
Deep RL Workshop, NeurIPS 2022

POLICY AWARE MODEL LEARNING VIA
TRANSITION OCCUPANCY MATCHING

Jason Yecheng Ma*, Kausik Sivakumar*, Osbert Bastani, Dinesh Jayaraman

University of Pennsylvania

ABSTRACT

Model-based reinforcement learning (MBRL) is an effective paradigm for sample-
efficient policy learning. The pre-dominant MBRL strategy iteratively learns the
dynamics model by performing maximum likelihood (MLE) on the entire replay
buffer and trains the policy using fictitious transitions from the learned model.
Given that not all transitions in the replay buffer are equally informative about
the task or the policy’s current progress, this MLE strategy cannot be optimal and
bears no clear relation to the standard RL objective. In this work, we propose
Transition Occupancy Matching (TOM), a policy-aware model learning algorithm
that maximizes a lower bound on the standard RL objective. TOM learns a policy-
aware dynamics model by minimizing an f -divergence between the distribution of
transitions that the current policy visits in the real environment and in the learned
model; then, the policy can be updated using any pre-existing RL algorithm with
log-transformed reward. TOM’s practical implementation builds on tools from dual
reinforcement learning and learns the optimal transition occupancy ratio between
the current policy and the replay buffer; leveraging this ratio as importance weights,
TOM amounts to performing MLE model learning on the correct, policy aware
transition distribution. Crucially, TOM is a model learning sub-routine and is
compatible with any backbone MBRL algorithm that implements MLE-based
model learning. On the standard set of Mujoco locomotion tasks, TOM is more
sample efficient and achieves higher asymptotic performance.

1 INTRODUCTION

Model-based reinforcement learning (Sutton, 1991) is an effective paradigm for sample-efficient
policy learning. By learning a dynamics model using the agent’s collected experiences, the dynamics
model can provide fictitious transitions for policy learning, reducing the required number of transitions
in the true environment for learning an effective policy. This advantage of MBRL, coupled with
breakthroughs in deep neural networks, has enabled impressive applications such as mastering Atari
games and simulated robot control from pixels (Hafner et al., 2019a;b; 2020; Kaiser et al., 2019),
in-hand dexterous manipulation (Nagabandi et al., 2020), and real-world robotics control (Finn &
Levine, 2017; Ebert et al., 2018).

Despite these impressive empirical results, the fundamental question of how to best learn a dynam-
ics model remains open. The predominant approach in model learning is to perform supervised
learning, such as maximum likelihood (MLE) estimation, on the entire replay buffer the agent has
collected (Chua et al., 2018; Janner et al., 2019). Given that not all transitions in the replay buffer
are equally informative about the task or the policy1’s current progress, this MLE strategy cannot be
optimal and bears no clear relation to the standard RL objective. As a simple thought experiment, let
us consider when the replay buffer is pre-populated with a very large amount of transitions collected
via random actions. MLE model learning would focus on fitting the dynamics on these random
transitions well due to their sheer collective size and practically ignore any agent-specific experience
collected later on. As such, though the MLE loss may be low, the learned dynamics model may not
be useful for the purpose of policy learning, which is the ultimate objective we care about in any
reinforcement learning approach. This apparent lack of synergy between model learning and policy
learning is broadly known as model objective mismatch (Lambert et al., 2020) in the literature.

1We use policy and agent interchangably.
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Figure 1: Transition Occupancy Matching (TOM). Given the current policy’s rollout(s) and the replay buffer,
TOM reduces policy-aware model learning to an offline imitation learning problem, and enables learning a
dynamics model that fits the policy’s visitation distribution accurately to enable rapid policy improvement.

In this work, we propose Transition Occupancy Matching (TOM), a principled solution to model
objective mismatch by focusing the model capacity on learning the transition distribution of the
current policy. More specifically, TOM proposes a novel lower bound to the reinforcement learning
objective that decomposes into (1) a f -divergence between the distribution of transitions that the
current policy visits in the real environment and in the learned model, and (2) the RL objective
with respect to the learned model. Since (2) can be implemented by any MBRL algorithm, TOM’s
technical contribution is a practical algorithm for minimizing (1) based on the idea of occupancy
measure matching (Ghasemipour et al., 2019; Ma et al., 2022b). At a technical level, TOM introduces
the concept of transition occupancy, which bears structural similarity to the notion of state occupancy
commonly seen in the imitation learning literature (Ho & Ermon, 2016; Ghasemipour et al., 2019;
Kim et al., 2022; Ma et al., 2022b). We derive several properties of transition occupancy that find
equivalents in state occupancy. This equivalence makes the intuition that policy-aware model learning
can be cast as an imitation learning apparent. In particular, the expert can be thought of the distribution
of transitions that the current policy visits, and the dynamics model is the imitating agent, whose
“state” is a concatenation of the current state and action, and the “action” is the next state.

Given this intuition, learning a dynamics model tailored to the current policy can be achieved without
any additional data collection by performing offline imitation learning (Kim et al., 2022; Ma et al.,
2022b), for which the replay buffer effectively plays the role of the offline dataset. In particular,
TOM uses f -advantage regression (Ma et al., 2022b;d;c) to derive a stable routine for learning the
optimal importance weights for weighing the replay buffer data to correctly simulate sampling from
transitions from the current policy. Using these importance weights, TOM trains a policy-aware
model by performing weighted regression on the replay buffer data according to the importance
weights. As such, TOM is by-design policy-aware and focuses the dynamics’ model’s capacity on
the portions of the replay buffer that is most relevant to the current policy and its improvement in
performance using the model. See Figure 1 for an overview.

Since TOM modifies only the transition weights for MLE-based model learning, it is modular in
nature and is compatible with any underlying MBRL algorithm. In practice, we implement TOM
on top of a standard deep MBRL algorithm, MBPO (Janner et al., 2019). By changing only the
regression weights for model learning, TOM realizes substantial gain in Mujoco locomotion tasks
with improved sample efficiency and asymptotic performance. These results suggest that MLE-based
model learning is not inherently the culprit of model objective mismatch, but it is rather the correct
transition distribution that we need to capture in order to make MLE-based model learning both
sample-efficient and asymptotically optimal.

2 RELATED WORK

Our work is broadly related to the objective mismatch problem (Lambert et al., 2020) in MBRL.
One prominent approach to address the objective mismatch problem is to make dynamics learning
value-aware (Farahmand et al., 2017; Farahmand, 2018; Grimm et al., 2020; Farquhar et al., 2021;
Voelcker et al., 2022). In particular, this line of work attempts to learn dynamics models that capture
aspects of environment dynamics that impact accurate estimation of the value functions. However, this
idea is conservative in nature as the value-weighted model loss is taken over the supremum/average
over all, or a large hypothesis class of, value functions (Farahmand et al., 2017), which is intractable
to compute in practice. Various approximations , such as using the current policy’s value function, are
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implemented (Farahmand, 2018; Voelcker et al., 2022) in practice. The key shortcoming of VAML is
the inherent gap between its theory and practice and the assumption that the environment comes with
dense reward so the value functions are not degenerate in the early iterations of policy optimization.

Instead of focusing on the value function, our approach is more direct and policy-aware (Eysenbach
et al., 2021; Wang et al., 2022), cognizant of the current policy’s footprint without entangling it with
the task it is solving. The closest work to ours is PMAC Wang et al. (2022), which proposes to
up-weight the most recent transitions in the replay buffer according to a hand-crafted weight schedule
in regressing the dynamics model; however, this approach is heuristic in nature, and sensitive to
the hyperparameters. Furthermore, PMAC suffers from recency bias; due to the inherent variance
in policy optimization, the most recent transitions may be of low quality and not most relevant to
improving the current policy, but PMAC would assign them high weights regardless. In contrast,
TOM first establishes a lower bound to the true policy return objective in the transition occupancy
space, then leverages techniques in dual reinforcement learning to derive a principled and optimal
approach for assigning transition weights that is empirically effective.

3 BACKGROUND

In this section, we will first go over the preliminaries for model-based reinforcement learning and
then discuss the concept of state-action occupancy. With these two concepts as preface, we introduce
transition occupancy, which leverages the notion of state-action occupancy to build a dynamics
model that is policy aware.

Model-based reinforcement learning. We consider an infinite horizon discounted Markov decision
process (MDP) (Puterman, 2014)M = (S,A,R, T, µ0, γ) where S denotes its state space, A its
action space, R the reward, T (s, a) the transition function, µ0(s) its initial state’s distribution, and
γ ∈ (0, 1] the discount factor. A policy π : S → ∆(A) is a state-conditioned action distribution. The
objective of RL is to find the policy π that maximizes the discounted return:

J(π) := Eg∼s0∼µ0,at∼π(·|st),st+1∼T (·|st,at)

[ ∞∑
t=0

γtr(st.at)

]
(1)

We consider the online reinforcement learning setting, in which the agent directly interacts with the
environment, collects new transitions (s, a, r, s′) and stores them in its replay buffer D. The agent’s
policy is updated using samples from D.

Since the true dynamics T is not known, MBRL builds an approximate dynamics model T̂ which
is learned from data. That is, a function approximator is built by designing T̂ (s, a) as a probability
distribution and by maximizing the likelihood of observing next state s′ given current state-action
pair (s, a) over transitions present in the collected replay buffer (s, a, s′) ∼ D. This can also be
presented as minimizing the reverse KL divergence between transitions conditioned on samples in
the replay buffer:

ED(s,a,s′)DKL

(
T (· | s, a)∥T̂ (· | s, a)

)
(2)

State-Action Occupancy. The state-action occupancies (also known as stationary distribution)
dπ(s, a) : S ×A → [0, 1] of policy π is

dπT (s, a) := (1− γ)

∞∑
t=0

γtPr(st = s, at = a | s0 ∼ µ0, at ∼ π(st), st+1 ∼ T (st, at)) (3)

This captures the relative state-action visitation frequencies of policy π under dynamics T . The
policy’s state occupancies can be obtained by marginalizing over actions: dπ(s) =

∑
a d

π(s, a).
With this definition, we notice the following relationship between the policy and its occupancy
distributions:

π(a | s) = dπ(s, a)

dπ(s)
(4)
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By construction, every policy’s visitation distribution dπ(s, a), must satisfy single step transpose
Bellman equation:

dπ(s, a) = (1− γ)µ0(s)π(a | s) + γπ(a | s)
∑
s̃,ã

T (s | s̃, ã)d(s̃, ã) (5)

Intuitively, this constraint restricts the “flow” of a policy’s state-action distribution where each
dπ(s, a) must be expressed as a weighted sum. This is known in the literature as the Bellman flow
constraint. Conversely, a state-action occupancy distribution d(s, a) needs to satisfy the Bellman flow
constraint in order for it to be a valid dπ(s, a) for some policy π:∑

a

d(s, a) = (1− γ)µ0(s) + γ
∑
s̃,ã

T (s | s̃, ã)d(s̃, ã),∀s ∈ S, a ∈ A (6)

Given dπ , one can express the RL objective as

J(π) =
1

1− γ
E(s,a)∼dπ(s,a)[r(s, a)] (7)

Extending this, we incorporate the Bellman flow constraint in order to ensure that the optimized
occupancy distribution corresponds to that of some policy π. Thus, we arrive at the optimization
problem:

max
d

1

1− γ
E(s,a)∼d(s,a)[r(s, a)]

s.t.
∑
a

d(s, a) = (1− γ)µ0(s) + γ
∑
s̃,ã

T (s | s̃, ã)d(s̃, ã),∀s ∈ S, a ∈ A
(8)

4 TRANSITION OCCUPANCY MATCHING

In this section, we first develop the machinery of transition occupancy. Then, we derive a lower
bound to the standard RL objective by recasting the problem to the transition occupancy space, which
that suggests a novel approach to model learning via matching the distribution of policy transitions
in the true and learned dynamics. Then, we provide the intuition for casting policy-aware model
learning as an offline imitation learning problem. Finally, we derive TOM in full.

4.1 TRANSITION OCCUPANCY

Given a policy’s state-action occupancy distribution dπT (s, a) under a transition function T , we can
define its transition occupancy distribution (TOD):

dπT ((s, a), s
′) := T (s′ | s, a)dπT (s, a) (9)

dπT ((s, a), s
′) intuitively captures the relative frequency of any transition tuple (s, a, s′) that a policy

visits under the environment dynamics T . One immediate property of this definition is that we can
back out the transition function as follow:

T (s′ | s, a) := dπT ((s, a), s
′)∑

s′ d
π
T ((s, a), s

′)
,∀π (10)

These definitions are entirely analogous to equation 3-4, suggesting that if our goal were matching
transition occupancy distributions, then we may be able to borrow algorithms from state occupancy
matching. The one missing piece so far is the equivalent of a Bellman flow constraint (equation 6),
which allows us to pose an optimization problem in the TOD space. Our key observation is that the
original Bellman flow constraint already contains a TOD term on the right: T (s | s̃, ã)dπ(s̃, ã) =
d((s̃, ã), s′). Therefore, by multiplying both sides of equation 6 by T (s′ | s, a), we obtain the
Bellman transition flow constraint:

dπT ((s, a), s
′) = (1− γ)µ0(s)T (s

′ | s, a)π(a | s) + γT (s′ | s, a)π(a | s)
∑
s̃,ã d

π
T ((s̃, ã), s),∀s′ ∈ S, (s, a) ∈ S ×A

(11)

Given these definitions, we can begin deriving a TOD-based lower bound to the RL objective that
enables policy-aware model learning via transition occupancy matching.
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4.2 POLICY-AWARE LOWER BOUND VIA TRANSITION OCCUPANCY f -DIVERGENCE

Consider the RL objective J(π), we can write it as

J(π) = EdπT (s,a)[R(s, a)] = EdπT ((s,a),s′)[R(s, a)] (12)

Then, since log(·) is a monotonically increasing function, the optimal policy to J(π) and log J(π) is
identical. The latter formulation enables us to derive a simple lower bound with respect to transition
occupancy distributions:

log J(π) = logEdπT ((s,a),s′)[R(s, a)]

= logEdπ
T̂
((s,a),s′)

[
dπT ((s, a), s

′)

dπ
T̂
((s, a), s′)

R(s, a)

]

≥Edπ
T̂
((s,a),s′)

[
log

dπT ((s, a), s
′)

dπ
T̂
((s, a), s′)

+ logR(s, a)

]
, Jensen’s inequality

≥−Df (d
π
T̂
((s, a), s′)∥dπT ((s, a), s′) + Edπ

T̂
((s,a),s′)[logR(s, a)],

(13)

which hold for any f -divergence that upper bounds the KL divergence. This lower bound directly
suggests a recipe for MBRL: (1) trains the dynamics model by minimizing the f -divergence between
the distributions of real and fake policy rollouts, and (2) optimize the policy w.r.t. the learned model.
The second step is standard and we can utilize any existing MBRL algorithm, and TOM’s technical
contribution is a model learning sub-routine aimed at minimizing this f -divergrence:

min
T̂

Df (d
π
T̂
((s, a), s′)∥dπT ((s, a), s′) (14)

4.3 ALGORITHM

At a high level, TOM uses the current policy π and its rollouts τ to train a dynamics model tailored
to the visitation distribution of π without any additional samples from the real environment. The
algorithm is derived by treating transition occupancy matching as an offline imitation learning problem.
A pseudocode is provided in Alg. 1, and we begin by illustrating the intuition of this approach. Then,
we delve into the technical derivations.

Algorithm 1 Transition Occupancy Matching

1: Require: current policy π and its environment rollout(s) τ , replay buffer D
2: // Discriminator Learning
3: Train discriminator c∗(s, a, s′) using τ,D (equation 21) and derive R(s, a, s′).
4: // Q-Function Learning
5: Train derived value function Q(s, a) using equation 22
6: // Model Learning
7: Derive optimal ratios ξ∗(s, a, s′) through equation 23
8: Train policy-aware dynamics model T̂ using equation 25

To begin, we put the transition occupancy matching problem and the well-known state-action
occupancy matching problem (Nachum & Dai, 2020; Ma et al., 2022b; Kim et al., 2022) side-by-side:

min
T̂

Df (d
π
T̂
((s, a), s′)∥dπT ((s, a), s′), min

π
Df (d

π
T ((s, a))∥dπ

∗

T ((s, a)) (15)

In the latter case, the dynamics is fixed, and the goal is to learn a policy π that matches the distribution
of a target (optimal) policy π∗. And the TOM problem precisely reverse the role of the policy π and
the dynamics model T . In particular, we can think of T as a policy, which takes in “state” (s, a) and
outputs an “action” s′, and the fixed policy π as a partial transition function that takes s and outputs
a. Given this conceptual similarity, it is perceivable that we can derive a policy-aware model learning
algorithm by adapting a suitable state-occupancy based imitation learning problem.

To this end, we first observe that optimizing equation 14 requires sampling from dπ
T̂
((s, a), s′) and

optimizing T̂ via RL, which can be unstable and fails to leverage the replay buffer D that the agent
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has already collected. To get around this issue, we introduce an additional f -divergence regularization
term as in Ma et al. (2022b) to enable learning T̂ without collecting any additional simulated samples
from it:
max
dπ
T̂

−Df (d
π
T̂
((s, a), s′)∥dπT ((s, a), s′))−Df (d

π
T̂
((s, a), s′)∥dπD

T ((s, a), s′))

s.t.
∑
s′

dπ
T̂
((s, a), s′) = (1− γ)µ0(s)π(a | s) + γπ(a | s)

∑
s̃,ã

dπ
T̂
((s̃, ã), s),∀(s, a) ∈ S ×A

(16)

We can write down the Lagrangian-dual problem:

max
dπ
T̂

min
Q
−Df (d

π
T̂
((s, a), s′)∥dπT ((s, a), s′))−Df (d

π
T̂
((s, a), s′)∥dπD

T ((s, a), s′))

+
∑
s,a

Q(s, a)

(1− γ)µ0(s)π(a | s) + γπ(a | s)
∑
s̃,ã

dπ
T̂
((s̃, ã), s)−

∑
s′

dπ
T̂
((s, a), s′)


(17)

We note two identities:∑
s,a

Q(s, a)

(∑
s′

dπ
T̂
((s, a), s′)

)
= EdπT ((s,a),s′)[Q(s, a)] (18)

and∑
s,aQ(s, a)

(
γπ(a | s)

∑
s̃,ã d

π
T̂
((s̃, ã), s)

)
= γEdπ

T̂
((s,a),s′)Eπ(a′|s′)[Q(s′, a′)]

(19)
Using these identities, some algebra, and strong duality (assuming Slater’s condition holds), we get

min
Q

max
dπ
T̂
≥0

(1− γ)Eµ0,π[Q(s, a)] + Edπ
T̂
(s,a,s′)

log dπT (s, a, s
′)

dπD

T (s, a, s′)︸ ︷︷ ︸
:=R(s,a,s′)

+γEπ(a′|s′)[Q(s′, a′)]−Q(s, a)


−Df (d

π
T̂
((s, a), s′)∥dπD

T ((s, a), s′))

(20)

R(s, a, s′) can be estimated by training a discriminator c that distinguishes transitions from π and
πD: In the continuous case, we can train a discriminator c : S → (0, 1):

min
c

E(s,a,s′)∼dπT (s,a,s′) [log c(s, a, s
′)] + EdπD

T (s,a,s′) [log 1− c(s, a, s′)] (21)

The optimal discriminator is c⋆(s, a, s′) = dπT (s,a,s′)

dπT (s,a,s′)+d
πD
T (s,a,s′)

(Goodfellow et al., 2014), so we

can use R(s, a, s′) = − log
(

1
c⋆(s,a,s′) − 1

)
.

Then, we recognize that the inner maximization is precisely the Fenchel conjugate of
Df (d

π
T̂
((s, a), s′)∥dπD

T ((s, a), s′)) at R(s, a, s′) + γEπ(a′|s′)[Q∗(s′, a′)] − Q∗(s, a), which allows
us to reduce equation 20 to the Fenchel dual problem of equation 16:

min
Q

(1− γ)Eµ0,π[Q(s, a)] + EdπD
T (s,a,s′)

[
f⋆(R(s, a, s′) + γEπ(a′|s′)[Q(s′, a′)]−Q(s, a)

]
(22)

This Q-function intuitively captures how easy it is to distinguish π from πD by rolling out respective
policies in T . More importantly, the optimal Q∗ can be approximated from equation 22 using
stochastic gradient descent (SGD) on the replay buffer data D, as all expectations can be approximated
using samples from D and the current policy π. Then, we can leverage Fenchel duality to obtain
the optimal importance weight ratio incorporating the optimal solution dπ

T̂∗((s, a), s
′) for the primal

problem (equation 16):

ξ∗(s, a, s′) :=
dπ
T̂∗((s, a), s

′)

dπD

T ((s, a), s′)
= f ′

⋆

(
R(s, a, s′) + γEπ(a′|s′)[Q∗(s′, a′)]−Q∗(s, a)

)
(23)
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Using this, we can also back out the optimal policy-aware dynamics model:

T̂ ∗(s′ | s, a) =
dπD

T ((s, a), s′)f ′
⋆

(
R(s, a, s′) + γEπ(a′|s′)[Q∗(s′, a′)]−Q∗(s, a)

)∑
s′ d

πD

T ((s, a), s′)f ′
⋆

(
R(s, a, s′) + γEπ(a′|s′)[Q∗(s′, a′)]−Q∗(s, a)

) (24)

In the continuous control regime where we cannot sum over all possible s′, we can resort to us-
ing equation 23 as importance weights and perform f -advantage regression (Ma et al., 2022d):

min
T̂
− Edπ

T̂∗ ((s,a),s
′)[log T̂ (s

′ | s, a)]

=− EdπD
T (s,a,s′)

[
f ′
⋆

(
R(s, a, s′) + γEπ(a′|s′)[Q∗(s′, a′)]−Q∗(s, a)

)
log T̂ (s′ | s, a)

] (25)

Here, we see that the dynamics model is still trained with MLE, but just on a different distribution
that is current policy-aware; equivalently, the model learned via behavior cloning (BC) on the current
policy’s transition occupancy distribution, which ensures policy-awareness and enables optimizing a
well-defined lower bound to the true RL objective. The TOM algorithm is summarized in Alg. 1, and
a full version is Alg. 2.

5 EXPERIMENTS

We experimentally demonstrate that TOM is an effective way of model learning by providing
conclusive evidence for two questions

• Does TOM enable more sample-efficient MBRL?

• Does TOM’s principled lower bound permits higher asymptotic performance?

• Does TOM assign higher weights to samples from the current policy’s transition distribution?

To investigate the first question, we build TOM on top of a standard deep MBRL algorithm which
implements MLE model learning. To answer the second question, we design an offline model learning
experiment. Here, through tight control of transitions in the offline dataset, we probe whether TOM
can accurately assign higher weights to transitions more relevant to a hand-designed policy.

5.1 ONLINE MODEL BASED LEARNING

5.1.1 ALGORITHMS AND ENVIRONMENTS

We begin by describing baselines and environments.While many decision-aware MBRL algorithms
have been introduced in recent years, we emphasize that a thorough comparison to them is not the aim
of our paper; many of them require specific network architectures and introduce fundamentally new
ways for training the model and the policy, thus making a direct comparison difficult. Instead, our goal
is to compare our policy-aware model learning approach over a standard deep MBRL algorithm that
is not policy-aware To this end, we consider Model Based Policy Optimization (MBPO) (Janner et al.,
2019) as the backbone MBRL algorithm. MBPO learns the dynamics model by maximum likelihood
and optimizes the policy via Soft Actor-Critic (SAC) using simulated samples from the learned
dynamics model. To validate the effective of our occupancy matching approach to policy-aware
model learning, we compare against an alternative policy-aware model learning algorithm, Policy-
adaptation Model-based Actor-Critic (PMAC) (Wang et al., 2022), which heuristically upweights
recent transitions in the replay buffer because they are more likely to be relevant to the current policy.
We implement both TOM and PMAC on top of the same MBPO implementation, changing only
how the weights are assigned to replay buffer data for model learning. See Appendix ?? for more
implementation details. In Appendix A.1, we also provide TOM pseudocode.

We compare TOM, MBPO and PMAC on 5 different Mujoco (Todorov et al., 2012) environments
(Hopper-v2, Walker2d-v2, HalfCheetah-v2, Ant-v2 and Humanoid-v2), and the results are shown in
Figure 2. The x-axis refers to the total number of environment step taken by the agent, and the y-axis
is the cumulative maximum average return on 10 test rollouts.
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Figure 2: Return plots on standard Mujoco GYM environments

Figure 3: TOM transition weights - TOM progressively assigns higher weights to expert policy’s transitions

5.1.2 RESULTS

As shown in Figure 2, TOM is more sample efficient and reaches higher asymptotic performance
in all environments. This is better noticed in the harder environments such as Walker, HalfCheetah,
and Humanoid. Notably on Humanoid, TOM learns a policy that achieves at least 60% more reward
than non-policy aware MBPO. In contrast, PMAC is unstable and reaches much lower asymptotic
performance, indicating that heuristically upweighting transitions is sensitive to hyper-parameter
choices, and a more principled approach like TOM is needed.

5.2 OFFLINE PROGRESSION ANALYSIS OF MODEL WEIGHTS

These online RL results in the previous section demonstrates that TOM’s principled policy-aware
model learning approach can indeed deliver impressive practical improvement. In this section, we
qualitatively demonstrate that TOM’s policy-aware nature comes from its ability to accurately assign
weights to transitions according to their relevance to the current policy’s visitation distribution.

5.2.1 EXPERIMENT DESIGN

We consider a fully offline model learning setup, in which we carefully control the composition of
transitions in the offline dataset for model learning. This enables us to visualize the learned TOM
weights accordingly to see whether they meaningfully correlate with relevance to the hand-designed
policy. To this end, we consider offline datasets from D4RL (Fu et al., 2021) and construct a combined
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dataset, in which the first half consists of 1M random transitions and the second half consists of all
transitions encountered by a SAC agent (i.e., its replay buffer) trained using 1M environment steps,
improving from random to expert performance. We choose the expert policy to be the policy of
interest. Given that the first half of the combined dataset is random and the second half progressively
become more similar to the expert, if we plot TOM’s weights sequentially over the entire dataset,
we should expect the weights to be uniformly low the first half and progressively increase in the
second half. The results are shown in Figure 3; the bins are averaged over 100000 transition weights
sequentially in the order they appear in the dataset.

5.2.2 RESULT

As shown in Figure 3, the TOM weights indeed progressively increase in the replay buffer portion
(i.e., the blue bins) and remains uniformly low in the random portion (i.e., the orange bins). Inter-
estingly, TOM is able to meaningful assign weights of intermediate values for transitions that are
of intermediate qualities (compared to the expert); this shows that TOM also does not overfit to the
policy of interest and is capable of learning a generalizable notion of policy awareness. These results
indeed validate that TOM is able to pay more attention to transitions relevant to the policy of interest,
and consequently, learn a policy-aware dynamics model.

6 CONCLUSION

We have introduced Transition Occupancy Matching (TOM), a principled and policy-aware model
learning approach to address the objective mismatch challenge in model-based reinforcement learn-
ing. TOM introduces the notion of transition occupancy and derives a simple lower bound to the
reinforcement learning objective, which permits casting learning a policy-aware dynamics model
as learning importance weights for weighted regression model updates. The importance weights
are derived from the theory of dual reinforcement learning, and TOM’s practical implementation is
modular and compatible with any MBRL algorithm that implements MLE-based model learning. On
the standard suite of Mujoco tasks, TOM improves the learning speed of a standard MBRL algorithm
while achieving significantly higher asymptotic performance compared to non-policy aware methods.
Future directions include scaling TOM to visual MBRL domains (Hafner et al., 2019a;b), real-world
robotics tasks (Ebert et al., 2018; Nagabandi et al., 2020), and safe deep model-based RL (Liu et al.,
2020; Ma et al., 2022a).
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A APPENDIX

A.1 PSEUDOCODE

Algorithm 2 Transition Occupancy Matching for continuous control

1: Initialize policy πϕ, predictive model pω,discriminator cψ, Q function Qθ, environment dataset
Denv, model dataset Dmodel, Current policy pool dataset Dpol,choice of f -divergence f

2: for N epochs do
3: // Train Expert Discriminator
4: Train Discriminator cψ using Dpol and Denv
5: // Train Lagrangian Q Function
6: for U iterations do
7: Sample minibatch data from environment pool {sit, ait, sit+1}Ni=1 ∼ Denv and {si0}Mi=1 ∼

Denv(µ0)
8: Obtain reward: Ri = cψ(s

i
t, a

i
t, s

i
t+1), i = 1, ..., N

9: Compute value objective
L(θ) := (1− γ) 1

M

∑M
i=1 Vθ(s

i
0) +

1
N f⋆

(
Ri + γV (sit+1)−Q(sit, a

i
t)
)

where V (st+1) =
1
P ΣpQ(st+1, a

p
t+1) where apt+1 ∼ πϕ(st+1)

10: Update Qθ using SGD: Qθ ← Qθ − ηQ∇L(θ)
11: // Model Learning
12: for H iterations do
13: // Compute Optimal Importance Weights for all env pool

samples
14: Compute ξ∗(sit, a

i
t, s

i
t+1) = f ′

⋆

(
R(sit, a

i
t, s

i
t+1) + γV (sit+1)−Q(sit, a

i
t)
)
, i = 1, ..., N

15: Sample minibatch data from environment pool accoriding to the weights {sit, ait, sit+1}Ni=1 ∼
Denv according to ξ∗(sit, a

i
t, s

i
t+1)

16: Obtain reward: R = cψ(s
i
t, a

i
t, s

i
t+1), i = 1, ..., N

17: // Weighted Regression
18: Train dynamics model pω on sampled minibatch
19: for E steps do
20: Take action in environment according to πϕ; add to Denv
21: for M model rollouts do
22: Sample st according to weights ξ∗(sit, a

i
t, s

i
t+1) from Denv

23: Perform k-step model rollout starting from st using policy πϕ; add to Dmodel
24: for G gradient updates do
25: Update policy parameters on model data: ϕ← ϕ− λπ∇̂ϕJπ(ϕ,Dmodel)
26: Update Dpol for the current trained policy

A.2 HYPERPARAMETERS AND ARCHITECTURE

We standardize hyperparameters across all experiments and environments; they are listed in Table A.2.

In terms of architecture, the dynamics value function Qθ is implemented as a simple 2-layered
ReLU network each with 256 neurons in the hidden dimension. The discriminator cψ has the same
architecture as the value function but with Tanh as its activation. The dynamics model pω is a sigmoid
activated 4 layer neural network with 200 hidden neurons in each layer. In Humanoid, we use 400
hidden neurons in each layer for the dynamics model.

We employ Soft-Actor-Critic (SAC) (Haarnoja et al., 2018) for policy optimization and use default
architecture in a publicly released implementation.
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Hyperparameter Value
Optimizer Adam Kingma & Ba (2014)

Learning Rate 3e-4
Divergence χ2-divergence

Discriminator update steps per iteration 100
Discriminator batch size 256

Value network update steps per iteration 1000
Value network batch size 256

Dynamics model update steps per iteration 10
Dynamics model batch size 256
Policy network batch size 256

Current policy buffer capacity 1000
Replay buffer capacity 100000

Rollout batch size 100000
Model rollout step(s) 1

PMAC decay rate 0.996
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