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Abstract: Goal-conditioned policies for robotic navigation can be trained on
large, unannotated datasets, providing for good generalization to real-world set-
tings. However, particularly in vision-based settings where specifying goals re-
quires an image, this makes for an unnatural interface. Language provides a more
convenient modality for communication with robots, but contemporary methods
typically require expensive supervision, in the form of trajectories annotated with
language descriptions. We present a system, LM-Nav, for robotic navigation that
enjoys the benefits of training on unannotated large datasets of trajectories, while
still providing a high-level interface to the user. Instead of utilizing a labeled
instruction following dataset, we show that such a system can be constructed en-
tirely out of pre-trained models for navigation (ViNG), image-language associa-
tion (CLIP), and language modeling (GPT-3), without requiring any fine-tuning
or language-annotated robot data. LM-Nav extracts landmarks names from an
instruction, grounds them in the world via the image-language model, and then
reaches them via the (vision-only) navigation model. We instantiate LM-Nav on
a real-world mobile robot and demonstrate long-horizon navigation through com-
plex, outdoor environments from natural language instructions.

1 Introduction

One of the central challenges in robotic learning is to enable robots to perform a wide variety of
tasks on command, following high-level instructions from humans. This requires robots that can
understand human instructions, and are equipped with a large repertoire of diverse behaviors to
execute such instructions in the real world. Prior work on instruction following in navigation has
largely focused on learning from trajectories annotated with textual instructions [1–5]. This enables
understanding of textual instructions, but the cost of data annotation impedes wide adoption. On
the other hand, recent work has shown that learning robust navigation is possible through goal-
conditioned policies trained with self-supervision. These utilize large, unlabeled datasets to train
vision-based controllers via hindsight relabeling [6–11]. They provide scalability, generalization,
and robustness, but usually involve a clunky mechanism for goal specification, using locations or
images. In this work, we aim to combine the strengths of both approaches, enabling a robotic
navigation system to execute natural language instructions by leveraging the capabilities of pre-
trained models without any user-annotated navigational data. Our method uses these models to
construct an “interface” that humans can use to communicate desired tasks to robots. This system
enjoys the impressive generalization capabilities of the pre-trained language and vision-language
models, enabling the robotic system to accept complex high-level instructions.

Our main observation is that we can utilize off-the-shelf pre-trained models trained on large corpora
of visual and language datasets — that are widely available and show great few-shot generaliza-
tion capabilities — to create this interface for embodied instruction following. To achieve this, we
combine the strengths of two such robot-agnostic pre-trained models with a pre-trained navigation
model. We use a visual navigation model (VNM: ViNG [11]) to create a topological “mental map”
of the environment using the robot’s observations from a prior exploration of the environment. Given
free-form textual instructions, we use a pre-trained large language model (LLM: GPT-3 [12]) to de-
code the instructions into a sequence of textual landmarks. We then use a vision-language model
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Figure 1: Embodied instruction following with LM-Nav: Our system takes as input a set of raw observations
from the target environment and free-form textual instructions (left), deriving an actionable plan using three pre-
trained models: a large language model (LLM) for extracting landmarks, a vision-and-language model (VLM)
for grounding, and a visual navigation model (VNM) for execution. This enables LM-Nav to follow textual
instructions in complex environments purely from visual observations (right) without any fine-tuning.

(VLM: CLIP [13]) for grounding these textual landmarks in the topological map, by inferring a
joint likelihood over the landmarks and nodes. A novel search algorithm is then used to plan a path
for the robot, which is then executed by VNM. While reducing the task of language following to a
combination of grounding and subgoal selection discards a lot of useful cues such as relations and
verbs, we find that it is still sufficient to follow a variety of natural language instructions.

Our primary contribution is Large Model Navigation, or LM-Nav, an embodied instruction follow-
ing system that combines three large independently pre-trained models — a robotic control model
that utilizes visual observations and physical actions (VNM), a vision-language model that grounds
images in text but has no context of embodiment (VLM), and a large language model that can parse
and translate text but has no sense of visual grounding or embodiment (LLM) — to enable long-
horizon instruction following in complex, real-world environments. We present the first instantiation
of a robotic system that combines the confluence of pre-trained vision-and-language models with a
goal-conditioned controller, to derive actionable plans without any fine-tuning in the target environ-
ment. Notably, all three models are trained on large-scale datasets, with self-supervised objectives,
and used off-the-shelf with no fine-tuning — no human annotations of the robot navigation data are
necessary to train LM-Nav. We show that LM-Nav is able to successfully follow natural language
instructions in pre-explored environments over the course of 100s of meters of complex, suburban
navigation, while disambiguating paths with fine-grained commands.

2 Related Work

Early works in augmenting navigation policies with natural language commands use statistical ma-
chine translation [14] to discover data-driven patterns to map free-form commands to a formal lan-
guage defined by a grammar [15–19]. However, these approaches tend to operate on structured state
spaces. Our work is closely inspired by methods that instead reduce this task to a sequence predic-
tion problem [1, 20, 21]. Notably, our goal is similar to the task of VLN — leveraging fine-grained
instructions to control a mobile robot solely from visual observations [1, 2].

However, most recent approaches to VLN use a large dataset of simulated trajectories — over 1M
demonstrations — annotated with fine-grained language labels in indoor [1, 3–5, 22] and driv-
ing scenarios [23–28], and rely on sim-to-real transfer for deployment in simple indoor environ-
ments [29, 30]. However, this necessitates building a photo-realistic simulator resembling the target
environment, which can be challenging for unstructured environments, especially for the task of
outdoor navigation. Instead, LM-Nav leverages free-form textual instructions to navigate a robot in
complex, outdoor environments without access to any simulation or any trajectory-level annotations.

Recent progress in using large-scale models of natural language and images trained on diverse data
has enabled applications in a wide variety of textual [31–33], visual [13, 34–38], and embodied
domains [39–44]. In the latter category, approaches either fine-tune embeddings from pre-trained
models on robot data with language labels [39, 40, 44], assume that the low-level agent can execute
textual instructions (without addressing control) [41], or assume access to a set of text-conditioned
skills that can follow atomic textual commands [42]. All of these approaches require access to low-
level skills that can follow rudimentary textual commands, necessitating language annotations for
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robotic experience and a strong assumption on the robot’s capabilities. In contrast, we combine
these pre-trained vision and language models with pre-trained visual policies that do not use any
language annotations [11, 45] without fine-tuning these models for the task of VLN.

Data-driven approaches to vision-based mobile robot navigation often use photorealistic simula-
tors [46–49] or supervised data collection [50] to learn goal-reaching policies directly from raw
observations. Self-supervised methods for navigation [6–11, 51] instead can use unlabeled datasets
of trajectories by automatically generating labels using onboard sensors and hindsight relabeling.
While such policies are adept at navigating to goal locations or images, they may be unable to parse
high-level instructions such as free-form text. LM-Nav uses self-supervised policies trained in a
large number of prior environments, augmented with pre-trained vision and language models for
parsing natural language instructions, and deploys them in novel real-world environments without
any fine-tuning. We emphasize that while LM-Nav relies on a pre-built topological graph, similar to
prior work [11, 51, 52], this assumption may be relaxed by incorporating exploration heuristics in
unseen environments [53], and can be an interesting avenue for future work.

3 Preliminaries
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Figure 2: LM-Nav uses CLIP to infer a joint distribution over
textual landmarks and image observations. VNM infers a goal-
conditioned distance function and policy that can control the robot.

LM-Nav consists of three large, pre-
trained models for processing lan-
guage, associating images with lan-
guage, and visual navigation.

Large language models are genera-
tive models of text trained on large
corpora of internet text using self-
supervised learning. LM-Nav uses
the GPT-3 LLM [12] to parse instruc-
tions into a sequence of landmarks.

Vision-and-language models refer to models that can associate images and text, e.g. image cap-
tioning, visual question-answering, etc. [54–56]. We use the CLIP VLM [13], a model that jointly
encodes images and text into a shared embedding space, to jointly encode a set of landmark descrip-
tions t obtained from the LLM and a set of images ik to obtain their VLM embeddings {T, Ik}
(see Fig. 3). Computing the cosine similarity between these embeddings, followed by a softmax
operation results in probabilities P (ik|t), corresponding to the likelihood that image ik corresponds
to the string t. LM-Nav uses this probability to align landmark descriptions with images.

Visual navigation models learn navigational affordances directly from visual observations [11,
51, 57–59], associating images and actions through time. We use the ViNG VNM [11], a goal-
conditioned model that predicts temporal distances between pairs of images and the corresponding
actions to execute (see Fig. 3). The VNM serves two purposes: (i) given a set of observations in
the target environment, the distance predictions from the VNM can be used to construct a topo-
logical graph G(V,E) that represents a “mental map” of the environment; (ii) given a “walk” (i.e.,
a sequence of connected subgoals to the goal), VNM can control the robot along this plan. The
topological graph G is an important abstraction that allows a simple interface for planning over past
experience in the environment and has been successfully used in prior work to perform long-horizon
navigation [52, 53, 60]. To deduce connectivity in G, we use a combination of learned distance
estimates, temporal proximity (during data collection), and spatial proximity (using GPS measure-
ments). For more details on the construction of this graph, see Appendix B.

4 LM-Nav: Instruction Following with Pre-Trained Models

LM-Nav combines the components discussed earlier to follow natural language instructions in the
real world. The LLM parses free-form instructions into a list of landmarks ¯̀ (Sec. 4.2), the VLM

associates these landmarks with nodes in the graph by estimating the probability that each node v̄
corresponds to each ¯̀, P (v̄|¯̀) (Sec. 4.3), and the VNM is used to infer how effectively the robot
can navigate between each pair of nodes in the graph, denoted by a probability P (vi, vj). To find
the optimal “walk” on the graph that both (i) adheres to the provided instructions and (ii) minimizes
traversal cost, we derive a probabilistic objective (Sec. 4.1) and show how it can be optimized using
a graph search algorithm (Sec. 4.4). This walk is executed in the real world by the VNM model.
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Figure 3: System overview: (a) VNM uses a goal-conditioned distance function to infer connectivity between
the set of raw observations and constructs a topological graph. (b) LLM translates natural language instruc-
tions into a sequence of textual landmarks. (c) VLM infers a joint probability distribution over the landmark
descriptions and nodes in the graph, which is used by (d) a graph search algorithm to derive the optimal walk
through the graph. (e) The robot drives following the walk in the real world using the VNM policy.

4.1 Problem Formulation

Given a sequence of landmark descriptions ¯̀= `1, `2, ..., `n extracted from the language command,
our method needs to determine a sequence of waypoints v̄ = v1, v2, ..., vk to command to the robot.
Typically, k � n, since each landmark needs to be visited, but the traversal might require other
waypoints in between the landmarks. Finding v̄ can formulated as a probabilistic inference problem.
A key element in this formulation is access to a distribution p(vi|`j) for each graph vertex vi and
landmark description `j . Recall that the graph vertices correspond to images observed by the robot,
and thus, p(vi|`i) represents a distribution over images given a language description. This can be
obtained from the VLM. Intuitively, the full likelihood that we need to optimize to determine the
robot’s plan will now depend on two terms: likelihoods of the form p(vti |`i) that describe how likely
vti is to correspond to `i for an assignment t1, t2, . . . , tn, and traversability likelihoods p(vi, vi+1)
that describe how likely is the robot to be able to reach vi+1 from vi.

While we can use a variety of traversability likelihood functions, a simple choice is to use a dis-
counted Markovian model, where the discount � models the probability of exiting at each time step,
leading to a termination probability of 1 � � at each step, and a probability of reaching vi+1 given
by �D(vi,vi+1), where D(vi, vi+1) is the estimated number of time steps the robot needs to travel
from vi to vi+1, which is predicted by the VNM. While other traversability likelihoods could also be
used, this choice is a convenient consequence of goal-conditioned reinforcement learning formula-
tions [61, 62], and thus, the log-likelihood corresponds to D(vi, vi+1). We can use these likelihoods
to derive the probability that a given sequence v̄ can be traversed successfully, which we denote with
the auxiliary Bernoulli random variable cv̄ (i.e., cv̄ = 1 implies that v̄ was traversed successfully):

P (cv̄ = 1|v̄) =
Y

1i<T

P (vi, vi+1) =
Y

1i<T

�D(vi,vi+1), (1)

The full likelihood used for planning is then given by:

P (success|v̄, ¯̀) / P (cv̄ = 1|v̄)P (v̄|¯̀) =
Y

1j<k

�D(vj ,vj+1) max
1t1...tnk

Y

1in

P (vti |`i). (2)

4.2 Parsing Free-Form Textual Instructions

The user specifies the route they want the robot to take using natural language, while the objective
above is defined in terms of a sequence of desired landmarks. To extract this sequence from the
user’s natural language instruction we employ a large language model, which in our prototype is
GPT-3 [12]. We used a prompt with 2 examples of correct landmarks’ extractions, followed by the
description to be translated by the LLM. Examples of instructions and landmarks extracted by the
model can be found in Fig. 4. The prompt was selected to disambiguate nuanced cases, e.g. when
order of landmarks in the text is different than in the expected path (see example in Fig. 4 a). For
details of the “prompt engineering” please see Appendix A.
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4.3 Visually Grounding Landmark Descriptions

Algorithm 1: Graph Search
1: Input: Landmarks (`1, `2, . . . , `n).
2: Input: Graph G(V,E).
3: Input: Starting node S.
4: 8i=0,...,n

v2V
Q[i, v] = �1

5: Q[0, S] = 0
6: Dijkstra algorithm(G, Q[0, ⇤])
7: for i in 1, 2, . . . , n do

8: 8v 2 V Q[i, v] = Q[i� 1, v] + CLIP(v, `i)
9: Dijkstra algorithm(G, Q[i, ⇤])

10: end for

11: destination = argmax(Q[n, ⇤])
12: return backtrack(destination, Q[n, ⇤])

As discussed in Sec. 4.1, a crucial element
of selecting the walk through the graph is
computing P (vi|`j), the probability that land-
mark description vi refers to node `j (see
Eqn. 2). With each node containing an image
taken during initial data collection, the prob-
ability can be computed using CLIP [13] in
the way described in Sec. 3 as the retrieval
task. As presented in Fig. 2, we apply CLIP
to the image at node vi and caption prompt
in the form of “This is a photo of a [`j]”.
To go from CLIP model outputs, which are
logits, to probabilities we use P (vi|`j) =

exp CLIP(vi,`j)P
v2V exp CLIP(v,`j)

. The resulting probability
P (vi|`j), together with the inferred edges’ distances will be used to select the optimal walk.

4.4 Graph Search for the Optimal Walk

As described in Sec. 4.1, LM-Nav aims at finding a walk v̄ = (v1, v2, . . . , vk) that maximizes the
probability of successful execution of v̄ that adheres to the given list of landmarks ¯̀. We can define
a function R(v̄, t̄) for a monotonically increasing sequence of indices t̄ = (t1, t2, . . . , tn):

R(v̄, t̄) :=
nX

i=1

CLIP(vti , `i)� ↵
T�1X

j=1

D(vj , vj+1),where↵ = � log �. (3)

R has the property that (v̄) maximizes P (success|v̄, ¯̀) defined in Eqn. 2, if and only if there exists
t̄ such that (v̄, t̄) maximizes R. In order to find such (v̄, t̄), we employ dynamic programming. In
particular we define a helper function Q(i, v) for i 2 {0, 1, . . . , n}, v 2 V :

Q(i, v) = max
v̄=(v1,v2,...,vj),vj=v

t̄=(t1,t2,...,ti)

R(v̄, t̄). (4)

Q(i, v) represents the maximal value of R for a walk ending in v that visited the landmarks up to
index i. The base case Q(0, v) visits none of the landmarks, and its value of R is simply equal to
minus the length of shortest path from the starting node S. For i > 0 we have:

Q(i, v) = max

✓
Q(i� 1, v) + CLIP(v, `i), max

w2neighbors(v)
Q(i, w)� ↵ ·D(v, w)

◆
. (5)

The base case for DP is to compute Q(0, V ). Then, in each step of DP i = 1, 2, . . . , n we compute
Q(i, v). This computation resembles the Dijkstra algorithm ([63]). In each iteration, we pick the
node v with the largest value of Q(i, v) and update its neighbors based on the Eqn. 5. Algorithm 1
summarizes this search process. The result of this algorithm is a walk v̄ = (v1, v2, . . . , vk) that
maximizes the probability of successfully carrying out the instruction. Such a walk can be executed
by VNM, using its action estimates to sequentially navigate to these nodes.

5 System Evaluation

We now describe our experiments deploying LM-Nav in a variety of outdoor settings to follow high-
level natural language instructions with a small ground robot (Clearpath Jackal UGV platform —
see Fig. 1(right) for image and Appendix C for details). For all experiments, the weights of LLM,
VLM, and VNM are frozen — there is no fine-tuning or annotation in the target environment. We
evaluate the complete system, as well as the individual components of LM-Nav, to understand its
strengths and limitations. Our experiments demonstrate the ability of LM-Nav to follow high-level
instructions, disambiguate paths, and reach goals that are up to 800m away.
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Figure 4: Qualitative examples of LM-Nav in real-world environments executing textual instructions (left).
The landmarks extracted by LLM (highlighted in text) are grounded into visual observations by VLM (center;
overhead image not available to the robot). The resulting walk of the graph is executed by VNM (right).

5.1 Following Instructions with LM-Nav

In each evaluation environment, we first construct the graph by manually driving the robot and col-
lecting image and GPS observations. The graph is constructed automatically using the VNM to pre-
dict relative distances between images in these trajectories. We tested our system on 20 queries in 2
environments, corresponding to a combined length of over 6km. The instructions include prominent
landmarks that can be identified from the robot’s observations, e.g., buildings and stop signs.

Fig. 4 shows qualitative examples of the path taken by the robot. In Fig. 4(a), LM-Nav is able to
successfully localize the simple landmarks from its prior traversal and find a short path to the goal.
While there are multiple stop signs in the environment, the objective in Eqn. 2 causes the robot to
pick the correct one, minimizing overall trajectory length. Fig. 4(b) highlights LM-Nav’s ability to
follow complex instructions with multiple landmarks — despite the possibility of taking a shorter
route directly to the final landmark, the robot follows a path that correctly visits all of the landmarks.

Go straight toward the white 

building. Continue straight 

passing by a white truck until you 

reach a stop sign.

After passing a white building, 

take right next to a white truck. 

Then take left and go towards a 

square with a large tree. Go 

further, until you find a stop sign.

Start Goal Landmarks

Figure 5: LM-Nav can successfully disambiguate
instructions with same start-goal locations that dif-
fer slightly. The landmarks are underscored in text
and their locations are marked with pins.

Missing landmarks. While LM-Nav is effective at
finding a path through landmarks extracted from in-
structions, it relies on the assumption that the land-
marks (i) exist in the environment, and (ii) can be
identified by the VLM. Fig. 4(c) illustrates a case
where the executed path fails to visit one of the
landmarks — a fire hydrant — and takes a path that
goes around the top of the building rather than the
bottom. This failure mode is attributed to the the
inability of the VLM to detect a fire hydrant from
the robot’s observations. On independently evaluat-
ing the efficacy of the VLM at retrieving landmarks
(see Sec. 5.3), we find that despite being the best
off-the-shelf model for our task, CLIP is unable to
retrieve a small number of “hard” landmarks, in-
cluding fire hydrants and cement mixers. In many
practical cases, the robot is still successful in find-
ing a path that visits the remaining landmarks.

Disambiguation with instructions. Since the objective of LM-Nav is to follow instructions, and
not merely to reach the final goal, different instructions may lead to different traversals. Fig. 5 shows
an example where modifying the instruction can disambiguate multiple paths to the goal. Given the
shorter prompt (blue), LM-Nav prefers the more direct path. On specifying a more fine-grained
route (magenta), LM-Nav takes an alternate path that passes a different set of landmarks.

5.2 Quantitative Analysis

To quantify the performance of LM-Nav, we introduce the following metrics. A walk found by the
graph search is successful, if (1) it matches the path intended by the user or (2) if the landmark im-
ages extracted by the search algorithm contain said landmarks (i.e. if the path visits landmarks with
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System Environment Net Success " Efficiency " # Diseng. # Planning "
GPS-Nav (No VNM) EnvSmall-10 0.23 0.93 0.75 0.9

EnvSmall-10 0.8 0.96 0.1 0.9LM-Nav (Ours)
EnvLarge-10 0.8 0.89 0 0.8

Table 1: Quantifying navigational instruction following with LM-Nav over 20 experiments. LM-Nav can
successfully plan a path to the goal, and follow it efficiently, over 100s of meters. Ablating the VNM (GPS-Nav)
severely hurts performance due to frequent disengagements inability to reason about collisions with obstacles.

LLM Candidate Avg. Extraction Success

Noun Chunks 0.88
fairseq-1.3B [64] 0.52
fairseq-13B [64] 0.76
GPT-J-6B [65] 0.80
GPT-NeoX-20B [66] 0.72
GPT-3 [12] 1.0

Table 2: GPT-3 consistently outperforms alternatives
in parsing free-form instructions into landmarks.

VLM Candidate Detection Rate

Faster-RCNN [67] 0.07
ViLD [36] 0.38
CLIP-ViT [13] 0.87

Table 3: CLIP-ViT produces the most reliable
landmark detections from visual observations.

the same description, even if not exactly the same). Planning success is the fraction of successful
walks found by the search algorithm. Efficiency of a walk is defined as the ratio of the lengths of the
described route and the executed one; the value is clipped at a maximum of 1 to account for the cases
when the LM-Nav executes a path shorter than the user intended. For a set of queries, we report the
average efficiency over successful experiments. The planning efficiency is similarly defined as the
ratio of the length of the described and planned routes. Finally, number of disengagements is the
average number of human interventions per experiment due to unsafe maneuvers.

Table 1 summarizes the quantitative performance of the system over 20 instructions. LM-Nav gen-
erates a successful walk for 85% of them, and causes disengagement only once (an average of 1
intervention per 6.4km of traversals). Investigating the planning failure modes suggests that the
most critical component of our system is the ability of VLM to detect certain landmarks, e.g. a fire
hydrant, and in challenging lighting conditions, e.g. underexposed images.

5.3 Dissecting LM-Nav

To understand the influence of each of the components of LM-Nav, we conduct experiments to
evaluate these components in isolation. For more details about these experiments, see Appendix D.

To evaluate the performance of LLM candidates in parsing instructions into an ordered list of land-
marks, we compare GPT-3 (used by LM-Nav) to other state-of-the-art pre-trained language models
— fairseq [64], GPT-J-6B [65], and GPT-NeoX-20B [66] — as well as a simple baseline using
spaCy NLP library [68] that extracts base noun phrases, followed by filtering. In Table 2 we report
the average extraction success for all the methods on the 20 prompts used in Section 5.2. GPT-3 sig-
nificantly outperforms other models, owing to its superior representation capabilities and in-context
learning [69]. The noun chunking performs surprisingly reliably, correctly solving many simple
prompts. For further details on these experiments, see Appendix D.2.

To evaluate the VLM’s ability to ground these textual landmarks in visual observations, we set up
an object detection experiment. Given an unlabeled image from the robot’s on-board camera and a
set of textual landmarks, the task is to retrieve the corresponding label. We run this experiment on
a set of 100 images from the environments discussed earlier, and a set of 30 commonly-occurring
landmarks. These landmarks are a combination of the landmarks retrieved by the LLM in our

EnvSmall-10 EnvLarge-10
Planner Pl. Success " Pl. Efficiency " Pl. Success " Pl. Efficiency "
Max Likelihood 0.6 0.69 0.2 0.17
LM-Nav (Ours) 0.9 0.80 0.8 0.99

Table 4: Ablating the search algorithm (Sec. 4.4) gives a max likelihood planner that ignores reachability
information, resulting in inefficient plans that are up to 6⇥ longer than LM-Nav for the same instruction.
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experiments from Sec. 5.1 and manually curated ones. We report the detection successful if any of
the top 3 predictions adhere to the contents of the image. We compare the retrieval success of our
VLM (CLIP) with some object detection alternatives — Faster-RCNN-FPN [67, 70], a state-of-the-
art object detection model pre-trained on MS-COCO [71, 72], and ViLD [36], an open-vocabulary
object detector based on CLIP and Mask-RCNN [73]. To evaluate against the closed-vocabulary
baseline, we modify the setup by projecting the landmarks onto the set of MS-COCO class labels.
We find that CLIP outperforms baselines by a wide margin, suggesting that its visual model transfers
very well to robot observations (see Table 3). Despite deriving from CLIP, ViLD struggles with
detecting complex landmarks like “manhole cover” and “glass building”. Faster-RCNN is unable to
detect common MS-COCO objects like “traffic light”, “person” and ”stop sign”, likely due to the
on-board images being out-of-distribution for the model.

Start Goal Collision

Figure 6: GPS-Nav (red) fails to exe-
cute a plan due to its inability to rea-
son about traversability through obsta-
cles, while LM-Nav (blue) succeeds.

To understand the importance of the VNM, we run an ab-
lation experiment of LM-Nav without the navigation model.
Using GPS-based distance estimates and a naı̈ve straight line
controller between nodes of the topological graph. Table 1
summarizes these results — without VNM’s ability to reason
about obstacles and traversability, the system frequently runs
into small obstacles such as trees and curbs, resulting in fail-
ure. Fig. 6 illustrates such a case — while such a controller
works well on open roads, it fails to reason about connec-
tivity around buildings or obstacles and results in collisions
with a curb, a tree, and a wall in 3 individual attempts. This
illustrates that using a learned policy and distance function
from the VNM is critical for LM-Nav to successfully navi-
gate in complex environments.

Lastly, to understand the importance of the two components of the graph search objective (Eqn. 3),
we ran a set of ablations where the graph search only depends on P (v̄|¯̀), i.e. Max Likelihood Plan-
ning, which only picks the most likely landmark without reasoning about topological connectivity
or traversability. Table 4 shows that such a planner suffers greatly in the form of efficiency, because
it does not utilize the spatial organization of nodes and their connectivity. For more details on these
experiments, and qualitative examples, see Appendix D.

6 Discussion

We presented Large Model Navigation, a robotic system that can execute textual instructions in the
real-world without requiring any human annotations for navigation trajectories. LM-Nav combines
three pre-trained models: the LLM, which parses instructions into a list of landmarks; the VLM,
which infers joint probabilities between these landmarks and visual observations from the environ-
ment; and the VNM, which estimates navigational affordances (distances between landmarks) and
control actions. Each model is pre-trained on its own dataset, and we show that the complete system
can execute a variety of user-specified instructions in real-world environments — choosing the cor-
rect sequence of landmarks by leveraging language and spatial context — and handle mistakes (such
as missing landmarks). We also analyze the impact of each pre-trained model on the full system.

Limitations and future work. The most prominent limitation of LM-Nav is its reliance on land-
marks: while the user can specify any instruction they want, LM-Nav only focuses on the landmarks
and disregards any verbs, propositions, adverbs, etc. (e.g., “go straight for three blocks” or “drive
past the dog very slowly”), which can be lossy. Grounding such nuances is an important direction
for future work. Additionally, LM-Nav uses a VNM that is specific to outdoor navigation with the
Jackal robot, which limits wider adoption for other robot embodiments and sensor suites. An ex-
citing direction for future work would be to swap in a “general navigation model” [74] that can be
utilized broadly across robots, analogous to how the LLM and VLM handle any text or image. In its
current form, LM-Nav provides a simple and attractive prototype for how pre-trained models can be
combined to solve complex robotic tasks, and illustrates that these models can serve as an “interface”
to robotic controllers that are trained without any language annotations. One of the implications of
this result is that further progress on self-supervised robotic policies (e.g., goal-conditioned policies)
can directly benefit instruction following systems. More broadly, understanding how modern pre-
trained models enable effective decomposition of robotic control may enable broadly generalizable
systems in the future, and we hope that LM-Nav will serve as a step in this direction.
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