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Abstract
Model selection in the context of bandit optimization is a challenging problem, as it requires
balancing exploration and exploitation not only for action selection, but also for model
selection. One natural approach is to rely on online learning algorithms that treat different
models as experts. Existing methods, however, scale poorly (polyM) with the number of
models M in terms of their regret. We develop ALExp, an anytime algorithm, which has
an exponentially improved (logM) dependence on M for its regret. We neither require
knowledge of the horizon n, nor rely on an initial purely exploratory stage. Our approach
utilizes a novel time-uniform analysis of the Lasso, by defining a self-normalized martingale
sequence based on the empirical process error, establishing a new connection between
interactive learning and high-dimensional statistics.
Keywords: Model Selection, Linear Bandits, Anytime Martingale Bounds

1. Introduction

When solving bandit problems or performing Bayesian optimization, we need to commit
to a reward model a priori, based on which we estimate the reward function and build a
policy for selecting the next action. In practice, there are many ways to model the reward
by considering different feature maps or hypothesis spaces. However, is not known a priori
which model is going to yield the most sample efficient bandit algorithm, and we can only
select the right model as we gather empirical evidence. This leads us to ask, can we perform
adaptive model selection, while simultaneously optimizing for reward?

In an idealized setting with no sampling limits, given a model class of size M , we could
initialize M bandit algorithms (a.k.a agents) in parallel, each using one of the available
reward models. Then, as the algorithms run, at every step we can select the most promising
agent, according to the cumulative rewards that are obtained so far. Model selection can
then be cast into an online optimization problem on a M -dimensional probability simplex,
where the probability of selecting an agent is dependent on its cumulative reward, and the
optimizer seeks to find the distribution with the best return in hindsight. This approach
is impractical for large model classes, since at every step, it requires drawing M different
samples in parallel from the environment so that the reward for each agent is realized.
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In realistic applications of bandit optimization, we can only draw one sample at a time,
and so we need to design an algorithm which allocates more samples to the agents that
are deemed more promising. Prior work (e.g., Maillard and Munos, 2011; Agarwal et al.,
2017) propose to run a single meta algorithm which interacts with the environment by first
selecting an agent, and then selecting an action according to the suggestion of that agent.
The online model selection problem can still be emulated in this setup, however this time the
optimizer receives partial feedback, coming from only one agent. Consequently, many agents
need to be queried, and the overall regret scales with polyM , restricting this approach to
small model classes. Addressing the limited scope of such algorithms, Agarwal et al. (2017)
raise an open problem on the feasibility of obtaining a logM dependency for the regret.

We show that this rate is achievable, in the particular case of linearly parametrizable
rewards. We develop a technique to “hallucinate” the reward for every agent that was not
selected, and run the online optimizer with emulated full-information feedback. This allows
the optimizer to assess the quality of the agents, without ever having queried them. As a
result, our algorithm ALExp, satisfies a regret of rate O(max{

√
n log3M,n3/4

√
logM}),

with high probability, simultaneously for all n ≥ 1 (Theorem 1). Our key idea, leading to
logM dependency, is to employ the Lasso as a low-variance online regression oracle, and
estimate the reward for the agents that were not chosen. This trick is made possible through
our novel analysis of online Lasso regression (Theorem 3), where we recognize that the
empirical process error is controlled by a sub-Gamma martingale sequence. We establish
empirically that ALExp has favorable exploration–exploitation dynamics, and consistently
outperforms prior work across a range of environments (Appendix F).

2. Related Work

Online Model selection (MS) for bandits considers combining a number of agents in a master
algorithm, with the goal of performing as well as the best agent (Maillard and Munos, 2011;
Bubeck et al., 2012; Agarwal et al., 2017; Pacchiano et al., 2020; Luo et al., 2022). This
literature operates on black-box model classes of size M and uses variants of Online Mirror
Descent (OMD) to sequentially select the agents. Effectively, the optimizer receives partial
(a.k.a. bandit) feedback and agents are at risk of starvation, since at every step only the
selected agent gets the new data point.

Sparse linear bandits use sparsity-inducing methods, often Lasso (Tibshirani, 1996), for
estimating the reward in presence of many features, as an alternative to model selection.
Recent work often consider the contextual case, where at every step only a finite stochastic
subset of the action domain is presented to the agent (Li et al., 2022; Bastani and Bayati,
2020; Kim and Paik, 2019; Oh et al., 2021). Most sparse bandit algorithms either start with
a purely exploratory phase (Kim and Paik, 2019; Li et al., 2022; Hao et al., 2020; Jang et al.,
2022), the length of which is set according to the horizon n. Therefore, such algorithms
inherently require the knowledge of n and can be made anytime only via the doubling trick
(Auer et al., 1995). Appendix A.1 presents an in-depth overview.

ALExp inherits the best of both worlds: its regret enjoys the logM dependency of sparse
linear bandits even on compact domains, and it has adaptive probabilistic exploration with
anytime guarantees. In contrast to prior literature, we perform model selection with an online
optimizer (EXP4), which hallucinates full-information feedback using a low-variance Lasso
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estimator. Moreover, our anytime approach lifts the horizon dependence and the exploration
requirement of sparse linear bandits. Our analysis relies on the seminal results of Howard et al.
(2021), that present time-uniform curved boundaries for sub-Gamma martingale processes.

3. Problem Setting

We consider a bandit problem where a learner interacts with the environment in rounds. At
step t the learner selects an action xt ∈ X , where X ⊂ Rd0 is a compact domain and observes
a noisy reward yt = r(xt) + εt such that εt is an i.i.d. zero-mean sub-Gaussian variable
with parameter σ2. We assume the reward function r : X → R is linearly parametrizable
by some unknown feature map, and that the model class {ϕj : Rd0 → Rd, j = 1, . . . ,M}
contains the set of plausible feature maps. We consider the setting where M can be very
large, and while the set {ϕj} may include misspecificed feature maps, it contains at least
one feature map that represents the reward function, i.e., there exists j⋆ ∈ [M ] such that
r(·) = θ⊤

j⋆ϕj⋆(·). We assume the image of ϕj spans Rd, and no two feature maps are linearly
dependent, i.e. for any j, j′ ∈ [M ], there exists no α ∈ R such that ϕj(·) = αϕj′(·). This
assumption, which is satisfied by design in practice, ensures that the features are not ill-posed
and we can explore in all relevant directions. We assume that the concatenated feature map
ϕ(x) := (ϕ1(x), . . . ,ϕM (x)) is normalized ∥ϕ(x)∥ ≤ 1 for all x ∈ X and that ∥θj⋆∥ ≤ B,
which implies |r(x)| ≤ B for all x ∈ X .

We will model this problem in the language of model selection where a meta algorithm
aims to optimize the unknown reward function by relying on a number of base learners. In
order to interact with the environment the meta algorithm selects an agent that in turn
selects an action. In our setting we thinking of each of these M feature maps as controlled by
a base agent running its own algorithm. Base agent j uses the feature map ϕj for modeling
the reward. At step t of the bandit problem, each agent j is given access to the full history
Ht−1 := {(x1, y1), . . . , (xt−1, yt−1)}, and uses it to locally estimate the reward as β̂⊤

t−1,jϕj(·),
where β̂t−1,j ∈ Rd is the estimated coefficients vector. The agent then uses this estimate to
develop its action selection policy pt,j ∈M(X ). Here,M denotes the space of probability
measures defined on X . The condition on existence of j⋆ will ensure that there is at least
one agent which is using a correct model for the reward, and thereby can solve the bandit
problem if executed in isolation. We refer to agent j⋆ as the oracle agent.

Our goal is to find a sample-efficient strategy for iterating over the agents, such that their
suggested actions maximize the cumulative reward, achieved over any horizon n ≥ 1. This
is equivalent to minimizing the cumulative regret R(n) =

∑n
t=1 r(x

∗)− r(xt), where x∗ is
a global maximizer of the reward function. We neither fix n, nor assume knowledge of it.

4. Method

We propose the Anytime Exponential weighting algorithm based on Lasso reward estimates
(ALExp), summarized in Algorithm 1. At step t we first sample an agent jt, and then
sample an action xt according to the agent’s policy pt,jt . Let ∆M denote the M -dimensional
probability simplex. We maintain a probability distribution qt ∈ ∆M over the agents, and
update it sequentially as we accumulate evidence on the performance of each agent. Ideally,
we would have adjusted qt,j according to the average return of model j, that is, Ex∼pt,jr(x).
However, since r is unknown, we estimate the average reward with some r̂t,j . We then update
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qt for the next step via,

qt+1,j =
exp(ηt

∑t
s=1 r̂s,j)∑M

i=1 exp(ηt
∑t

s=1 r̂s,i)

for all j = 1, . . . ,M , where ηt is the learning rate, and controls the sensitivity of the updates.
This rule allows us to imitate the full-information example that we mentioned above. By
utilizing r̂t,j and hallucinating feedback from all agents, we can reduce the probability of
selecting a badly performing agent, without ever having sampled them (c.f. Figure 5). It
remains to design the estimator r̂t,j . We concatenate all feature maps, and, knowing that many
features are redundant, use a sparsity inducing estimator over the resulting coefficients vector.
Mainly, let θ = (θ1, . . . ,θM ) ∈ RMd be the concatenated coefficients vector. We then solve

θ̂t = argmin
θ∈RMd

L(θ;Ht, λt) = argmin
θ∈RMd

1

t
∥yt − Φtθ∥22 + 2λt

M∑
j=1

∥θj∥2 (1)

where Φt = [ϕ⊤(xs)]s≤t ∈ Rt×Md is the feature matrix, yt ∈ Rt is the concatenated reward
vector, and λt is an adaptive regularization parameter. Problem (1) is the online variant of
the group Lasso (Lounici et al., 2011). The second term is the loss is the mixed (2, 1)-norm of
θ, which can be seen as the ℓ1-norm of the vector (∥θ1∥, . . . , ∥θM∥) ∈ RM . This norm induces
sparsity at the group level, and therefore, the sub-vectors θ̂t,j ∈ Rd that correspond to redun-
dant feature maps are expected to be 0, i.e. the null vector. We then estimate the average
return of each model by simply taking an expectation r̂t,j = Ex∼pt+1,j [θ̂

⊤
t ϕ(x)]. This quantity

is the average return of the agent’s policy pt+1,j , according to our Lasso estimator. Ap-
pendix A.3 explains why the choice of Lasso is crucial for obtaining a logM rate for the regret.

For action selection, with probability γt, we sample agent j with probability qt,j and
draw xt ∼ pt,j as per suggestion of the agent. With probability 1− γt, we choose the action
according to some exploratory distribution π ∈ M(X ) which aims to sample informative
actions. This can be any design where supp(π) = X . We mix pt,j with π, to collect sufficiently
diverse data for model selection. We are not restricting the agents’ policy, and therefore can
not rely on them to explore adequately.

5. Main Results

For the regret guarantee, we consider specific choices of base agents and exploratory distribu-
tion. Our analysis may be extended to include other policies, since ALExp can be wrapped
around any bandit agent that is described by some pt,j , and allows for random exploration
with any distribution π.

Base Agents. We assume that the oracle agent has either a UCB (Abbasi-Yadkori
et al., 2011) or a Greedy (Auer et al., 2002a) policy, and all other agents are free to choose
any arbitrary policy. Similar treatment can be applied to cases where the oracle uses other
(sublinear) polices for solving linear or contextual bandits (e.g., Thompson, 1933; Kaufmann
et al., 2012; Agarwal et al., 2014). In either case, agent j⋆ calculates a ridge estimate of the
coefficients vector based on the history Ht

β̂t,j⋆ := argmin
β∈Rd

∥yt − Φt,j⋆β∥22 + λ̃∥β∥22 =
(
Φ⊤
t,j⋆Φt,j⋆ + λ̃I

)−1
Φ⊤
t,j⋆yt.
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Here Φt,j⋆ ∈ Rt×d is the feature matrix, where each row s is ϕ⊤
j⋆(xs) and λ̃ is the regular-

ization constant. Then at step t, a Greedy oracle suggests the action which maximizes the
reward estimate β̂⊤

t−1,j⋆ϕj⋆(x), and a UCB oracle queries argmaxut−1,j⋆(x) where ut−1,j⋆(·)
is the upper confidence bound that this agent calculates for r(·). Proposition 21 shows that
the sequence (ut,j⋆)t≥1 is in fact an anytime valid upper bound for r over the entire domain.

Exploratory policy. Performance of ALExp depends on the quality of the samples that
π suggests. The eigenvalues of the covariance matrix Σ(π,ϕ) := Ex∼πϕ(x)ϕ

⊤(x) reflect how
diverse the data is, and thus are a good indicator for data quality. van de Geer and Bühlmann
(2009) present a survey on the notions of diversity defined based on these eigenvalues. Let
λmin(A) denote the minimium eigenvalue of a matrix A. Similar to Hao et al. (2020), we
assume that π is the maximizer of the problem below and present our regret bounds in terms of

Cmin = Cmin(X ,ϕ) := max
π∈M(X )

λmin (Σ(π,ϕ)) , (2)

which is greater than zero under the conditions specified in our problem setting. Prior works
in the sparse bandit literature all require a similar or stronger assumption of this kind, and
Table 1 gives an overview. Alternatively, one can work with an arbitrary π, e.g., Unif(X ), as
long as λmin(Σ(π,ϕ)) is bounded away from zero. Appendix C.1 reviews some configurations
of (ϕ,X , π) that lead to a non-zero minimum eigenvalue, and Corollary 12 bounds the regret
of ALExp with uniform exploration.

For this choice of agents and exploratory distribution, Theorem 1 presents an informal
regret bound. Here, we have used the O notation, and only included the fastest growing
terms. The inequality is made exact in Theorem 14, up to constant multiplicative factors.

Theorem 1 (Cumulative Regret of ALExp, Informal). Let δ ∈ (0, 1] and set π to be the
maximizer of (2). Choose learning rate ηt = O(Cmint

−1/2/C(M, δ, d)), exploration probability
γt = O(t−1/4) and Lasso regularization parameter λt = O(Cmint

−1/2C(M, δ, d)), where

C(M, δ, d) = O
(√

1 + log(M/δ) + (log log d)+ +
√
d (log(M/δ) + (log log d)+)

)
.

Then ALExp satisfies the cumulative regret

R(n) = O
(
n3/4B + C(M, δ, d)

(
n3/4 + C−1

min

√
n logM

)
+ C

−1/2
min n5/8

√
d log (n) + log(1/δ)

)
simultaneously for all n ≥ 1, with probability greater than 1− δ.

In this bound, the first term is the regret incurred at exploratory steps (when αt = 1),
the second term is due to the estimation error of Lasso (i.e., ||θ − θ̂t||), and the third term
is the regret of the exponential weights sub-algorithm. The fourth term, is the regret bound
for the oracle agent j⋆, when run within the ALExp framework. It does not depend on
the agent’s policy (greedy or optimistic), and is worse than the minimax optimal rate of√
nd log n. This is because the oracle is suggesting actions based on the history Ht, which

includes uninformative action-reward pairs queried by other, potentially misspecified, agents.
In Corollary 12, we provide a regret bound independent of Cmin, for orthogonal feature maps,
and show that the same O(max{

√
n log3M,n3/4

√
logM}) rate may be achieved even with

the simple choice π = Unif(X ).We discuss some implications of this theorem in Appendix A.3,
and provide empirical evaluations in Appendix F.
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6. Time-Uniform Lasso
We develop novel confidence sequences for Lasso with history-dependent data, which are
uniformly valid over an unbounded time horizon. We use it for bounding bias and variance
terms in the model selection regret decomposition, however, this result may be of independent
interest in applications of Lasso for online learning or sequential decision making. The width
of the Lasso confidence intervals depends on the quality of feature matrix Φt, often quantified
by the restricted eigenvalue property (Bickel et al., 2009; van de Geer and Bühlmann, 2009):

Definition 2. For the feature matrix Φt ∈ Rt×dM we define κ(Φt, s) for any 1 ≤ s ≤M as

κ(Φt, s) := inf
(J,b)

1√
t

∥Φtb∥2√∑
j∈J ∥bj∥22

s.t. b ∈ Rd\{0},
∑
j /∈J

∥bj∥2 ≤ 3
∑
j∈J
∥bj∥2, J ⊂ {1, . . . ,M}, |J | ≤ s.

Our analysis is in terms of this quantity, and Lemma 8 explains the connection between
κ(Φt, s) and Cmin as defined in (2), particularly that κ(Φt, 2) is also positive.

Theorem 3 (Anytime Lasso Confidence Sequences). Consider the data model yt = θ⊤ϕ(xt)+
εt for all t ≥ 1, where εt is i.i.d. zero-mean sub-Gaussian noise, and xt is Ft-measurable,
where Ft := (x1, . . . ,xt, εt, . . . , εt−1). Then the solution of (1) guarantees

P

(
∀t ≥ 1 :

∥∥∥θ − θ̂t

∥∥∥
2
≤ 4
√
10λt

κ2(Φt, 2)

)
≥ 1− δ

if the regularization parameter satisfies

λt ≥
2σ√
t

(
1 +

12√
2
(log(2M/δ) + (log log d)+) +

5√
2

√
d (log(2M/δ) + (log log d)+)

)1/2
.

Our confidence bound enjoys the same rate as Lasso with offline i.i.d. data, up to log log d
factors. We prove this theorem by constructing a self-normalized martingale sequence based on
the ℓ2-norm of the empirical process error (Φ⊤

t εt). We then apply the “stitched” time-uniform
boundary of Howard et al. (2021). Appendix B elaborates on this technique. Previous work
on sparse linear bandits also include analysis of Lasso in an online setting, when xt is Ft mea-
surable. Cella and Pontil (2021) imitate offline analysis and then apply a union bound, which
multiplies the width by log n and requires knowledge of the horizon. Bastani and Bayati (2020)
also rely on knowledge of n and employ a scalar-valued Bernstein inequality on

∥∥Φ⊤
t εt
∥∥
∞,

which inflates the width of the confidence sets by a factor of
√
d. We work on the ℓ2-norm,

and use a curved boundary for the resulting sub-Gamma martingale sequence, which is known
to be uniformly tighter than a Bernstein bound, especially for small t (Howard et al., 2021).

7. Conclusion

We proposed ALExp, an algorithm for simultaneous online model selection and bandit
optimization. As a first, our approach leads to anytime valid guarantees for model selection
and bandit regret, and does not rely on a priori determined exploration schedule. Further, we
showed how the Lasso can be used together with the exponential weights algorithm to con-
struct a low-variance online learner. This new connection between high-dimensional statistics
and online learning opens up avenues for future research on online high-dimensional learning.
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Appendix A. Details of the Main Text

A.1 Extended Literature Review

The sparse linear bandit literature considers linear reward functions of the form θ⊤x, where
x ∈ Rp, however a sub-vector of size d is sufficient to span the reward function. This can
be formulated as model selection among M =

(
p
d

)
different linear parametrizations, where

each ϕj is a d-dimensional feature map. We present the bounds in terms of d and M for
coherence with the rest of the text, assuming that M = O(p), which is the case when d≪ p.

Table 1 compares recent work on sparse linear bandits based on a number of important
factors. In this table, the ETC algorithms follow the general format of exploring, performing
parameter estimation once at t = n0, and then repeatedly suggesting the same action
which maximizes θ̂⊤

n0
ϕ(x). Explore-then-(ϵ)Greedy takes a similar approach, however it

does not settle on θ̂n0 , rather it continues to update the parameter estimate and select
xt = argmax θ̂⊤

t ϕ(x). The UCB algorithms iteratively update upper confidence bound,
and choose actions which maximize them. The regret bounds in Table 1 are simplified to
the terms with largest rate of growth, the reader should check the corresponding papers for
rigorous results. Some of the mentioned bounds depend on problem-dependent parameters
(e.g. cK), which may not be treated as absolute constants and have complicated forms. To
indicate such parameters we use τ in Table 1, following the notation of Hao et al. (2020).
Note that τ varies across the rows of the table, and is just an indicator for existence of other
terms.

Abbasi-Yadkori et al. (2012) use the SeqSEW online regression oracle (Gerchinovitz,
2011) for estimating the parameter vector, together with a UCB policy. The regression oracle
is an exponential weights algorithm, which runs on the squared error loss. This subroutine,
and thereby the algorithm proposed by Abbasi-Yadkori et al. (2012) are not computationally
efficient, and this is believed to be unavoidable. This work considers the data-rich regime
and shows R(n) = O(

√
dMn), matching the lower bound of Theorem 24.3 in Lattimore and

Szepesvári (2020).
Carpentier and Munos (2012) assume that the action set is a Euclidean ball, and that

the noise is directly added to the parameter vector, i.e. yt = x⊤(θ + εt). Roughly put,
linear bandits with parameter noise are “easier” to solve than stochastic linear bandits with
reward noise, since the noise is scaled proportionally to the features xi and does less “damage
” (Chapter 29.3 Lattimore and Szepesvári, 2020). In this setting, Carpentier and Munos
(2012) present a O(d

√
n) regret bound.

Recent work considers contextual linear bandits, where at every step At, a stochastic
finite subset of size K from A, is presented to the agent. It is commonly assumed that
members of At are i.i.d., and the sampling distribution is diverse and time-independent. The
diversity assumption is often in the form of a restricted eigenvalue condition (Definition 2) on
the covariance of the context distribution (e.g. in, Kim and Paik, 2019; Bastani and Bayati,
2020). Li et al. (2022) require a stronger condition which directly assumes that λmin(Φt) the
minimum eigenvalue of the empirical covariance matrix is lower bounded. This is generally
not true, but may hold with high probability. Hao et al. (2020) assume that the action set
spans RdM . We believe that this assumption is the weakest in the literature, and conjecture
that it is necessary for model selection. If not met, the agent can not explore in all relevant
directions, and may not identify the relevant features. Our diversity assumption is similar
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to Hao et al. (2020), adapted to our problem setting. Mainly, we consider reward functions
which are linearly parametrizable, i.e. θ⊤ϕ(x), as oppose to linear rewards, i.e. θ⊤x.

A key distinguishing factor between ALExp and existing work on sparse linear bandit
is that ALExp is horizon-independent and does not rely on a forced exploration schedule.
As shown on Table 1, majority of prior work relies either on an initial exploration stage,
the length of which is determined according to n (e.g., Carpentier and Munos, 2012; Kim
and Paik, 2019; Li et al., 2022; Hao et al., 2020; Jang et al., 2022), or on a hand crafted
schedule, which is again designed for a specific horizon (Bastani and Bayati, 2020). Oh et al.
(2021), which analyzes K-armed contextual bandits, does not require explicit exploration, and
instead imposes restrictive assumptions on the diversity of context distribution, e.g. relaxed
symmetry and balanced covariance. Regardless, the regret bounds hold in expectation, and
are not time-uniform.

Table 1: Overview of recent work on high-dimensional Bandits. Parameter τ shows existence
of other problem-dependent terms which are not constants, and varies across
different rows. The regret bounds are simplified and are not rigorous.

|At|
data-
poor

adap.
exp.

any-
time

action
selection
policy

MS
algo

context
or action
assumpt.

Regret

Abbasi-Yadkori et al. ∞ ✗ ✓ ✓ UCB
EXP4 on
Sqrd error A is compact

√
dMn, w.h.p.

Foster et al. K ✓ ✓ ✗ UCB
EXP4 on
Sqrd error λmin(Σ) ≥ cλ

(Mn)3/4K1/4 +
√
KdMn

w.h.p

Carpentier and Munos ∞ ✓ ✗ ✗ UCB
Hard

Thresh.
A is a ball

param. noise d
√
n, w.h.p.

Bastani and Bayati K ✗ ✗ ✗

Explore
then

Greedy
Lasso κ(Σ) > cK

τKd2(log n+ logM)2

w.h.p.

Kim and Paik K ✗ ✗ ✗

Explore
then

ϵ-Greedy
Lasso κ(Σ) > cK τd

√
n log(Mn), w.h.p.

Oh et al. K ✓ ✓ ✗ Greedy Lasso κ(Σ) > cκ
+ other assums.

τd
√

n log(Mn)
in expectation

Li et al. K ✓ ✗ ✗ ETC Lasso λmin(Σ̂) > cλ
τ(n2d)1/3

√
logMn

in expectation

Hao et al. ∞ ✓ ✗ ✗ ETC Lasso A spans RdM

+ is compact
(ndC−1

min)
2/3(logM)1/3

w.h.p.

Jang et al. ∞ ✓ ✗ ✗ ETC Hard
Thresh.

A ⊂ [−1, 1]Md

+ spans RMd
(nd)2/3(C−1

min logM)1/3

w.h.p.

ALExp (Ours) ∞ ✓ ✓ ✓
Greedy
or UCB

EXP4 on
reward est.

Im(ϕj) spans Rd

A is compact

√
n logM(n1/4 + C−1

min logM)
w.h.p

A.2 Proof Sketch of Main Theorem

The regret is caused by two sources: selecting a sub-optimal agent, and an agent selecting a
sub-optimal action. Accordingly, for any j ∈ 1, . . . ,M , we decompose the regret as

R(n) =

n∑
t=1

r(x⋆)− r(xt) =
( n∑

t=1

r(x⋆)− rt,j

)
+
( n∑

t=1

rt,j − r(xt)
)
. (3)
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The first term shows the cumulative regret of agent j, when run within ALExp. The second
term evaluates the received reward against the cumulative average reward of a model j. We
bound each term separately.

Virtual Regret. The first term R̃j(n) :=
∑n

t=1 r(x
⋆)− rt,j compares the suggestion of

agent j, against the optimal action. We call it the virtual regret since the sequence (xt,j)t≥1

of the actions suggested by model j are not necessarily selected by the meta algorithm, unless
jt = j. This regret is merely a technical tool, and not actually realized when running ALExp.
The virtual regret of the oracle agent may still be bounded using standard analyses of linear
bandit, e.g., Abbasi-Yadkori et al. (2011), however we need to slightly adapt it, to take into
account a subtle difference: The confidence sequence of model j⋆ is constructed according
to the true sequence of actions (xt)t≥1, while its virtual regret is calculated based on the
sequence (xt,j⋆)t≥1, which the model suggests. The two sequences only match at the steps
when model j⋆ is selected. Adapting the analysis of Abbasi-Yadkori et al. (2011) to this
subtlety, we obtain in Lemma 15 that with probability greater than 1− δ, simultaneously for
all n ≥ 1

R̃j⋆(n) = O
(
n5/8C

−1/2
min

√
d log (n) + log(1/δ)

)
.

Model Selection Regret. The second term in (3) is the model selection regret,
R(n, j) :=

∑n
t=1 rt,j − r(xt), which evaluates the chosen action by ALExp against the

suggestion of the j-th agent. Our analysis relies on a careful decomposition of R(n, j),

R(n, j) =
n∑

t=1

[
rt,j − r̂t,j︸ ︷︷ ︸

(I)

+ r̂t,j −
M∑
i=1

qt,ir̂t,i︸ ︷︷ ︸
(II)

+
M∑
i=1

qt,i(r̂t,i − rt,i)︸ ︷︷ ︸
(III)

+
M∑
i=1

qt,irt,i − r(xt)︸ ︷︷ ︸
(IV)

]

We bound away each term in a modular manner, until we are left with the regret of the
standard exponential weights algorithm. The terms (I) and (III) are controlled by the bias of
the Lasso estimator, and are O(n3/4C(M, δ, d)) (Lemma 19). The last term (IV) is zero in
expectation, and reflects the deviation of r(xt) from its mean. We observe that it is a bounded
Martingale difference sequence growing with O(

√
n) (Lemma 18). Term (II) is the regret

of our online optimizer, which depends on the variance of the Lasso estimator. We bound
this term with O(

√
nC(M, δ, d) logM), by first conducting a standard anytime analysis of

exponential weights (Lemma 17), and then incorporating the anytime Lasso variance bound
(Lemma 20). We highlight that neither of the above steps require assumptions about the
base agents. Combining these steps, Lemma 16 establishes the formal bound on the model
selection regret.

A.3 Extended Discussion of Results

In light of Theorem 1 and Theorem 3, we discuss some properties of ALExp.
Sparse EXP4. Our approach presents a new connection between online learning and

high-dimensional statistics. The rule for updating the probabilities in ALExp is inspired by
the exponential weighting for Exploration and Exploitation with Experts (EXP4) algorithm,
which was proposed by Auer et al. (2002b) and has been extensively studied in the adversarial
bandit and learning with expert advice literature (e.g., McMahan and Streeter, 2009; Beygelz-
imer et al., 2011). EXP4 classically uses importance-weighted (IW) or ordinary least squares
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(LS) estimators to estimate the reward rt,j , both of which are unbiased but high-variance
choices (Bubeck et al., 2012). In particular, in our linearly parametrized setting, the variance
of IW and LS scales with Md, which will lead to a poly(M) regret. However, it is known
that introducing bias can be useful if it reduces the variance (Zimmert and Lattimore, 2022).
For instance, EXP3-IX (Kocák et al., 2014) and EXP4-IX (Neu, 2015) construct a biased
IW estimator. Equivalently, others have crafted regularizers for the reward of the online
optimizer, seeking to improve the bias-variance balance (e.g., Abernethy et al., 2008; Bartlett
et al., 2008; Abernethy and Rakhlin, 2009; Bubeck et al., 2017; Lee et al., 2020; Zimmert and
Lattimore, 2022). A key technical observation in this work is that our online Lasso estimator
leads EXP4 to achieve sublinear regret which depends logarithmically on M . This is due to
the fact that while the estimator itself is Md-dimensional, its bias squared and variance scale
with

√
d logM . To the best of our knowledge, this work is first to instantiate the EXP4

algorithm with a sparse low-variance estimator.
Adaptive and Anytime. To estimate the reward, prior work on sparse bandits

commonly emulate the Lasso analysis on offline data or on a martingale sequence with a
known length (Hao et al., 2020; Bastani and Bayati, 2020). These works require a long enough
sequence of exploratory samples, and knowledge of the horizon to plan this sequence. ALExp
removes both of these constraints, and presents a fully adaptive algorithm. Crucially, we
employ the elegant martingale bounds of Howard et al. (2020) to present the first time-uniform
analysis of the Lasso with history-dependent data (Theorem 3). This way we can use all the
data points and explore only adaptively with a probability which vanishes at a O(t−1/4) rate.
Our anytime confidence bound for Lasso, together with the horizon-independent analysis of
the exponential weights algorithm, also allows ALExp to be stopped at any time with valid
guarantees.

Rate Optimality. For M ≫ n, we obtain a O(
√
n log3M) regret, which matches the

rate conjectured by Agarwal et al. (2017). However, if M is comparable to n or smaller, our
regret scales with O(n3/4

√
logM), and while it is still sublinear and scales logarithmically

with M , the dependency on n is sub-optimal. This may be due to the conservative nature of
our model selection analysis, during which we do not make assumptions about the dynamics
of the base agents. Therefore, to ensure sufficiently diverse data for successful model selection,
we need to occasionally choose exploratory actions with a vanishing probability of γt. We
conjecture that this is avoidable, if we make more assumptions about the agents, e.g., that a
sufficient number of agents can achieve sublinear regret if executed in isolation. Banerjee
et al. (2023) show that the data collected by sublinear algorithms organically satisfies a
minimum eigenvalue lowerbound, which may also be sufficient for model selection. We leave
this as an open question for future work.

Appendix B. Time Uniform Lasso Analysis
We start by showing that the sum of squared sub-gaussian variables is a sub-Gamma process
(c.f. Definition 22).

Lemma 4 (Empirical Process is sub-Gamma). For t ≥ 1, suppose ξt are a sequence
conditionally standard sub-Gaussians adapted to the filtration Ft = σ(ξ1, . . . , ξt), Let vt ∈ R,
and Zt := ξ2t − 1. Define the processes St :=

∑t
i=1 Zivi and Vt := 4

∑t
i=1 v

2
i . Then (St)

∞
t=0 is

sub-Gamma with variance process (Vt)
∞
t=0 and scale parameter c = 4maxi≥1 vi.
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Proof of Lemma 4. By definition (c.f. Definition 1, Howard et al., 2021), St is sub-Gamma if
for each λ ∈ [0, 1/c), there exists a supermartingale (Mt(λ))

∞
t=0 w.r.t. Ft, such that EM0 = 1

and for all t ≥ 1:

exp

{
λSt −

λ2

2(1− cλ)
Vt

}
≤Mt(λ) a.s.

We show the above holds in equality by proving that the left hand side itself, is a super-
martingale w.r.t. Ft. We define, Mt(λ) := exp{λSt − λ2Vt/2(1− cλ)}, therefore,

E [Mt|Ft−1] ≤ E
[
exp

(
λSt−1 −

λ2

2(1− cλ)
Vt−1 + λZtvt −

2λ2v2t
(1− cλ)

)
|Ft−1

]
= E [Mt−1|Ft−1]E [exp (λZtvt) |Ft−1] exp

(
− 2λ2v2t
1− cλ

)
= Mt−1E [exp (λZtvt) |Ft−1] exp

(
− 2λ2v2t
1− cλ

)
.

Note that Zt is Ft−1-measurable, conditionally centered and conditionally sub-exponential
with parameters (ν, α) = (2, 4) (c.f. Vershynin (2018, Lemma 2.7.6) and Wainwright (2019,
Example 2.8)). Therefore, for λ < 1/c,

E [exp (λvtZt) |Ft−1] ≤ exp
(
2λ2v2t

)
≤ exp

(
2λ2v2t
1− cλ

)
,

where the last inequality holds due to the fact that 0 ≤ 1− cλ < 1. Therefore,

E [Mt|Ft−1] ≤Mt−1 exp

(
2λ2v2t
1− cλ

)
exp

(
− 2λ2v2t
1− cλ

)
= Mt−1.

for λ ∈ [0, 1/c), concluding the proof.

We now construct a self-normalizing martingale sequence based on ℓ2-norm of the empirical
process error term, and recognize that it is a sub-gamma process. We then employ our curved
Bernstein bound Lemma 25 to control the boundary. This step will allow us to “ignore” the
empirical process error term later in the lasso analysis.

Lemma 5 (Empirical Process is dominated by regularization.). Let

Aj =
{
∀ t ≥ 1 :

∥∥∥(Φ⊤
t εt)j

∥∥∥
2
/t ≤ λt/2

}
.

Then, for any 0 ≤ δ < 1, the event A = ∩Mj=1Aj happens with probability 1 − δ, if for all
t ≥ 1,

λt ≥
2σ√
t

√
1 +

5√
2

√
d (log(2M/δ) + (log log d)+) +

12√
2
(log(2M/δ) + (log log d)+).

Proof of Lemma 5. This proof includes a treatment of the empirical process similar to Lemma
B.1 in Kassraie et al. (2022), but adapts it to our time-uniform setting. Since εi are zero-mean
sub-gaussian variables, as driven in Lemma 3.1 (Lounici et al., 2011), it holds that

Ac
j =

{
∃t : 1

t2
εTt Φt,jΦ

⊤
t,jεt ≥

λ2

4

}
=

{
∃t :

∑t
i=1 vi(ξ

2
i − 1)√

2∥vt∥
≥ αt,j

}
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where ξi are sub-gaussian variables with variance proxy 1, scalar vi denotes the i-th eigenvalue
of Φt,jΦ

⊤
t,j/t with the concatenated vector vt = (v1, . . . , vt), and

αt,j =
t2λ2/(4σ2)− tr(Φ⊤

t,jΦt,j)
√
2
∥∥∥Φ⊤

t,jΦt,j

∥∥∥
Fr

.

We can apply Lemma 25 to control the probability of event Ac
j by tuning λ. Mainly, for Ac

j to
happen with probability less than δ/M , Lemma 25 states that the following must hold for all t,

√
2∥vt∥2αt,j ≥

5

2

√
max

{
4∥vt∥22, 1

}
ωδ/M (∥vt∥2) + 12ωδ/M (∥vt∥2)max

t≥1
vt (4)

Recall that w.l.o.g. feature maps are bounded everywhere ∥ϕj(·)∥2 ≤ 1, and rank(Φj) ≤ d
which allows for the following matrix inequalities,

tr(Φ⊤
t,jΦt,j) = tr(Φt,jΦ

⊤
t,j) =

t∑
i=1

ϕ⊤
j (xi)ϕj(xi) ≤ t∥∥∥Φt,jΦ

⊤
t,j

∥∥∥ ≤ tr(Φt,jΦ
⊤
t,j) ≤ t∥∥∥Φt,jΦ

⊤
t,j

∥∥∥ ≤ ∥∥∥Φt,jΦ
⊤
t,j

∥∥∥
Fr
≤
√
d
∥∥∥Φt,jΦ

⊤
t,j

∥∥∥ ≤ t
√
d

Therefore,
∥vt∥ =

∥∥∥Φt,jΦ
⊤
t,j

∥∥∥
Fr
/t ≤

√
d, max

t≥1
vt = max

t≥1

∥∥∥Φt,jΦ
⊤
t,j

∥∥∥/t ≤ 1.

For Equation (4) to hold, is suffices that for all t ≥ 1,

λ ≥ 2σ√
t

√
1 +

5

2
√
2

√
4d (log(2M/δ) + (log log d)+) +

12√
2
(log(2M/δ) + (log log d)+).

Therefore, if λt are chosen to satisfy the above inequality, each Ac
j happens with probability less

than δ/M . Then by applying union bound, ∪Mj=1A
c
j happens with probability less than δ.

Proof of Theorem 3. The theorem statement requires that the regularization parameter
λt is chosen such that condition of Lemma 5 is met, and therefore event A happens with
probability 1− δ. Throughout this proof, which adapts the analysis of Theorem 3.1. Lounici
et al. (2011) to the time-uniform setting, we condition on A happening, and later incorporate
the probability.

Step 1. Let θ̂t be a minimizer of L and θ be the true coefficients vector, then
L(θ̂t;Ht, λt) ≤ L(θ;Ht, λt). Writing out the loss and re-ordering the inequality we ob-
tain,

1

t

∥∥∥Φt(θ̂t − θ)
∥∥∥2
2
≤ 2

t
εTt Φt(θ̂t − θ) + 2λt

M∑
j=1

(
∥θj∥2 −

∥∥∥θ̂t,j∥∥∥
2

)
.

which is often referred to as the Basic inequality (Bühlmann and Van De Geer, 2011). By
Cauchy-Schwarz and conditioned on event A,

εTt Φt(θ̂t − θ) ≤
M∑
j=1

∥∥(ΦT
t εt)j

∥∥
2

∥∥∥θ̂t,j − θj

∥∥∥
2
≤ tλ

2

M∑
j=1

∥∥∥θ̂t,j − θj

∥∥∥
2
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then adding λt
∑M

j=1

∥∥∥θ̂t,j − θj

∥∥∥
2

to both sides, applying the triangle inequality, and recalling
from Section 3 that θj = 0 for j ̸= j⋆ gives

1

t

∥∥∥Φt(θ̂t − θ)
∥∥∥2
2
+ λt

M∑
j=1

∥∥∥θ̂t,j − θj

∥∥∥
2
≤ 2λt

M∑
j=1

∥∥∥θ̂t,j − θj

∥∥∥
2
+ 2λt

M∑
j=1

(
∥θj∥2 −

∥∥∥θ̂t,j∥∥∥
2

)
≤ 4λt

∥∥∥θ̂t,j⋆ − θj⋆
∥∥∥
2
.

Since each term on the left hand side is positive, then each is also individually smaller than
the right hand side, and we obtain,

1

t

∥∥∥Φt(θ̂t − θ)
∥∥∥2
2
≤ 4λt

∥∥∥θ̂t,j⋆ − θj⋆
∥∥∥
2

(5)

M∑
j=1
j ̸=j⋆

∥∥∥θ̂t,j − θj

∥∥∥
2
≤ 3
∥∥∥θ̂t,j⋆ − θj⋆

∥∥∥
2

(6)

Step 2. Consider a sequence (c1, . . . , ck, . . . ), where c1 ≥ · · · ≥ ck . . . , then

ck ≤
1

k
(kck +

∑
i>k

ci) ≤
∑
i≥1

ci
k
. (7)

Define J1 = {j⋆} and J2 = {j⋆, j′} where

j′ = argmax
j∈[M ]
j ̸=j⋆

∥∥∥θ̂t,j − θj

∥∥∥
2
.

For any J ⊂ [M ] the complementing set is denoted as Jc = [M ] \ J . For simplicity let
cj =

∥∥∥θ̂t,j − θj

∥∥∥
2
, and let π(k) denote the index of the k-th largest element of {cj : j ∈ Jc

1}.
By definition of Jc

2 we have,

∑
j∈Jc

2

∥∥∥θ̂t,j − θj

∥∥∥2
2
=

∑
k>1

π(k)∈Jc
1

c2k
(7)
≤

∑
k>1

π(k)∈Jc
1

(
∑

i∈Jc
1
ci)

2

k2

≤
(∑
i∈Jc

1

ci
)2 ∑

k>1
π(k)∈Jc

1

1

k2

(6)
≤ 9c2j⋆

≤ 9(c2j⋆ + c2j′) = 9
∑
j∈J2

∥∥∥θ̂t,j − θj

∥∥∥2
2
,

which, in turn, gives

∥∥∥θ̂t − θ
∥∥∥
2
=

√√√√ M∑
j=1

∥∥∥θ̂t,j − θj

∥∥∥2
2
≤
√
10
∑
j∈J2

∥∥∥θ̂t,j − θj

∥∥∥2
2
. (8)
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Step 3. On the other hand, due to (6), and by definition of J2 it also holds that∑
j∈Jc

2

∥∥∥θ̂t,j − θj

∥∥∥
2
≤ 3

∑
j∈J2

∥∥∥θ̂t,j − θj

∥∥∥
2
.

From the theorem assumptions and Definition 2, we know that there exists 0 < κ(Φt, 2),
therefore by Definition 2, the feature matrix Φt satisfies,∑

j∈J2

∥∥∥θ̂t,j − θj

∥∥∥2
2
≤ 1

tκ2(Φt, 2)

∥∥∥Φt(θ̂t − θ)
∥∥∥2
2

(5)
≤ 1

κ2(Φt, 2)
4λt

∥∥∥θ̂t,j⋆ − θj⋆
∥∥∥
2
≤ 1

κ2(Φt, 2)
4λt

√∑
j∈J2

∥∥∥θ̂t,j − θj

∥∥∥2
2
.

From here, by applying (8) we get,

∥∥∥θ̂t − θ
∥∥∥
2
≤ 4
√
10λt

κ2(Φt, 2)
.

If λt are chosen according to Lemma 5, event A and, in turn, the inequality above hold with
probability greater than 1− δ.

Appendix C. Results on Exploration

In this section we present lower-bounds on the eigenvalues of the covariance matrix ΦtΦ
⊤
t ,

as it is later used in our regret analysis. In particular, we show that the feature matrix Φt

satisfies the restricted eigenvalue condition (Definition 2) required for valid Lasso confidence
set (Theorem 3), and calculate a lower bound on κ(Φt, 2). The lower bound is later used by
Lemma 19 and Lemma 20 to develop the model selection regret. We show this bound in
three steps.

Equivalent to Definition 2, we write κ(Φt, s) as κ(Φt, s) = infb∈Ξs ∥Φtb∥2/
√
t where

Ξs :=
{
b ∈ Rd\{0}

∣∣∣∑j /∈J ∥bj∥2 ≤ 3
∑

j∈J ∥bj∥2,
√∑

j∈J ∥bj∥22 ≤ 1 s.t. J ⊂ {1, . . . ,M}, |J | ≤ s.
}
. (9)

Using the set Ξs we define
κ̃(Σ, s) := min

b∈Ξs

b⊤Σb. (10)

and use in this section for simplicity.
Step I. Consider the exploratory steps at which αt = 1. Let Φπ,t be a sub-matrix of Φt

where only rows from exploratory steps are included. Note that Φπ,t ∈ Rt′×dM is a random
matrix, where t′ the number of rows are also random. We show that κ2(Φt, s) is lower
bounded by κ2(Φt,π, s).

Lemma 6. Suppose Φπ,t has t′ rows. Then,

κ2(Φt, s) ≥
t′

t
κ2(Φπ,t, s)
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While the number of rows of Φπ,t is a random variable, we condition on the event that
Φπ,t has t′ rows, and investigate the distribution of its restricted eigenvalues.

Step II. The restricted eigenvalues of the exploratory sub-matrix are well bounded away
from zero.

Lemma 7. Let π be the solution to (2), and s ∈ N. Suppose Φπ,t has t′ rows. Then for all
δ > 0,

P
(
∀t′ : κ2(Φπ,t, s) ≥ κ̃(Σ, s)− 80s√

t′

√
(log log 4t′)+ + log(2Md/δ)

)
≥ 1− δ

where κ̃(Σ, s) is defined in (10).

Step III. Remains to combine the two lemmas above and incorporate a high probability
bound on t′, showing that it is close to

∑t
s=1 γs.

Lemma 8. Let π be the solution to (2). There exists absolute constants C1, C2 which satisfy,

P
(
∀t ≥ 1 : κ2(Φt, 2) ≥ C1κ̃(Σ, 2)t

−1/4 − C2t
−5/8

√
log(Md/δ) + (log log t)+

)
≥ 1− δ

if γt = O(t−1/4), as prescribed by Theorem 1. It further holds that,

P
(
∀t ≥ 1 : κ2(Φt, 2) ≥ C1Cmint

−1/4 − C2t
−5/8

√
log(Md/δ) + (log log t)+

)
≥ 1− δ

The regret analysis of Hao et al. (2020) also relies on connecting κ(Φt, s) to Cmin, and
for this, they use Theorem 2.4 of Javanmard and Montanari (2014). This theorem states
that there exists a problem-dependent constant C1 for which κ2(Φt, s) ≥ C1Cmin with high
probability, if t ≥ n0 and roughly n0 = O( 3

√
n2 logM). We highlight that Lemma 8, presents

a lower-bound which holds for all t ≥ 1, however this comes at the cost of getting a looser
lower bound than the result of Javanmard and Montanari (2014) for the larger time steps t.
In fact, due to the sub-optimal dependency of Lemma 8 on t, we later obtain sub-optimal
dependency on the horizon for the case when n≫M . It is unclear to us if this rate can be
improved without assuming knowledge of n, or that n ≥ n0.

For the last lemma in this section we show that the empirical sub-matrices Φt,j are also
bounded away from zero. This will be required later for proving Lemma 15.

Lemma 9 (Base Model λmin Bound). Assume π is the maximizer of Equation (2). Then,
with probability greater than 1− δ, simultaneously for all j = 1, . . . ,M and t ≥ 1,

λmin(Φ
⊤
t,jΦt,j) ≥ C1Cmint

3/4 − C2t
3/8
√
log(Md/δ) + (log log t)+

if γt = O(t−1/4), as prescribed by Theorem 1.

C.1 ALExp with Uniform Exploration

We present our main regret bound (Theorem 1) in terms of Cmin, which only depends on
properties of the feature maps and the action domain. We give a lower-bound on Cmin for a
toy scenario which corresponds to the problem of linear feature selection over convex action
sets.
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Proposition 10 (Invertible Features). Suppose ϕ(x) := Ax : Rd → Rd is an invertible
linear map, and X ∈ Rd is a convex body. Then,

Cmin ≥
λmin(A)

λ2
max(T )

> 0

where T is the transformation which maps X to an isotropic body.

We expect this proposition to be applicable to any action set which span Rd, and to
non-linear invertible maps. The lower-bound of Proposition 10 is achieved by simply exploring
via π = Unif(X ). Inspired by Schur et al. (2023, Lemma E.13), we show that even for
non-convex action domains and orthogonal feature maps, the uniform exploration yields a
constant lower-bound on restricted eigenvalues.

Proposition 11 (Orthonormal Features). Suppose ϕj : X → R are chosen from an orthogonal
basis of L2(X ), and satisfy ∥ϕi∥L2

µ(X )/Vol(X ) ≥ 1. Then there exist absolute constants C1

and C2 for which the exploration distribution π = Unif(X ) satisfies

P
(
∀t ≥ 1 : κ2(Φt, 2) ≥ C1t

−1/4 − C2t
−5/8

√
log(Md/δ) + (log log t)+

)
≥ 1− δ.

The d = 1 condition is met without loss of generality, by splitting the higher dimensional
feature maps and introducing more base features, which will increase M . Moreover, the
orthonormality condition is met by orthogonalizing and re-scaling the feature maps. Basis
functions such as Legendre polynomials and Fourier features (Rahimi et al., 2007) satisfy
these conditions.

By invoking Proposition 11, instead of Lemma 8 in the proof of Theorem 1, we obtain
the regret of ALExp with uniform exploration.

Corollary 12 (ALExp with Uniform Exploration). Let δ ∈ (0, 1]. Suppose ϕj : X → R
are chosen from an orthogonal basis of L2(X ), and satisfy ∥ϕi∥L2

µ(X )/Vol(X ) ≥ 1. Assume
the oracle agent employs a UCB or a Greedy policy, as laid out in Section 5. Choose
ηt = O(1/

√
tC(M, δ, d)) and γt = O(t−1/4) and λt = O(C(M, δ, d)/

√
t), then ALExp with

uniform exploration π = Unif(X ) attains the regret

R(n) = O
(
Bn3/4 +

√
nC(M, δ, d) logM +B2√n+B

√
n ((log log nB2)+ + log(1/δ))

+ (n3/4 + log n)C(M, δ, d) + n5/8
√
d log n+ log(1/δ) +B2

)
with probability greater than 1− δ, simultaneously for all n ≥ 1. Here,

C(M, δ, d) = O
(√

1 +
√

d (log(M/δ) + (log log d)+) + (log(M/δ) + (log log d)+)

)
.

C.2 Proof of Results on Exploration

As an intermediate step, we consider the restricted eigenvalue property of the empirical
covariance matrix. Given t′ samples, the empirical estimate of Σ is

Σ̂t′ :=
1

t′

t′∑
s=1

ϕ(xs)ϕ
⊤(xs) (11)
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where xs are sampled according to π. We show that every entry of Σ̂t′ is close to the
corresponding entry in Σ, and later use it in the proofs of eigenvalue lemmas.

Lemma 13 (Anytime Bound for The Entries of Empirical Covariance Matrix). Let Σ̂t′ be
the empirical covariance matrix corresponding to Σ(π,ϕ) given t′ samples. Then,

P
(
∃t′ : d∞(Σ, Σ̂t′) ≥

5√
t′

√
((log log 4t′)+ + log(2Md/δ))

)
≤ δ

where d∞(A,B) := maxi,j |Ai,j −Bi,j |.

We are now ready to present the proofs to Lemmas in Appendix C

Proof of Lemma 6. Let Ψ(t) = ϕ(xt)ϕ
⊤(xt) ∈ RdM×dM for all t = 1, . . . , n. Note that Ψ(t)

is positive semi-definite by construction. We have,

∥Φtb∥22 =
t∑

s=1

b⊤Ψ(s)b =

t∑
s∈Tπ

b⊤Ψ(s)b+

t∑
s/∈Tπ

b⊤Ψ(s)b

where the set Tπ contains the indices of the steps at which the action is selected according to
π. We use αt to indicate whether s ∈ Tπ or not. Therefore, ,

κ2(Φt, s) =
1

t
min
b∈Ξs

∥Φtb∥22

= min
b∈Ξs

1

t

∑
s∈Tπ

b⊤Ψ(s)b+
1

t

∑
s/∈Tπ

b⊤Ψ(s)b

≥ min
b∈Ξs

1

t

∑
s∈Tπ

b⊤Ψ(s)b

where the last inequality holds due to Ψ(s) being PSD. Then we have,

κ2(Φt, s) ≥ min
b∈Ξs

b⊤

(
1

t

t∑
s∈Tπ

Ψ(s)

)
b =
|Tπ|
t

κ2(Φπ,t, s)

Proof of Lemma 7. We observe that the restricted minimum eigenvalue of Σ̂t′ is the κ2

constant of Φπ,t′ :
κ2(Φπ,t, s) = min

b∈Ξs

b⊤Σ̂t′b = κ̃(Σ̂t′ , s).

Inspired by Lemma 10.1 in van de Geer and Bühlmann (2009), we show that element-wise
closeness of matrices Σ and Σ̂t′ (c.f. Lemma 13) implies closeness in κ̃:∣∣κ2(Φπ,t, s)− κ̃(Σ, s)

∣∣ = ∣∣∣κ̃(Σ̂t′ , s)− κ̃(Σ, s)
∣∣∣ = ∣∣∣κ̃(Σ̂t′ − Σ, s

)∣∣∣ ≤ min
b∈Ξs

d∞(Σ, Σ̂t′)∥b∥21

where the last line holds due to Hölder’s. Moreover, since b ∈ Ξs, for any J ⊂ [dM ] where
|J | ≤ s it additionally holds that ∥bJ∥2 ≤ 1 and

∥b∥1 ≤ (1 + 3)∥bJ∥1 ≤ 4
√
s∥bJ∥2 ≤ 4

√
s
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which gives,
κ2(Φπ,t, s) ≥ κ̃(Σ, s)− 16sd∞(Σ, Σ̂t′).

Therefore by Lemma 13,

κ2(Φπ,t, s) ≥ κ̃(Σ, s)− 80s√
t′

√
((log log 4t′)+ + log(2Md/δ)) (12)

with probability greater than 1− δ, simultaneously for all t′ ≥ 1.

Proof of Lemma 8. In Lemma 6 we showed that

κ2(Φt, s) ≥
t′

t
κ2(Φπ,t, s)

where t′ indicates the number of rows in the exploratory sub-matrix of Φt. Recall that
t′ =

∑t
s=1 αs where αs are i.i.d Bernoulli random variables with success probability of γs.

Due to Lemma 24,

P

(
∀t ≥ 1 :

∣∣∣∣∣t′ −
(

t∑
s=1

γs

)∣∣∣∣∣ ≤ ∆t

)
≥ 1− δ/2

where

∆t :=
5

2

√
((log log t)+ + log(8/δ))

t
.

For the rest of the proof, to keep the calculations simple, we ignore the values of the absolute
constants, and use the notation g(t) = o(f(t)) if there exists an absolute constant c where
g(t) ≤ c|f(t)| for all t ≥ 1. Let Γt =

∑t
s=1 γs, then since γs = O(s−1/4) there exists C such

that Γt = Ct3/4.
Due to Lemma 7, with probability greater than 1− δ/2 the following holds for all t ≥ 1

κ2(Φt, 2) ≥
t′

t
Cmin −

160
√
t′

t

√
(log log 4t′)+ + log(4Md/δ)

≥ Γt −∆t

t
Cmin − 160

√
Γt +∆t

t2

√
(log log (4Γt +∆t))+ + log(4Md/δ)

It is straightforward to observe that there exists absolute constants C̃i which satisfy,

κ2(Φt, 2) ≥ C̃1t
−1/4Cmin −

5t−3/2Cmin

2

√
((log log t)+ + log(8/δ))

− C̃2t
−5/8

√
log(Md/δ) + (log log t)+ − o

(
t−5/8

√
log(Md/δ) + (log log t)+

)
≥ C̃1t

−1/4Cmin − C̃3t
−5/8

√
log(Md/δ) + (log log t)+

The last inequality holds since t−3/2
√
log log t = o(t−5/8

√
log log t). The above chain of

inequalities imply that there exist absolute constants C1, C2 (w.r.t the parameters of the
problem), for which

P
(
∀t ≥ 1 : κ2(Φt, 2) ≥ C1Cmint

−1/4 − C2t
−5/8

√
log(Md/δ) + (log log t)+

)
≥ 1− δ.
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Proof of Lemma 9. Fix j ∈ {1, . . . ,M}, and construct the set

Ξ1,j =
{
b ∈ Rd \ {0}

∣∣∣b = (b1, . . . , bM ), s.t. bj ∈ Rd, ∥bj∥2 ≤ 1 and ∀j′ ̸= j : bj′ = 0
}
.

Note that Ξ1,j ⊂ Ξs. Therefore,

inf
b∈Ξ1,j

∥Φtb∥2 ≥ inf
b∈Ξs

∥Φtb∥2 =
√
tκ(Φt, s).

Moreover, by construction of Ξ1,j we have for all b ∈ Ξ1,j that Φtb = Φt,jbj , therefore,

inf
b∈Ξ1,j

∥Φtb∥22 = inf
bj∈Rd

∥bj∥22≤1

∥Φt,jbj∥22 = λmin(Φ
⊤
t,jΦt,j).

From the above equations we conclude that λmin(Φ
⊤
t,jΦt,j) ≥ tκ2(Φt, s), for all j = 1, . . . ,M .

Therefore, using Lemma 8 we obtain that there exists C1, C2 such that

P
(
∀t ≥ 1, j = 1, . . . ,M : λmin(Φ

⊤
t,jΦt,j) ≥ C1Cmint

3/4 − C2t
3/8
√

log(Md/δ) + (log log t)+

)
≥ 1− δ

Proof of Proposition 10. Since X is a convex body, then there exists an invertible map T ,
such that T (X ) is an isotropic body (e.g. Proposition 1.1.1., Giannopoulos, 2003). Then by
definition, X̄ ∼ Unif(T (X )) is an isotropic distribution and Cov(X̄) = Id (e.g., c.f. Chapter
3.3.5 Vershynin, 2018). Since ϕ is linear and invertible, it may be written is as ϕ(x) = Ax,
where A is an invertible matrix. Therefore,

Σ(π,ϕ) = Cov(ϕ(X)) = A⊤Cov(X)A = A⊤Cov
(
T−1X̄

)
A = A⊤(T−1)2A.

As for the minimum eigenvalue, suppose v ∈ Rd and ∥v∥ = 1, then

Cmin ≥ λmin (Σ(π,ϕ)) ≥ v⊤A⊤(T−1)2Av ≥ ∥Av∥2λmin(T
−2) =

∥Av∥2
λ2
max(T )

≥ λmin(A)

λ2
max(T )

.

Proof of Proposition 11. By the assumption of the proposition, for all i ∈M

[Σ(π,ϕ)]i,i = Ex∼πϕ
2
i (x) =

1

Vol(X )

∫
X
ϕ2
i (x)dµ(x) ≥ 1

and for all i ̸= j,

[Σ(π,ϕ)]i,j = Ex∼πϕi(x)ϕj(x) =
1

Vol(X )

∫
X
ϕi(x)ϕj(x)dµ(x) = 0

We use Σ = Σ(π,ϕ). For any b ∈ RMd where ∥b∥ ≤ 1,

b⊤Σb =
∑

i,j∈[M ]

b⊤j Σi,jbi =
∑
i∈[M ]

b⊤i Σi,ibi +
∑

i,j∈[M ],i ̸=j

b⊤j Σi,jbi
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=
∑
i∈[M ]

b⊤i Σi,ibi ≥ 1
∑
i∈[M ]

∥bi∥22 ≥ 1.

Which implies,
κ̃(Σ, s) = min

b∈Ξs

b⊤Σb ≥ 1.

By Lemma 8, there exist absolute constants C1 and C2 for which,

P
(
∀t ≥ 1 : κ2(Φt, 2) ≥ κ̃(Σ, 2)C1t

−1/4 − C2t
−5/8

√
log(Md/δ) + (log log t)+

)
≥ 1− δ.

Proof of Lemma 13. We show the element-wise convergence of Σ to Σ̂t for the (i, j) entry
where i, j = 1, . . . , dM . Consider the random sequence Xs := Σi,j − ϕi(xs)ϕj(xs). We show
that X1, . . . , Xn satisfies conditions of Lemma 26. We first observe that

E[Xs|X1:s−1] = EXs = Σ(i, j)− Ex∼πϕi(x)ϕj(x) = 0

since by definition Σi,j = Ex∼πϕi(x)
⊤ϕj(x). Moreover, we have normalized features ∥ϕ(·)∥ ≤

1, therefore, each entry ϕi(·)ϕj(·) is also bounded, yielding |Xs| ≤ 2. Then Lemma 26 implies
that for all δ̃ > 0,

P

(
∃t′ : 1

t′

t′∑
s=1

Xs ≥
5√
t′

√(
(log log 4t′)+ + log(2/δ̃)

))
≤ δ̃.

Setting δ̃ = δ/(dM) and taking a union bound over all indices concludes the proof.

Appendix D. Proof of Regret Bound

Theorem 14 (Anytime Regret, Formal). Let δ ∈ (0, 1] and π be the maximizer of (2).
Assume the oracle agent employs a UCB or a Greedy policy, as laid out in Section 5. Suppose
ηt = O(Cmin/

√
tC(M, δ, d)) and γt = O(t−1/4) and λt = O(C(M, δ, d)/

√
t), then exists

absolute constants Ci for which ALExp attains the regret

R(n) ≤ C1Bn3/4 + C2

√
nC−1

minC(M, δ, d) logM

+ C3B
2Cmin

√
n+ C4B

√
n ((log log nB2)+ + log(1/δ))

+ C5

(
1 + C−1

minn
−3/8

√
log(Md/δ) + (log log n)+

)
×

[
Bn1/4 + (n3/4 +

log n

Cmin
)C(M, δ, d) +

n5/8

√
Cmin

√
d log n+ log(1/δ) +B2

]
with probability greater than 1− δ, simultaneously for all n ≥ 1. Here,

C(M, δ, d) = C6σ

√
1 +

√
d (log(M/δ) + (log log d)+) + (log(M/δ) + (log log d)+).

Our main regret bound is an immediate corollary of Lemma 15 and Lemma 16, considering
the regret decomposition of (3).
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Lemma 15 (Virtual Regret of the Oracle). Let δ ∈ (0, 1] and λ̃ > 0. Assume the oracle
agent employs a UCB or a Greedy policy, as laid out in Section 5. If γt = O(t1/4), there
exists an absolute constant C1 for which with probability greater than 1− δ, simultaneously
for all n ≥ 1,

R̃j⋆(n) =
C1n5/8
√
Cmin

(
1 + n−3/8C−1

min

√
log(Md/δ) + (log log n)+

)
×
√

σ2d log
(

n
λ̃d

+ 1
)
+ 2σ2 log(1/δ) + λ̃B2

Lemma 16 (Any-Time Model-Selection Regret, Formal). Let δ ∈ (0, 1] and π be the
maximizer of (2). Suppose ηt = O(Cmin/

√
tC(M, δ, d)) and γt = O(t−1/4) and λt =

O(C(M, δ, d)/
√
t), then exists absolute constants Ci for which ALExp attains

R(n, j) ≤ C1Bn3/4 + C2

√
nC−1

minC(M, δ, d) logM

+ C3B
2Cmin

√
n+ C4B

√
n ((log lognB2)+ + log(1/δ))

+ C5

(
Bn1/4 + (n3/4 +

log n

Cmin
)C(M, δ, d)

)(
1 + C−1

minn
−3/8

√
log(Md/δ) + (log log n)+

)
with probability greater than 1− δ, simultaneously for all n ≥ 1. Here,

C(M, δ, d) = C6σ

√
1 +

√
d (log(M/δ) + (log log d)+) + (log(M/δ) + (log log d)+).

D.1 Proof of Model Selection Regret

Our technique for bounding the model selection regret relies on a classic horizon-independent
analysis of the exponential weights algorithm, presented in Lemma 17.

Lemma 17 (Anytime Exponential Weights Guarantee). Assume ηtr̂t,j ≤ 1 for all 1 ≤ j ≤M
and t ≥ 1. If the sequence η1, . . . , ηt, . . . is non-increasing, then for all n ≥ 1,

n∑
t=1

r̂t,k −
n∑

t=1

M∑
j=1

qt,j r̂t,j ≤
logM

ηn
+

n∑
t=1

ηt

M∑
j=1

qt,j r̂
2
t,j

for any arm k ∈ [M ].

Proof of Lemma 17. Define R̂t,i :=
∑t

s=1 r̂s,i to be the expected cumulative reward of agent
i after t steps. We rewrite for a fixed k

n∑
t=1

r̂t,k −
n∑

t=1

M∑
j=1

qt,j r̂t,j =
n∑

t=1

r̂t,k −
n∑

t=1

Ej∼qt [r̂t,j ].

We focus on a single term in the second sum. For any t, we have

−Ej∼qt [r̂t,j ] = log(exp(−Ej∼qt [
ηt
ηt
r̂t,j ])) = log(exp(−Ej∼qt [ηtr̂t,j ])

1/ηt)

=
1

ηt
log(exp(−Ej∼qt [ηtr̂t,j ]))
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=
1

ηt
log(Ei∼qt exp(−Ej∼qt [ηtr̂t,j ])) (13)

The inner expectation is over j, while the outer one is over i and therefore has no effect.
Moreover,

1

ηt
logEi∼qt exp(ηtEj∼qt [r̂t,j ]− ηtr̂t,i) =

1

ηt
log (exp(ηtEj∼qt [r̂t,j ])Ei∼qt exp(−ηtr̂t,i))

=
1

ηt
logEi∼qt exp(ηtEj∼qt [r̂t,j ])

+
1

ηt
logEi∼qt exp(−ηtr̂t,i) (14)

where again, the expectation can be reintroduced to get the last line. Combining (13) and
(14),

−Ej∼qt [r̂t,j ] =
1

ηt
logEi∼qt exp(−ηtEj∼qt [r̂t,j ] + ηtr̂t,i)−

1

ηt
logEi∼qt exp(ηtr̂t,i) (15)

This transformation is at the core of many exponential weight proofs (Bubeck et al., 2012;
Lattimore and Szepesvári, 2020). We first bound the first term in (15):

logEi∼qt exp(−ηtEj∼qt [r̂t,j ] + ηtr̂t,i) = logEi∼qt exp(ηtr̂t,i)− ηtEj∼qt r̂t,j
(I)
≤Ei∼qt exp(ηtr̂t,i)− 1− ηtEj∼qt r̂t,j

=Ei∼qt [exp(ηtr̂t,i)− 1− ηtr̂t,i]

(II)
≤ Ei∼qt

[
η2t r̂

2
t,i

]
(16)

where in (I) we use the fact that log(z) ≤ z − 1 and in (II) we use the fact that for x ≤ 1,
we have exp(x) ≤ 1 + x+ x2, and hence exp(x)− 1− x ≤ x2. For the second term in (15),
we will mirror the potential argument in Bubeck et al. (2012), but with a slightly different
potential function. We expand the definition of qt:

− 1

ηt
logEi∼qt exp(ηtr̂t,i) = −

1

ηt
log

∑M
i=1 exp(ηtR̂t,i)∑M

i=1 exp(ηtR̂t−1,i)

= − 1

ηt
log

1

M

M∑
i=1

exp(ηtR̂t,i) +
1

ηt
log

1

M

M∑
i=1

exp(ηtR̂t−1,i)

= Jt(ηt)− Jt−1(ηt), (17)

where we define Jt(η) = − 1
η log

1
M

∑M
i=1 exp(ηR̂t,i). We also define Ft(η) =

1
η log

1
M

∑M
i=1 exp(−ηR̂t,i).

We observe the relation J(η) = F (−η). From this, it follows that for any η, we have
J ′(η) = −F ′(−η) ≤ 0, by the argument in Bubeck et al. (2012, Theorem 3.1) that shows
F ′(η) ≥ 0 for any η.

Putting together the pieces Now, we can bound (15) by inputing (16) and (17):

−Ej∼qt [r̂t,j ] ≤ Ei∼qt

[
ηtr̂

2
t,i

]
+ Jt(ηt)− Jt−1(ηt)
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With this, we rewrite (D.1) as
n∑

t=1

r̂t,k −
n∑

t=1

Ej∼qt [r̂t,j ] =
n∑

t=1

r̂t,k +
n∑

t=1

Ei∼qt

[
ηtr̂

2
t,i

]
+

n∑
t=1

Jt(ηt)− Jt−1(ηt) (18)

Potential manipulation We can do an Abel transformation on the sum of potentials in
(18), namely obtaining

n∑
t=1

Jt(ηt)− Jt−1(ηt) =

n−1∑
t=1

(Jt(ηt)− Jt(ηt+1)) + J(ηn)

We know J ′(η) ≤ 0 and so J is decreasing and since ηt+1 ≤ ηt, we have J(ηt+1) ≥ J(ηt) or
(Jt(ηt)− Jt(ηt+1)) ≤ 0, so that for any fixed k

n∑
t=1

Jt(ηt)− Jt−1(ηt) ≤ Jn(ηn) ≤
log(M)

ηn
− 1

ηn
log

(
K∑
i=1

exp(ηnR̂n,i)

)
(∗)
≤ log(M)

ηn
− 1

ηn
log
(
exp(ηnR̂n,k)

)
=

log(M)

ηn
−

n∑
t=1

r̂t,k (19)

where (∗) follows because exp is positive and − log is decreasing (notice that we drop M − 1
terms from the sum). Plugging (19) into (18), we obtain

n∑
t=1

r̂t,k −
n∑

t=1

Ej∼qt [r̂t,j ] ≤
n∑

t=1

r̂t,k +

n∑
t=1

Ei∼qt

[
ηtr̂

2
t,i

]
+

n∑
t=1

Jt(ηt)− Jt−1(ηt)

≤
n∑

t=1

r̂t,k +
n∑

t=1

Ei∼qt

[
ηtr̂

2
t,i

]
+

log(M)

ηn
−

n∑
t=1

r̂t,k

≤
n∑

t=1

Ei∼qt

[
ηtr̂

2
t,i

]
+

log(M)

ηn

=

n∑
t=1

ηt

M∑
j=1

qt,j r̂
2
t,j +

log(M)

ηn
.

We expressed in Appendix A.3, that the model selection regret of ALExp, is closely tied
to the bias and variance of the reward estimates r̂t,j . The following lemma formalizes this
claim.

Lemma 18. (Anytime Generic regret bound) If ηt is picked such that ηtr̂t,j ≤ 1 for all
1 ≤ j ≤M and 1 ≤ t almost surely, then Algorithm 1 satisfies with probability greater than
1− 2δ/3, that simultaneously for all n ≥ 1

R(n, i) ≤ 2B
n∑

t=1

γt +
logM

ηn
+

n∑
t=1

ηt

M∑
j=1

qt,j r̂
2
t,j +

n∑
t=1

(ωt,i +

M∑
j=1

qt,jωt,j)
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+ 10B
√

n ((log log nB2)+ + log(12/δ))

where ωt,i = |rt,i − r̂t,i|.

Proof of Lemma 18. At each step t, if αt = 1, then ALExp accumulates a regret of at most
2B, since ∥θ∥∞ ≤ B and ∥ϕ(·)∥ ≤ 1. We can decompose the regret as,

R(n, i) ≤
n∑

t=1

2Bαt + (rt,i − rt)(1− αt)

For the first term, by Lemma 24, we have

2B
n∑

t=1

αt ≤ 2B

(
n∑

t=1

γt +
5

2

√
n ((log log n)+ + log(4/δ1))

)
.

simultaneously for all n ≥ 1, with probability 1−δ1. Let r̂t :=
∑M

j=1 qt,j r̂t,j . We may re-write
the second term of the regret as follows,

n∑
t=1

(1− αt)
(
rt,i − rt

)
≤

n∑
t=1

(1− αt)
[
(rt,i − r̂t,i) + (r̂t,i − r̂t) + (r̂t − rt)

]
≤

n∑
t=1

ωt,i + (1− αt)
[
(r̂t,i − r̂t) + (r̂t − rt)

]
We bound the second term on the right hand side, using Lemma 17

n∑
t=1

(1− αt)(r̂t,i − r̂t) ≤
n∑

t=1

(r̂t,i − r̂t) ≤
logM

ηn
+

n∑
t=1

ηt

M∑
j=1

qt,j r̂
2
t,j .

As for the third term,

(1− αt)(

M∑
j=1

qt,j r̂t,j − rt) = (1− αt)
[ M∑
j=1

qt,j(r̂t,j − rt,j + rt,j)− rt

]

≤
M∑
j=1

qt,jωt,j + (1− αt)

rt −
M∑
j=1

qt,jrt,j

 .

It remains to bound the deviation term. For all t that satisfy αt = 0, the action/model is
selected according to qt,j , therefore the conditional expectation of rt can be written as

Et−1 rt =
M∑
j−1

qt,jrt,j

The sequence Xt := rt − Et−1 rt is a martingale difference sequence adapted to the history
Ht, since for every t ≥ 1,

Et−1Xt = E [rt − Et−1 rt|Ht−1] = 0.
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Since rt ≤ B, then Xt ≤ 2B almost surely, which allows for an application of anytime
Azuma-Hoeffding (Lemma 26):

P

∃n :
n∑

t=1

rt −
M∑
j=1

qt,jrt,j

 ≥ 5B

2

√
n ((log log nB2)+ + log(2/δ2))

 ≤ δ2

which, in turn leads us to,

n∑
t=1

(1− αt)

rt −
M∑
j=1

qt,jrt,j

 a.s.
≤

n∑
t=1

rt −
M∑
j=1

qt,jrt,j


w.h.p.
≤ 5B

2

√
n ((log log nB2)+ + log(2/δ2))

simultaneously for all n ≥ 1. We set δ1 = δ2 = δ/3, take a union bound and put the terms
together obtaining,

R(n, i) ≤ 2B
n∑

t=1

γt +
logM

ηn
+ η

n∑
t=1

M∑
j=1

qt,j r̂
2
t,j +

n∑
t=1

(ωt,i +
M∑
j=1

qt,jωt,j)

+
5B

2

√
n ((log log nB2)+ + log(6/δ)) + 5B

√
n ((log logn)+ + log(12/δ))

We upper bound the sum of last two terms to conclude the proof.

The next two lemmas bound the bias and variance terms which appear in Lemma 18.

Lemma 19 (Anytime Bound on the Bias Term). If the regularization parameter of Lasso is
chosen at every step as

λt =
2σ√
t

√
1 +

5√
2

√
d (log(2M/δ) + (log log d)+) +

12√
2
(log(2M/δ) + (log log d)+)

and γt = O(t−1/4), then with probability greater than 1− δ, simultaneously for all n ≥ 1,

n∑
t=1

|r̂t,i − rt,i| ≤ n3/4C−1
minC(M, δ, d)

(
1 + n−3/8C−1

min

√
log(Md/δ) + (log log n)+

)
where

C(M, δ, d) := Cσ

√
1 +

√
d (log(M/δ) + (log log d)+) + (log(M/δ) + (log log d)+)

and C is an absolute constant.

Proof of Lemma 19. By the definition of the expected reward and its estimate,

n∑
t=1

|r̂t,i − rt,i| =
n∑

t=1

∣∣∣∣∫
X
(r(x)− r̂t(x))dpt+1,i(x)

∣∣∣∣
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≤
n∑

t=1

∫
X
|r(x)− r̂t(x)|dpt+1,i(x)

C.S.
≤

n∑
t=1

∫
X

∥∥∥θ − θ̂t

∥∥∥
2
∥ϕ(x)∥2dpt+1,i(x)

bdd. ϕ
≤

n∑
t=1

∥∥∥θ − θ̂t

∥∥∥
2

∫
X
dpt+1,i(x) =

n∑
t=1

∥∥∥θ − θ̂t

∥∥∥
2
.

From Theorem 3, with probability greater than 1− δ/2 simultaneously for all n ≥ 1,

n∑
t=1

|r̂t,i − rt,i| ≤
n∑

t=1

4
√
10λt

κ2(Φt, 2)
= C̃(M, δ, d)

n∑
t=1

1

κ2(Φt, 2)
√
t

where,

C̃(M, δ, d) := 8σ

√
1 +

5√
2

√
d (log(4M/δ) + (log log d)+) +

12√
2
(log(4M/δ) + (log log d)+).

From Lemma 8, there exist absolute constants C1, C2 for which,

P
(
∀t ≥ 1 : κ2(Φt, 2) ≥ C1Cmint

−1/4 − C2t
−5/8

√
log(Md/δ) + (log log t)+

)
≥ 1− δ.

Using Taylor approximation we observe that, 1
1−x−1 = 1 + x−1 + o(x−1) = O(1 + x−1).

Therefore, these exists absolute constant C3, C4, for which with probability greater than
1− δ for all t ≥ 1

n∑
t=1

C̃(M, δ, d)

κ2(Φt, 2)
√
t
≤

n∑
t=1

C̃(M, δ, d)√
t

1

C1Cmint−1/4 − C2t−5/8
√
log(Md/δ) + (log log t)+

≤
n∑

t=1

C̃(M, δ, d)√
t

C̃3

Cmint−1/4

(
1 +

C2t
−5/8

√
log(Md/δ) + (log log t)+

C1Cmint−1/4

)

≤
n∑

t=1

C̃3C̃(M, δ, d)t−1/4

Cmin

(
1 + C̃4

t−3/8

Cmin

√
log(Md/δ) + (log log t)+

)

=
C3C̃(M, δ, d)n3/4

Cmin

(
1 + C4

n−3/8

Cmin

√
log(Md/δ) + (log log n)+

)
.

Lemma 20 (Anytime Bound on Variance Term). Suppose λt is chosen according to Lemma 19,
γt = O(t−1/4) and ηt = O(Cmint

−1/2/C(M, δ, d)). Then with probability greater than 1− δ,
the following holds simultaneously for all n ≥ 1

r̂t,j ≤
4
√
10λt

κ2(Φt, 2)
+B, ∀j ∈ [M ]
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n∑
t=1

ηt

M∑
j=1

qt,j r̂
2
t,j ≤ C1B

2Cmin

√
n+ C2Bn1/4

(
1 +

n−3/8

Cmin

√
log(Md/δ) + (log log n)+

)

+ C(M, δ, d)
log n

Cmin

(
1 +

n−3/8

Cmin

√
log(Md/δ) + (log log n)+

)

where Ci are absolute constants, and C(M, δ, d) is as defined in Lemma 19, up to constant
factors.

Proof of Lemma 20. We start by upper bounding r̂t,j . For all j and t it holds that:

r̂t,j =

∫
X
⟨θ̂t,ϕ(x)⟩dpt+1,j(x) ≤

∥∥∥θ̂t∥∥∥∫
X
∥ϕ(x)∥dpt+1,j(x) ≤

∥∥∥θ̂t∥∥∥ ≤ B +
∥∥∥(θ̂t − θ)

∥∥∥
since ∥θ∥2 ≤ B. To bound the last term, we only need to invoke Theorem 3, which, in turn,
will simultaneously bound r̂t,j for all j = 1, . . . ,M :

P

(
∀t ≥ 1, ∀j ∈ [M ] : r̂t,j ≤

4
√
10λt

c2κ,t
+B

)
≥ 1− δ

Which implies for all t ≥ 1,

M∑
j=1

qt,j r̂
2
t,j ≤

(
4
√
10λt

c2κ,t
+B

)2 M∑
j=1

qt,j =
160λ2

t

c4κ,t
+B2 +

8B
√
10λt

c2κ,t
.

For the last term, similar to the proof of Lemma 19 we have,

n∑
t=1

ηt
8B
√
10λt

c2κ,t
≤ C1Bn1/4

(
1 +

n−3/8

Cmin

√
log(Md/δ) + (log log n)+

)
for some absolute constant C1. We treat the squared term similarly,

n∑
t=1

ηt
160λ2

t

c4κ,t
≤ C(M, δ, d)

n∑
t=1

C̄3

tCmin

(
1 + C̄4

t−3/8

Cmin

√
log(Md/δ) + (log log t)+

)

≤ C(M, δ, d)
C3 log n

Cmin

(
1 + C4

n−3/8

Cmin

√
log(Md/δ) + (log log n)+

)
.

Note that the last inequality is not tight. This term will not be fastest growing term in the
regret, so we have little motivation to bound it tightly. Therefore,

n∑
t=1

ηt

M∑
j=1

qt,j r̂
2
t,j ≤ C1B

2Cmin

√
n+ C2Bn1/4

(
1 +

n−3/8

Cmin

√
log(Md/δ) + (log log t)+

)

+ C(M, δ, d)
log n

Cmin

(
1 + C4

n−3/8

Cmin

√
log(Md/δ) + (log log n)+

)
where Ci are absolute constants.
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Proof of Lemma 16. We start by conditioning on the event E that ηt is picked such that
ηtr̂t,j for all t ≥ 1 and j = 1, . . . ,M . Then by application of Lemma 18 we get, with
probability greater than 1− 2δ/3,

R(n, i) ≤ 2B
n∑

t=1

γt +
logM

ηn
+

n∑
t=1

ηt

M∑
j=1

qt,j r̂
2
t,j

+

n∑
t=1

(ωt,i +

M∑
j=1

qt,jωt,j)

+ 10B
√
n ((log log nB2)+ + log(12/δ))

We invoke Lemma 19 and Lemma 20 with δ → δ/3 take a union bound, to bound the
variance and ωt,i terms as well. These lemmas require one application of Theorem 3 to
hold simultaneously and no additional union bound is required between them, since the
randomness comes only from the confidence interval over θ̂t.

R(n, i) ≤C1Bn3/4 +
logM

ηn

+ C2B
2Cmin

√
n+ C3Bn1/4

(
1 +

n−3/8

Cmin

√
log(Md/δ) + (log log n)+

)

+ C(M, δ, d)
log n

Cmin

(
1 +

n−3/8

Cmin

√
log(Md/δ) + (log log n)+

)

+ n3/4C(M, δ, d)

(
1 +

n−3/8

Cmin

√
log(Md/δ) + (log log n)+

)
+ 10B

√
n ((log log nB2)+ + log(12/δ))

with probability greater than 1 − δ, conditioned on event E. First, suppose this con-
dition is met with probability greater than 1 − 2δ, we will later verify this. Now let
B = B(δ̃,M, d, n,B, σ, Cmin) denote the right-hand-side of the regret inequality above. By
the chain rule we may write,

P
(
Reg(n, i) ≤ B

)
≥ P

(
R(n, i) ≤ B

∣∣∣∀t ∈ [n], j ∈ [M ] : ηtr̂t,j ≤ 1
)
P (∀t ∈ [n], j ∈ [M ] : ηtr̂t,j ≤ 1)

≥ P
(
R(n, i) ≤ B

∣∣∣ ∀t ∈ [n], j ∈ [M ] : ηtr̂t,j ≤ 1
)
(1− 2δ)

≥ (1− δ)(1− 2δ) ≥ 1− 3δ.

It remains to verify that event E is met with probability 1 − 2δ. Recall that ηt =
O(Cmin/

√
tC(M, δ, d)), and that from Lemma 8 with probability 1− δ,

Cmin

4
√
tC(M, δ, d)

≤
C1Cmint

1/4 − C2t
−1/8

√
log(Md/δ) + (log log t)+

4
√
10C(M, δ, d)

≤ κ2(Φt, 2)

4
√
10λt
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Therefore, from Lemma 20, there exists Cη such that ηt = CηCmin/B
√
tC(M, δ, d) satisfying,

P (∀t ≥ 1, j ∈ [M ] : ηtr̂t,j ≤ 1) ≥ 1− 2δ

The proof is then finished by setting δ ← 3δ (and updating the absolute constants).

D.2 Proof of Virtual Regret

Proposition 21. For any fixed λ̃ > 0, there exists an absolute constant C1 such that

P
(
∀t ≥ 1 :

∥∥∥β̂t,j⋆ − θj⋆
∥∥∥
2
≤ ω(t, δ, d)

)
≥ 1− δ.

where

ω(t, δ, d) := C1

√
σ2d log

(
t
λ̃d

+1
)
+2σ2 log(1/δ)+λ̃B2

λ̃+Cmint3/4

(
1 + C−1

mint
−3/8

√
log(Md/δ) + (log log t)+

)
.

Moreover, for ut,j⋆(·) := β̂⊤
t,j⋆ϕj⋆(·) + ω(t, δ, d),

P (∀t ≥ 1, x ∈ X : r(x) ≤ ut,j⋆(x)) ≥ 1− δ.

Proof of Proposition 21. Define for convenience Vt = Φ⊤
t,j⋆Φt,j⋆ + λ̃I. We first observe that

β̂t,j⋆ = V −1
t (Φt,j⋆)

⊤yt

We can apply results from Abbasi-Yadkori et al. (2011) to get an anytime-valid confidence
set. Their Theorem 2 asserts that with probability 1− δ, for all t ≥ 1 we have1

∥∥∥β̂t,j⋆ − θj⋆
∥∥∥2
Vt

≤ βt

where

βt = 2σ2 log

(
det(Vt)

1/2

det(λ̃I)1/2δ

)
+ λ̃B2

Clearly, Vt ⪰ λmin(Vt)I, and therefore

∥∥∥β̂t,j⋆ − θj⋆
∥∥∥
2
≤

√
βt

λmin(Vt)

uniformly over time. Our assumption is that ∥ϕj(x)∥ ≤ 1, and hence, denoting by νi the
eigenvalues of Vt, the geometric-arithmetic mean inequality yields

det(Vt) ≤
d∏

i=1

νi ≤
(
1

d
trace(Vt)

)d

.

1. Their theorem statement is slightly different, but they prove the stronger version we state below.
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Given that

trace(Vt) =
d∑

i=1

t∑
s=1

(ϕj⋆(x))
2
i + λ̃d ≤ t+ λ̃d

we can conclude that

βt ≤ 2σ2 log

(
(t/d+ λ̃)d/2

λ̃d/2δ

)
+ λ̃B2 = dσ2 log

(
t

λ̃d
+ 1

)
+ 2σ2 log(1/δ) + λ̃B2

We note that
λmin(Vt) = λmin(Φ

⊤
t,jΦt,j) + λ̃.

Then due to Lemma 9, there exist absolute constants C1 and C2 such that for all t ≥ 1,

λmin(Vt) ≥ λ̃+ C1Cmint
3/4 − C2t

3/8
√

log(Md/δ) + (log log t)+

therefore, there exists C3 such that

1√
λmin(Vt)

≤ 1√
λ̃+ C1Cmint3/4 − C2t3/8

√
log(Md/δ) + (log log t)+

≤ C3√
λ̃+ C1Cmint3/4

(
1 +

t3/8
√
log(Md/δ) + (log log t)+

λ̃+ C1Cmint3/4

)

≤ C3√
λ̃+ C1Cmint3/4

(
1 +

t3/8
√
log(Md/δ) + (log log t)+

λ̃+ C1Cmint3/4

)

with high probability for all t ≥ 1. Setting

ω(t, δ, d) = C4

√
σ2d log

(
t
λ̃d

+1
)
+2σ2 log(1/δ)+λ̃B2

λ̃+Cmint3/4

(
1 + C−1

mint
−3/8

√
log(Md/δ) + (log log t)+

)
where C4 is an absolute constant. The upper confidence bound then simply follows: for any
x ∈ X

r(x)− β̂⊤
t,j⋆ϕj⋆(x) = ⟨θj⋆ − β̂t,j⋆ ,ϕj⋆(x)⟩ ≤

∥∥∥θj⋆ − β̂t,j⋆

∥∥∥
2
∥ϕj⋆(x)∥2 ≤ ω(t, δ, d)

where the last inequality holds with high probability simultaneously for all t ≥ 1.

Proof of Lemma 15. Using Proposition 21 and the Cauchy-Schwarz inequality we obtain,

R̃j⋆(n) =
n∑

t=1

r(x⋆)− r(x̃t,j)

=
n∑

t=1

r(x⋆)− r̂t(x
⋆) + r̂t(x

⋆)− r̂t(x̃t,j) + r̂t(x̃t,j)− r(x̃t,j)

≤
n∑

t=1

∥∥∥θj − θ̂t,j

∥∥∥
2

(
∥ϕj(x

⋆)∥2 + ∥ϕj(x̃t,j)∥2
)
+ r̂t(x

⋆)− r̂t(x̃t,j)
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≤
n∑

t=1

ω(t, δ, d)
(
∥ϕj(x

⋆)∥2 + ∥ϕj(x̃t,j)∥2
)
+ r̂t(x

⋆)− r̂t(x̃t,j)

with probability 1− δ. If the agent selects actions greedily, then r̂t(x
⋆) ≤ r̂t(x̃t,j), and

R̃j⋆(n) ≤
n∑

t=1

ω(t, δ, d)
(
∥ϕj(x

⋆)∥2 + ∥ϕj(x̃t,j)∥2
)
≤

n∑
t=1

2ω(t, δ, d)

since the feature map is normalized to satisfy ∥ϕj(·)∥ ≤ 1. If the agent selects actions
optimistically according to the upper confidence bound of Proposition 21, then

r̂t(x̃t,j) + ω(t, δ, d)∥ϕj(x̃t,j)∥ ≥ r̂t(x
⋆) + ω(t, δ, d)∥ϕj(x

⋆)∥

which implies,

R̃j⋆(n) ≤
n∑

t=1

2ω(t, δ, d)∥ϕj(x̃t,j)∥2 ≤
n∑

t=1

2ω(t, δ, d).

Then due to Proposition 21, with probability greater than 1− δ, simultaneously for all n ≥ 1,
n∑

t=1

ω(t, δ, d) ≤
n∑

t=1

C1

√
σ2d log

(
t
λ̃d

+1
)
+2σ2 log(1/δ)+λ̃B2

λ̃+Cmint3/4

(
1 + t−3/8

√
log(Md

δ ) + (log log t)+

)

≤ C̃1n
5/8

√
σ2d log

(
n
λ̃d

+1
)
+2σ2 log(1/δ)+λ̃B2

Cmin

(
1 + C−1

minn
−3
8

√
log(Md

δ ) + (log log n)+

)
concluding the proof.

Appendix E. Time-Uniform Concentration Inequalities

We will make use of the elegant concentration results in Howard et al. (2021), which analyzes
the boundary of sub-Gamma processes.

Definition 22 (Sub-Gamma process). Let (St)
∞
t=0,(Vt)

∞
t=0 be real-valued processes adapted

to (Ft)
∞
t=1 with S0 = V0 = 0 and Vt non-negative. We say that St is sub-Gamma if for each

λ ∈ [0, 1/c), there exists a supermartingale (Mt(λ))
∞
t=0 w.r.t. Ft, such that EM0 = 1 and for

all t ≥ 1:

exp{λSt −
λ2

2(1− cλ)
Vt} ≤Mt(λ) a.s.

The following is a special case of Theorem 1 in Howard et al. (2021). We have simplified
it by making a few straightforward choices for the parameters used originally by Howard
et al. (2021), which will yield an easier-to-use bound in our scenario.

Proposition 23 (Curved Boundary of Sub-Gamma Processes). Let (St) be sub-Gamma with
variance process (Vt). Define the boundary

Bα(v) :=
5

2

√
max{v, 1}

(
(log log ev)+ + log

(
2

α

))
+ 3c

(
(log log ev)+ + log

(
2

α

))
,

for v > 0, where (x)+ = max(0, x). Then,

P(∃t : St ≥ Bα(Vt)) ≤ α.
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Proof of Proposition 23. Theorem 1 in Howard et al. (2021) states that if (St) is a sub-Gamma
process with variance process (Vt) then the boundary

Sα(v) = k1

√
v

(
s log log (ηv) + log

(
ζ(s)

α logs η

))
+ ck2

(
s log log (ηv) + log

(
ζ(s)

α logs η

))
.

satisfies,
P(∃t : St ≥ Sα(max(Vt, 1))) ≤ α

where

k1 :=
η1/4 + η−1/4

√
2

and k2 := (
√
η + 1)/2.

Choosing s = 2 and η = e, we obtain ζ(2) = π2/6 ≤ 2. Furthermore, we have k1 ≤ 3
2 and

k2 ≤ 3
2 . Then if v ≥ 1 (which we will enforce by construction), we compute

s log log (ηv) + log

(
ζ(s)

α logs η

)
≤ 2(log log ev)+ + log

(
2

α

)
.

Therefore, we can upper bound (using our bounds on k1, k2)

Sα(v) ≤
5

2

√
v

(
(log log ev)+ + log

(
2

α

))
+ 3c

(
(log log ev)+ + log

(
2

α

))
.

Now, since the boundary is given by Sα(max(v, 1)), we deduce that

Bα(v) :=
5

2

√
max{v, 1}

(
(log log ev)+ + log

(
2

α

))
+ 3c

(
(log log ev)+ + log

(
2

α

))
.

is an any-time valid boundary.

Lemma 24 (Time-Uniform Two-sided Bernoulli). Let X1, . . . , Xs, . . . , Xt be a martingale
sequence of Bernoulli random variables with conditional mean γs. Then for all δ > 0,

P

(
∃t :

∣∣∣∣∣
t∑

s=1

(Xs − γs)

∣∣∣∣∣ ≥ 5

2

√
t ((log log t)+ + log(4/δ))

)
≤ δ,

Proof of Lemma 24. By Proposition 23, we know that if St is sub-Gamma with variance
process Vt and scale parameter c, then

P (∃t : St ≥ Bδ(Vt)) ≤ δ,

where

Bδ(v) :=
5

2

√
max{1, v} ((log log ev)+ + log(2/δ)) + 3c ((log log ev)+ + log(2/δ)) .
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By Howard et al. (2020), we know that if (Xt)
∞
t=1 is a Bernoulli sequence, then St =∑t

s=1(Xs−γs) is sub-Gamma with variance process Vt = t and scale parameter c = 0 (hence,
sub-Gaussian). This implies,

P

(
∃t :

t∑
s=1

(Xs − γs) ≥
5

2

√
t ((log log t)+ + log(2/δ))

)
≤ δ,

The above arguments also holds for the sequence Zs = −Xs. Then taking a union bound
and adjusting δ ← δ/2 concludes the proof.

Lemma 25 (Time-Uniform Bernstein). Let (ξi)∞i=1 be a sequence of conditionally standard
sub-gaussian variables, where each ξi is Fi−1 = σ(ξ1, . . . , ξi) measurable. Then, for vi ∈ R
and δ ∈ (0, 1]

P

(
∃t :

t∑
i=1

(ξ2i − 1)vi ≥
5

2

√
max

{
1, 4∥vt∥22

}
ωδ(∥vt∥2) + 12ωδ(∥vt∥2)max

i≥1
vi

)
≤ δ

where, vt = (v1, . . . , vt) ∈ Rt and ωδ(v) :=
(
log log(4ev2)

)
+
+ log(2/δ).

Proof of Lemma 25. From Lemma 4, St =
∑t

i=1(ξ
2
i − 1)vi is sub-Gamma with variance

process Vt = 4
∑t

i=1 v
2
i and c = 4maxi≥1 vi. By Proposition 23, we know that if St is

sub-Gamma with variance process Vt and scale parameter c, then

P (∃t : St ≥ Bδ(Vt)) ≤ δ,

where

Bδ(v) :=
5

2

√
max{1, v} ((log log ev)+ + log(2/δ)) + 3c ((log log ev)+ + log(2/δ)) .

Lemma 26 (Time-Uniform Azuma-Hoeffding). Let X1, . . . , Xn be a martingale difference
sequence such that |Xt| ≤ B for all t > 1 almost surely. Then for all δ > 0,

P

(
∃t :

t∑
s=1

Xs ≥
5B

2

√
t ((log log etB2)+ + log(2/δ))

)
≤ δ,

Proof of Lemma 26. By Proposition 23, we know that if St is sub-Gamma with variance
process Vt and scale parameter c, then

P (∃t : St ≥ Bδ(Vt)) ≤ δ,

where

Bδ(v) :=
5

2

√
max{1, v} ((log log ev)+ + log(2/δ)) + 3c ((log log ev)+ + log(2/δ)) .

By (Howard et al., 2020), we know that if (Xt)
∞
t=1 is B-bounded martingale difference

sequence, then St =
∑t

s=1Xs is sub-Gamma with variance process Vt = tB2 and scale
parameter c = 0. This implies,

P
(
∃t : St ≥

5B

2

√
t ((log log etB2)+ + log(2/δ))

)
≤ δ,

concluding the proof.
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Appendix F. Experiments

Experiment Setup. We create a synthetic dataset based on our data model (Section 3),
and choose the domain to be 1-dimensional X = [−1, 1]. As a natural choice of features, we
consider the set of degree-p Legendre polynomials, since they form an orthonormal basis for
L2(X ) if p grows unboundedly. We construct each feature map, by choosing s different poly-
nomials from this set, and therefore obtaining M =

(
p+1
s

)
different models. More formally,

we let ϕj(x) = (Pj1(x), . . . , Pjs(x)) ∈ Rs where {j1, . . . , js} ⊂ {1, . . . , p} and Pj′ denotes a
degree j′ Legendre polynomial. To construct the reward function, we randomly sample j⋆

from [M ], and draw θj⋆ from an i.i.d. standard gaussian distribution. We then normalize
||θj⋆ || = 1. When sampling from the reward, we add Gaussian noise with standard deviation
σ = 0.01. Figure 1 in the appendix shows how the random reward functions may look. For all
experiments we set n = 100, and plot the cumulative regret R(n) averaged over 20 different
random seeds, the shaded areas in all figures show the standard error across these runs.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.6

0.4

0.2

0.0

0.2

0.4

Figure 1: Examples of possible reward functions r(·) in our experiments.

Algorithms. We perform experiments on two UCB algorithms, one with oracle knowl-
edge of j⋆, and a naive one which takes into account all M feature maps. We run Explore-
then-Commit (ETC) by Hao et al. (2020), which explores for a horizon of n0 steps, performs
Lasso once, and then selects actions greedily for the remaining steps. As another baseline,
we introduce Explore-then-Select (ETS) that explores for n0 steps, performs model selection
using the sparsity pattern of the Lasso estimator, and then performs UCB on the selected
features for the remaining steps. Performance of ETC and ETS depends highly on n0,
so we tune this hyperparameter separately for each experiment. We also run Corral as
proposed by Agarwal et al. (2017), with only UCB agents similar to ALExp. We tune the
hyper-parameters of Corral as well. Appendix F.1 presents the pseudo-code to all baseline
algorithms. To initialize ALExp we set the rates of λt, γt and ηt according to Theorem 1,
and perform a light hyper-parameter tuning to choose the scaling constants. For solving (1),
we use Celer, a fast solver for the group Lasso (Massias et al., 2018). Every time a UCB
policy is used, we set the exploration coefficient βt = 2. We have included the details and
results of our hyper-parameter tuning in Appendix F.1.

Easy vs. Hard cases. We construct an easy problem instance, where s = 2, p = 10,
and thus M = 55. Models are lightly correlated since each two model can have at most one
Legendre polynomial in common. We also generate an instance with highly correlated feature
maps where s = 8 and p = 10, which will be a harder problem, since out of the total M = 55
models, there are 36 models which have at least 6 Legendre polynomials in common with
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Figure 2: ALExp can model-select
in both orthogonal and cor-
related classes (M = 55)

Figure 3: ALExp performs
well on a large
class (M = 165)
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Figure 4: ALExp is hardly affected by increasing the number of models (y-axis have various
scales)

the oracle model j⋆. Figure 2 shows that not only ALExp is not affected by the correlations
between the models, but also it achieves oracle-optimal performance in both cases, showing
that our exponential weights technique for model selection is robust to choice of features.
ETC and ETS rely on Lasso for model selection, which performs poorly in the case of
correlated features. Corral uses log-barrier-OMD with an importance-weighted estimator,
which has a significantly high variance. We construct another hard instance (Figure 3),
where the model class is large (s = 3, p = 10,M = 165). ALExp continues to outperform
all baselines with a significant gap. It is clear in the regret curves how explore-then-commit
style algorithms are inherently horizon-dependent, and may exhibit linear regret, if stopped
at an arbitrary time. This is not an issue with the other algorithms.

Scaling with M. Figure 4 shows how the algorithms scale as M grows. For this
experiment we set s = 2 and change p ∈ {9, . . . , 13}. While increasing M hardly affects
ALExp and Oracle UCB, other baselines become less sample efficient.

Learning Dynamics of ALExp. Figure 5 gives some insight into the dynamics of AL-
Exp when M = 165. In particular, it shows how ALExp can rule out sub-optimal agents with-
out ever having queried them. Figure (a) shows the distribution qt, at t = 20 which is roughly
equal to the optimal n0 for ETC in this configuration. The oracle model j⋆ is annotated with
a star, and has the highest probability of selection. We observe that, already at this time step,
more than 80% of the agents are practically ruled out, due to small probability of selection.
However, according to Figure (b), which shows Mt the total number of visited models, less than
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Figure 5: ALExp can rule out models without ever having queried them (M = 165)

10% of the models are queried at t = 20. This is the key practical benefit of ALExp compared
to black-box algorithms such as Corral. Lastly, Figure (c) shows how qt,j⋆ the probability
of selecting the oracle agent changes with time. While this probability is higher than that of
the other agents, Figure (c) shows that qt,j⋆ is not exceeding 0.25, therefore there is always a
probability of greater than 0.75 that we sample another agent, making ALExp robust to hard
problem instances where many agents perform efficiently. We conclude that ALExp seems to
rapidly recognize the better performing agents, and select among them with high probability.

F.1 Hyper-Parameter Tuning Details

We implement 6 algorithms in our experiments, ETC (Algorithm 4, Hao et al., 2020), ETS
(Algorithm 5), Corral (Algorithm 6, Agarwal et al., 2017), ALExp (Algorithm 1), and
Lastly UCB (Algorithm 3) with the oracle feature map ϕj⋆ and the concatenated feature
map ϕ. When algorithms require exploration, e.g., in the case of ETC or ALExp, we simply
set π = Unif(X ). To ensure that the curves are valid, we run each configuration for 20
different random seeds, i.e. on different random environments.

UCB. For all the experiments, we set the exploration coefficient of UCB to βt = 22 and
choose the regression regularizer from λ̃ ∈ {0.01, 0.1, 0.5}. We use PyTorch (Paszke et al.,
2017) for updating the Upper Confidence bounds, which requires more regularization for
longer feature maps (e.g. when s = 8, p = 2), to be computationally stable.

Lasso. Every time we need to solve Equation (1), we set λt according to the rate suggested
by Theorem 3. To find a suitable constant scaling coefficient, we perform a hyper-parameter
tuning experiment sampling 20 values in [10−5, 100]. We choose λ0 = 0.009, and scale λt

with it across all experiments.
ALExp. We set the rates for γt and ηt as prescribed by Theorem 1. For the scaling

constants, we perform a hyper-parameter tuning experiment log-uniformly sampling 20
different configurations from γ0 ∈ [10−4, 10−1] and η0 ∈ [100, 102]. For each problem instance
(i.e. as s and p change) we repeat this process. However we observe that the optimal
hyper-parameters work well across all problem instances.

ETC/ETS. For these algorithms, we separately tune n0 for each problem instance.
We set λ1 ∝

√
logM/n0 according to Theorem 4.2 of (Hao et al., 2020) and scale it with

λ0 = 0.009, as stated before. We uniformly sample 10 different values where n0 ∈ [2, 80]
since the horizon is n = 100. The optimal value often happens around n0 = 20.

2. To achieve the
√
dT log T regret, one has to set βt = O(

√
d log T ) as shown in Proposition 21.
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Algorithm 1 ALExp
Inputs: π, (γt, ηt, λt) for t ≥ 1
Let q0 ← Unif(M)
Initialize base agents (p0,1, . . . , p0,M ).
for t ≥ 1 do

Draw αt ∼ Bernoulli(γt).
Draw xt ∼ αtπ + (1− αt)

∑M
j=1 qt−1,jpt−1,j .

Observe yt = r(xt) + εt.
Ht = Ht−1 ∪ {(xt, yt)}, report to all agents.
Get updated policies pt,1, . . . , pt,M .
θ̂t ← argminL(θ;Ht, λt).
Update estimated average return of every agent

r̂t,j ← Ex∼pt,j [θ̂
⊤
t ϕ(x)], j = 1, . . . ,M

Update agent probabilities

qt,j ←
exp(ηt

∑t
s=1 r̂s,j)∑M

i=1 exp(ηt
∑t

s=1 r̂s,i)

end for

Algorithm 2 GetPosterior
Inputs: Ht, ϕ, λ̃
Let Kt ← [ϕ⊤(xi)ϕ(xj)]i,j≤t, and Vt ← (Kt + λ̃2I), and k(·)← [ϕ⊤(xi)ϕ(·)]i≤t

Calculate µt(·)← kT (·)V −1
t yt

Calculate σt(·)←
√
ϕ⊤(·)ϕ(·)− k⊤(·)V −1

t k(·)
Return: µt, σt

Corral. We set the rates of the parameters as γ = O(1/n) and η = O(
√
M/n)

according to Agarwal et al. (2017, Theorem 5,). Then similar to ALExp, we tune the scaling
constants. The procedure for tuning the constants is identical to ALExp, as in we use the
same search interval, and try 10 different configurations for γ and η.

Algorithm 3 UCB

Inputs: λ̃, βt, ϕ
for t = 1, . . . , n do

Choose xt argmaxut−1(x) = µt−1(x) + βtσt−1(x). ▷ Choose actions optimistically
Observe yt = r(xt) + εt. ▷ Receive reward
Ht ← Ht−1 ∪ {(xt, yt)} ▷ Append history
Update µt, σt ← GetPosterior(Ht,ϕ, λ̃)

end for
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Algorithm 4 ETC (Hao et al., 2020)
Inputs: n0, n, λ1, π
Let H0 = ∅
for t = 1, . . . , n0 do

Draw xt ∼ π, observe yt = r(xt) + εt ▷ Explore
Ht ← Ht−1 ∪ {(xt, yt)} ▷ Append history

end for
θ̂n0 ← L(θ, Hn0 , λ1) ▷ Perform Lasso once
for t = n0 + 1, . . . , n do

Choose xt = argmax θ̂⊤
n0
ϕ(x) ▷ Choose actions greedily

end for

Algorithm 5 ETS

Inputs: n0, n, λ1, λ̃, βt, π
Let H0 = ∅
for t = 1, . . . , n0 do

Draw xt ∼ π, observe yt = r(xt) + εt ▷ Explore
Ht ← Ht−1 ∪ {(xt, yt)} ▷ Append history

end for
θ̂n0 ← L(θ, Hn0 , λ1) ▷ Perform Lasso once
Ĵ ← {j | θ̂n0,j ̸= 0, j ∈ [M ]} ▷ Get sparsity pattern
ϕĴ(·)← [ϕj(·)]j∈Ĵ ▷ Model-select acc. to Ĵ
for t = n0 + 1, . . . , n do

Choose xt = argmaxut−1(x) = µt−1(x) + βtσt−1(x) ▷ Choose actions optimistically
Observe yt = r(xt) + εt
Ht ← Ht−1 ∪ {(xt, yt)}
Update µt, σt ← GetPosterior(Ht,ϕĴ , λ̃)

end for
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Algorithm 6 Corral (Agarwal et al., 2017)
Inputs: n, γ, η
Initialize β = e1/ lnn, η1,j = η, ρ1,j = 2M for all j = 1, . . . ,M
Set q0 = q̄0 =

1
M and initialize base agents (p0,1, . . . , p0,M ).

for t = 1, . . . , n do
Choose jt ∼ q̄t−1. ▷ Sample Agent
Draw xt ∼ pt−1,jt . ▷ Play action according to agent jt
Observe yt = r(xt) + εt.
Calculate IW estimates r̂t,j =

yt
q̄t−1,j

I{j = jt} for all j = 1, . . . ,M .
Send r̂t,j =

yt
q̄t−1,j

I{j = jt} to agents and get updated policies pt,j .
qt = Log-Barrier-OMD(qt−1, r̂t,jtejt ,ηt) ▷ Update agent probabilities
q̄t = (1− γ)qt + γ 1

M ▷ Mix with exploratory distribution
for j = 1, . . . ,M do ▷ Update parameters

if 1
q̄t,j

> ρt−1,j then ρt,j ← 2
q̄t−1,j

, and ηt,j ← βηt−1,j

else ρt,j ← ρt−1,j and ηt,j ← ηt−1,j

end if
end for

end for

Algorithm 7 Log-Barrier-OMD
Inputs: qt, ℓt, ηt

Find ξ ∈ [minj ℓt,j ,maxj ℓt,j ] such that
∑M

j=1

(
q−1
t,j + ηt,j(ℓt,j − ξ)

)−1
= 1

Return: qt+1 where q−1
t+1,j = q−1

t,j + ηt,j(ℓt,j − ξ) for all j ∈ [M ]
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