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Abstract
First-order logic allows for the expressive specification of
goals. Using negation as failure, one can specify what must
not be true in a goal state instead of what must be true,
which can result in succinct goal specifications while also
being computationally advantageous. However, due to non-
monotonicity, integration of negation as failure and recent
deep reinforcement learning methods that incorporate first-
order logic in goal specification can be cumbersome. To ad-
dress this problem, we create a conflict-driven algorithm for
non-monotonic goal specification that refines search for a
goal state based on conflicts encountered during search. Our
results show that this conflict-driven approach results in sig-
nificantly shorter paths and can significantly speed up search
when compared to not taking conflicts into consideration.
Furthermore, our results show that finding paths to goals can
be much more efficient when goals are specified with nega-
tion as failure instead of without negation as failure.

Introduction
Specifying goals in first-order logic programming languages
that make use of non-monotonic reasoning through nega-
tion as failure (NAF) (Clark 1977) can often be signif-
icantly more computationally convenient than specifying
goals without NAF. For example, two equivalent sets of
states in the Rubik’s cube domain can be specified in the
following ways: 1) all stickers on the white face are differ-
ent than the center sticker; 2) there does not exist a sticker
on the white face that matches the center sticker. The set of
minimal assignments of colors to stickers that makes the first
specification true consists of all combinations of non-white
colors on the white face, excluding the color of the center
sticker, which is of size 58 ≈ 3.8× 105 (5 non-white colors,
8 non-center stickers). On the other hand, under NAF seman-
tics, the second specification need only attempt to prove its
un-negated statement and, if it fails to prove it, then it is as-
sumed to be false and, therefore, the specification is assumed
to be true. The set of minimal assignments that makes the
un-negated statement of the second specification true is of
size 8. As a result, a logic program will need to reason over
many more scenarios for the first specification compared to
the second specification.

Given a state that does not make the first specification
true, identifying conflicts, which, in this context, are mini-
mal assignments of colors to stickers that cause it to not be

true, requires us to find a minimal assignment such that no
superset of that assignment exists that makes it true. To ac-
complish this, since the first specification is false given the
state, we will have to iteratively unassign stickers and at-
tempt to find an assignment that is a superset of the current
partial assignment that makes the first specification true. On
the other hand, identifying conflicts for the second specifica-
tion requires us to find a minimal assignment that makes the
un-negated statement true. To accomplish this, since the un-
negated statement of the second specification is true given
the state, we will have to iteratively unassign stickers and
check if the current partial assignment makes the un-negated
statement true. For disjunctive logic programs, searching for
an assignment is NPNP -complete (Eiter and Gottlob 1995)
while checking an assignment is co-NP -complete (Eiter and
Gottlob 1993; Dantsin et al. 2001). Therefore, searching for
conflicts can be easier in practice with goals specified with
NAF.

We can use a conflict-driven approach when searching
for a path to a goal by first finding a path to a specified
assignment that makes the specified goal true. If NAF is
used, a state that has these assignments may have other as-
signments which make the goal specification false, or, in
other words, create conflicts. We can then find a conflict
and search for a new assignment that is consistent with the
goal while ensuring this conflict will not be present. We
build on conflict-driven clause learning approaches for solv-
ing boolean satisfiability problems (Prosser 1993; Marques-
Silva and Sakallah 1999) and create a branch-and-bound al-
gorithm that takes into account that finding a state that makes
the goal true is not the only criteria since we would also like
to find a shortest path to the goal.

More broadly, the ability to specify goals using expres-
sive languages gives practitioners the ability to describe
high-level properties of a goal by abstracting away low-
level properties using derived predicates. This approach
can make specified goals more concise and lead to find-
ing shorter paths, since more general goals correspond to
a larger set of states that are deemed goal states. These
benefits have been demonstrated in the planning domain
definition language (PDDL) (McDermott 2000) using ax-
ioms and domain-independent heuristics (Thiébaux, Hoff-
mann, and Nebel 2005; Ivankovic and Haslum 2015; Speck
et al. 2019). Recently, the benefits of an expressive goal



specification language have been demonstrated when spec-
ifying goals to deep neural networks (DNNs) (Schmidhu-
ber 2015) that have been trained to estimate the distance
between a state and a set of states, which is represented
as a set of ground atoms in first-order logic (Agostinelli,
Panta, and Khandelwal 2024). This set of ground atoms
can also be seen as representing assignments of values to
variables. This method, called DeepCubeAg , was shown to
outperform domain-independent planners when searching
for paths from states to a set of goal states. DeepCubeAg
built on answer set programming (ASP) (Brewka, Eiter, and
Truszczyński 2011) to describe goals with an answer set
program and used an answer set solver to find assignments
that could potentially represent a set of goal states. However,
since ASP makes use of NAF, an assignment found by the
answer set solver could also represent states that are not goal
states. Though this prior work addressed this by proposing
to search for specialized assignments, this is done randomly
and, as we will show, can be very inefficient. Our work will
build on DeepCubeAg with a conflict-driven approach that
finds shorter paths and often does so much faster than the
previous random approach. A visualization of this approach
is shown in Figure 1.

Preliminaries
States and Sets of States
Similar to previous work on planning with axioms
(Ivankovic and Haslum 2015), we model a state as a set
of V state variables {x1, ..., xV }. Each state variable, x,
has a domain, D(x), of finite size. A variable may be as-
signed a value from its domain. An assignment, A, is a set
{.., xi = vi, ...}, where, if xi = vi is in the assignment then
xi is assigned to vi and vi ∈ D(xi). Otherwise, xi is unas-
signed. An assignment is a partial assignment if and only if
between 1 and V state variables are unassigned and an as-
signment is a complete assignment if and only if all variables
are assigned. A state is represented as a complete assign-
ment and a set of states is represented as either a partial or
complete assignment, where a complete assignment always
represents a set of states of size one. The number of vari-
ables that have been assigned in assignment, A, is denoted
|A|.

The set of all states in the state space is denoted S. The
set of states represented by assignment, A, is denoted SA. A
state, s, is a member of SA if and only if A ⊆ s. This defini-
tion of sets of states imposes a generality relation (De Raedt
2008) on assignments. That is, A1 is more general than A2

if and only if A1 ⊆ A2, which entails SA2
⊆ SA1

. When
A1 ⊆ A2, A1 is considered a generalization of A2, and A2

is considered a specialization of A1. When A1 ⊂ A2, A1 is
considered a strict generalization of A2, and A2 is consid-
ered a strict specialization of A1. The most general assign-
ment is the empty set and the set of states represented by this
assignment is equivalent to S.

Answer Set Programming
Answer set programming (Brewka, Eiter, and Truszczyński
2011) is a form of logic programming where each logic pro-

gram defines a set of stable models, also known as answer
sets, according to the stable model semantics (Gelfond and
Lifschitz 1988). A program, Π, is comprised of a set of rules
in first-order logic of the form:

H1; ...;Hl ← B1, ..., Bm,¬C1, ...,¬Cn (1)

where Hi, Bi, and Ci are atoms in first-order logic. If the
body, which is the conjunction of all Bi and ¬Ci, is true,
then at least one atom in the head, which is the disjunction
of all Hi, must be true. Rules with no literals in the body are
called “facts” and their body is taken to always be true. Rules
with no literals in the head are called “headless” rules and
their head is taken to always be false. In practice, headless
rules are used as constraints. An atom is derivable if it is
in the head of an implication whose body is true. If there is
more than one atom in the head, it is assumed at most one
of them are true unless other rules derive more than one of
them.

To define what a stable model is, we first must define
ground programs and reducts. The ground program of Π,
Πg , is the set of all possible ground rules present in Π. A
ground rule is obtained from a rule by substituting all vari-
ables in that rule for a ground term appearing in Π. A reduct
(Marek and Truszczyński 1999) of a ground program, Πg ,
with respect to a set of ground atoms, M , ΠM

g , is obtained
by starting with Πg and deleting all rules that have a negated
atom in the body if the atom is in M and then deleting all
negated atoms in the body of the remaining rules. A set of
ground atoms, M , is a stable model of program, Π, if the set
of ground atoms derivable from ΠM

g is exactly M .
Choice rules are allowed by ASP solvers such as clingo

(Gebser et al. 2014) and have a conjunction of literals in the
body and a set of ground atoms in the head. Zero or more
ground atoms in the head may be added to the stable model
if the body is true.

DeepCubeAg

DeepCubeAg (Agostinelli, Panta, and Khandelwal 2024)
builds on the DeepCubeA (Agostinelli et al. 2019) algorithm
to train a heuristic function that generalizes over states and
sets of goal states represented as a partial or complete as-
signment. ASP is used to specify goals and an answer set
solver is used to find stable models that represent sets of
goal states.

Training DeepCubeAg trains a heuristic function parame-
terized by parameters, φ, hφ, to map a state, s, and an assign-
ment, A, to the estimated cost-to-go between s and a closest
state in SA. Therefore, a problem instance with goal, A, is
considered solved if the terminal state is st and st ∈ SA. The
heuristic function is trained using deep approximate value
iteration (DAVI), a version of approximate value iteration
(Bertsekas and Tsitsiklis 1996) that uses DNNs as the ap-
proximation architecture. The loss function used to train the
heuristic function is shown in Equation 2, where ca(s) is the
transition cost when taking action, a, in state, s, T is the
transition function that maps a state, s, and action, a, to the
state that results from taking action, a, in state, s, and φ−



are parameters of a target network (Mnih et al. 2015) that
are periodically updated to φ.

L(φ) = (min
a

(ca(s) + hφ−(T (s, a), A))− hφ(s,A))2 (2)

Training data is generated through a method based on hind-
sight experience replay (Andrychowicz et al. 2017) which
generates random start states, takes a random walk of length
t steps, where t is between 0 and a given maximum number
of steps, and uses the final state in that random walk, st, to
generate a target assignment by randomly removing assign-
ments from st.

Specifying Goals An answer set program, Π, is used to
represent a specification. Π consists of background knowl-
edge, a set of rules that have goal in the head, a headless
rule, :- not goal, to ensure goal is true in all stable
models, and a choice rule with an empty body that contains
a set of ground atoms,K, where each atom represents an as-
signment of a single value to a single state variable. The sub-
set of ground atoms of a stable model, M , of Π, that are in
K is denoted MK . MK represents an assignment where all
variables not assigned a value by some ground atom in MK

are taken to be unassigned. The set of all possible assign-
ments that can be obtained from a program, Π, is denoted
α(Π).
Definition 1 (Candidate state). A state, s, is a candidate state
with respect to a specification, Π, if and only if, there exists
some A ∈ α(Π) such that s ∈ SA.
Definition 2 (Goal state). A state, s, is a goal state with
respect to a specification, Π, if and only if s ∈ α(Π).

Reaching Goals Given a specification, Π, an assignment,
A1, is sampled from α(Π). A* search (Hart, Nilsson, and
Raphael 1968) with the trained heuristic is performed to find
a path from s to A1. If a path is found then st is a candidate
state, where st is the terminal state along the path to A1 and
st ∈ SA1 . However, since ASP can make use of NAF, it is
possible that st can be a candidate state, but not a goal state.
DeepCubeAg addresses this by randomly sampling another
assignment, A2, according to the constrained optimization
expression in Equation 3. This is known as a specialization
operator (De Raedt 2008) because it produces A2 such that
A2 is a strict specialization of A1 (if such an A2 exists). The
specialization operator seeks to minimize the size of |A2|
so that it is as general as possible and, thus, represents the
largest set of states. The specialization is done in hopes that
it will also reduce the number of non-goal states represented
by the assignment. However, this process does not take into
account why st is not a goal state and, thus, can be very in-
efficient. A visualization of this approach is shown in Figure
1.

Theoretical Properties of Goal Specifications
A specification can be either monotonic or non-monotonic.
Definition 3 (Monotonic specification). A specification, Π,
is a monotonic specification if and only if for all assign-
ments, A1 and A2, if A1 ∈ α(Π) and A1 ⊆ A2, then
A2 ∈ α(Π).
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Figure 1: A visualization of searching for a goal with a
monotonic specification, Πm, and a non-monotonic speci-
fication, Πn. The set of goal states is shown in green and
denoted by SΠm

, which is equal to SΠn
. The set of non-goal

states is shown in red and denoted by SΠ′ . The black dot
represents the start state and is denoted by s0. The set of
states represented by an assignment is shown in transparent
black and is denoted SAi

. The blue arrow represents a path
to an assignment. The monotonic specification does not need
to be specialized since all candidate states are goal states.
On the other hand, the non-monotonic specification can pro-
duce assignments that can be specialized randomly or with a
conflict-driven approach. This conflict-driven approach can
lead to finding shorter paths with less time.

Definition 4 (Non-monotonic specification). A specifica-
tion, Π, is a non-monotonic specification if and only if
there exists assignments, A1 and A2, such that A1 ∈ α(Π),
A1 ⊆ A2, and A2 /∈ α(Π).

For a specification, Π, we denote the set of all candidate
states as Sα(Π) and the set of all goal states as SΠ.

Lemma 1. For all specifications, Π, SΠ ⊆ Sα(Π).

Proof. Since SΠ is the set of all goal states and, from Def-
inition 2, we know that all goal states are in α(Π). There-
fore, all goal states must be in Sα(Π). Therefore, SΠ ⊆
Sα(Π).

Theorem 1. For all specifications, Π, if Π is monotonic,
then SΠ = Sα(Π).

Proof. From Definition 1, we know that if there exists some
state, s ∈ Sα(Π), then there exists some assignment, A, such
that A ∈ α(Π) and s ∈ SA, which means A ⊆ s. Since Π is
monotonic, from Definition 3, we can see that s ∈ α(Π) by
substituting A for A1 and s for A2. From Definition 2, we
know that if s ∈ α(Π), then s ∈ SΠ. Therefore Sα(Π) ⊆ SΠ.
From Lemma 1 we know that SΠ ⊆ Sα(Π). Therefore, it
must be the case that SΠ = Sα(Π).

From Theorem 1, we see the set of candidate states is
equivalent to the set of goal states for a monotonic speci-
fication, Π. Therefore, for all A ∈ α(Π), SA are goal as-
signments (see Definition 5). Now, we can characterize the
probability of finding a shortest path to a closest goal state
from a given starting state. To accomplish this, we need to



characterize the probability of sampling A ∈ α(Π) that is a
closest assignment (see Definition 6).

Definition 5 (Goal assignment). An assignment A is a goal
assignment if and only if SA ⊆ SΠ.

Definition 6 (Closest assignment). An assignment A is a
closest assignment relative to some start state s0 if and only
if SA contains a goal state closest to s0 and does not contain
any other non-goal states that are closer than the closest goal
state.

Theorem 2. Let Π be a monotonic specification, let s0 be
a given starting state, let p the number of closest assign-
ments in α(Π), n be the number of all other assignments
in α(Π), and assume a uniform random procedure to sample
from α(Π). The probability of samplingA ∈ α(Π) such that
A is a closest assignment within 1 ≤ k ≤ n samples without
replacement is 1−

∏k
i=1(1− p

p+n−i ).

Proof. Since Π is monotonic, from Theorem 1 we know
that SΠ = Sα(Π). Therefore, for any A ∈ α(Π), A is
a goal assignment. Therefore, if A contains a closest goal
state then it must be a closest assignment since it does not
contain any non-goal states. Therefore, there are p closest
assignments, n + p total assignments, and the probability
of finding a closest assignment in sample i is p

p+n−i . We
subtract i from the total assignments to account for the fact
we are sampling without replacement. Therefore, the prob-
ability of not sampling a closest assignment in sample i is
(1 − p

p+n−i ), the probability of not sampling a closest as-

signment over k iterations is
∏k
i=1(1− p

p+n−i ), and we can
obtain the probability of sampling a closest assignment over
k iterations by subtracting this quantity from 1, which is
1−

∏k
i=1(1− p

p+n−i ).

Using Theorem 2, we can see that the number of samples
we will need to sample a closest assignment can be quite
large. Building on the Rubik’s cube example specification,
if we created a monotonic specification where all stickers on
the white face must be different than the center sticker, it
could be the case that p is as small as one, in which case n
is 58 − 1 ≈ 3.8× 105. In this case, we would need approx-
imately 1.95 × 105 samples to exceed a probability of 0.5
of sampling a closest assignment. To seek more efficient al-
ternatives, we turn to negation as failure and conflict-driven
search.

Conflict-Driven Search
Finding Conflicts
In the case that, for a given specification, Π, there exists an
assignment A1 ∈ α(Π) and a state, s, such that s ∈ SA1 ,
but s /∈ α(Π), there must be variables assigned in s that
are unassigned in A1 that cause goal to no longer be true.
We refer to such assignments as conflicts. We can find these
conflicts by finding an assignment,Ac, according to the con-
strained optimization expression in Equation 4. This expres-
sion requiresA ⊂ Ac since we are going to specializeA. We
can then create a specialization operator that finds A2 such

that the intersection of SA2 and SAc is empty. This ensures
that any states found on a path to A2 will not contain the
same conflict asAc. This specialization operator is shown in
Equation 5. However, in the case where there are multiple
goal clauses, there could exist another clause that is true for
some specialization of Ac. Therefore, we can also use the
specialization operator shown in Equation 6.

min
A2

|A2|

s.t. A1 ⊂ A2

A2 ∈ α(Π)

(3)

min
Ac

|Ac|

s.t. s ∈ SAc

A ⊂ Ac
Ac /∈ α(Π)

(4)

min
A2

|A2|

s.t. A1 ⊂ A2

SA2
∩ SAc

= ∅
A2 ∈ α(Π)

(5)

min
A2

|A2|

s.t. Ac ⊂ A2

A2 ∈ α(Π)

(6)

Our implementation uses the clingo (Gebser et al. 2014,
2022) answer set solver. To accomplish the specialization
operators shown in Equations 3, 5, and 6, we must be able
to find an assignment that is a strict specialization of an-
other assignment. To accomplish this, we require that clingo
return stable models that contain the ground atoms that rep-
resent the assignment to be specialized and put a size re-
quirement on the minimum number of atoms from set K
that must be added to the stable model so that the size of
all assignment found are larger than the assignment to be
specialized. We perform minimization of the assignment by
unassigning variables until no variables can be unassigned
without violating the optimization constraints.

For Equation 5, we seek to find a variable, xi, that is as-
signed to a value, vi, in Ac, but is unassigned in A1, and
ensure xi cannot be assigned to vi when searching for a new
assignment, A2. We accomplish this by selecting the ground
atom, k, that represents the assigned value and ensure that,
for all states, s ∈ SA2 , xi = vi /∈ s. Using of classical nega-
tion (Gelfond and Lifschitz 1991), we ensure that an atom,
k, and its classically negated counterpart, -k, cannot both
be true at the same time. We, thus, require that clingo return
stable models that contain -k. In order to do this, we define
the classically negated version of every atom in K. In prac-
tice, this can be done with only a few lines of code and does
not require any derived predicates also have their classically
negated counterparts be defined.



Branch and Bound Search
To reach a goal given by a goal specification, Π, from a given
start state, s0, we use a branch and bound (Land and Doig
1960) algorithm to attempt to find a closest state in the set
of states represented by Π. The upper bound represents the
lowest cost path found. Given an assignment, A, the lower
bound is approximated by finding a path from s0 to A. A
node represents an assignment and a conflict associated with
a state that is a member of the set of states represented by
the assignment. The algorithm maintains a priority queue of
nodes, where the priority of a node is given according to the
size of its assignment and ties are broken according to the
computed lower bound. The intuition is that more specific
assignments represent a smaller set of states and, thus, the
set of states may contain a higher percentage of goal states
compared to more general assignments and, thus, a higher
chance of reducing the upper bound. However, this may not
always be the case (see Future Work).

At each iteration a node is removed from the priority
queue and specializations of its associated assignment with
respect to its associated conflict are obtained. If its assign-
ment is None, then minimal assignments are sampled ran-
domly from α(Π) without any additional constraints. Since
the number of specializations can be very large, expansion is
done by sampling at most B assignments from α(Π) with-
out replacement, where B is given by the user. This adds
stochasticity to the algorithm. To ensure that all possible spe-
cializations can be obtained, we put a node back in the queue
if there are potentially more specializations to be obtained.
We decrease its priority according to the number of times
the node has been seen.

The algorithm also makes use of the ability to “ban” an
assignment, A, by specifying that clingo should not return
any stable models that contain the ground atoms that repre-
sent A. As a result, no specialization of A will be sampled
from α(Π). This is similar to nogood recording in constraint
satisfaction (Dechter 1986). We ban an assignment, A, if a
path to A is not found, if a path to A is found, or if the lower
bound for a path to A is greater than or equal to the upper
bound. We ban A if a path is found to A because a short-
est path to A is at least as cheap as a shortest path to A2 if
A ⊆ A2. The algorithm is outlined in Algorithm 1.

Experiments
We test our method on both the Rubik’s cube and 24-puzzle.
For the Rubik’s cube, we use the at_idx predicate of arity
two to represent assignments where at_idx(col,idx)
holds if and only if the given index has been assigned
the given color. For the 24-puzzle, we use the at_idx
predicate of arity three to represent assignments where
at_idx(tile,row,col) holds if and only if the given
tile is at the given row and column. For the Rubik’s cube,
we use the following clause to define the classically negated
ground atoms:
-at_idx(C,I):- at_idx(C2,I),color(C),
color(C2),not C=C2

This means that a color cannot be at a given index if it holds
that a different color is at that index (“:-” denotes implica-

Algorithm 1: Branch and Bound for Reaching Goals

Input: Specification Π, DNN hφ, start s0, batch size B,
specialization op ρs
q ← []; seen← {}; ub← inf ; path← None
push NODE(A = None,Ac = {}, lb = 0, i = 0) to q
while q is not Empty do
npop ← POP(q)
specializations← apply ρs(Π, npop.A, npop.Ac) for at
most B
if len(specializations) == B then

push npop to q with priority (−|npop.A|, npop.i +
1, npop.lb).

end if
for A in specializations do

if A not in seen then
add A to seen
nt = A*Search(s0,A, hφ) {returns terminal node}
if (nt.s is not None) and (g(nt) < ub) and (nt.s /∈
α(Π)) then
Ac ← conflict(nc.s,Π)
push NODE(A = A,Ac = Ac, lb = g(nc), i =
0) to q with priority (−|A|, 0, g(nc))

else
ban A
if (nt.s is not None) and (g(nt) < ub) and
(nt.s ∈ α(Π)) then
ub← g(nt); path← path to nt
remove n from q and ban n.A if n.lb >= ub

end if
end if

end if
end for

end while
return path

tion). For the 24-puzzle, we use the following clauses to de-
fine classically negated ground atoms:
-at_idx(X,R,C):- t(X),t(X2),
at_idx(X2,R,C),not X=X2
-at_idx(X,R,C):- row(R),col(C),row(R2),
at_idx(X,R2,_),not R=R2
-at_idx(X,R,C):- row(R),col(C),col(C2),
at_idx(X,_,C2),not C=C2

This means that a given tile cannot be at a given row and
column if it holds that a different tile is there or if it holds
that the given tile is at a different row or column.

Our heuristic function is trained using the same archi-
tecture and optimization strategy as Agostinelli, Panta, and
Khandelwal (2024). For the branch and bound algorithm,
we compare two specialization operators, one that only uses
the specialization operator based on a random specializa-
tion shown in Equation 3 and a conflict-driven one based on
Equations 5 and 6. The conflict-driven specialization opera-
tor randomly chooses between Equations 5 and 6 each time
it performs a specialization. We perform batch weighted A*
search (Agostinelli et al. 2019) to find paths to assignments
with a batch size of 100 and weight of 0.6 on the path cost.



We also add a patience parameter to the algorithm to specify
how many iterations the algorithm is willing to wait for the
upper bound to improve given that a path has already been
found. We set this argument to 5 for all of our experiments.

We randomly sample 100 start states for our test data. The
test goal for the Rubik’s cube is all stickers on the white face
are different than the center sticker. Expressed with NAF it
becomes: there does not exist a sticker on the white face
that matches the center sticker. For the 24-puzzle there are
two test goals: 1) the sum of row 0 is even; 2) the sum of
all rows are even. Expressed with NAF they become: 1) it
is not true the sum of row 0 is odd; 2) there does not exist
a row whose sum is odd. Algorithm 1 is run with a single
NVIDIA Tesla V100 GPU for the trained heuristic function
and one 2.4 GHz Intel Xeon Platinum CPU, otherwise. We
give a time limit of 500 seconds for each test state. Results
for our experiments are shown in Table 1. Figures showing
goals reached are shown in Figures 2 and 3. Code, data, and
specifications are provided in the Supplementary Material.

(a) Start (b) Rand (c) Conf (NAF)

Figure 2: Example of reaching the goal where all stickers on
the white face are different than the center sticker. The path
cost is 12 without NAF and 1 with NAF and conflict-driven
search.

(a) Start (b) Rand (c) Conf (NAF)

Figure 3: Example of reaching the goal where the sum of all
rows are even. The path cost is 93 without NAF and 4 with
NAF and conflict-driven search.

Discussion
The results in Table 1 show that expressing goals using NAF
significantly decreases the path cost for both the random
specialization operator and the conflict-driven specialization
operator. When NAF is used, the conflict-driven specializa-
tion operator is faster and finds shorter paths when compared
to the random specialization operator. Furthermore, when
looking at the average percentage of assignments that were
reached when performing A* search, this is larger in the ma-
jority of cases where NAF is used. This is because, all the
assignments that make a specification true when not using
NAF also make a specification true when using NAF, pro-
vided both specifications represent an equivalent set of goal

states. However, when using NAF there exists more general
additional assignments that also make the NAF specification
true. Therefore, A* search can find paths more reliably. On
the other hand, all terminal states along the path to assign-
ments are goal states for monotonic specifications (see The-
orem 1) and some terminal states may not be goal states for
non-monotonic specifications. However, the conflict-driven
approach exploits this by determining why the terminal state
is not a goal state.

Since the answer set solver is not aware of the start state, it
could sample an assignment from α(Π), which could be far
away from the start state. When using NAF, however, hav-
ing the ability to iteratively make small changes to the as-
signment through specialization results in being able to pri-
oritize closer assignments over those further away using its
lower bound, whereas, when not using NAF, the assignment
is not further refined after the first iteration since it is guar-
anteed to be a goal assignment. When looking at the time it
takes to do a specialization, the answer set solver is much
faster in the NAF case. For example, for the Rubik’s cube,
it takes 12.8 seconds, on average, per specialization without
NAF and 0.1 seconds, on average, per specialization with
NAF. This shows that, when the set of minimal assignments
that make a goal is true is very large, it can be computation-
ally convenient to, instead, specify when the goal is not true
using NAF.

Related Work
Expressive specification languages have been of interest to
the planning community for expressive goal specification as
well as for expressive action precondition specification for
declarative planning languages such as PDDL. Axioms in
PDDL allow users to define axioms that can be used to de-
rive predicates. It has been shown that axioms are computa-
tionally beneficial and can lead to better overall performance
(Thiébaux, Hoffmann, and Nebel 2005) . Domain indepen-
dent heuristics that take advantage of axioms have been de-
rived (Ivankovic and Haslum 2015). Furthermore, existential
quantification can play a big role in NAF, like it has done
in our experiments. Heuristics that are computed from ex-
istentially quantified variables have also been derived for
STRIPS (Fikes and Nilsson 1971) planners (Frances and
Geffner 2016).

Limitations and Future Work
The priority queue is prioritized by the size of the assign-
ment and ties are broken according to their lower bounds.
While this could lead to finding goals quickly, it could also
lead to spending time on specializations of assignments that
do not decrease the upper bound. To remedy this, the al-
gorithm could be modified to alternate between prioritizing
size first and prioritizing lower bound first. This could ob-
tain a better trade-off between the two priorities and result
in exploring more diverse areas of the search space. Further-
more, future work could use Algorithm 1 to create a dataset
to train a heuristic function that directly encodes the first-
order logic specification. This could then be used to better



Goal Op Cost Solve Itr Node Reach ¬Goal Secs
Spec

Secs
Path Secs

RC:Π1
m - 11.5 70 3.3 33.4 7.7 0.0 12.8 7.5 564.9

RC:Π1
n

Rand 1.7 99 7.2 63.0 87.8 69.1 0.1 1.0 95.5
Conf 1.3 100 5.4 36.3 99.3 52.4 0.1 0.1 6.0

24p:Π1
m - 24.6 100 9.2 92.4 100.0 0.0 0.2 0.2 42.5

24p:Π1
n

Rand 3.2 100 4.3 33.6 100.0 38.7 0.2 0.0 6.6
Conf 2.5 100 4.1 31.6 100.0 22.1 0.2 0.0 6.6

24p:Π2
m - 83.7 100 9.2 91.9 50.4 0.0 0.9 1.8 250.2

24p:Π2
n

Rand 17.1 100 10.2 92.1 100.0 85.5 0.1 0.1 21.7
Conf 12.9 100 8.7 77.1 100.0 79.7 0.1 0.1 17.1

Table 1: Comparison of monotonic and non-monotonic specifications with random and conflict-driven specialization operators
for non-monotonic specifications. Comparisons are along the dimensions of average path cost, percentage solved, average
number of iterations, average number of nodes generated, the average percentage of specified assignments reached with A*
search, the average percentage of reached assignments that were not goal states, the average number of seconds it took to do
a single specialization, the average number of seconds it took to find a single path (whether or not it was successful), and the
average number of overall seconds it took to find a solution. RC:Π1

m: All stickers on the white face are different than the center
sticker. RC:Π1

n: There does not exist a sticker on the white face that matches the center sticker. 24p:Π1
m: The sum of row 0 is

even. 24p:Π1
n: It is not true the sum of row 0 is odd. 24p:Π2

m: The sum of all rows is even. 24p:Π2
n: There does not exist a row

whose sum is odd.

prioritize nodes or even remove the need to do branch-and-
bound search altogether.

Conclusion
NAF allows us to express goals succinctly and has the abil-
ity to significantly reduce computational load. However, the
integration of NAF with solvers based on DNNs still has
significant room for improvement. We address this problem
with an algorithm that exploits NAF semantics to quickly
find conflicts and specialize assignments based on these con-
flicts. This conflict-driven approach results in finding signif-
icantly shorter paths in significantly less time when com-
pared to random specialization and also when compared to
specifying equivalent goals without NAF.
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