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Abstract
Online Continual Learning (OCL) addresses the
problem of training neural networks on a continu-
ous data stream where multiple classification tasks
emerge in sequence. In contrast to offline Contin-
ual Learning, data can be seen only once in OCL,
which is a very severe constraint. In this context,
replay-based strategies have achieved impressive
results and most state-of-the-art approaches heav-
ily depend on them. While Knowledge Distilla-
tion (KD) has been extensively used in offline
Continual Learning, it remains under-exploited
in OCL, despite its high potential. In this pa-
per, we analyze the challenges in applying KD to
OCL and give empirical justifications. We intro-
duce a direct yet effective methodology for apply-
ing Momentum Knowledge Distillation (MKD)
to many flagship OCL methods and demonstrate
its capabilities to enhance existing approaches. In
addition to improving existing state-of-the-art ac-
curacy by more than 10% points on ImageNet100,
we shed light on MKD internal mechanics and
impacts during training in OCL. We argue that
similar to replay, MKD should be considered a
central component of OCL. The code is available
at https://github.com/Nicolas1203/
mkd_ocl.

1. Introduction
Over the past decade, Deep Neural Networks (DNNs) have
demonstrated super-human performance in most vision
tasks (He et al., 2016; Redmon et al., 2016; Caron et al.,
2021; Khosla et al., 2020). Nonetheless, current training
procedures rely on strong assumptions. Specifically, dur-
ing training, it is typically assumed that: 1) available data
is independently and identically distributed (i.i.d.), and 2)
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Figure 1. Overview of our MKD framework when applied to a
baseline OCL method. Contrary to taking a snapshot at the end
of each task, dynamic teacher address the key obstacles in OCL:
teacher quality, teacher quantity, and unknown task boundaries.

all training data can be seen multiple times. Contrary to
humans, DNNs are known to underperform or fail outright
when these assumptions are not satisfied and suffer from
Catastrophic Forgetting (CF) (French, 1999; Kirkpatrick
et al., 2017). Addressing these challenges, Online Contin-
ual Learning (OCL) explores methods to mitigate CF in
scenarios that violate assumptions 1) and 2). This is done
by learning from a continuous stream of non-i.i.d. data
where only one pass is allowed. Formally, OCL considers a
sequential learning setup with a sequence {T1, · · · , TK} of
K tasks, and Dk = (Xk, Yk) the corresponding data-label
pairs. For any value k1, k2 ∈ {1, · · · ,K}, if k1 ̸= k2 then
Yk1 ∩ Yk2 = ∅. This scenario is known to be especially
difficult and numerous approaches have been proposed to
address it (He & Zhu, 2022; Guo et al., 2022; Mai et al.,
2022; 2021; Caccia et al., 2022; Aljundi et al., 2019a; Guo
et al., 2023; Prabhu et al., 2020; Aljundi et al., 2019b; Koh
et al., 2023; Michel et al., 2024). In this study, we focus on
the Class Incremental Learning scenario (Hsu et al., 2018)
for OCL.

Among various methods, Experience Replay (ER) ap-
proaches (Rolnick et al., 2019; Buzzega et al., 2020; Khosla
et al., 2020; Guo et al., 2022; Caccia et al., 2022; Michel
et al., 2024; Guo et al., 2023) have demonstrated superior
performances in OCL. The main component of this strat-
egy is to store a small portion of previous samples to be
used when training on new incoming samples. Current
state-of-the-art methods in OCL mostly rely on combin-
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ing replay strategies and specific loss designs. Unlike ER,
only a few applications of Knowledge Distillation (KD) to
OCL exist and present various limitations. DER (Buzzega
et al., 2020) stores previous sample logits and leverages
knowledge distillation with ER but yields low performances.
While MMKDDA (Han & Liu, 2022) tackles meta-learning
with multi-level KD, it requires knowledge of total number
of tasks and is computation intensive. Recently, SDP (Koh
et al., 2023) proposes a hypo-exponential teacher for feature
distillation in addition to ER. Even though SDP does not
require task boundaries, it remains computationally expen-
sive and architecture-dependent. In this work, we argue
that KD has been rather overlooked by previous studies and
can be efficiently adapted to OCL. Indeed, we believe that
similarly to ER, KD plays an essential role in OCL and can
be seamlessly combined with existing approaches.

Understanding the challenges specific to OCL is the key to
explain why KD is not widely adopted in this context. Thus,
we identify the three main KD challenges in OCL: Teacher
Quality, Teacher Quantity and Unknown Task Boundaries.
To overcome these challenges, we propose to take advan-
tage of Momentum Knowledge Distillation (MKD) (Caron
et al., 2021). Although MKD is a straightforward strategy,
our technical contribution is a procedure which allows us to
seamlessly integrate MKD with existing state-of-the-art ap-
proaches and show considerable improvements, even when
compared to other distillation methods. Additionally, we
highlight that utilizing MKD for OCL addresses prominent
OCL challenges such as task-recency bias (Chrysakis &
Moens, 2023; Mai et al., 2021), last layer bias (Liang et al.,
2024; Ahn et al., 2021; Mai et al., 2021; Wu et al., 2019),
feature drift (Caccia et al., 2022) and feature discrimination.
In summary, the contributions of this paper are as follows:

• We identify the three main obstacles in applying KD
to OCL and leverage MKD as a solution to overcome
these challenges;

• We propose a strategy to seamlessly combine MKD
with existing approaches and give insights on MKD in-
ternal mechanics and impacts during training in OCL;

• We experimentally demonstrate that MKD can signifi-
cantly enhance the performance of existing methods.

2. Related Work
2.1. KD in CL

We review KD strategies in both offline and online CL. We
define offline CL as the multi-epoch CL training.
KD in Offline CL Knowledge Distillation (KD) (Hinton
et al., 2015) aims at transferring knowledge from a teacher
model to a student model. This can be done by aligning
their outputs, either in the logits space (Hinton et al., 2015;

Romero et al., 2014; Zhao et al., 2022) or in the representa-
tion space (Aguilar et al., 2020; Tian et al., 2020). There are
numerous KD applications in offline CL (Ahn et al., 2021;
Douillard et al., 2020; Rebuffi et al., 2017; Cha et al., 2021;
Simon et al., 2021; Hou et al., 2018; Wang et al., 2022;
Pham et al., 2021). A common practice is to save the model
at the end of each task, treating it as a snapshot, and use this
model as a teacher for distillation during subsequent task
trainings (Hou et al., 2018; Cha et al., 2021). Given that
each teacher has task-specific knowledge, SS-IL (Ahn et al.,
2021) leverages task-wise KD. There are also strategies that
incorporate spatial distillation (Douillard et al., 2020) or
feature compression (Wang et al., 2022).

KD in Online CL Although KD has been widely adopted
in offline CL, its adoption in OCL remains limited.
DER (Buzzega et al., 2020) retains logits as well as data
in memory for distillation in later stages. MMKDDA (Han
& Liu, 2022) addresses meta-learning using multi-scale
KD. Recently, SDP (Koh et al., 2023) introduced a teacher
defined as a hypo-exponential moving average of current
model for feature distillation. Nonetheless, these meth-
ods have their own constraints. DER exhibits suboptimal
performance and scales poorly when increasing memory
size; MMKDDA requires task boundaries and is resource-
intensive; SDP is architecture dependent and computation-
ally expensive.

2.2. Blurry Task Boundaries

A common assumption in CL is that task boundaries are
distinctly recognized during training. Similar to the work
of (Michel et al., 2024), we refer to this as clear task bound-
aries. In OCL, however, we work on a continuous stream
of incoming data, which makes clear boundaries unrealistic.
In that sense, the concept of blurry task boundary setting
has emerged in recent studies (Caccia et al., 2022; Michel
et al., 2024; Bang et al., 2022). The idea is to have a gradual
transition between tasks with an intermediate stage where
data from both tasks are available in the stream. In this
study, we embrace the perspective of unknown task bound-
aries, referring to it as the blurry setting, in opposition to
the traditional clear setting as in (Michel et al., 2024).

2.3. Evaluation Metrics

We use the accuracy averaged across all tasks after training
on the last task to compare the methods under considera-
tion. This metric is commonly known as the final average
accuracy (Kirkpatrick et al., 2017; Hsu et al., 2018). For
highlighting the benefits of our approach for retaining past
knowledge, we also take into account the Backward Transfer
(BT) metric (Mai et al., 2022; Wang et al., 2023).
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Table 1. Accuracy of GSA (Guo et al., 2023) on the first task of
CIFAR100 M=5k splited in 10 tasks, on different training scenarios.
We train for 20 epochs for Offline CL, 1 epoch for Online CL.

Training Scenario Accuracy (%)

Offline CL 81.8
Online CL 61.0

Online CL, Hard task 51.6
Online CL, Easy task 72.1

3. Challenges of KD in OCL
In this section, we discuss unique challenges in OCL that
make implementation of KD in this context laborious.

3.1. Teacher Quality

Given that incoming data can be seen by the model only
once, it is uncertain whether the model has been fully trained
at the end of each task. Consequently, taking a snapshot of
the model at the end of the previous task may result in a
suboptimal teacher. Such a teacher might hinder the student
model’s training for the subsequent task, leading to further
degradation in the quality of teachers for the next task and an
overall decline in performance. This problem is magnified
when starting from a randomly initialized model, which is a
common practice in OCL. Moreover, a model’s performance
on a specific task greatly depends on the difficulty of said
task. Starting with a difficult task can lead to an especially
low-quality teacher, further harming the distillation process.

Examples of such performance gaps are shown in Table 1
with GSA (Guo et al., 2023), a state-of-the-art approach. It
can be observed that training offline leads to significantly
higher performance than training online. Similarly, begin-
ning training with an easy task induces superior performance
on said task when compared with a hard task. Additional
insights regarding the importance of teacher quality are
given in Table 2 where we show the impact of two distilla-
tion strategies on the final performances ER (Rolnick et al.,
2019). Namely, we combine ER with a low-quality teacher
that is a snapshot of the model at the end of the previous task.
Similarly, we combine ER with a high-quality teacher that
is a snapshot of a model trained for 5 epochs on the previous
task. We use the training loss defined in Equation (2) after
conducting a small hyper-parameter search on λ. It can be
observed that while the impact of a low-quality teacher is
limited, the impact of a higher-quality teacher is significant.

3.2. Teacher Quantity

One strategy for applying KD to CL requires taking a snap-
shot of the model at the end of each task (Rannen et al.,
2017; Ahn et al., 2021; Hou et al., 2018). Each snapshot

Table 2. Accuracy of ER (Rolnick et al., 2019) using a low-quality
teacher (snapshot of the model at the end of previous task), and
a high-quality teacher (snapshot of a model trained for 5 epochs
on previous task), on CIFAR100 M=5k splited in 2 tasks. We use
λ = 0.01 after conducting a small hyper-parameter search. Means
and standard deviations over 5 runs are reported.

Method Accuracy (%)

ER 49.0±4.6
ER+low qual. teach. 50.7±4.3
ER+high qual. teach. 54.6±3.3

then serves as a teacher for the respective task and is in-
corporated into the distillation loss. Naturally, this requires
storing a copy of the model per task which can be prob-
lematic for a large number of tasks, even in standard CL.
We emphasize that memory consumption is crucial to OCL
because it is presumed that only a small fraction of data
can be retained, and all other incoming data is discarded
post-usage. Dealing with a growing quantity of teachers is
unrealistic and contradicts the implicit storage constraint of
the online setup.

To circumvent the issue of continuously increasing teacher
numbers, one might consider using just the snapshot from
the most recent task as a teacher. However, this solution
is also unsatisfactory as this teacher should encapsulate
the knowledge from all previous tasks, which is especially
complex for long task sequences.

3.3. Unknown Task Boundaries

Most distillation strategies in CL rely on task boundaries
information to select the best teachers for distillation. In
offline CL, this information is easily available. However in
OCL, pinpointing the exact moment of task change is not
guaranteed. Figure 2 illustrates a more realistic scenario
where transitions occur progressively, making the determi-
nation of the ideal snapshot moment challenging. Choosing
a suboptimal teacher can also compromise the quality of
distillation.

4. Methodology
4.1. Motivations

As mentioned in previous sections, KD has been underuti-
lized in OCL. The main reason is that most KD strategies
draw inspiration from offline CL where the teacher is typi-
cally frozen at the conclusion of the previous task. However,
relying on a frozen teacher in OCL can be problematic due
to unknown task boundaries and concerns regarding teacher
quality. Moreover, a static teacher from the previous task
will set an upper limit on the student’s learning potential.
Consequently, the student is unable to enhance performance
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Figure 2. Illustration of the blurry boundary setting (bottom row)
in opposition to the clear boundary setting (top row). Detecting
task change in the case of blurry is not trivial.

on the previous task while mastering the current one. In
other words, a simple teacher discourages backward trans-
fer.

To tackle this limitation, we propose the use of an evolving
teacher. Contrary to a fixed teacher, the weights of an evolv-
ing teacher are updated throughout the training process. This
approach allows the teacher to continually improve and not
hinder the student’s progression. A student learning from an
evolving teacher can consistently refine their performance
on preceding tasks, thereby promoting backward transfer.
Additionally, this kind of teacher eliminates the need for
the knowledge of task boundaries. In this paper, we take
advantage of an Exponential Moving Average (EMA) of the
current model as the evolving teacher and design a novel
MKD teacher-dependent weighting scheme for adapting
MKD to OCL. While EMA can efficiently solve previously
described challenges, its applications to OCL is still in its
infancy.

4.2. Momentum Knowledge Distillation

We propose a new scheme to leverage Momentum Knowl-
edge Distillation (He et al., 2020) (MKD) with an evolving
teacher. In this distillation strategy, the teacher architecture
mirrors that of the student and its weights are computed as
an Exponential Moving Average of the student parameters.
The EMA weights are computed online according to the
update parameters α such that:

θα(t) = α ∗ θ(t) + (1− α) ∗ θα(t− 1), (1)

where θ(t) represents the student’s model parameters at time
t. The teacher, parameterized by θα, is represented as Tα.

4.3. Rethinking MKD

Plasticity-stability Control When designing CL meth-
ods, it is common to address the plasticity-stability trade-

Figure 3. Impact of α on the plasticity-stability trade-off. Lower α
values imply a stable teacher with high performances on old tasks.
Higher α implies a plastic teacher, with high performances on new
tasks.

off (Wang et al., 2023). Usually, the application of distil-
lation augments the model’s stability at the expense of its
plasticity. Using Momentum Knowledge Distillation gives
a precise control over this trade-off through the parame-
ter α. A lower value of α would make the teacher update
slower and remember longer timelines, making it retain
longer timelines but offering scant knowledge on the current
task. A high value of α would help the student learn the
current task but with limited insight of previous tasks. In
other words, a higher value of α emphasizes plasticity over
stability whereas a lower value of α encourages stability
over plasticity. This plasticity-stability control characteris-
tic is illustrated in Figure 3. We make concrete usage of
this property by designing a teacher-dependent weighting
scheme in our model learning.

Model Learning We formulate our loss term using an
EMA teacher as described in equation 2.

L(X,Y ) =LCE(X,Y )+

λα ∗KL(Tα(X)/τ, S(X)/τ),
(2)

where LCE the Cross-Entropy function, λα a weighting
hyper-parameter depending on α, S the student model,
(X,Y ) the data-label pairs, KL the Kullback–Leibler di-
vergence and τ the distillation temperature. We further
introduce multiview distillation, by making use of a data
augmentation procedure Aug(.) and propose to minimize
LMKD defined in Equation 3.

LMKD(X,Y ) =LCE(X̂, Y )

+
λα

2
KL(Tα(X), S(X̂))

+
λα

2
KL(Tα(X̂), S(X̂)),

(3)

where X̂ = Aug(X).

The only hyper-parameter is α. In Section 6, we give de-
tails on how to efficiently choose α and how to express the
teacher-dependent weighting parameter λα. Additionally,
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Algorithm 1 PyTorch-like pseudo-code of our loss to inte-
grate to other baselines.
for x, y in dataloader:
# Baseline loss
loss_baseline = criterion_baseline(model, x, y)
loss = loss_baseline

# Proposed loss
x_aug = transform(x) # data augmentation
l_stu1 = model(x) # logits student
l_stu2 = model(x_aug) # logits studenwt
l_tea = teacher(x_aug) # logits teacher
loss_ce = cross_entropy(x_aug, y)
loss_d1 = kl_div(softmax(l_stu1/t), softmax(l_tea/t)) #

temperature t↪→
loss_d2 = kl_div(softmax(l_stu2/t), softmax(l_tea/t))
loss_dist = (loss_d1 + loss_d2)/2 # Eq. 3
loss += loss_ce + lam*loss_dist

optim.zero_grad()
loss.backward()
optim.step()
update_ema()

the simplicity of this process allows for seamless adaptation
to existing methods. We provide a PyTorch-like (Paszke
et al., 2019) pseudo-code that outlines the strategy for inte-
grating our proposed MKD into other training procedures,
as can be found in Algorithm 1.

In this pseudo-code, we have omitted a memory buffer for
simplicity. Nonetheless, the training procedure remains
consistent, using a batch combining stream and memory
data.

Model Estimation As introduced in the plasticity-stability
control section, the knowledge of the teacher and student
pertains to different tasks. The student is inclined towards
the current task whereas the teacher excels in past tasks.
Solely relying on the teacher’s or student’s weights for infer-
ence may not yield optimal performances. Consequently, we
introduce a new model estimation strategy that necessitates
minimal extra computation. We compute the final model
parameters θ⋆ as the average of teacher and student weights
such that θ⋆ = θS+θT

2 , where θS and θT denote the parame-
ters of the student and teacher, respectively. A similar model
estimation strategy has been employed in conventional im-
age classification (Tarvainen & Valpola, 2017). We show in
Section 5.4 that this strategy can enhance performance.

5. Experiments
5.1. Implementation Details

For each method, we use random retrieval and reservoir
sampling (Vitter, 1985) for memory management. We use a
full ResNet18 (He et al., 2016) (untrained) for every method.
For all baselines, we perform a small hyperparameter search
on CIFAR100, M=5k, applying the determined parameters
across other configurations. More details are given in the
Appendix. We use the same hyperparameters when incorpo-

rating our loss. Throughout the training process, the stream-
ing batch size is set to 10, and data retrieval from memory
is capped at 64. Data augmentation includes random flip,
grayscale, color jitter, and random crop. The blurry datasets
are created following the code given in (Michel et al., 2024)
with a scale of 500. Some methods require task boundary
inference to be adapted to the blurry setting, which is de-
tailed in Appendix. The temperature τ designated for KD is
4. For MKD, we use α = 0.01 and λα = 5.5 accordingly
for every method. For more details regarding experiments,
please refer to the Appendix.

5.2. Baselines

To show the efficiency of our proposed approach, we in-
tegrate our approach as described in our pseudo code into
several baselines and the state-of-the-art methods in OCL.
ER (Rolnick et al., 2019): A basic memory based
method leveraging a Cross-Entropy loss and a replay buffer.
DER++ (Buzzega et al., 2020): A replay-based approach
doing distillation of old stored logits with using task bound-
aries. ER-ACE (Caccia et al., 2022): A replay-based
method using an Asymmetric Cross Entropy to overcome
feature drift. DVC (Gu et al., 2022): A replay-based ap-
proach leveraging consistency between image views in addi-
tion to minimizing cross entropy. OCM (Guo et al., 2022):
A replay-based method maximizing mutual information be-
tween old and new samples representation. GSA (Guo et al.,
2023): A replay-based method dealing with cross-task class
discrimination with a redefined loss objective using Gradi-
ent Self Adaptation. PCR (Lin et al., 2023): A replay-based
method leveraging a proxy-based contrastive loss for OCL.
Temp. Ens. (Soutif-Cormerais et al., 2023) leverages tempo-
ral ensembles in OCL. Specifically, the authors use the EMA
of the current model for inference, although it is not used
for distillation. We report the performances of Temp. Ens.
combined with ER for comparison. SDP (Koh et al., 2023)
uses a hypo-exponential evolving teacher. We report the
performances of SDP combined with ER for comparison.

For reproducibility, we re-implemented the methods men-
tioned above and make the code public.

5.3. Experimental Results

Clear Boundary Setting To demonstrate the effective-
ness of our approach, we applied the procedure described
to all the considered baselines and compared the perfor-
mances. Average accuracy at the end of training for the
clear setting is displayed in Table 3. It can be observed that
for most of the considered methods, datasets and memory
sizes, applying our procedure improves performance. In
most cases, this gain in performance is significant. Specifi-
cally, the combinations GSA + ours and OCM + ours have
the potential to surpass the current state-of-the-art methods.
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Additionally, the standard deviation is also significantly re-
duced when applying our approach, showing that the use of
a momentum teacher can help stabilizing the training proce-
dure. More interestingly, the introduction of our distillation
procedure can enhance performance, even if distillation is
already incorporated in the method (e.g., DER++).

Blurry Boundary Setting To further demonstrate the ca-
pabilities of MKD, we also conducted experiments with
blurry task boundaries. Average accuracy at the end of train-
ing is shown in Table 3. However, we did not implement
GSA in this context since it requires knowledge of the ex-
act class-task relationships and is not easily adaptable to
this setup. Additionally, we inferred task boundaries for
OCM as it is required to apply the method. Details on how
the task boundaries are inferred in this setup are given in
Appendix. Similar to the clear boundary setting, incorpo-
rating MKD as per our procedure can significantly enhance
performance. This performance gain becomes even more
pronounced when the original method experiences a drop
in effectiveness due to the challenging nature of the setting.
For example, OCM performances on CIFAR100 M=5k drop
from 41.87% to 38.14% while OCM + ours performances
remain stable around 51.4%.

Comparison with SDP SDP (Koh et al., 2023) uses a
hypo-exponential evolving teacher, akin to our approach.
While initially proposed as a standalone method, SDP can be
combined with existing techniques. We integrated SDP with
ER and GSA, and results in Table 3 reveal that, although
SDP enhances ER, ER + SDP performs less effectively
than ER + ours. Additionally, for GSA, the inclusion of
SDP leads to decreased performance, confirming MKD’s
superiority over SDP. Computationally, as SDP operates in
representation space, it demands more resources compared
to MKD, which is computed in logit space. Further details
on the computational constraints are provided in the Ap-
pendix. The introduction of SDP has a more substantial
impact on the time consumption of ER and GSA than MKD.

5.4. Ablation Studies

Impact of the Final Weight Estimation To demonstrate
the impact of averaging weights from the teacher and the
student, we experimented using either the teacher or the
student exclusively for inference. Results are displayed for
ER on Table 5. In both cases, employing solely the student
or the teacher results in inferior performance compared to
using their averaged weights, with a minimum drop in accu-
racy of 0.5%. Additionally, the teacher performs worse than
the student, which can be due to the fact that for remem-
bering enough from past tasks, the teacher update must be
quite slow. In that sense, the teacher might perform worse
overall but improve the students’ stability.

Figure 4. Impact of λα and α on the final performances or ER on
CIFAR100 M=5k, clear setting.

Impact of Multiview Distillation As described in the
Model Learning section, we employ both augmented and
raw images (two views) in our distillation process. In Ta-
ble 5 we show the performance of ER + ours when trained
using a single view. Namely, minimizing L(X,Y ) =
LCE(X̂, Y ) + λαKL(Tα(X̂), S(X̂)). The results indicate
that employing this multiview distillation strategy has a
significant impact, yielding at least a 2.9% points boost in
accuracy.

6. Discussions
In this section, we analyze the working mechanisms of
MKD for OCL.

6.1. Choosing α

Since α directly influences the teachers’ knowledge, it has a
significant impact on performances. Finding the best value
of α can be done by grid search. Figure 4 shows the final
average accuracy for various values of (α, λα), in log scale
for ER + Ours on CIFAR100 M=5K. To avoid computation-
intensive grid search, we show in the subsequent section that
α can be selected from a broad range, provided the relation
between α and λα is maintained.

6.2. Expressing λα

Figure 5 illustrates a strong interdependence between α and
λα. The optimal value for λα given α follows the formula
λα = a∗log10(α)+b, with a = 9/2 and b = 29/2. Notably,
lower values of α correspond to lower values of λ. This
correlation arises from the fact that a larger α leads to a
teacher closely resembling the student, resulting in a low
distillation loss and a higher λα for compensation.

6.3. Reducing Task-Recency Bias

A common issue in Continual Learning is the task-recency
bias (Chrysakis & Moens, 2023; Mai et al., 2021). This is
the problem of over-predicting the classes belonging to the
last task seen. Figure 8 displays confusion matrices at the
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Table 3. Final average accuracy (%) for the clear boundary setting at the end of training for considered baselines, with and without our
additional MKD procedure. Results are displayed for different datasets and memory sizes. Displayed values are the mean and standard
deviation computed over 5 runs.

Dataset CIFAR10 CIFAR100 Tiny-IN ImageNet100
Memory Size M 200 500 1000 1000 2000 5000 2000 5000 10000 2000 5000 10000

ER [NeurIPS‘19] 46.33±2.42 55.73±2.04 62.99±2.1 23.0±0.8 31.55±1.27 38.05±1.08 11.39±0.75 18.97±1.16 21.52±3.37 19.06±0.9 29.74±1.34 36.72±1.09

ER + SDP 47.78±2.29 58.85±1.38 65.93±2.15 28.48±1.18 35.21±0.73 41.19±1.11 15.32±0.47 23.22±0.31 26.97±1.1 22.95±0.13 32.12±0.23 35.64±0.25

ER + Temp. Ens. 48.80±2.60 62.10±1.70 70.20±0.20 30.00±0.70 37.90±0.90 46.80±0.90 16.30±0.50 23.60±0.40 30.00±0.50 20.40±0.50 33.12±1.70 40.10±1.15

ER + ours 57.54±2.55 68.48±0.92 74.33±0.68 38.5±0.5 45.2±0.2 52.10±0.5 23.95±0.65 32.22±0.88 38.27±0.18 30.67±0.46 39.7±1.07 44.92±0.98

DER++ [NeurIPS‘20] 47.07±0.97 55.53±1.05 58.51±0.68 22.8±1.8 25.89±1.46 25.71±2.4 3.89±0.64 4.28±0.51 4.16±0.32 15.36±3.04 19.19±1.55 20.48±4.67

DER++ + ours 53.63±2.18 63.95±0.86 68.84±1.15 32.1±0.5 37.97±0.92 41.97±1.53 17.08±1.43 15.64±4.64 13.69±3.36 26.18±1.07 33.85±0.98 38.22±1.84

ERACE [ICLR‘22] 44.77±3.18 52.65±1.37 61.45±1.47 27.4±0.6 32.88±0.63 39.61±0.53 14.79±0.95 22.25±1.69 26.64±0.91 27.16±0.57 32.88±0.83 39.14±0.35

ERACE + ours 58.99±1.36 65.94±0.49 69.78±0.96 37.0±0.7 42.92±0.79 48.73±1.29 22.21±0.87 31.13±0.41 35.54±0.43 33.59±0.99 41.93±0.64 47.16±0.89

DVC [CVPR‘22] 48.08±4.27 58.72±2.03 61.11±2.97 18.66±2.54 22.73±2.9 28.47±3.95 2.04±0.8 1.47±0.49 1.54±0.79 14.54±5.15 21.88±3.45 28.5±2.93

DVC + ours 50.53±4.35 62.62±1.84 69.52±0.84 27.42±3.14 35.95±1.71 42.45±2.45 9.41±1.43 12.03±3.83 13.44±3.84 18.75±1.96 29.64±3.6 38.0±2.94

OCM [ICML‘22] 59.58±1.43 68.46±0.79 72.79±2.36 29.3±1.55 36.7±0.58 41.87±1.52 19.58±0.63 27.85±1.03 32.56±1.37 28.7±0.92 37.37±1.11 41.86±1.14

OCM + ours 67.02±3.14 75.14±0.75 79.33±0.55 38.21±0.62 45.51±0.94 51.24±0.81 23.07±0.37 31.82±0.72 37.46±0.95 28.87±1.85 38.26±1.06 44.24±0.55

GSA [CVPR‘23] 48.9±3.38 61.45±1.95 67.63±1.24 29.68±1.54 36.96±0.79 45.86±1.89 15.77±0.72 22.48±0.4 28.46±1.85 24.29±0.59 33.47±1.18 40.18±0.93

GSA + SDP 47.39±1.76 60.61±3.43 67.17±1.41 26.56±3.03 34.78±3.72 44.53±1.07 11.71±2.69 16.1±6.3 25.92±3.05 27.7±10.69 43.85±1.42 51.39±1.07

GSA + ours 57.66±4.11 68.16±0.85 75.08±1.14 40.1±1.0 48.23±0.78 56.15±0.6 23.14±0.44 32.38±1.28 38.78±0.65 33.4±0.85 44.99±0.46 52.41±0.59

PCR [CVPR‘23] 52.2±0.66 60.61±2.23 61.66±13.86 30.68±0.81 38.63±1.01 45.27±0.78 12.47±3.56 20.41±2.84 23.85±4.21 19.89±6.24 31.35±3.01 36.99±4.7

PCR+ours 55.83±2.35 67.03±1.33 73.47±0.53 35.27±0.47 44.95±0.44 54.44±0.46 17.14±0.48 29.05±0.55 36.65±0.90 25.42±0.54 39.50±1.00 49.66±1.78

Table 4. Final average accuracy (%) for the blurry boundary setting at the end of training for considered baselines, with and without our
additional MKD procedure. Results are displayed for different datasets and memory sizes. Displayed values are the mean and standard
deviation computed over 5 runs.

Dataset CIFAR10 CIFAR100 Tiny-IN ImageNet100
Memory Size M 200 500 1000 1000 2000 5000 2000 5000 10000 2000 5000 10000

ER [NeurIPS‘19] 44.78±6.22 54.1±4.54 64.17±1.89 24.76±1.33 31.56±1.73 39.1±1.0 11.88±1.5 19.76±1.67 25.71±1.29 15.18±1.51 24.88±1.27 31.44±2.18

ER + SDP 47.64±1.66 60.04±1.53 65.89±0.84 28.66±1.61 36.07±1.5 41.65±1.47 15.98±1.6 23.91±1.48 28.92±0.84 14.26±1.47 5.14±3.14 5.15±2.16

ER + Temp. Ens. 51.58±2.17 64.12±0.57 70.90±0.90 31.78±0.64 39.32±0.86 46.84±0.65 16.63±0.80 25.37±1.11 32.07±0.50 14.45±0.33 24.57±0.81 27.09±0.68

ER + ours 56.69±1.9 69.15±1.37 74.06±1.01 38.38±0.86 45.47±0.63 51.79±0.22 25.08±0.64 33.22±0.64 38.63±0.8 26.03±0.76 36.67±0.65 42.64±0.87

DER++ [NeurIPS‘20] 47.28±2.03 55.83±2.45 59.37±1.93 23.4±1.54 27.91±1.3 29.31±1.83 15.99±0.9 20.34±1.22 21.36±0.81 3.65±1.38 3.98±1.53 4.22±1.66

DER++ + ours 54.21±3.11 63.83±1.83 69.06±1.7 31.17±0.81 38.44±1.15 42.72±0.81 21.93±0.74 28.7±0.55 32.58±1.51 20.69±1.09 27.37±0.93 30.25±1.01

ERACE [ICLR‘22] 50.44±1.37 56.5±1.77 62.92±1.5 27.69±1.45 32.98±0.81 40.12±1.05 19.04±0.88 25.27±1.27 30.05±1.67 15.84±0.82 24.49±0.3 31.74±0.97

ERACE + ours 59.36±3.15 66.25±1.82 70.74±0.8 38.04±0.93 43.75±0.46 50.35±0.48 25.85±0.7 33.14±0.79 37.68±0.57 26.14±0.64 35.61±1.06 42.67±0.81

DVC [CVPR‘22] 46.05±5.23 58.73±2.4 58.78±5.83 22.46±1.91 26.98±3.13 29.46±2.39 10.64±1.31 15.48±2.1 15.81±1.76 2.97±0.65 5.34±2.49 8.38±4.58

DVC + ours 49.04±2.95 61.95±1.81 69.25±0.78 27.1±2.11 35.76±2.27 41.99±3.31 12.45±2.19 22.15±1.42 24.14±3.63 6.53±1.12 15.32±1.28 5.42±1.35

OCM [ICML‘22] 43.66±2.59 47.63±2.68 51.08±2.66 25.16±0.76 32.96±1.21 38.14±1.11 18.57±0.37 26.82±0.86 31.21±0.55 26.61±1.02 36.36±0.48 41.92±0.9

OCM + ours 67.66±0.49 74.9±0.98 78.61±0.43 36.64±0.47 44.63±1.12 51.41±0.71 24.77±0.2 33.01±1.1 39.39±0.89 25.52±1.27 34.42±0.97 39.07±0.8

PCR [CVPR‘23] 53.43±2.2 60.67±3.29 69.13±0.66 30.9±2.06 38.63±0.26 45.97±1.18 16.0±2.35 22.02±3.21 28.9±3.73 9.77±4.75 16.55±7.91 27.86±5.46

PCR+ours 57.55±1.4 67.03±2.0 74.0±0.91 35.6±0.66 44.95±0.42 54.87±0.39 17.33±1.28 29.58±0.6 38.02±1.64 22.51±0.96 34.53±0.57 44.28±0.68

Table 5. Final average accuracy (%) on CIFAR100, clear bound-
ary setting, for ER + ours and varying memory sizes. Student
corresponds to the student performance and teacher to the teacher
performance. no aug corresponds using the distillation loss with a
single view as defined in Section 5.4. Mean and standard devia-
tions over 5 runs are displayed.

Dataset CIFAR100
Memory Size M 1000 2000 5000

ER + ours 38.5±0.5 45.2±0.2 52.1±0.5

ER + ours (student) 37.7±0.7 44.7±0.5 51.2±0.6

ER + ours (teacher) 37.2±0.7 43.0±0.8 49.4±0.6

ER + ours (student, single view) 34.8±0.6 41.8±0.6 47.9±0.4

end of training for considered baselines, with and without
MKD. While most baselines suffer from task-recency bias
at the end of training, it can be observed qualitatively that
adding MKD reduces this bias by diminishing the amount
of last task false positives.

Figure 5. Relation between logα and and the best corresponding
λα value, λbest. The displayed relation is linear.

6.4. Reducing Last Layer Bias

Another identified issue when training with Cross Entropy
is the presence of bias in the last Fully Connected (FC)
layer (Liang et al., 2024; Ahn et al., 2021; Mai et al., 2021;
Wu et al., 2019). To demonstrate the presence of the last FC
bias, one can make use of the Nearest Class Mean (NCM)
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Table 6. Final Average Accuracy (%) on CIFAR100 M=1k of sev-
eral baselines, with and without using the NCM trick. Logits Acc.
refers to the accuracy of the model using predicted logits while
NCM Acc. refers to NCM accuracy trained on intermediate repre-
sentations from memory at the end of training.

Method Logits Acc. NCM Acc.
ER [NeurIPS‘19] 23.0±0.8 29.0±0.3 (↑6.0)
ER + ours 38.5±0.5 31.5±0.5 (↓7.0)
DER++ [NeurIPS‘20] 22.8±1.8 26.6±3.4 (↑3.8)
DER++ + ours 32.1±0.5 28.7±1.4 (↓3.4)
ERACE [ICLR‘22] 27.4±0.6 28.1±0.7 (↑0.7)
ERACE + ours 37.0±0.7 34.2±0.2 (↓2.8)
GSA [CVPR‘23] 29.7±1.5 32.6±1.6 (↑2.9)
GSA + ours 40.1±1.0 36.2±0.5 (↓3.9)

trick (Mai et al., 2021) with intermediate representations
given by the model. Since we work with memory based ap-
proaches, we compare the model’s performance using logits
with performances obtained by training an NCM classifier
using intermediate representation of memory data at the end
of training. In other words, we drop the last FC layer and
fine-tune with a simple NCM classifier on memory. The
NCM trick yields substantial performance improvement in
the presence of a pronounced last layer bias, as indicated in
Table 6. Across various baselines, with and without MKD,
the NCM trick consistently enhances performances, under-
scoring the influence of a strong last FC bias. Intriguingly,
when our approach is applied to these baselines, leveraging
the NCM actually leads to performance degradation. This
suggests a neutralization of the last FC layer bias, possibly
due to the distillation loss occurring in the logit space, where
the last FC layer is tightly constrained.

6.5. Reducing Feature Drift

When training in OCL, one potential issue is the feature
drift (Caccia et al., 2022). Feature drift occurs when chang-
ing tasks causes the representation of old classes to con-
flict with the representations of new classes, inducing large
changes in past representations. Experimentally, we demon-
strate that MKD can inherently reduce feature drift. Figure 6
shows the feature drift dt = ||fθt(Xold) − fθt+1(Xold)||2,
where Xold are memory images of old classes and fθt is
the model parameterized by θ from which we removed the
last FC layer. As we can see, using MKD greatly reduces
feature drift throughout training. For ER + ours (MKD), the
feature drift is not only lower but also more stable.

6.6. Improving Feature Discrimination

Feature discrimination is a desirable property of any learn-
ing process. Specifically in Continual Learning, it is impor-
tant to obtain distinctive features at the end of training. In
Figure 7, we present the t-SNE results on memory data at
the end of training of ER and ER + ours (MKD). Clearly, the
obtained representation using MKD is significantly more
discriminative than the one obtained without MKD. Even
though our distillation loss is proposed in the logit space, it

Figure 6. Feature drift dt of ER and ER + ours (MKD) on CI-
FAR100 M=5k.

(a) ER (b) ER + ours (MKD)

Figure 7. (a) t-SNE of memory data at the end of training ER on
CIFAR10, M=1k. (b) t-SNE of memory data at the end of training
ER + ours (MKD) on CIFAR10, M=1k.

can still greatly improve learned feature quality.

6.7. Improving Backward Transfer

As the plasticity-stability dilemma is central in CL, a variety
of metrics have been designed to adequately measure either
plasticity or stability (Mai et al., 2022; Wang et al., 2023).
We empirically found that leveraging KD in OCL helps
retain past information and enhances the model’s stability
during training. To showcase this effect, we look at the BT
of considered baselines, with and without MKD. Table 7
shows the BT at the end of training. In every scenario,
our method improves BT. Specifically, for ER, leveraging
MKD can yield a positive BT, implying that the models
keep improving on old classes even after a task change.
This property is especially important in OCL because the
student is unlikely to have fully learned the past task when
training on the current task.

7. Conclusions
In this paper, we studied the problem of Online Continual
Learning from the perspective of Knowledge Distillation.
While KD has been widely studied in the context of of-
fline continual learning, it remains under-used in OCL. To
understand the current state of KD in OCL, we identified
OCL-specific challenges for applying KD: Teacher Quality,
Teacher Quantity, and Unknown Task Boundaries. More-
over, we proposed to address these challenges by designing
a new distillation procedure based on Momentum Knowl-
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Figure 8. Confusion matrix on the evaluation set at the end of train-
ing on CIFAR100 with M=1K for considered baselines. Classes
are shown in training order. The top row is the confusion matrices
for baselines without the MKD procedure. The bottom row is the
confusion matrices when adding MKD.

Table 7. Backward Transfer (%) at the end of training on CI-
FAR100, M=5k and Imagenet100, M=10k for several baselines.
Higher is better. Means over 5 runs are displayed.

Method CIFAR100 ImageNet100
ER -16.7±1.2 -17.5±1.5

ER + ours +8.15±0.8 -1.3±2.3

DER++ -27.5±3.4 -18.9±2.5

DER++ + ours -10.4±5.6 -14.4±2.5

GSA -4.9±1.2 -17.0±1.3

GSA + ours -2.5±3.1 -15.5±1.0

edge Distillation. This approach benefits from a powerful
plasticity-stability control for OCL and employs an evolving
teacher to overcome the previously introduced challenges.
We experimentally demonstrated the efficiency of our ap-
proach and achieved more than 10% points improvement
over state-of-the-art methods on several datasets. Addi-
tionally, we provided insightful explanations on how using
MKD can help solve multiple OCL known issues: task-
recency bias, last layer bias, feature drift, feature discrimi-
nation, and backward transfer. Our approach is architecture-
independent and computationally efficient. In conclusion,
we have shed new light on distillation for OCL and advocate
for its efficiency and its potential as a central component for
addressing OCL.
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A. Additional Experiments
A.1. Task-Recency Bias

In the main paper, we discussed how our approach addresses the task-recency bias in OCL for only a limited number of
methods due to space constraints. In Figure 9, we share confusion matrices for every considered method from the main
paper.

Figure 9. Confusion matrix on the evaluation set at the end of training on CIFAR100 with M=1K for considered baselines. Classes are
shown in the same order of those during training such that left columns of confusion matrices correspond to first classes seen during
training. The top row presents the confusion matrices for baselines without the MKD procedure. The bottom row is the confusion matrices
when adding MKD.

A.2. Last layer Bias

In Table 8 we share extra experiments regarding the impact of the NCM trick. Specifically, OCM and DVC are not included
in the main paper.

Method Logits Acc. NCM Acc.
ER [NeurIPS‘19] 23.0±0.8 29.0±0.3 (↑6.0)
ER + ours 38.5±0.5 31.5±0.5 (↓7.0)
DER++ [NeurIPS‘20] 22.8±1.8 26.6±3.4 (↑3.8)
DER++ + ours 32.1±0.5 28.7±1.4 (↓3.4)
DVC [CVPR‘22] 19.5±2.1 21.1±1.5 (↑1.6)
DVC + ours 27.0±2.0 27.4±1.7 (↑0.4)
ERACE [ICLR‘22] 27.4±0.6 28.1±0.7 (↑0.7)
ERACE + ours 37.0±0.7 34.2±0.2 (↓2.8)
OCM [ICML‘22] 29.1±1.4 29.3±1.2 (↑0.2)
OCM + ours 37.1±0.7 31.6±0.2 (↓5.5)
GSA [CVPR‘23] 29.7±1.5 32.6±1.6 (↑2.9)
GSA + ours 40.1±1.0 36.2±0.5 (↓3.9)

Table 8. Final Average Accuracy (%) on CIFAR100 M=1k of various baselines, with and without using the NCM trick. Logits Acc. refers
to the accuracy of the model using predicted logits while NCM Acc. refers to NCM accuracy trained on intermediate representations from
memory at the end of training.

12



Rethinking Momentum Knowledge Distillation in Online Continual Learning

Figure 10. Feature drift dt of ER, DER++, DVC, ERACE, GSA, OCM and their MKD adaptations on CIFAR100, M=5k.

A.3. Feature Drift

We show additional experiments concerning the impact of MKD on feature drift on Figure 10. It can be observed that
for GSA and ERACE, introducing MKD can greatly help in reducing feature drift. However, this phenomenon is not as
pronounced with DVC and DER++. Since DVC encourages representations to be augmentation-invariant, it is expected to
observe more stability against feature drift with DVC. Notably, the drift values of DVC and DVC + ours are considerably
lower than any other considered method. Additionaly, we observe the opposite effect for OCM, which also incorporate
feature stability by leveraging a contrastive objective (Guo et al., 2022). Even though MKD cannot reduce feature drift for
OCM, experimental results still demonstrate a significant improvement in performances.

A.4. Feature Discrimination

To showcase the impact of MKD on feature discrimination, we presented t-SNE results on memory data at the end of training
for ER and ER + ours. In Figure 11 we present additional t-SNE experiments for remaining baselines. We used a perplexity
of 30 for these experiments.

A.5. Backward Transfer

In Table 9 we present additional experiments concerning the impact of MKD on Backward Transfer (BT). Specifically,
OCM and DVC are not included in the main paper because of the limited space.

B. Experimental Details
B.1. Datasets

We use variations of standard image classification datasets (Krizhevsky, 2009; Le & Yang, 2015; Deng et al., 2009).
The original datasets are split into several tasks of non-overlapping classes. Specifically, we experimented on CIFAR10,
CIFAR100, Tiny ImageNet, and ImageNet-100.
CIFAR10 contains 50,000 32x32 train images and 10,000 test images and is split into 5 tasks, each containing 2 classes, for
a total of 10 distinct classes.
CIFAR100 contains 50,000 32x32 train images and 10,000 test images and is split into 10 tasks, each contains 10 classes,
for a total of 100 distinct classes.
Tiny ImageNet is a subset of the ILSVRC-2012 classification dataset and contains 100,000 64x64 train images as well as
10,000 test images and is split into 20 tasks, each containing 10 classes, for a total of 200 distinct classes.
ImageNet-100 is another subset of ILSVRC-2012 containing only the first 100 classes with 1,300 224x224 images per class
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(a) ER (b) ER + ours (c) DER++ (d) DER++ + ours

(e) DVC (f) DVC + ours (g) ERACE (h) ERACE + ours

(i) GSA (j) GSA + ours (k) OCM (l) OCM + ours

Figure 11. t-SNE visualization of ER, DER++, DVC, ERACE, GSA, OCM and their MKD adaptations on CIFAR100, M=5k.

Method CIFAR100 ImageNet100
ER -16.7±1.2 -17.5±1.5

ER + ours +8.15±0.8 -1.3±2.3

DER++ -27.5±3.4 -18.9±2.5

DER++ + ours -10.4±5.6 -14.4±2.5

ERACE -3.0±1.6 -6.5±1.3

ERACE + ours +8.6±1.6 -5.6±1.4

DVC -32.5±4.7 -34.3±5.9

DVC + ours -20.9±6.6 -31.5±0.8

OCM -5.0±3.0 +1.1±1.6

OCM + ours +14±1.8 +3.9±0.8

GSA -4.9±1.2 -17.0±1.3

GSA + ours -2.5±3.1 -15.5±1.0

Table 9. Backward Transfer (%) at the end of training on CIFAR100, M=5k and Imagenet100, M=10k for various baselines. Higher is
better. Mean and standard deviations over 5 runs are displayed.

for training and 50 for testing.

B.2. Data Augmentation

Several methods have demonstrated improved performance through the use of simple augmentations rather than more intricate
ones. To ensure optimal performance comparison among the various methods, we employed two distinct augmentation
strategies: the partial and the full strategies.

Partial Augmentation Strategy. The partial augmentation strategy comprises only a subset of the augmentations utilized
in the full strategy. Specifically, it involves a sequence of random cropping and random horizontal flipping, both with a
probability p of 0.5.

Full Augmentation Strategy. The full augmentation strategy encompasses a wider array of augmentations. It involves a
sequence of random cropping, horizontal flipping, color jitter, and random grayscale transformations. The parameters for
color jitter are set to (0.4, 0.4, 0.4, 0.1) with a probability p of 0.8. The application probability for random grayscale is set at
0.2.
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Figure 12. Time consumption (minutes) of compared methods when training on CIFAR100, M=5k with V100 GPUs.

These strategies have also been chosen during the hyper-parameter search.

B.3. Task boundaries inference

For experimenting on the blurry setting with OCM (Guo et al., 2022), it is necessary to infer the task change. Inferring
task change in this setup can be cumbersome and grandly impact performances. For simplicity, we detect task change by
applying two simple rules. We consider the task has changed if:

• A new class (never seen by the model) appears in the stream;

• The last task change appeared at least 100 iterations previous to the current one.

B.4. Hyper-parameters table

Different hyper-parameters values used in grid search for considered methods are reported in Table 10. This grid search has
been conducted on CIFAR100, M=5k. Note that we used parameters from the original paper for OCM (Guo et al., 2022)
due to computational constraints.

B.5. Hardware and computation

For the compared methods, we trained on RTX A5000 and V100 GPUs. Figure 12 references the training time of each
method on CIFAR100 M=5k.
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Method Parameter Values

ER

optim [SGD, Adam]
weight decay [0, 1e-4]

lr [0.0001, 0.001, 0.01, 0.1]
momentum [0, 0.9]
aug. strat. [full, partial]

ER-ACE

optim [SGD, Adam]
weight decay [0, 1e-4]

lr [0.0001, 0.001, 0.01, 0.1]
momentum [0, 0.9]
aug. strat. [full, partial]

DER++

optim [SGD, Adam]
weight decay [0, 1e-4]

lr [0.0001, 0.001, 0.01, 0.03]
momentum [0, 0.9]
aug. strat. [full, partial]

alpha [0.1, 0.2, 0.5, 1.0]
beta [0.5, 1.0]

DVC

optim [SGD, Adam]
weight decay [0, 1e-4]

lr [0.0001, 0.001, 0.01, 0.1]
momentum [0, 0.9]
aug. strat. [full, partial]

GSA

optim [SGD, Adam]
weight decay [0]

lr [0.0001, 0.0005, 0.01, 0.05, 0.01]
momentum [0]
aug. strat. [full, partial]

ER+SDP

optim [Adam]
weight decay [0]

lr [0.0003]
momentum [0]

µ [10, 100, 1000, 10000]
c2 [0.5, 0.75, 0.9]

PCR

optim [Adam]
weight decay [0]

lr [0.0005]
momentum [0.9]
aug. strat. [full]

ER+Temp. Ens.

optim [Adam]
weight decay [0]

lr [0.0005]
momentum [0.9]
aug. strat. [full]

α [0.01, 0.05, 0.1, 0.5, 0.9, 0.95, 0.99]

Table 10. Hyper-parameters tested for every method on CIFAR100, M=5k, 10 tasks.
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