do NOT provide
< direct solutions.

Problem description:
<problem>

{problem}

</problem>

Answer:
<answer>
{answer}
</answer>

Structure your response using the following format (without <format> tags):
<format>

Analysis:

{{Analysis}}

Improvement suggestions:
{{Suggestions}}

Overall judgment: {{Correct/Incorrect}}
</format>

Prompt Template for Execution-guided Critique Generation

You are tasked with analyzing an answer to a problem and providing constructive feedback. Do NOT provide
<~ direct solutions.

Please carefully reason about the hint to guide the user.

*xImportant: Do NOT mention ’‘the hint’ in your feedback.xx

Problem description:
<problem>

{problem}

</problem>

Answer:
<answer>
{solution}
</answer>

Hint:
<hint>
{hint}
</hint>

Structure your response using the following format (without <format> tags):
<format>

Analysis:

{{Analysis}}

Improvement suggestions:
{{Suggestions}}

Overall judgment: {{Correct/Incorrect}}
</format>

hyperparameters outlined in Table 8.

RL Training. We use VeRL (Sheng et al., 2024) as the codebase to optimize the model’s generation quality. During RL
training, we sample 4 initial solutions for each problem and train the critic model on all corresponding problem-solution
pairs. This approach helps mitigate overfitting by exposing the critic to a diverse set of solutions for each problem. The RL
training process follows the hyperparameters outlined in Table 9.

14

Teaching Language Models to Critique via Reinforcement Learning

Table 7. Mapping between execution results and hint templates used for critique synthesis.

Execution Result Hint

Success (100%) The draft solution is correct. A concise
and positive feedback is recommended.
Failure (0%) The draft solution is entirely wrong.

A concise feedback requesting a fresh
restart is recommended.
Input:

{input}

. 5 Expected Output:
Partial Success {expected_output}
Actual Output:

%actual,output}
he code block:

““‘python
Runtime Error {code_block}

299

raised {error}.

Table 9. RL Hyperparameters.

Table 8. SFT Hyperparameters.

Parameter Value
Parameter Value Training Batch Size 1,024
Learning Rate 2 % 10° Mini-Batch Size 256
G Si 8
Learning Rate Schedule Cosine Léz:r?in lzlgate 1 % 107
Training Batch Size 256 KL Coe%ﬁcient 0.001
Maximum Token Length 2,048 Maxi P L h 1'
Training Epochs 1 aximum Prompt Lengt . ,65836
Mixed Precision Format bfloat16 Maximum Response Lengt 7
Temperature 1.0
Training Epochs 2

C.4. Evaluation.

Inference. During inference, we use a temperature of 0.7 for generating both initial solutions and critiques, while revised
solutions are generated using greedy decoding. The maximum number of tokens generated is set to 1,024 for all stages.

Reward Calculation. To calculate rewards for our JudgeBench evaluation (Section 4.3), we use a critic model to assess
the quality of solutions. Specifically, we generate multiple critiques for each solution and aggregate the results through
majority voting. For each solution pair, the critic model compares the frequency of being labeled as “Correct” to determine
which solution is better. As shown in Figure 10(a), we find that the accuracy of this majority voting strategy improves as the
number of votes increases.

Code Similarity Calculation. To measure code similarity while accounting for semantically equivalent code with different
variable names, we follow (Zheng et al., 2024) and implement a two-step comparison approach. We first normalize the code
by parsing it into an Abstract Syntax Tree (AST), systematically renaming variables to canonical forms, and converting
back to consistently formatted text. We then compute a similarity ratio using Python’s diff1ib.SequenceMatcher,
which represents the proportion of matching characters in the optimal alignment of the two normalized code sequences.
This approach yields a score between 0 and 1, allowing us to identify structurally similar solutions regardless of variable
naming choices.

15

Teaching Language Models to Critique via Reinforcement Learning

70
6%0 6%3
__60 /
X
< 50 5%
®
5 40
]
Q
< 30 04
22
[}
20 0.2
2! 23 2° 27
Number of Votes ‘ 120 1
Step
(a) The effect of the number of votes on the accuracy of majority (b) Training curve of the value network in PPO, showing the
voting in reward calculation. As the number of votes increases, mean predicted value over training steps.

the accuracy improves significantly, demonstrating the scalabil-
ity and robustness of the majority voting approach.

Figure 10. (a) Majority voting accuracy improvement with increasing votes. (b) Training curve of the value network.

D. The Credit Assignment Issue for Critic Training

Our initial attempts to train critics using Proximal Policy Optimization (Schulman et al., 2017) for RL training revealed
challenges in credit assignment for critique generation, as evidenced by the unstable value predictions shown in Figure 10(b).
This difficulty arises because the quality of a critique is inherently holistic — it depends on multiple interdependent aspects
like accuracy, completeness, and constructiveness — making it hard for the value network to learn which parts of the
generated critique contributed to the final reward. These observations motivated our switch to GRPO, which circumvents the
value prediction problem by using Monte Carlo sampling to directly estimate advantages, leading to more reliable credit
assignment without the need for a potentially unstable value network.

E. CTRL Samples

In Tables 10, 12 and 14, we present sample critiques generated by CTRL for solutions provided by Qwen2.5-Coder.

16

Teaching Language Models to Critique via Reinforcement Learning

Table 10. A sample problem from CodeContests (Li et al., 2022), with by the solution generated by Qwen2.5-Coder and the critique
provided by the CTRL critic.

Problem & Solution Critique
You had n positive integers a_1l, a_2, ..., a_n
arranged in a circle. For each pair of
neighboring numbers (a_l and a_2, a_2 and a_3,
., a_{n - 1} and a_n, and a_n and a_l), you
wrote down: are the numbers in the pair equal
or not.
. . Analysis:
Unfort tel ! lost £ th th . .
ntor :?fae g' ggﬁesjeros os §;§c:f§ai§a§§;tw;ven € The provided solution attempts to construct an array
y a. vy based on the sequence of "E’ and N’ but does

information about equality of neighboring
elements may be inconsistent. So, you are
wondering: is there any array a which is

consistent with information you have about

equality or non-equality of corresponding pairs
?

def can_form_array(s):

n = len(s)

We will try to assign values to the array a
Start with assigning 1 to the first element
a= [1] »n

Try to assign values based on the given
conditions
for i in range(n):
if s[i] 'E’:
al(i + 1) %
else:
al(i +1) %

n]

n]

Check if the last and first elements are
consistent with s[n-1]

if s[-1] == 'E’ and a[0] != a[-1]
return "NO"

if s[-1] == ’'N’ and a[0] == a[-1]
return "NO"

return "YES"

def main() :

import sys

input sys.stdin.read() .splitlines ()

t int (input [0])

results [1

for i in range(1,
s input [i]
results.append(can_form _array(s))

t + 1):

for result in results:
print (result)

if name == "__main__ ":

main ()

not correctly handle the circular nature of the
array and the constraints imposed by these
characters. Specifically, the approach does not
ensure consistency across the entire circular
arrangement, particularly at the boundary where
the last element connects back to the first.

The code assigns values to the array elements based

on whether the current character is ’'E’ or ’'N’,
but it does not account for potential
conflicts that arise when the array wraps
around. This means that the final check between
the first and last elements might fail due to
inconsistencies introduced earlier in the array
construction process.

Improvement suggestions:

1. Consider using a more systematic approach to
handle the circular nature of the array. One
possible method is to use a graph traversal
algorithm, treating each position in the array
as a node and each 'E’ or 'N’ as an edge with a

label indicating equality or inequality.

Use a union-find data structure to manage
equivalence classes of indices that must
the same value due to 'E’ connections.

Iterate through the string and apply the rules:
if 'E’, ensure the indices are in the same set;

if ’'N’, ensure they are in different sets.

After processing the string, verify that no
conflicts exist in the union-find structure,
particularly focusing on the circular
connection between the first and last elements.

If no conflicts are found, it is possible to
construct an array that satisfies the
conditions; otherwise, it is not.

hold

Overall judgment: Incorrect

17

Teaching Language Models to Critique via Reinforcement Learning

Table 12. A sample problem from LiveCodeBench (Jain et al., 2024), with by the solution generated by Qwen2.5-Coder and the critique
provided by the CTRL critic.

Problem & Solution Critique
You are given a binary string s and an integer k.
A binary string satisfies the k-constraint if either
of the following conditions holds: .
Analysis:

The number of 0’s in the string is at most k.
The number of 1’s in the string is at most k.

Return an integer denoting the number of substrings

of s that satisfy the k-constraint.

The provided solution attempts to solve the problem

by counting substrings based on the maximum
occurrence of 0’ and 1’ up to ‘k‘', but it
does not correctly account for all possible
substrings that satisfy the k-constraint. The
approach incorrectly calculates the
intersection of substrings that satisfy both

class Solution: conditions without properly considering the
def countKConstraintSubstrings(self, s: str, k: overlap between these substrings. Additionally,
int) -> int: the logic for counting substrings is flawed as
def count_substrings_with_max_char (s, it does not consider every possible substring
max_char, k): of ‘s'; instead, it focuses on contiguous
left = 0 sequences of ’0’'s and "1’s up to ‘k‘.
count = 0)
current count = 0 Improvement suggestions:
result - 0 1. x*Re-evaluate the Approachx*: Instead of focusing
on contiguous sequences of '0’s and ’'1’s, the
for right in range (len(s)): solution should consider every possible
if s[right] == max_char: substring of ‘s' and check if it satisfies the
current_count += 1 k-constraint.
2. #xIterate Over All Substringsx*: Use nested loops
while current_count > k: to iterate over all possible substrings of ‘s
if s[left] == max_char: ‘. For each substring, count the occurrences of
current count -= 1 0’ and "1’ and check if either count is less
left += 1 - than or equal to ‘k*‘.
3. *xCount Valid Substrings*+: Maintain a counter to
result += right - left + 1 keep track of how many substrings meet the k-
constraint criteria.
return result 4. *xSimplify the Logic**: Consider using Python’s
slicing capabilities to easily extract and
count_0s = count_substrings_with_max_char (s, evaluate each substring without unnecessary
07, k) checks for contiguous characters.
count_1ls = count_substrings_with_max_char (s,
17, k) Overall judgment: Incorrect
return count_0s + count_1s

18

Teaching Language Models to Critique via Reinforcement Learning

Table 14. A sample problem from MBPP+ (Liu et al., 2024a), with by the solution generated by Qwen2.5-Coder and the critique provided
by the CTRL critic.

Problem & Solution

Critique

Write a python function to check whether every odd
index contains odd numbers of a given list.

def odd_length_sum(arr) :
n = len(arr)
res = 0

Iterate through each element in the array
for i in range(n):
Calculate the number of subarrays in which
arr[i] is present
count = ((i + 1) * (n — 1)

+1) // 2

If the count is odd, add the element to
the result

if count % 2 == 1:
res += arr[i]

return res

Analysis:
The provided solution checks if the parity (odd/even
nature) of the numbers at odd indices matches
the index itself. This means it verifies that a
number at an odd index is odd, and a number at
an even index is even. However, this does not
correctly address the problem at hand, which
requires checking whether every odd index
contains an odd number, not just matching the
parity of the index.

Improvement suggestions:

- Review the logic used in the function. Instead of
checking if the parity of the number matches
the parity of the index, the function should
directly check if the number at each odd index
is odd.

- Consider using a more straightforward loop or list

comprehension to achieve the desired result.

Overall judgment: Incorrect

19

