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Abstract001

Efficient multi-hop reasoning requires Large002
Language Models (LLMs) based agents to ac-003
quire high-value external knowledge iteratively.004
Previous work has explored reinforcement005
learning (RL) to train LLMs to perform search-006
based document retrieval, achieving notable im-007
provements in QA performance, but underper-008
form on complex, multi-hop QA resulting from009
the sparse rewards from global signal only. To010
address this gap in existing research, we in-011
troduce StepSearch, a framework for search012
LLMs that trained with step-wise proximal pol-013
icy optimization method. It consists of richer014
and more detailed intermediate search rewards015
and token-level process supervision based on016
information gain and redundancy penalties to017
better guide each search step. We constructed018
a fine-grained question-answering dataset con-019
taining sub-question-level search trajectories020
based on open source datasets through a set of021
data pipeline method. On standard multi-hop022
QA benchmarks, it significantly outperforms023
global-reward baselines, achieving 11.2% and024
4.2% absolute improvements for 3B and 7B025
models over various search with RL baselines026
using only 19k training data, demonstrating the027
effectiveness of fine-grained, stepwise supervi-028
sion in optimizing deep search LLMs.029

1 Introduction030

Recent breakthroughs in Large Language Models031

(LLMs) have demonstrated unprecedented capabil-032

ities in sophisticated linguistic comprehension and033

generative tasks.034

Reinforcement learning enhanced architec-035

tures(e.g., OpenAI-o3 (Jaech et al., 2024),036

DeepSeek-R1 (DeepSeek-AI et al., 2025), and037

Kimi-1.5 (Team et al., 2025)) employ policy-038

gradient methods (PPO (Schulman et al., 2017),039

GRPO (Shao et al., 2024)) to advance multi-hop040

logical reasoning (Xie et al., 2025). However,041

complex multi-hop QA still suffers from intrinsic042

Figure 1: Step-wise search involves interactive rounds,
with information gain being rewarded and redundancy
penalised. Each interaction evaluates thinking and
searching behaviour based on the retrieved results, with
the final answer being used as the basis for global re-
wards.

knowledge gaps (Lee and Roh, 2024) and static, in- 043

efficient knowledge-assimilation mechanisms (Jin 044

et al., 2024; Schick et al., 2023). To address limited 045

modeling of internal dependencies, recent work has 046

adopted prompting strategies, RAG architectures, 047

and tailored learning paradigms (Patil, 2025; Lewis 048

et al., 2020). 049

Chain-of-Thought (CoT) prompting (Wei et al., 050

2022) decomposes complex inference into sequen- 051

tial subtasks but remains highly sensitive to prompt 052

formulation and does not eliminate hallucinations. 053

Retrieval-Augmented Generation (RAG) (Lewis 054

et al., 2020) dynamically incorporates external 055

corpora to bridge knowledge gaps and suppress 056

spurious content (Zhao et al., 2024; Gupta et al., 057

2024; Fan et al., 2024); embedding structured 058
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knowledge graphs further enforces semantic co-059

herence through explicit entity relations (Soman060

et al., 2024; Edge et al., 2025). Agentic frame-061

works—combining self-reflection, strategic plan-062

ning, and multi-agent collaboration—facilitate063

adaptive task decomposition and iterative refine-064

ment (Singh et al., 2025; Li et al., 2025). Advanced065

retrieval tactics (query reformulation, reranking,066

hybrid vector–keyword indexing) bolster multi-hop067

reasoning while filtering noise (Glass et al., 2022;068

Sawarkar et al., 2024). Nonetheless, reliance on069

proprietary knowledge bases demands frequent up-070

dates to avert data obsolescence.071

Training-based paradigms endow LLMs with072

adaptive tool use by integrating external infor-073

mation sources (e.g., search engines) directly074

into the training loop. Supervised fine-tuning075

(SFT) frameworks—such as ToolFormer (Schick076

et al., 2023), ToolKengPT (Hao et al., 2023),077

and related efforts (Qu et al., 2025; Shi et al.,078

2025)—substantially boost performance in special-079

ized, knowledge-intensive tasks but suffer from080

poor out-of-domain generalization (Chu et al.,081

2025).082

Recent advances have adopted reinforcement083

learning to learn dynamic retrieval policies, en-084

abling models to iteratively query and integrate085

external knowledge based on the static RAG086

paradigm (Huang et al., 2025; Jiang et al., 2025).087

Methods such as R1-Searcher (Jin et al., 2025),088

Search-R1 (Song et al., 2025), ReSearch (Chen089

et al., 2025) and ZeroSearch (Sun et al., 2025)090

rely on answer and format-level rewards, empower091

agents to autonomously invoke search tools and092

achieve QA performance surpassing conventional093

RAG. DeepResearcher (Zheng et al., 2025) fur-094

ther extends this paradigm to unconstrained online095

search environments, highlighting the scalability096

and potential of search-RL approaches. However,097

existing RL-based search agents depend on coarse098

global rewards, lacking fine-grained supervision of099

intermediate queries and multi-step retrievals—an100

approach inadequate for the dependencies inherent101

in complex multi-hop reasoning.102

Process-level supervision enables the design of103

fine-grained reward functions that steer strategic104

query planning and enhance retrieval quality in105

complex search environments (Zhu et al., 2025; Ye106

et al., 2025b,a; Wang et al., 2025). However, exist-107

ing step-reward methods—such as R1-VL (Zhang108

et al., 2025) for pure logical reasoning and RPO109

(Liu et al., 2024) lack true token-level supervi-110

sion for interactive retrieval tasks. Moreover, most 111

multi-hop QA frameworks omit explicit guidance 112

on query trajectories (e.g., intermediate search key- 113

words or document usage), leaving a critical gap in 114

search-path modeling. 115

To address these shortcomings, We propose 116

StepSearch, a reinforcement learning framework 117

that integrates iterative retrieval with explicit step- 118

wise supervision for search llms (Figure 1). Built 119

on a pipeline that generates subquestion-aligned 120

search-keyword trajectories, it also introduces a 121

regenerated public multi-hop dataset for sequential 122

retrieval benchmarking. By augmenting PPO with 123

token-level rewards that combine information gain 124

and redundancy penalties, StepSearch boosts pol- 125

icy convergence and improves retrieval fidelity and 126

QA accuracy. 127

In general, our core contribution lies in: 128

• Universal multi-hop search data. We de- 129

velop a novel MuSiQue-based pipeline, contribut- 130

ing 60k filtered sub-question search keywords that 131

generalize across retrieval datasets. 132

• StepSearch: Step-wise RL with dual re- 133

wards. We augment PPO with token-level re- 134

wards—information gain and redundancy penal- 135

ties—for both query formulation and document 136

retrieval. 137

• State-of-the-art performance. StepSearch 138

outperforms standard RL baselines by 5.7%, 9.1%, 139

10.0%, and 15.2% absolutely on diverse multi-hop 140

QA benchmarks. 141

2 Methodology 142

2.1 Data Augmentation Pipeline 143

In this pilot study, we construct a multi-turn Q&A 144

dataset with subquestion-level search trajectories. 145

Starting from the MusiQue (Trivedi et al., 2022) 146

dataset, our pipeline show as (Figure. 2): 147

(a) Leverage GPT-4o. to enrich decomposed 148

MuSiQue questions with coherent subques- 149

tion–answer pairs, then derive N search 150

queries per step for retrieval. 151

(b) Each enhanced step question is then reformu- 152

lated into a set of N search queries to facilitate 153

information retrieval. 154

(c) Queries are issued to M sources (e.g., Google, 155

Bing, Wiki-18), and only those returning valid 156

results in at least ⌈M/2⌉ sources are retained. 157
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Figure 2: Data pipeline for generating the corresponding
search query for the Q&A intermediate process.

2.2 Train LLM with Search Actions158

To rapidly instill tool-augmented reasoning, we159

design a minimalist prompt template comprising160

three chain-of-thought demonstration pairs plus a161

dedicated label for retrieved results. Prompt tem-162

plates for training can be found in the Appendix A,163

this schema enforces a consistent structure across164

reasoning, retrieval relying only on zero-shot guid-165

ance.166

Rollout and Mask for Retrieve: (1) We run the167

loop of <think>...</think>, <search>. . . </search>,168

<information>. . . </information> iteratively, ap-169

pending external docs until LLM returns <an-170

swer>. . . </answer> or the action budget is171

reached. (2) During RL training, we optimize172

a composite loss but mask out all <informa-173

tion>. . . </information> segments from gradient174

computation, thereby decoupling parameter up-175

dates from retrieval artifacts and focusing learn-176

ing on the model’s internal reasoning and search-177

policy parameters, as established in prior search-RL178

work (Jin et al., 2025; Song et al., 2025; Chen et al.,179

2025; Sun et al., 2025; Zheng et al., 2025).180

2.3 StepSearch181

In retrieval-augmented RL, carefully crafted re-182

wards are pivotal to convergence and reasoning183

efficacy. In addition to the standard format and184

final-answer reward ranswer, we introduce a search-185

key reward rkey to promote informative query is- 186

suance directly. Our method further diverges from 187

vanilla PPO by segmenting each turn into think 188

→ search → answer phases and assigning token- 189

level rewards: each token earns an information- 190

gain signal Gt and incurs a redundancy penalty Pt. 191

This precise, process-aware supervision compels 192

the model to decompose multi-hop queries into fo- 193

cused search subtasks, adapt its retrieval strategy 194

dynamically, and integrate external evidence more 195

effectively, yielding faster convergence and higher 196

accuracy on complex reasoning benchmarks. 197

Our optimization algorithm combines the above- 198

mentioned Search Steps supervision reward based 199

on the currently widely used actor-critic approach 200

PPO (Schulman et al., 2017), denote as StePPO. 201

For each sample input x ∽ D, obtain output o from 202

the old policy πθold , let I(yt) be the token-loss 203

masking indicator, it equals 1 when ot is generated 204

by actor LLM else 0 for retrieved tokens. Then 205

optimize the policy πθ with the reference policy 206

πθref by maximizing the following objective: 207

JStePPO(θ) = Ex∼D,o∼πθold (·|x){
1∑|o|

t=1 I(ot)

|o|∑
t=1:I(ot)=1

[
πθ(ot|x, o<t)

πθold(ot|x, o<t)
At,

clip

(
πθ(ot|x, o<t)

πθold(ot|x, o<t)
, 1− ϵ, 1 + ϵ

)
At

]}
,

(1) 208

here, ϵ is a hyper-parameter for clipping to stal- 209

blilize training, and At represents the estimated 210

advantage computed with GAE algorithm (Schul- 211

man et al., 2015), based on future rewards r≥t, 212

which is composed of the gloabal and step-wise 213

search round rewards, and a learned value function 214

Vϕ. The global reward is set at the last position of 215

the output, while the step-wise reward is set at the 216

last token of each round of search behavior. 217

2.3.1 Type 1 Reward: Global Signal 218

Format Requirement: To ensure the model adopts 219

the prescribed multi-step "search + reason" work- 220

flow and correctly initiates search actions across 221

iterative reasoning rounds, we enforce strict format 222

validation as a hard constraint rather than imple- 223

ment it as an explicit reward. The required output 224

format is defined as follows: 225

• Only the search queries in the proper 226

<search>. . . </search> pairs will be extracted 227

3



Figure 3: Overview of StepSearch. At each step, the model issues queries to an external engine and receives snippets.
Search Step Reward score, combining information gain and redundancy penalty, are applied to tokens within each
round, while the global reward, based on final answer accuracy and keyword hit rate, is applied at the last token.
Retrieved content is masked during training to isolate the model’s generative parameters.

and used to call search tools, and the answer228

must be in the <answer>. . . </answer> pair.229

• At least one round of "think" and "search"230

behaviour231

• Only one <answer>. . . </answer> tag pair to232

answer the question, and it must be at the end.233

Answer Reward: We follow the classic rein-234

forcement learning method and calculate the degree235

of the match by using the word-level f1 method236

between the answer and ground truth. Let PN237

represent the word count of the predicted answer,238

RN for word count of the golden answer and IN239

stands for the word count of the intersection be-240

tween them, then the answer reward ranswer can be241

defined as:242

F1(x, y) =
2 ∗ IN

PN +RN
(2)243

ranswer =

{
F1(apred, agt), format is correct,
0, format is incorrect.

(3)244

Search Keys Reward: We quantify the search-245

key reward by measuring the alignment between246

each emitted query and the reference keywords as-247

signed to its corresponding subtask. Concretely, we248

compute a word-level F1 score—capturing token249

overlap to assess query quality. To guarantee ad- 250

herence to the prescribed interaction protocol, this 251

reward is granted only when the model’s search 252

emission conforms to the required format, ensuring 253

that policy updates reinforce both correct structure 254

and effective retrieval behaviour. Suppose there 255

are T rounds of queries Q = {q1, q2, . . . , qT }, 256

Ki = {ki1, ki2, . . . , kiNi}, i = 1, . . . ,M corre- 257

sponding M subquestions which each contains Ni 258

related golden queries, thus, the search keyword 259

reward can be calculated as: 260

fijt = F1(qt, kij), (4) 261

rkey =
1

M

M∑
i=1

(
max

1≤j≤Ni

(
max
1≤t≤T

fijt

))

=
1

M

M∑
i=1

max
1≤j≤Ni

max
1≤t≤T

fijt.

(5) 262

Type 1 Reward: Set γkey as the scale factor 263

and the final reward rule can be expressed by the 264

following formula: 265

roverall = ranswer + γkey · rkey. (6) 266

2.3.2 Type 2 Reward: Search Step 267

The step-wise reward rtstep of each round of search 268

behaviour can be expressed as information gain Gt 269
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minus redundancy penalty Pt as Type 2 Reward:270

rtstep = Gt − Pt. (7)271

Information Gains: To quantify the utility of272

each search action, we measure the marginal infor-273

mation contribution of its retrieved documents in274

reducing uncertainty about the target answer at the275

current reasoning stage.276

Let Dg = {dg1, . . . , d
g
n} denote the n ground-277

truth documents required to resolve problem p at278

search turn t, where each dgi contains the gold-279

standard information for a specific subtask. We280

maintain a memory vector M t = [mt
1, . . . ,m

t
n],281

in which mt
i records the maximum similarity ob-282

served to date between any retrieved document and283

dgi . At turn t, the agent retrieves a set Dr(t) =284

{dr(t)1 , . . . , d
r(t)
k } of k documents; we denote by ctj285

the similarity between d
r(t)
j and its corresponding286

golden document(s). To evaluate this alignment,287

we adopt a submodular coverage function instanti-288

ated with cosine similarity over TF–IDF (Ramos289

et al., 2003) representations, which naturally en-290

forces diminishing returns and penalizes redundant291

retrievals.292

First initialize mt
i to 0, the current matching de-293

gree of the round t search results can be calculated294

based on each golden info document, and the high-295

est similarity among the search documents in this296

round is taken as cti:297

cti = max
1≤j≤k

−→
dgi ·

−−→
d
r(t)
j

||
−→
dgi || · ||

−−→
d
r(t)
j ||

, i = 1, · · · , n. (8)298

The valuable information gain △t
i on golden doc-299

ument dgi of this round t is calculated based on300

the current matching degree cti of this round and301

the global maximum matching degree mt
i of the302

previous round:303

△t
i = max(cti −mt

i, 0), i = 1, · · · , n, (9)304

then, the overall information gain value of tth round305

is the average gain of n golden info documents in306

the current round:307

Gt =
1

n

n∑
i=1

△t
i =

1

n

n∑
i=1

max(cti −mt
i, 0). (10)308

Finally, the accumulated global maximum match-309

ing record value is updated for evaluation in the310

next round of search behavior:311

mt
i = max(mt−1

i , cti), i = 1, · · · , n. (11)312

Then update the current maximum information 313

matching degree record for subsequent iterative 314

calculations. 315

Redundancy Penalty: During search-stage su- 316

pervision, we observed that repetitive confirmatory 317

queries both waste budget and amplify hallucina- 318

tions without effective feedback. To counter this, 319

we track a cumulative retrieval history Ht (with 320

H0 = ∅) and let each round’s retrieved set be It. 321

Any query whose results overlap with Ht−1 incurs 322

a redundancy penalty, discouraging low-value rep- 323

etition and promoting novel, informative retrievals. 324

At the end of round t, we update 325

Ht = Ht−1 ∪ It, (12) 326

the redundancy penalty value Pt of the tth round 327

can be expressed by counting the proportion of the 328

documents retrieved Dr(t) in this round that are 329

repeated in any previous round: 330

Pt =
1

k

k∑
j=1

1(d
r(t)
j ∈ Ht−1), (13) 331

where 1(·) is the indicator function. 332

3 Experiment 333

3.1 Dataset and Evaluation Metrics 334

During training with process supervision, Our em- 335

pirical benchmarks span four established multi-hop 336

Q&A datasets: (1) HotpotQA (Yang et al., 2018), 337

(2) MuSiQue (Trivedi et al., 2022), (3) 2Wiki- 338

MultiHopQA (Ho et al., 2020), and (4) Bam- 339

boogle (Press et al., 2022). 340

To maintain alignment with prior work (Yu et al., 341

2024; Jin et al., 2025) and guarantee fair evaluation, 342

we report the canonical word-level F1 and Exact 343

Match (EM) scores. We eschew third-party LLM 344

judges due to their reproducibility and stability lim- 345

itations. 346

3.2 Baselines 347

We evaluate StepSearch against a diverse set of rep- 348

resentative baselines, chosen to cover both prompt- 349

ing and reinforcement-learning paradigms as well 350

as both static and dynamic retrieval strategies: 351

• Naive Generation: Direct generation and 352

Chain-of-Thought (CoT) (Wei et al., 2022) 353

reasoning; 354

• RAG: naive Retrieval-Augmented Genera- 355

tion (RAG) and IRCoT (Trivedi et al., 2023) 356
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which use retrieval and the chain-of-thought357

(CoT) guide each other;358

• SFT: Supervised fine-tuning (SFT) (Chung359

et al., 2024) without a search engine;360

• Large Reasoning Model: RL-based fine-361

tuning (R1) (DeepSeek-AI et al., 2025) with-362

out a search engine and reasoning with in-363

process search (Search-o1) (Li et al., 2025);364

• Search with RL: Existing outstanding rein-365

forcement learning methods combined with366

external search engines including Search-367

R1 (Jin et al., 2025), ZeroSearch (Sun et al.,368

2025) and ReSearch (Chen et al., 2025). To369

ensure a fair comparison, we adopt the origi-370

nal open-source model checkpoints and their371

published prompt configurations, and stan-372

dardize all retrieval and hyperparameter set-373

tings across experiments.374

3.3 Training Details375

We conduct experiments on 4 models from Qwen376

family (Qwen et al., 2025): Qwen-2.5-7B (Base/In-377

struct) and Qwen-2.5-3B (Base/Instruct). In or-378

der to support the training of StepSearch, we gen-379

erated our dataset with process supervision refer-380

ence information based on the MuSiQue (Trivedi381

et al., 2022) dataset using the search key synthesis382

pipeline in Section 2.1.383

During training, we employ E5 (Wang et al.,384

2022) as the retriever over our synthesized dataset.385

For evaluation, we augment the corpus with the386

2018 Wikipedia dump (Karpukhin et al., 2020),387

as in Search-R1 (Jin et al., 2025), and uniformly388

retrieve k = 3 documents. Prompt-based baselines389

use Instruct models, whereas RL methods are eval-390

uated on both Base and Instruct variants to gauge391

cross-model robustness. A more detailed experi-392

mental setup can be found in the Appendix B.393

3.4 Main Results394

The main results comparing StepSearch with base-395

line methods across the four datasets (containing396

different retrieval bases) are presented in Table 1.397

The results in these tables summarize the follow-398

ing key findings: (1) StepSearch consistently399

outperforms strong baseline Search-RL meth-400

ods. Our method performance advantage holds for401

both in-domain multi-hop (i.e., MuSiQue) and out-402

of-domain (i.e., HotpotQA, 2WikiMultiHopQA,403

and Bamboogle) datasets, demonstrating the ro- 404

bustness of our method. (2) StepSearch exhibits 405

robust generalization, particularly in smaller- 406

scale models. Under models of different sizes and 407

types (base and instruction), our method generally 408

shows better performance than the strong baseline 409

model. The process supervision method can be 410

plug-and-play combined with the PPO algorithm 411

to improve the performance of Search-RL tasks 412

smaller models are greatly motivated to improve 413

their search capabilities. (3) StepSearch shows 414

higher adaptability to out-of-domain knowledge 415

bases. Using only a knowledge base with a smaller 416

amount of retrieval database (about 0.35%) and 417

training data (about 11%) can show even better 418

adaptability compared to models that are trained 419

on larger datasets, and our methodology guarantees 420

top results for searches in out-of-domain retrieval 421

databases than others. 422

4 Further Analysis 423

4.1 Different RL Comparison 424

(a) Answer f1 score (b) Response length

Figure 4: StePPO vs. PPO.

Leveraging Qwen2.5-Base (3B/7B), we compare 425

GRPO and PPO against StePPO. Results in Ta- 426

ble 2 and training curves in Figure 4 show that (1) 427

StePPO drives high-quality, low-cost generation 428

(Figure 4b), achieving higher accuracy in fewer 429

rounds with shorter outputs due to enriched search 430

supervision; (2) PPO-based algorithm delivers 431

the most stable training, while GRPO (both Base 432

and Instruct) is prone to reward collapse at higher 433

learning rates (Figure 4a); and (3) StePPO attains 434

the highest convergence speed and peak effec- 435

tiveness, outperforming both PPO and GRPO in 436

final F1 (Figure 4a, Table 2). 437

4.2 Ablation Study 438

To further validate the effectiveness of StePPO’s 439

search process reward mechanism, we conducted 440

extensive ablation experiments based on the 441
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Method HotpotQA† 2Wiki† MuSiQue† Bamboogle† MuSiQue∗

EM F1 EM F1 EM F1 EM F1 EM F1
Qwen2.5-3b-Base/Instruct
Naive Geneartion 0.145 0.237 0.249 0.356 0.018 0.079 0.030 0.086 - -
RAG 0.251 0.359 0.221 0.316 0.051 0.135 0.076 0.161 - -
SFT 0.191 0.299 0.248 0.356 0.039 0.110 0.112 0.181 - -
IRCoT 0.171 0.241 0.196 0.265 0.059 0.123 0.245 0.356 - -
R1-base 0.191 0.306 0.277 0.334 0.051 0.106 0.232 0.305 - -
R1-instruct 0.210 0.299 0.288 0.389 0.065 0.136 0.213 0.317 - -
Search-o1 0.240 0.326 0.207 0.309 0.045 0.117 0.316 0.436 - -
ZeroSearch-base 0.260 0.354 0.234 0.281 0.056 0.116 0.096 0.193 0.072 0.151
ZeroSearch-instruct 0.265 0355 0.233 0.278 0.059 0.121 0.144 0.243 0.073 0.147
Search-R1-base† 0.272 0.361 0.248 0.296 0.081 0.146 0.176 0.270 0.118 0.193
Search-R1-instruct† 0.304 0.401 0.293 0.352 0.120 0.188 0.240 0.344 0.162 0.240
StepSearch-base∗ 0.329 0.434 0.339 0.395 0.181 0.273 0.328 0.419 0.274 0.375
StepSearch-instruct∗ 0.345 0.452 0.320 0.385 0.174 0.261 0.344 0.452 0.258 0.357

Qwen2.5-7b-Base/Instruct
Naive Geneartion 0.187 0.291 0.246 0.352 0.027 0.083 0.123 0.242 - -
SFT 0.196 0.175 0.269 0.374 0.054 0.131 0.110 0.203 - -
IRCoT 0.141 0.232 0.142 0.241 0.072 0.159 0.216 0.319 - -
RAG 0.287 0.391 0.231 0.226 0.061 0.142 0.214 0.316 - -
R1-base 0.234 0.326 0.270 0.368 0.076 0.151 0.287 0.395 - -
R1-instruct 0.241 0.345 0.287 0.392 0.079 0.154 0.284 0.397 - -
Search-o1 0.193 0.288 0.181 0.289 0.053 0.127 0.302 0.427 - -
ZeroSearch-base 0.294 0.394 0.275 0.324 0.102 0.175 0.258 0.373 0.134 0.218
ZeroSearch-instruct 0.325 0.432 0.309 0.370 0.120 0.204 0.267 0.409 0.184 0.280
Research-base∗ 0.294 0.388 0.264 0.313 0.143 0.230 0.373 0.449 0.206 0.309
Research-instruct∗ 0.362 0.471 0.354 0.416 0.184 0.271 0.424 0.544 0.250 0.348
Search-R1-base† 0.432 0.547 0.350 0.411 0.206 0.290 0.430 0.545 0.305 0.401
Search-R1-instruct† 0.394 0.502 0.312 0.376 0.181 0.262 0.384 0.501 0.268 0.352
StepSearch-base∗ 0.380 0.493 0.385 0.450 0.216 0.324 0.467 0.573 0.346 0.461
StepSearch-instruct∗ 0.386 0.502 0.366 0.431 0.226 0.312 0.400 0.534 0.339 0.443

Table 1: The main results of StepSearch on 4 multi-hop Q&A datasets using different retrieval databases. Search-R1
is trained based on NQ+HotpotQA dataset (170k) while ours and ReSearch are on MuSiQue (19k), "†" refers to
train or test on wiki-18 knowledge base and "∗" for our customized base build on MuSiQue.

Method HotpotQA 2Wiki MuSiQue Bamboogle

EM F1 EM F1 EM F1 EM F1
Qwen2.5-7b-Base
StePPO 0.380 0.493 0.385 0.450 0.216 0.324 0.467 0.573
PPO 0.374 0.479 0.282 0.329 0.198 0.280 0.432 0.549
GRPO 0.351 0.462 0.266 0.345 0.202 0.291 0.400 0.512
Qwen2.5-3b-Base
StePPO 0.329 0.434 0.339 0.395 0.181 0.273 0.328 0.419
PPO 0.223 0.315 0.225 0.273 0.090 0.163 0.176 0.266
GRPO 0.256 0.366 0.256 0.325 0.114 0.190 0.224 0.314

Table 2: Performance of models trained by different
RL algorithms on multi-hop Q&A datasets. PPO and
GRPO are trained on the reward of final answer F1. The
retrieval is based on Wikipedia knowledge from 2018,
as is the main experiment.

Qwen2.5-7B-Base model. The Table 3 below 442

shows the evaluation of each configuration model 443

on different datasets, and Figure 5. shows the exper- 444

imental process record. The experimental results 445

revealed these phenomena: (1) StePPO has more 446

prominent advantages in small parameter mod- 447

els (Figure 5a, Table 3). Compared with the classic 448

RL algorithm, our method achieves more obvious 449

search answer quality on the 3B parameter model 450

than the 7B model and has the advantage of con- 451

vergence speed.; (2) Redundancy penalty alone 452

does not optimize the search ability (ow-rp in 453

Figure 5a), but it can force the model to perform 454

high-quality, low-repetition effective search when 455

applying information gain calculation (ow-ss in Fig- 456

ure 5a), thereby achieving a higher capacity ceiling; 457

(3) Searching keyword reward values can signif- 458
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icantly improve the model convergence speed459

(ow-skr in Figure 5a and 5c), but without process460

supervision, it may lead to hallucination and re-461

ward collapse problems more quickly, causing the462

model to respond incoherently and fail to converge;463

(4) The effectiveness of fine-grained process re-464

wards, the step-wise token-level reward mecha-465

nism (ow-ss) has more obvious advantages and466

stability compared to the global reward of search467

process (ow-skr).

Method HotpotQA 2Wiki MuSiQue Bamboogle
EM F1 EM F1 EM F1 EM F1

Qwen2.5-7b-Base
StePPO 0.380 0.493 0.385 0.450 0.216 0.324 0.467 0.573
w/o key reward 0.404 0.528 0.388 0.468 0.204 0.315 0.432 0.542
w/o penalty 0.377 0.494 0.300 0.367 0.190 0.286 0.392 0.502
w/o infon gain 0.365 0.468 0.3651 0.422 0.208 0.303 0.421 0.540
w/o steps reward 0.361 0.475 0.360 0.433 0.192 0.283 0.384 0.485
Qwen2.5-3b-Base
PPO 0.228 0.315 0.225 0.273 0.090 0.163 0.176 0.266
ow key reward 0.259 0.375 0.178 0.282 0.127 0.218 0.232 0.334
ow penalty 0.258 0.364 0.227 0.279 0.083 0.177 0.192 0.312
ow info gain 0.323 0.432 0.355 0.425 0.169 0.249 0.344 0.439
ow steps reward 0.328 0.437 0.326 0.391 0.185 0.282 0.360 0.487
ow sub-answer 0.339 0.448 0.293 0.354 0.176 0.258 0.312 0.432

Table 3: Results on models 7b and 3b respectively. ’w/o’
represent ‘with out’ while ‘ow’ for ’only with’, ’sub-
answer’ represents a process supervision rewards based
on intermediate sub-answers.

468

(a) Answer F1 score (b) Response length

(c) Search key score

Figure 5: Training dynamics of correctness, response
length, and search-key scores in ablation experiments.
’w/o’ represent ‘with out’ while ‘ow’ for ’only with’,
’rp’ stands for ’redundancy penalty’,’ig’ for ’information
gain’, ’ss’ is ’step score’ (’ig’ + ’rp’) and ’skr’ means
the global reward ’search key reward’

In addition, we have tried to let the model answer469

the sub-task answers in the intermediate process470

and provide feedback in the global reward. Ex-471

periments have shown that the keywords in the472

supervised search behavior process are similar to 473

the sub-question answers, and can bring obvious 474

improvements in results on various data sets. The 475

success of various methods has further proved the 476

effectiveness of process supervision. The prompt 477

template can be found in the Appendix A. 478

4.3 Case Study 479

More cases about the effect and content of model 480

responses with different parameter configurations 481

can be found in the Appendix C. 482

5 Conclusion 483

We proposed StepSearch, a token-level and step- 484

wise RL training method for search agents, with 485

corresponding data pipeline to synthesize interme- 486

diate information. With supervision mechanisms 487

of the search process of different granularities and 488

a reward scheme combined with information gain 489

theory, it ignites the ability of LLMs to handle 490

multi-hop Q&A tasks by efficiently interacting with 491

external search engines and achieved SOTA per- 492

formance among search-RL methods. Extensive 493

experiments have shown that StepSearch greatly 494

improves search capabilities through the combina- 495

tion of reward and inhibition mechanisms, and its 496

performance on multiple data sets exceeds that of 497

existing search RL models by training on smaller 498

datasets. In addition, the method in this article is 499

applicable to both base and instruction-tuned mod- 500

els particularly effective for small ones. 501

6 Limitations 502

Despite the advances demonstrated by our retrieval- 503

augmented reasoning framework, it remains sub- 504

ject to several important limitations. Evaluation 505

has been restricted to text-only question answer- 506

ing, leaving open the question of how well the 507

approach generalizes to multimodal inputs (e.g., 508

images, audio) and to tasks that cross paradigmatic 509

boundaries. And we have tested only at relatively 510

modest parameter scales; scaling to larger models 511

(e.g., 14 B, 32 B) may exacerbate issues such as 512

reward collapse and unstable training dynamics, 513

necessitating novel stabilization and regularization 514

strategies. Future work will need to address these 515

gaps to realize a truly generalizable, robust, and 516

scalable retrieval-augmented agent. 517
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## Background You are a deep AI research assistant. I will give you a single-hop or multi-hop
question. You don’t have to answer the question now, but you should first think about your research
plan or what to search for next. You can use search to fill in knowledge gaps.
## Response format: Your output format should be one of the following two formats: <think>your
thinking process</think> <answer>your answer after getting enough information</answer> or
<think>your thinking process</think>use <search>search keywords</search> to search for infor-
mation. For example, <think> plan to search: (Q1) (Q2) (Q3) ... /<think> <search> (Q1) question
</search> <think> reasoning ... </think> <answer> Beijing </answer>..The search engine will
return the results contained in <information> and </information>. Please follow the loop of think,
search, information, think, search, information, and answer until the original question is finally
solved. Note: The retrieval results may not contain the answer or contain noise. You need to tell
whether there is a golden answer. If not, you need to correct the search query and search again.
Question:{question}

Table 4: LLM interacts with external search engines and provides answers to prompt templates. The {question} in
will be replaced with the actual question content.

A Prompt for Research Plan on Question797

Answering798

To rapidly instill tool-augmented reasoning, we799

design a minimalist prompt template comprising800

three chain-of-thought demonstration pairs plus a801

dedicated label for retrieved results. Prompt tem-802

plates for training can be found in the Table 4, this803

schema enforces a consistent structure across rea-804

soning, retrieval relying only on zero-shot guidance.805

806

In addition, we have tried to let the model answer807

the sub-task answers in the intermediate process808

and provide feedback in the global reward. Ex-809

periments have shown that the keywords in the810

supervised search behavior process are similar to811

the sub-question answers, and can bring obvious812

improvements in results on various data sets. The813

success of various methods has further proved the814

effectiveness of process supervision. The prompt815

template for this response can be found in the Ta-816

ble 5.817

B Experiment Setups818

Our implementation is based on Search-R1 (Jin819

et al., 2025), and our training is conducted us-820

ing Verl (Sheng et al., 2024). Our experiments821

are carried out on two series of models: Qwen-822

2.5-3B and Qwen-2.5-7B (Qwen et al., 2025).823

The MuSiQue (Trivedi et al., 2022) training set824

processed through our pipeline is used for train-825

ing, while the full 2WikiMultiHopQA (Ho et al.,826

2020), Bamboogle (Press et al., 2022), Hot-827

potQA (Yang et al., 2018), and MuSiQue test or828

validation sets are used for evaluation. EM and F1 829

score are employed as evaluation metrics. 830

We train for a total of 500 steps. The learning 831

rates for the policy and value large models are set to 832

7e−7 and 7e−6, respectively, with warm-up ratios 833

of 0.285 and 0.015 learning rate warm-up steps 834

ratio. Training is conducted across two nodes with 835

16 H800 GPUs. The total batch size, mini-batch 836

size, and micro-batch size are set to 256, 64, and 32, 837

respectively. To optimize GPU memory usage, we 838

employ Fully Sharded Data Parallel (FSDP) with 839

CPU offloading, and the GPU memory utilization 840

ratio is set to 0.7. 841

For rollout sampling, both the temperature and 842

top_p are set to 1.0. The KL-divergence regular- 843

ization coefficient β and the clipping ratio are set 844

to 1e− 3 and 0.2, respectively. 845

C Case Study 846

We observe the sampling cases during the train- 847

ing process, and some of the sampling results are 848

shown in the Table 6, 7. Here, we label the parts 849

related to the Step Score Reward in different ways. 850

By comparing the results generated by the model 851

at different stages of training, we can see that in the 852

early stages, the model repeatedly initiates similar 853

search keywords, which wastes computational re- 854

sources and makes it more likely to fail to answer 855

correctly before reaching the search count. On the 856

one hand, the low quality of the designed query 857

means that the required document cannot be found 858

directly, and on the other hand, the model cannot 859

trust the correct document and tends to reconfirm. 860

In addition, we observed in our experiments that 861

12



Answer the given question. You must first systematically analyze the original question within
the scope of <think> and </think>, and then decompose the original question into a series of
progressively related <sub_question1>sub-question 1</sub_question1>, <sub_question2>sub-
question 2</sub_question2>, etc. Whenever you get new information, you need to do a contem-
plative reasoning within the scope of <think> and </think>. After contemplative reasoning, if you
find a knowledge gap, use <search>keywords</search> to call the search engine, and the search
engine will return the results contained in <information> and </information>. If you determine that
a sub-question can be answered without additional external knowledge, directly provide the answer
in <sub_answer1>sub-answer 1</sub_answer1>, <sub_answer2>sub-answer 2</sub_answer2>,
etc. without further explanation. If you conclude that the original question can be answered directly
without external knowledge, provide the final answer within the scope of <answer> and </answer>
without further explanation. Please follow the order of contemplative reasoning, search, information,
contemplative reasoning, and answering sub-questions until the original question is finally solved.
Question:{question}

Table 5: LLM interacts with external search engines and provides answers to prompt templates. The {question} in
will be replaced with the actual question content.

when the GLOBAL level of search key score was862

applied as the only process reward, the model was863

more likely to discover the trick of the format re-864

ward. This led to anomalies in generation and inter-865

action behaviours and ultimately caused a training866

crash. As shown in the Table 9, the model issued867

a query request without using the correct search868

format and even made up information for phantom869

answers.870
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Question: What educational institution publishes the Quarterly, named after the state where Eastwood
Park Historic District is located?

Ground Truth: [’University of North Dakota’, ’UND’]

StepSearch:
<think> My goal is to find the educational institution that publishes the Quarterly, which is named after
the state where Eastwood Park Historic District is located. </think>
<search> Eastwood Park Historic District </search>
<information> Doc 1<## Title: Eastwood Park Historic District ##> The Eastwood Park Historic District
is a historic district... Doc 2<## Title: Eastwood, Houston ##> Eastwood is a historic neighborhood in the
East End ... Doc 3<## Title: Ravenswood Manor Historic District ##> The Ravenswood Manor Historic
District is a ... </information>
<think> I found that Eastwood Park Historic District is located in Minot, North Dakota, but I need to
identify the state’s name to find the Quarterly’s publisher. I suggest searching for the location of Eastwood
Park Historic District and the state it is named after. </think>
<search> location of Eastwood Park Historic District </search>
<information> Doc 1<## Title: Eastwood Park Historic District ##> The Eastwood Park Historic District
is a historic district... Doc 2<## Title: Eastwood, Houston ##> Eastwood is a historic neighborhood ...
Doc 3<## Title: Eastwood Village ##> Eastwood Village, formerly Eastwood Mall, was a shopping
mall...</information>
<think> The information now confirms that the Eastwood Park Historic District is in Minot, North Dakota.
Now, I will search for educational institutions in Minot, North Dakota and their associated Quarters.
</think>
<search> educational institutions in Minot, North Dakota </search>
<information> Doc 1<## Title: Eastwood Park Historic District ##> The Eastwood Park Historic District
is a historic district ... Doc 2<## Title: North Dakota School for the Deaf ##> The North Dakota School
for the Deaf (NDSD) is a state-funded residential school... Doc 3<## Title: Oklahoma City ##> Private
career and technology education schools in Oklahoma City include Oklahoma Technology Institute...
</information>
<think>The search results provide information about the North Dakota Quarterly, which is a quarterly
literary journal published by the University of North Dakota. This Quarterly is located in Minot, North
Dakota, which is consistent with the Eastwood Park Historic District location. I have gathered enough
information and identified the educational institution that publishes the Quarterly, named after the state
where Eastwood Park Historic District is located. </think>
<answer> University of North Dakota </answer>

Table 6: A case at the early train steps of redundancy penalty and effective information gain role in StePPO
training. Red-font and underlined text indicates a golden document containing a staged answer, gray text is a
question-independent document, and strikethrough text indicates a redundant retrieval document.
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Question: The city where KBQI is found, is located in which county, and state?

Ground Truth: [’Bernalillo County, New Mexico’, ’Bernalillo County’]

StepSearch:
<think> First, I need to identify the city where KBQI is located. Then, I will find the county and state in
which that city is situated. </think>
<search> where is KBQI located </search>
<information> Doc 1<## Title: KBQI ##> KBQI (107.9 FM, "Big I 107.9") is a radio station in
Albuquerque... Doc 2<## Title: KBIK ##> KBIK (102.9 FM) is a radio station licensed in Independence,
Kansas... Doc 3<## Title: KBIF ##> KBIF (900 AM) is a radio station broadcasting a World Ethnic
format to the Fresno... </information>
<think> From the information, I found out that KBQI is located in Albuquerque. Now I need to find the
county and state in which Albuquerque is situated. </think>
<search> Albuquerque county and state </search>
<information> Doc 1<## Title: Bernalillo County Metropolitan Court ##> The Bernalillo County
Metropolitan Court is the Judicial system of the metropolitan areas of Albuquerque, New Mexico and
Bernalillo County, New Mexico. Doc 2<## Title: Prieta Mesa ##> Prieta Mesa is a large mesa located
northwest of Albuquerque in Sandoval County, New Mexico... Doc 3<## Title: Embudo, New Mexico
##> Embudo (also Embudo Station) is an unincorporated community in Rio Arriba County, New Mexico,
United States... </information>
<think> Albuquerque is located in Bernalillo County, New Mexico. </think>
<answer> Bernalillo County, New Mexico </answer>

Table 7: A case at the late training steps of redundancy penalty and effective information gain role in StePPO
training. Red-font and underlined text indicates a golden document containing a staged answer, gray text is a
question-independent document, and strikethrough text indicates a redundant retrieval document.
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Question: When was the leader who wanted to unify Germany (Prussia) born?

Ground Truth: [’1862’]

StepSearch:
<think> First, I need to know who the leader was that wanted to unify Germany (Prussia). Then, I will
search for the birth date of that leader. </think>
<search> Who is the leader that wanted to unify Germany (Prussia)? </search>
<information> Doc 1<## Title: Unification of Germany ##> Historians debate whether Otto von
Bismarck... Doc 2<## Title: William I, German Emperor ##> William I, or in German Wilhelm I.
(full name: William Frederick Louis... Doc 3<## Title: William I, German Emperor ##> William I, ( ; 22
March 1797 – 9 March 1888) of the House... </information>
<think> Based on the information, the leader who wanted to unify Germany (Prussia) was Otto von
Bismarck. Now, I will search for the birth date of Otto von Bismarck. </think>
<search> When was Otto von Bismarck born? </search” (!!! wrong format search action !!!)
<information> (Fake) Doc 1<## Title: Otto von Bismarck ##> Otto Eduard Leopold, Prince of Bismarck,
Duke of Lauenburg (German: Ottheinrich Leo pratz von Bismarck... </information> (Fake)
<think> I found that Otto von Bismarck was born on 1 April 1815. So, the answer is 1 April 1815.
</think>
<search> When was Otto von Bismarck born? </search) (!!! wrong format search action !!!)
<information> (Fake) Doc 1<## Title: Otto von Bismarck ##> Otto Eduard Leopold, Prince of Bismarck,
Duke of Lauenburg (German: Ottheinrich Leo pratz von Bismarck... </information> (Fake)
<search> When was Otto von Bismarck born? </search» (!!! wrong format search action !!!)
<search> When was Otto von Bismarck born? </search] (!!! wrong format search action !!!)
<think> Based on the information provided, the leader who wanted to unify Germany (Prussia) was Otto
von Bismarck. Therefore, the answer is 1 April 1815. </think>
<answer> 1 April 1815 </answer>

Table 8: when only applied Search Key Score reward, models fail to correctly perform search interaction behaviors
because of the trick of formatting rewards, and then make up their own data to cause illusory problems.
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Question: Who is the current prime minister of the nation whose invasion of the country that Yussef
Al-Suwayed was from resulted in U.S. military action?

Ground Truth: [’Haider al - Abadi’]

<think>To answer the question of who the current prime minister of the nation that Yussef Al-Suwayed
was from is, let’s break down the information step by step. </think>
<sub_question1>What country is Yussef Al-Suwayed from?</sub_question1>
<think>To determine Yussef Al-Suwayed’s country of origin, I need to search for this information.
</think>
<search>Who is Yussef Al-Suwayed and what country is he from?</search>
<information> Doc 1<## Title: Yussef Al-Suwayed ##>Yussef Al-Suwayed (born 20 September 1958)
is a Kuwaiti football midfielder ... Doc 2<## Title: Nutrition ##>The first recorded nutritional experiment
with human subjects is found in the Bible’s Book of Daniel... Doc 3<## Title: Samer Saeed ##>Samer
Saeed Mujbel Al Mamoori (born December 1, 1987 in Iraq) is ... </information>
<sub_answer1>Kuwait</sub_answer1>
<think> Now that I have determined Yussef Al-Suwayed is from Kuwait, I need to find out which nation
invaded Kuwait and resulted in U.S. military action. </think>
<sub_question2>Which nation invaded Kuwait and resulted in U.S. military action?</sub_question2>
<think>To determine which nation invaded Kuwait and resulted in U.S. military action, I need to search
for this information.</think>
<search>Which nation invaded Kuwait and resulted in U.S. military action?</search>
<information> Doc 1<## Title: Invasion of Kuwait ##>The Invasion of Kuwait on 2 August 1990 was
a two - day operation conducted by Iraq against the neighboring state of Kuwait... Doc 2<## Title:
Economic history of Germany ##>From the 1830s and 1840s, Prussia, Saxony, and other states ... Doc
3<## Title: Gulf War ##>The Gulf War (2 August 199028 February 1991), codenamed Operation Desert
Shield ... </information>
<sub_answer2>Iraq</sub_answer2>
<think>Now that I have determined that Iraq invaded Kuwait and resulted in U.S. military action, I can
answer the original question. </think>
<sub_question3>Who is the current prime minister of Iraq?</sub_question3>
<think>To determine the current prime minister of Iraq, I need to search for this information.</think>
<search>Who is the current prime minister of Iraq?</search>
<information> Doc 1<## Title: Prime Minister of Iraq ##>The Prime Minister of Iraq is Iraq’s head of
government... Doc 2<## Title: 2018 Malaysian general election ##>This marked a historic defeat for
the ruling Barisan Nasional coalition, which had been the governing party of Malaysia and its predec
essor state, Malaya, since the country’s independence in 1957... Doc 3<## Title: Prime Minister of Israel
##>The Prime Minister of Israel... </information>
<think>Now I can answer the original question.</think>
<answer>Haider al - Abadi<answer>

Table 9: Reward only Sub_Answer in process supervision
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