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Abstract

Vision language models (VLMs) excel at zero-shot visual
classification, but their performance on fine-grained tasks and
large hierarchical label spaces is understudied. This paper in-
vestigates whether structured, tree-based reasoning can en-
hance VLM performance. We introduce a framework that
decomposes classification into interpretable decisions using
decision trees and evaluates it on fine-grained (GTSRB)
and coarse-grained (CIFAR-10) datasets. Although the model
achieves 98.2% accuracy in understanding the tree knowl-
edge, tree-based reasoning consistently underperforms stan-
dard zero-shot prompting. We also explore enhancing the tree
prompts with LLM-generated classes and image descriptions
to improve alignment. The added description enhances the
performance of the tree based and zero-shot methods. Our
findings highlight limitations of structured reasoning in vi-
sual classification and offer insights for designing more inter-
pretable VLM systems.

Code —
https://anonymous.4open.science/r/VLM Classification-29CC

Introduction
Vision language models (VLMs) have revolutionized vi-
sual classification by leveraging powerful image-text pre-
training to generalize across novel categories without task-
specific supervision (Radford et al. 2021; OpenAI 2023; Bai
et al. 2023). However, as these models are increasingly de-
ployed in real-world applications, two critical limitations
have emerged that challenge their practical utility.

First, VLMs struggle with fine-grained classifica-
tion tasks involving large, hierarchically organized label
spaces (Zhang et al. 2024b). While models like CLIP and
GPT-4V excel at distinguishing between semantically dis-
tinct categories (e.g., ”car” vs. ”airplane”), they often fail
when faced with subtle visual distinctions within specialized
domains, such as differentiating between traffic sign variants
or medical imaging subcategories (Kim and Ji 2024; Wei
2024). This limitation is particularly problematic in safety-
critical applications where precise classification is essential.

Second, the black-box nature of current VLM decision-
making processes limits their interpretability and debugga-
bility. When a model misclassifies an input, practitioners
have limited insight into the reasoning pathway that led to
the error, making it difficult to identify systematic biases

or improve model performance. This opacity is especially
concerning in domains requiring accountability and trans-
parency.

To address these challenges, recent work has pro-
posed incorporating structured reasoning approaches, par-
ticularly hierarchical decision trees, into VLM inference
pipelines (Yellinek, Karlinsky, and Giryes 2025; Ding et al.
2025). The theoretical appeal is compelling as it suggests
decomposing complex tasks into a series of interpretable de-
cisions, tree-based reasoning promises to improve accuracy
and explainability. Each decision node in the tree can be de-
signed to capture specific visual or semantic distinctions.

However, the practical effectiveness of tree-based reason-
ing for classification remains an open empirical question.
While such methods have shown promise in tasks like image
captioning, it is unclear whether the added structural com-
plexity benefits modern VLMs in classification tasks or if it
simply introduces new sources of error. Notably, the hier-
archical nature of decision trees makes them prone to error
propagation, where a single incorrect decision at a higher-
level node can compromise the entire classification path. In
addition, Hierarchical classification and interpretability, its
real-world effectiveness is still under debate. Ongoing work
is needed to overcome error propagation, optimize feature
alignment, and validate empirical gains in diverse, safety-
critical settings.

In this paper, we conduct a systematic empirical evalua-
tion of tree-based reasoning in VLMs, comparing hierarchi-
cal decision-making against standard zero-shot image clas-
sification across multiple models, datasets, prompts and set-
tings. Our investigation reveals a surprising finding: Con-
trary to theoretical expectations, tree-based reasoning con-
sistently underperforms direct zero-shot classification, of-
ten by substantial margins. Through detailed error analysis,
we identify the key factors contributing to this performance
degradation, including error propagation through hierarchi-
cal structures, sensitivity to question formulation, and depth-
related accuracy penalties.

Our contributions are:
1. We provide a comprehensive empirical assessment of

tree-based reasoning in multiple VLMs across two clas-
sification tasks under diverse settings, which ensures the
generalization of the experiments.

2. We identify and analyze the specific failure modes



that limit the effectiveness of hierarchical reasoning ap-
proaches.

3. We offer design recommendations for future structured
reasoning systems based on our findings.

These results have important implications for the develop-
ment of interpretable VLM systems and highlight the draw-
backs of the current usage of hierarchical reasoning meth-
ods.

Related Work
Vision-Language Models and Zero-Shot Classification.
VLMs such as CLIP (Radford et al. 2021), LLaVA (Liu et al.
2023a), Qwen-VL (Bai et al. 2023), and GPT-4V (OpenAI
2023) have driven substantial progress in multimodal un-
derstanding and zero-shot classification (Li et al. 2025; Cao
et al. 2025). These models demonstrate impressive general-
ization to novel visual categories without task-specific train-
ing. However, their performance degrades on fine-grained
tasks involving many semantically similar classes (Zhang
et al. 2024b; Kim and Ji 2024; Wei 2024). Even with ad-
vances in prompt learning (Jha 2024) and model adapta-
tion (Cho, Kim, and Kim 2023; Schwonberg et al. 2024),
challenges persist under dense class distributions, domain
shifts, and nuanced language constructs like negation or
ambiguity (Alhamoud et al. 2025; Anis, Ali, and Sarfraz
2025; Gou et al. 2024). These limitations motivate structured
strategies to enhance model robustness and interpretability.

Multi-label and Hierarchical Classification.
A promising direction for improving visual classification in-
volves structuring label spaces hierarchically to better guide
visual decision-making and support the understanding of
Compositional Language Concepts (CLC) in images. Tree-
based and taxonomy-aware approaches break down com-
plex objects into their attributes, states, and relationships
with other objects in the scene, enhancing both predic-
tion accuracy and interpretability in complex visual set-
tings (Yellinek, Karlinsky, and Giryes 2025; Ding et al.
2025). Structured label hierarchies allow models to reason
step by step across different levels of abstraction (Zhang
et al. 2024a). Despite this potential, hierarchical method re-
main relatively underexplored in the context of image clas-
sification. Complementary strategies enrich label semantics
by incorporating natural language descriptions generated by
large language models (LLMs), which have been shown to
improve zero-shot generalization in fine-grained classifica-
tion tasks (Saha, Horn, and Maji 2024). Nevertheless, VLM
continue to face challenges in distinguishing subtly differ-
ent or compositional classes, particularly in real-world sce-
narios involving occlusion, ambiguity, or overlapping class
boundaries (Xu et al. 2024).

Structured Reasoning and Prompt Engineering
To address these shortcomings, recent work has explored in-
tegrating structured reasoning and prompt engineering into
VLM pipelines. Hierarchical or tree-structured reasoning
provides a framework for decomposing classification into
interpretable decision paths (Besta et al. 2025; Yellinek,
Karlinsky, and Giryes 2025; Wang et al. 2024). Prompt-
based techniques, such as using category-specific templates

or multi-step inference chains, help align model predic-
tions with human-understandable logic (He et al. 2024). In
particular, prompt tuning enables VLMs to better navigate
complex visual scenes, improving resilience to occlusion,
perspective shifts, and context ambiguity (Yellinek, Karlin-
sky, and Giryes 2025). Recent studies further demonstrate
that combining image-text reasoning with structured label
spaces (e.g., via intermediate textual descriptions) can im-
prove the accuracy over direct label prediction pipelines.
These approaches support the development of debuggable,
interpretable systems that maintain hierarchical consistency
and allow for targeted analysis of model errors.

Problem Statement
The deployment of VLMs in real-world applications has led
to increased interest in structured reasoning approaches that
theoretically promise both improved interpretability and po-
tentially enhanced performance. However, the practical ef-
fectiveness of these approaches compared to standard zero-
shot classification methods remains an open empirical ques-
tion.

Challenge 1: Tree-based vs. Zero-shot Classification.
While VLMs have demonstrated impressive zero-shot capa-
bilities, there is ongoing debate about whether incorporating
explicit structural guidance through hierarchical reasoning
(such as decision trees) provides additional benefits. Tree-
based approaches offer theoretical advantages including in-
terpretability, systematic error analysis, and the ability to de-
compose complex decisions into simpler choices. However,
they also introduce potential complications including error
propagation through hierarchical structures, increased infer-
ence complexity, and sensitivity to tree design choices.

Challenge 2: Performance-Interpretability Trade-offs.
The assumption that structured reasoning approaches neces-
sarily improve performance while providing interpretability
benefits has not been thoroughly validated empirically. It re-
mains unclear whether the additional complexity introduced
by hierarchical structures compensates for any potential ac-
curacy gains, particularly given the strong performance of
direct zero-shot methods.

Challenge 3: Validation of Structured Knowledge.
Even when VLMs demonstrate understanding of the hierar-
chical knowledge embedded in decision trees, it is unclear
whether this understanding translates into improved classi-
fication performance. The relationship between knowledge
verification accuracy and actual classification effectiveness
requires empirical investigation.

Research Questions. Our investigation centers on the fol-
lowing empirical questions:

1. Performance Comparison: How does tree-based hierar-
chical reasoning compare to standard zero-shot prompt-
ing in terms of classification accuracy across fine-grained
and coarse-grained datasets?

2. Knowledge Translation: Is VLMs accurate in reason-
ing and answering visual questions about the datasets’
classes? If yes, Does this reasoning or knowledge trans-



late to improved classification performance in hierarchi-
cal reasoning systems?

3. Error Analysis: What are the primary failure modes of
tree-based reasoning systems compared to direct zero-
shot approaches?

4. Robustness Assessment: How do tree-based and zero-
shot approaches compare in terms of consistency across
different types of classification tasks?

Methodology
To evaluate the tree-based inference approach, we construct
decision trees for image classification across two real-world
tasks. We experiment incorporating the history of previ-
ously traversed questions and answers into the tree model’s
prompt. We further augment the model input with class
descriptions and image visual description generated by an
LLM to provide richer semantic grounding. To assess the
quality and interpretability of the generated decision trees,
we conduct a verification study examining the VLM’s un-
derstanding of tree structure and branching logic. Figure 1
presents an overview of our experimental framework, in-
cluding zero-shot classification, hierarchical reasoning, and
the construction and use of decision trees for step-by-step
visual classification.

Datasets
We evaluate the approach on two benchmark datasets, each
representing a real-world image classification task. These
datasets were chosen to balance task complexity with prac-
tical relevance:

• German Traffic Sign Recognition Benchmark (GT-
SRB) (Stallkamp et al. 2012):

– 43 traffic sign classes
– Over 50,000 images of varying sizes
– Sequential captures (multiple frames per sign)

This dataset introduces a fine-grained image classifica-
tion task, requiring models to distinguish between visu-
ally similar German traffic signs under real-world, noisy
conditions. Its relevance to safety-critical domains, such
as autonomous driving, makes it a valuable testbed for
evaluating hierarchical reasoning. To reduce redundancy,
we sample 901 representative images by selecting one
random frame per sequence from the training set, includ-
ing all the sequences inside the dataset.

• CIFAR-10 (Krizhevsky and Hinton 2009):

– 10 object classes (airplane, automobile, bird, cat, deer,
dog, frog, horse, ship, truck)

– 1,000 balanced samples (100 per class)

This dataset presents a coarse-grained classification task
involving general object categories commonly encoun-
tered in daily life. It is designed to assess visual gener-
alization capabilities across diverse semantic classes and
tests the model’s ability to differentiate between broad,
well-known object types.

Models
We conduct the evaluation experiments on three state-of-
the-art VLMs, chosen to represent a range of architectural
paradigms, size and capability levels. All models were used
via API calls:

• GPT-4o
Rationale: As OpenAI’s most advanced multimodal
model, GPT-4o provides a strong baseline for cutting-
edge zero-shot visual reasoning. Its architecture excels
at contextual understanding, making it ideal for testing
hierarchical (tree-based) versus flat prompting strategies.
Role in Study: Serves as our primary model for cross-
dataset comparison due to its robust performance.

• LLaMA-3.2 11B Vision Instruct
Rationale: This open-weight model balances scale and
efficiency. Its decoder-only design contrasts with GPT-
4o’s hybrid architecture, testing generalization across
model families.
Role in Study: Isolates the impact of model family
(decoder-only vs. hybrid) and the model size variation.

• Qwen-VL MAX
Rationale: A leading multilingual VLM with strong vi-
sual grounding capabilities, particularly in Asian con-
texts. Its performance on traffic signs (often designed
with Unicode-like symbols) tests cultural and domain bi-
ases.
Role in Study: Clarify dataset-specific biases (e.g., GT-
SRB’s Western Unicode-like symbols) from model-
specific limitations by cross-referencing performance
against GPT-4o.

Implementation Details
Our methodology started with the construction of a hierar-
chical multi-decision tree tailored to each dataset to guide
the classification process via a sequence of interpretable
questions. The tree is traversed using depth-first search, and
each leaf node maps to one final class label (e.g., ‘‘20
kph speed limit’’ or ‘‘airplane’’). The mod-
els’ performance was rigorously evaluated by comparison
with zero-shot prompting baselines corresponding to each
model, as illustrated in Figure 1.

Tree Structure
The initial version of the tree is automatically generated us-
ing an LLM (We used both Deepseek and GPT-4.1), guided
by class metadata and linguistic descriptions. The model is
prompted to produce the tree in text format, with constraints
ensuring no repeated questions along a single path and ex-
actly one class at each leaf node. A human annotator then
reviews, traverses, and refines the generated tree to ensure
semantic accuracy and consistency.

A partial subtree 1 for both datasets used in the experi-
ments is illustrated below:
GTSRB Tree:
(Max Depth: 16, Number of nodes: 65)

1The complete tree structure is available in the provided project
code.



Tree Generation

Tree-based classification

Zero Shot classification

Please classify the traffic sign in the given image. It should be 
only one of these classes: [...] . Respond with only the class ID.

What's the sign's 
primary shape?

What's the 
circle color?

20 kph 
limit

Class

Set of 
traffic sign 

classes

…circle

generate tree
review 
and 
modify

until the 
leaf node

branching
red-white
branching

Figure 1: Experimental framework setup illustrating both zero-shot classification and hierarchical tree-based reasoning. It also
shows the construction and use of decision trees for step-by-step visual classification.

[L0] Q: What’s the sign’s primary shape?
-> triangle:
[L1] Q: Does the triangle have an

exclamation mark?
-> yes: Exclamation mark warning

([18])
-> no:

[L2] Q: Does it depict a left curve?
-> yes: Left curve warning ([19])
-> no: (Continue traversal...)

CIFAR-10 Tree
(Max Depth = 5, Number of nodes = 19)
[L2] Q: Is the animal typically shown with

prominent hooves?
-> Yes (hooves):
[L3] Q: Does the animal have antlers

visible in the image?
-> Yes (antlers): [L4] Leaf Node: deer

(ID: 4)
-> No (no antlers): [L4] Leaf Node:

horse (ID: 7)
-> No (paws): (Continue traversal...)

Decision Tree Knowledge Verification
Before experimenting with tree-based classification, we first
assessed two key components: the visual understanding ca-
pabilities of the strongest baseline VLM (GPT-4o) and the
semantic coherence of our decision tree structure. To do this,
we experimented using the decision tree built for the GT-
SRB dataset . In this setup, the model is given the ground
truth class label and prompted to sequentially answer each
question along the corresponding path in the tree that leads
to this ground truth class. This allows us to evaluate both
the model’s grasp of class-specific visual and semantic at-
tributes, and the overall quality and structure of the decision
tree, specifically, whether its questions are meaningful and
well-organized for hierarchical classification.

For example, for the class “20 kph speed limit”, the model

interaction proceeds as follows:
"20 kph speed limit": [

{"[L0] Q: What’s the sign’s primary
shape?": "circle"},

{"[L1] Q: What’s the circle color?": "
red-white"},

{"[L2] Q: Does it contain numbers?": "
yes"},

{"[L3] Q: What is the number?": "20"}
]

The model is given the class name up front and retains
access to the full question-answer history to simulate a co-
herent reasoning process. We measure per-class accuracy as
the number of correctly answered questions divided by the
total number of questions along the path.

Prompting Strategies
We tested two main prompting strategies for visual classifi-
cation across both datasets and all selected three VLMs, as
illustrated below:
• Baseline (Zero-shot Classification):

This is a standard prompting strategy that directly asks
the model to classify the image by selecting a single class
from the full classes set. The model receives the image as
input along with the following prompt:
"Please classify the [GTSRB: traffic sign

| CIFAR-10: object] in the given
image. It should be only one of these
classes: {class_ids_and_names}.
Respond with only the class ID."

We also extend this method by providing Deepseek-
generated textual descriptions for each class and a gener-
ated image caption by the tested model within the prompt
context. We refer to this variation as Zero-shot with De-
scription Classification.

• Tree-Based Classification:
This is the primary strategy evaluated in our study. It in-



volves traversing a decision tree from the root to a leaf
node, where the classification decision is made. At each
node, the prompt includes the node-specific question and
a set of possible branching answers. The model is ex-
pected to choose one answer based on the image, which
determines the next node to visit, continuing this process
until reaching the final classification.
The prompt template used at each node is as follows:
"{tree.question} Choose one of these

answers: {tree.answers}."

An example from the GTSRB dataset tree:
– Question: What’s the sign’s primary shape?
– Answers: [“triangle”, “circle”, “diamond”, “inverted-triangle”, “octagon”]

Furthermore, we extended the tree-based strategy by in-
troducing two additional variations:

– Tree-Based Classification with History:
In this variation, we append the sequence of prior deci-
sions made by the model to each prompt. This provides
additional context about the path taken so far.

– Tree-Based Classification with Descriptions:
Similar to the Zero-shot with Description strategy,
we include LLM-generated textual descriptions of the
classes and the target image caption as part of the
prompt context. This information is provided before
the model selects a branching answer, offering seman-
tic guidance during classification.

Answer Extraction
Due to the inherently non-deterministic nature of VLM re-
sponses, we cannot fully control their output format. To reli-
ably extract answers, we employ regular expression pattern
matching, which captures the first occurrence of any prede-
fined answer candidate from the model’s response.

Evaluation and Results
A comprehensive evaluation of the decision tree-based
methodology is conducted and benchmarked against a zero-
shot image classification baseline. Further details are pro-
vided in the following sections.

Decision Tree Knowledge Verification
We tested the GPT-4o model using the decision tree devel-
oped for the GTSRB dataset. The model achieved 100% ac-
curacy on all decision tree questions for 39 out of 43 traffic
sign classes, with an overall average accuracy of 98.20%.
Crucially, the VLMs demonstrated comprehensive knowl-
edge, correctly answering every tree branch question for
each specific class. This validates that the curated decision
tree’s structure and question order are optimally suited for
the task.

The four classes with slightly lower performance—“End
of restriction”, “Right-of-way at intersection”, “Double
curve warning”, and “Ice/snow warning”—exhibit high vi-
sual or semantic similarity to other signs, leading to occa-
sional confusion. These results confirm the model’s strong
reasoning capabilities and the decision tree’s alignment with

the classification challenge. The minimal errors likely reflect
ambiguities in visual design or contextual interpretation of
certain signs rather than deficiencies in the tree itself.

Zero-shot Classification
We began our evaluation with a baseline zero-shot clas-
sification experiment. Given the non-deterministic behav-
ior of VLMs and their known sensitivity to prompt phras-
ing (Fatemi, Halcrow, and Perozzi 2023), we performed the
classification using 10 diverse prompts to assess robust-
ness. The model was run with a temperature of 0.7 to allow
variability in responses. By incorporating prompt variation,
we aimed to better understand the model’s generalization
and reduce performance artifacts caused by prompt-specific
biases. Figure 2 illustrates the distribution of zero-shot clas-
sification accuracy across different prompts.

0.0 0.2 0.4 0.6 0.8
Accuracy

LLAMA

Qwen VL

GPT-4o
M

od
el

Dataset
CIFAR-10
GTSRB

Figure 2: Distribution of zero-shot classification accuracy
over 10 prompt variations, evaluated across all datasets.

We then selected a representative prompt with average
performance (based on mean accuracy across experiments)
and conducted three runs for each of two temperature set-
tings: 0.7 and 0. The results were consistent across exper-
iments, showing little to no variance. Figure 3 presents the
mean zero-shot accuracy across all classes.

Additionally, we ran a variant of the experiment that in-
cluded class descriptions as part of the prompt. While this
slightly improved performance for the LLaMA model on
CIFAR-10, it did not benefit other experiments. For the GT-
SRB dataset, incorporating textual descriptions for the large
number of classes increased context length without mean-
ingful accuracy gains, suggesting that excessive prompt
context may hinder performance in fine-grained classifica-
tion tasks.

Tree-Based Classification
We evaluated the selected models on the generated decision
trees using two temperature settings: 0.7 and 0. For each
setting, we recorded the mean accuracy across all classes.
Figure 3 presents the results for the tree-based classification
approach.

• GPT-4o consistently achieved the highest performance
across both datasets and temperature settings, reaching
52.05% accuracy on GTSRB and 75.40% on CIFAR-
10 (temperature 0). These results highlight the increased
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Figure 3: Mean accuracy (%) comparison across prompting strategies, models, datasets, and temperature settings.

complexity of the decision tree in fine-grained classifica-
tion tasks like GTSRB.

• In contrast, the LLaMA model exhibited relatively poor
and unstable performance, particularly with varying tem-
perature settings, suggesting lower reliability in follow-
ing structured reasoning prompts.

Furthermore, Figure 3 illustrates the impact of two
prompting variations in the tree-based classification set-
ting:

1. Including full decision path history negatively affected
performance, likely due to context overload with non-
essential information.

2. Adding class descriptions generally improved perfor-
mance across datasets and models—except for LLaMA,
where it caused a performance drop.

These results suggest that descriptive context enhances
understanding in larger VLMs capable of effectively
leveraging long-context inputs.

Accuracy Comparison
Contrary to our expectations, the experimental results indi-
cate that incorporating tree-based reasoning structures does
not improve performance for any of the evaluated VLMs on
either the fine-grained (GTSRB) or coarse-grained (CIFAR-
10) classification tasks when compared to the zero-shot
baseline, as shown in Figure 3.

For the GTSRB dataset, we observe a substantial perfor-
mance gap between tree-based and zero-shot classification.
The best-performing model, GPT-4o, achieved 65.78% ac-
curacy in the zero-shot setting (temperature 0) compared to
just 52.05% with tree-based reasoning—a difference of over
13 percentage points. While including class descriptions
and image captions helped narrow this gap, it was insuffi-
cient to bridge it entirely. Similarly, the Qwen-VL model

showed noticeable zero-shot superiority, with 40.18% accu-
racy (temperature 0) versus 32.18% in the tree-based setup.
These consistent gaps suggest that the models may not effec-
tively leverage structured reasoning and instead rely more on
dataset-specific biases than on decomposing and interpreting
traffic signs’ visual attributes.

Further per-class analysis revealed that GPT-4o (temper-
ature 0 in tree-based configuration) outperformed zero-shot
classification in only 11 of 43 classes—a ratio that remained
consistent across all experimental settings. This reinforces
the limited effectiveness of tree-based classification for most
GTSRB categories.

The same trend persists in the coarse-grained CIFAR-10
classification (Figure 3). While overall accuracy increased—
with GPT-4o reaching 75.40% in the tree-based setup com-
pared to its GTSRB performance—a performance gap of
up to 14 percentage points remained relative to the zero-
shot baseline. Notably, per-class analysis shows the zero-
shot approach outperformed tree-based classification across
all CIFAR-10 classes.

These findings suggest that the additional complexity of
hierarchical reasoning structures does not enhance VLM
performance in vision-related classification tasks. Instead,
simpler zero-shot baseline proves more effective for both
fine-grained (GTSRB) and coarse-grained (CIFAR-10) set-
tings. We explore potential explanations for these results in
the Discussion section.

Discussion
Our experimental results demonstrate consistent perfor-
mance degradation when employing tree-based reasoning
compared to the zero-shot baseline, revealing several crit-
ical contributing factors. The tree-based approach exhibits
significant sensitivity to errors in upper-level decision nodes,
where top-level fragility proves particularly problematic.

In the GTSRB dataset, preliminary questions such as



“Does it contain a number?” disproportionately affect down-
stream classification when answered incorrectly, while al-
ternative question orderings yield accuracy variations that
indicate strong path dependence in the reasoning process.
Furthermore, structural deficiencies in tree design intro-
duce substantial limitations, including question hierarchy
flaws where parent nodes improperly subsume children
(e.g., Layer 10: “Pedestrian?” versus Layer 11: “Pedestrian
with child?”), resulting in systematic misclassification of all
“pedestrian with child” images as generic pedestrians.

The reasoning process also struggles with contextual in-
tegrity, as including conversation history degrades perfor-
mance by introducing irrelevant information that dilutes
classification-relevant features. This finding aligns with (Liu
et al. 2023b)’s demonstration that performance drops when
input exceeds optimal context length or when critical infor-
mation is suboptimally positioned.

The least accurate layers predominantly involve higher-
level reasoning, where questions pertain to the semantic
interpretation of traffic signs, such as their class or func-
tion, rather than low-level visual features like shapes or col-
ors. This pattern suggests that the models perform reason-
ably well on basic perceptual tasks but demonstrate signif-
icant weaknesses when reasoning about abstract or contex-
tual aspects, highlighting a fundamental limitation in current
vision-language models regarding hierarchical reasoning ca-
pabilities.

Additionally, we observe that complex semantic queries
(e.g., ”What action is prohibited?”) consistently underper-
form simple visual questions (e.g., ”Triangular shape?”),
further supporting the notion that current models excel at
atomic visual recognition but struggle with semantic inter-
pretation tasks requiring deep traversal of hierarchical struc-
tures. These findings suggest several architectural improve-
ments for future implementations: breadth-first prioritiza-
tion where shallow, wide trees outperform deep ones, and vi-
sual primitives first approaches where atomic visual queries
concerning color and shape should precede semantic inter-
pretation to maximize classification accuracy and minimize
error propagation through the reasoning hierarchy.

Conclusion
Our study demonstrates that tree-based reasoning structures
do not improve the performance of VLMs on vision-related
classification tasks, as evidenced by experiments on the GT-
SRB and CIFAR-10 datasets. Instead, we observe a consis-
tent degradation in accuracy compared to zero-shot prompt-
ing across all evaluated models. Zero-shot prompting signifi-
cantly outperforms tree-based reasoning in both fine-grained
(GTSRB) and coarse-grained (CIFAR-10) settings, achiev-
ing higher mean accuracy and correctly classifying samples
that the hierarchical approach misclassifies. These findings
suggest that the added complexity of tree-based reasoning
does not necessarily enhance VLM performance in such
tasks and may even introduce inefficiencies.

Furthermore, our experiments reveal that the tree-based
methodology is highly sensitive to structural and question-
formatting adjustments, indicating that minor changes in the
reasoning path or question phrasing can significantly impact

performance. Critically, the knowledge verification confirms
VLMs possess a strong understanding of elementary visual
attributes (achieving 90.7% perfect accuracy across GTSRB
classes), but their inability to reliably use this decomposed
knowledge within the reasoning tree to arrive at the cor-
rect final classification provides a key explanation for the
observed performance degradation. This failure to integrate
elementary visual understanding through structured decom-
position suggests limitations in the compositional reasoning
capabilities of current VLMs for such classification tasks,
rather than a simple inefficiency in the method.

Future Work
To enhance the effectiveness of tree-based reasoning in
vision-language tasks, several promising directions warrant
further exploration. One approach involves the investigation
of hybrid reasoning strategies that integrate zero-shot pre-
dictions into the tree-based reasoning pipeline. For example,
incorporating the zero-shot label as an additional feature in
the decision tree could help reduce misclassifications and
capitalize on the complementary strengths of both methods.

In addition, future work could focus on developing auto-
mated or semi-automated techniques for generating optimal
decision trees. Methods such as reinforcement learning or it-
erative refinement may prove effective in constructing trees
that are both accurate and robust, potentially reducing sen-
sitivity to structural variations and enhancing generalizabil-
ity. It is also important to explore whether these improve-
ments hold across different multimodal tasks and datasets.
Furthermore, alternative reasoning frameworks that strike a
balance between interpretability and performance merit in-
vestigation. Addressing these challenges will contribute to
a deeper understanding of when and how structured reason-
ing can amplify the capabilities of large language models in
vision-language applications.
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