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Abstract

Multi-modal summarization (MMS) has001
emerged as a critical research area driven002
by the proliferation of multimedia content,003
focusing on generating condensed summaries004
by cross-modal complementary information005
synthesis. Previous studies have demonstrated006
the effectiveness of heterogeneous fusion007
paradigms, particularly through visual-centric008
feature extraction mechanisms, in construct-009
ing cross-modal representations that yield010
substantial performance gains. However,011
the use of multi-modal information and the012
inter-correlation among textual content, visual013
elements, and summary generation are still014
underestimated. We propose the Patch-Refined015
Visual Information Network (PRVIN) to016
address the insufficient exploitation of visual017
information. The essential patch selector and018
patch refiner components in PRVIN work019
collaboratively to progressively identify and020
refine critical visual features. An additional021
vision-to-summary alignment mechanism is022
also introduced to enhance the semantic con-023
nections between multi-modal representations024
and summary outputs. Extensive experiments025
conducted on two public MMS benchmark026
datasets demonstrate the superiority of PRVIN027
while quantitatively validating the crucial028
role of comprehensive visual information029
utilization in MMS tasks.1030

1 Introduction031

With the exponential growth of multimedia con-032

tent, e.g., news articles with images, instructional033

videos with audio narration, and social media posts034

combining texts and visuals, the need to efficiently035

process and distill information across modalities036

has become critical. Multi-modal summarization037

(MMS) addresses this challenge by generating con-038

cise and coherent summaries that integrate key in-039

formation from heterogeneous sources such as text,040

1Our code will be available at https://github.com/XXX.

image, audio, and video (Li et al., 2018; Sanabria 041

et al., 2018; Zhu et al., 2018; Jangra et al., 2020; 042

Palaskar et al., 2019). Unlike traditional text-only 043

summarization, MMS requires models to not only 044

understand intra-modal relationships but also cap- 045

ture cross-modal interactions to identify salient con- 046

tent and synthesize unified outputs. 047

Previous studies have focused on effectively ex- 048

tracting visual information and combining it with 049

textual information before injecting it into the sum- 050

marization model. For instance, Yu et al. (2021) 051

injected visual information into pre-trained lan- 052

guage models (PLMs) by designing an attention- 053

based add-on layer. Liu et al. (2020) proposed 054

a multi-stage fusion network with a fusion forget 055

gate that models fine-grained cross-modal interac- 056

tions. Liang et al. (2023) devised two auxiliary 057

tasks including a vision-to-summary task and a 058

masked image modeling task to enhance visual un- 059

derstanding. Zhang et al. (2024) extended BART 060

by integrating a dual weight-sharing multi-modal 061

encoder that concurrently processes textual and 062

visual data alongside entity-specific visual informa- 063

tion and introduced a gating mechanism to effec- 064

tively utilize the resulting multi-modal information 065

for text generation. Nonetheless, these methods 066

still under-utilize informative visual cues critical 067

for summarization while allowing for extraneous 068

visual data, which impair performance. These risks 069

will lead to the visual inputs failing to provide effec- 070

tive information for the summarization process and 071

over-reliance on textual sources, thereby limiting 072

the model’s multi-modal capabilities. 073

To alleviate the above mentioned issues, we pro- 074

pose a novel Patch-Refined Visual Information Net- 075

work (PRVIN), which uses a visual patch as the 076

smallest unit for selecting and refining visual in- 077

formation. To address the challenge of incomplete 078

utilization of visual information, PRVIN introduces 079

an innovative two-stage framework that systemat- 080

ically optimizes visual patch selection and refine- 081
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ment. In the first stage, the proposed essential082

patch selector uses a dual-alignment mechanism083

to evaluate the relevance of each visual patch to084

both input text and task objectives. This module085

generates alignment scores through multi-modal086

correlation analysis, enabling selective retention087

of the most pertinent patch tokens on the basis of088

a predetermined threshold ratio. The subsequent089

stage features a novel patch refinement network090

(PRN) that implements hierarchical visual infor-091

mation processing. Building upon the previously092

selected patches, the PRN executes secondary fil-093

tering to obtain two complementary patch token094

sequences. These sequences undergo iterative re-095

finement through cross-attention operations, allow-096

ing for dynamic information exchange and feature097

enhancement at the patch level. This cascaded re-098

finement architecture effectively enhances visual099

information completeness while maintaining com-100

putational efficiency through progressive token re-101

duction. We also introduce a vision-centric task102

that exclusively uses visual inputs through masking103

text inputs. This auxiliary task enhances cross-104

modal alignment by establishing direct semantic105

connections between visual patterns and summary106

generation, while simultaneously improving visual-107

representation learning through modality-specific108

constraints, and mitigates the text preference bias109

commonly observed in MMS, where models tend110

to over-rely on textual cues while under-utilizing111

visual information. Finally, we conducted exten-112

sive experiments on two public MMS datasets, and113

the experimental results indicate the effectiveness114

of our PRVIN method.115

2 Methodology116

2.1 Problem Formulation117

Given a source text D and its corresponding im-118

age V , where D = (t1, t2, ..., tm) is a sequence119

of m tokens in the source text, the objective is to120

generate a brief summary S = {s1, s2, ..., sl} that121

effectively captures the essential information from122

both modalities. The model learns a mapping func-123

tion f : (T, V ) → S.124

2.2 Text Encoding125

We employ a pre-trained network, e.g., BARTbase126

(Lewis et al., 2020), to encode the source text,127

prepending a [CLS] token to capture global seman-128

tic information. The resulting text representation is129

formulated as T = (tcls, t1, t2, ..., tm), where tcls130

Figure 1: (a) Overview of PRVIN. The two networks in
right constitute integral components of our progressive
patch refinement process, i.e., (b) the patch refiner and
(c) the essential patch selector.

serves as a condensed semantic representation of 131

the entire text sequence. 132

2.3 Visual Encoding 133

The image encoding process employs the vision 134

Transformer (ViT) to map high-dimensional pixel 135

data into compact latent representations. We divide 136

each image into n non-overlapping patches and 137

prepend a [CLS] token to the patch sequence to rep- 138

resent the entire image: V = (pcls, p1, p2, ..., pn). 139

Each patch embedding pi encodes local visual in- 140

formation, while pcls aggregates global image se- 141

mantics through transformer layers. 142

2.4 Essential Patch Selector 143

We propose an essential patch selector to deter- 144

mine the importance of each patch and its rele- 145

vance to the summary and source text. Drawing 146

inspiration from conventional extractive summa- 147

rization methods (Zhou et al., 2018; Liu and Lap- 148

ata, 2019), we formulate patch selection as a clas- 149

sification problem, aiming to determine whether 150

a patch aligns with the summary’s semantics and 151

should be selected. As illustrated in Fig 1, the se- 152

lector is integrated between the V -th and (V +1)-th 153

layers of the ViT in the image encoder. To estab- 154

lish an explicit correspondence between each patch 155

and the source text, we concatenate each individ- 156

ual visual patch token with the text [CLS] token: 157

p̄i = concat(pki , tcls), where pki represents the i-th 158

patch in the output of the V -th ViT layer. 159

The concatenated embeddings are then fed to 160

a multi-layer perceptron (MLP) which is used to 161

predict the relevance between patches and text in- 162
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formation (both the source and summary). The163

output of the MLP is passed through a sigmoid-164

activation function to obtain the relevance score165

ri: ri = Sigmod(MLP (p̄i)). We then extract166

top-k patches in the patch token sequence based167

on their relevance score r, and the new patch168

sequence will be fed to the (V +1)-th ViT layer:169

V̂ = ( ˆpcls, p̂1, p̂2, ..., p̂k). This selection process170

reduces computational complexity while preserv-171

ing semantically salient visual information.172

2.5 Patch Refinement173

While we initially select significant patches based174

on the relevance scores, we posit that further refine-175

ment could reduce the length of visual sequences176

and enhance the training and inference efficiency177

of the vision-encoder network. Thus, we intro-178

duce a post-processing refinement layer superim-179

posed on the base vision encoder, implementing a180

multi-stage feature enhancement strategy to actu-181

alize patch refinement. Specifically, we first select182

top-j patches (j < k) based on the relevance score183

in the previous step: V̇ = ( ˙pcls, ṗ1, ṗ2, ..., ṗj).184

The patch refiner consists of several transformer-185

decoder blocks. Patch sequence V̇ then under-186

goes processing through the self-attention layer,187

followed by the cross-attention operation with V̂ :188

V̇ = CrossAttn(SelfAttn( ˙pcls, ṗ1, ..., ṗj), V̂ ).189

Consequently, the final representation for patch190

sequence V̇ ensures the refinement of the visual191

sequence while preserving the structural and visual192

integrity of each patch.193

2.6 Multi-modal Decoder194

To fuse textual and visual modalities, the out-195

puts of the patch refiner and the text encoder196

are concatenated and fed into the multi-modal197

encoder to obtain a cross-modal representation:198

C = concat(T, V̇ ). Then, the cross-modal199

representation is fed into a multi-modal de-200

coder composed of transformer decoder blocks201

to generate the corresponding summary: ŝk =202

Decoder(C, ŝ1, ŝ2, ..., ŝk−1), where ŝk denotes203

the k-th token in the generated summary, and204

ŝ1, ŝ2, ..., ŝk−1 denote previous tokens.205

2.7 Model Training206

First, we employ the negative log-likelihood loss207

to supervise the training of the summary gen-208

eration model, which is formulated as L1 =209

−
∑|S|

t=1 log(p(st|T, V, s<t)). Second, to train the210

essential patch selector, we assign a label O to211

each patch based on oracle creation; set O = 1 if 212

the patch belongs to the oracle, otherwise 0. We 213

then train the model with a binary cross-entropy 214

loss function: L2 = − 1
n

∑n
i=1[Oi log(ri) + (1 − 215

Oi) log(1− ri)], where Oi is the label for the i-th 216

patch, and ri is the relevance score obtained from 217

the MLP. Finally, we expect the model to under- 218

stand the summary and grasp the vision-summary 219

correlation. To this end, we introduce a task in 220

which the model generates the corresponding sum- 221

mary S directly from visual information, without 222

access to the source text T . This enables our model 223

to develop a preliminary understanding of the sum- 224

mary and grasp the overall context, formulated as 225

L3 = −
∑|S|

t=1 log(p(st|V̇ , s<t)). 226

Overall Loss. The final loss is the combination of 227

the above three losses: L = L1 + α · L2 + β · L3, 228

where α and β are hyper-parameters for regulat- 229

ing the balance among the three loss components. 230

More details about the model are in Appendix A. 231

2.8 Oracle Creation 232

To facilitate supervised training of the essential 233

patch selector in PRVIN, an oracle label should 234

be assigned to each patch. We introduce a novel 235

method for oracle creation that synergizes im- 236

age–text similarity with an object detection model. 237

We first select candidate patches with image–text 238

similarity, and then verify them with an object de- 239

tection model to ensure they contain text-related 240

objects. This approach can mitigate bias by avoid- 241

ing reliance on a single metric. The details are in 242

Appendix B. 243

3 Experiments 244

3.1 Experimental Settings 245

We evaluated our model on two MMS datasets, 246

MMSS (Li et al., 2018) and MM-Sum-En (Liang 247

et al., 2023). We set Top-k and Top-j to 70% and 248

60% of all patches, respectively, and set both the 249

balancing factors α and β in the loss function to 1.0, 250

since we found they were optimal on the validation 251

set through tuning with grid search. More details 252

of the datasets, the selection of the ratios and the 253

balancing factors, and the experimental settings are 254

in Appendices C, D, and E. 255

3.2 Experimental Results 256

We employed six distinct evaluation metrics to 257

rigorously assess the performance of our model; 258

ROUGE-1, 2, L (Lin, 2004), BLEU (Papineni 259
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Model R-1 R-2 R-L
MMSS
MAtt 47.28 24.85 44.48

CFSum 47.86 25.64 44.64
V G-BART ∗ 51.73 29.17 48.91

T -3 53.71 30.96 50.62
V E-ELIN 54.20 31.24 51.47

PRVIN 54.16 31.19 51.31
MM-Sum-En

mT5 36.99 15.18 29.64
V G-mT5 37.17 14.88 29.41

SOV -MAS 37.26 15.02 29.61
V G-BART ∗ 37.27 15.91 30.26
V E-ELIN 39.97 18.09 32.47

PRVIN 40.26 18.37 32.61

Model BLEU BertScore MoverScore
MMSS
CFSum 48.83 86.98 32.36

V G-BART ∗ 57.63 91.80 45.91
T -3 59.68 91.99 63.96

V E-ELIN 60.16 92.22 49.15
PRVIN 60.26 92.15 49.32

MM-Sum-En
V G-BART ∗ 40.88 90.73 27.47
V E-ELIN 45.44 96.61 30.85

PRVIN 45.90 97.04 31.18

Table 1: Experimental results on the test set of the
MMSS and MM-Sum-En datasets. Scores with an aster-
isk (∗) are reproduced scores, otherwise reported scores
from the original paper.2 Our model is statistically sig-
nificantly better than the underlined scores at p-value <
0.01 with paired bootstrap resampling (Koehn, 2004).

et al., 2002), MOVERScore (Zhao et al., 2019),260

and BERTScore (Zhang et al., 2019). The details261

are described in Appendix F. We compared our262

model with several SOTA models: CFSum (Xiao263

et al., 2023), VG-BART (Yu et al., 2021), T-3264

(Yuan et al., 2024), VE-ELIN (Yan et al., 2024),265

SOV-MAS (Liang et al., 2023), and several clas-266

sical methods. The details of these models are267

described in Appendix G.268

Table 1 presents the overall results of our prin-269

cipal metrics on the two datasets. For the MMSS270

dataset, PRVIN achieved competitive performance271

to the state-of-the-art VE-ELIN model across all272

metrics. In particular, it achieved a higher Mover-273

Score (49.32) than VE-ELIN (49.15), indicating274

better text-generation diversity. Notably, PRVIN275

outperformed the strong baselines including CF-276

Sum and T-3, indicating its effectiveness in leverag-277

ing multi-modal information. For the MM-Sum-En278

dataset, PRVIN outperformed all baselines. This279

performance advantage indicates strong model ro-280

bustness across different data types and reveals a281

2While we tried to reproduce the strongest baseline for
each dataset, we failed it because of the unavailability of the
code. All our results were the average of 3 trials.

method R-1 R-2 R-L
MMSS
Full model 54.16 31.19 51.31
w/o refiner 51.74 29.10 49.76
w/o selector&refiner 51.03 28.33 48.75
w/o vision-sum loss 53.77 31.09 50.93
MM-Sum-En
Full model 40.26 18.37 32.61
w/o refiner 39.05 17.87 31.87
w/o selector&refiner 38.12 17.21 31.20
w/o vision-sum loss 40.04 18.12 32.33

Table 2: Ablation study results on two datasets.

distinctive capability in processing lengthy textual 282

content, which we attribute to our architecture’s ef- 283

fective integration of multi-modal features. To com- 284

prehensively evaluate our model, we performed 285

comparison with multi-modal large language mod- 286

els (Appendix H). We also shows example outputs 287

from our model in Appendix I. 288

3.3 Ablation Study 289

We conducted an ablation study to verify the im- 290

portance of each module in our model. Specifi- 291

cally, we evaluated PRVIN’s performance by re- 292

moving each component. The results are shown 293

in Table 2. Removing the patch refiner degrades 294

the performance, demonstrating that refining both 295

patch-level visual features and inter-patch correla- 296

tions enhances PRVIN’s effectiveness. Removing 297

the selector and refiner causes the performance 298

to markedly decline, highlighting their essential 299

contribution to text-relevant patch selection and re- 300

finement. Furthermore, removing the vision-sum 301

loss shows a performance drop, demonstrating that 302

direct image-summary alignment facilitates better 303

visual representation learning for summary genera- 304

tion. We also evaluated the impact of removing text 305

and image encoders on the model in Appendix J. 306

4 Conclusion 307

We proposed a Patch-Refined Visual Information 308

Network (PRVIN) for solving the MMS problems 309

at the image patch level. Our model consists of 310

an essential patch selector that identifies vision- 311

text-summary correlations and prioritizes semanti- 312

cally critical image patches, and a patch refiner that 313

processes the selected patch sequences to further 314

distill and optimize visual information. We addi- 315

tionally utilize a vision-to-summary auxiliary task 316

that explicitly models vision-summary interdepen- 317

dence. Extensive experiments conducted on two 318

benchmark datasets demonstrated the superiority 319

and effectiveness of our approach. 320
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Limitations321

This study is subject to two primary limitations.322

First, the generalizability of our approach requires323

further validation due to dataset constraints. The324

current validation has been restricted to two bench-325

mark datasets, potentially limiting the model’s326

adaptability to other non-english languages and327

other modalities.328

Second, the model performance exhibits signif-329

icant dependency on the oracle creation method.330

While our oracle creation framework demonstrates331

theoretical advancements over conventional meth-332

ods, its empirical optimality remains unverified333

due to the absence of systematic evaluation metrics.334

This methodological uncertainty may impact the335

model’s robustness, particularly when applied to336

complex real-world scenarios, where oracle quality337

could substantially affect downstream task perfor-338

mance. We leave these as our future work.339
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A Model Details516

PRVIN consists of the following components: a517

6-layer transformer for the text encoder, a 12-layer518

transformer for the vision encoder, a 3-layer trans-519

former for the cross-modal encoder, a 3-layer per-520

ceptron for the essential patch selector, a 2-layer521

transformer for the patch refiner, and a 6-layer522

transformer for the multi-modal decoder. Specif-523

ically, we initialized the text encoder and multi-524

modal decoder using the encoder and decoder of525

BARTbase (Lewis et al., 2020), respectively, with526

a text feature dimension of 768. The patch re-527

finer was initialized using the last two layers of528

the BARTbase decoder and the cross-modal en-529

coder network was initialized using the last three530

layers of the BARTbase encoder. For the vision531

encoder, we used the vision encoder from the “ViT-532

B/32” version of CLIP (Radford et al., 2021), with533

a patch size of 32×32 and an output visual feature534

dimension of 768. The essential patch selector was535

placed between the 8-th and 9-th transformer layers536

in the vision decoder (V =8).537

B Oracle Creation538

Our novel oracle creation approach begins with539

an initial screening based on image–text similarity,540

followed by the selection of oracle patches using541

an auxiliary object detection model. Specifically,542

we first employ CLIPScore (Hessel et al. (2021))543

to compute the similarity between each patch and544

both the input text and the reference summary:545

Simpi−>T = CLIP (pi, T ), (1)546

547
Simpi−>S = CLIP (pi, S). (2)548

The resulting similarity values are then aggregated549

into a comprehensive similarity sequence, from550

which patch indices are extracted according to a551

predefined ratio (20%) to form the oracle, and se-552

lected patches are subsequently assigned a label of553

1.554

To enhance the precision of oracle selection, we555

introduce a three-stage object detection-assisted556

refinement framework. The pipeline operates as557

follows:558

Object Localization: We employ YOLOv11m559

(Khanam and Hussain, 2024) as our pre-trained560

object detection backbone due to its optimal trade-561

off between model compactness, computational562

efficiency, and detection accuracy (Jegham et al.,563

2024). This network generates object category pre- 564

diction along with the corresponding bounding box 565

for each image. 566

Semantic-relevance Filtering: For each de- 567

tected object, we verify its semantic alignment with 568

the target summary through synonym matching. 569

Specifically, we maintain a synonym set derived 570

from WordNet3 for each object category. An ob- 571

ject is considered relevant if any lexical item from 572

its synonym set appears in the target summary. Im- 573

ages without relevant objects retain their original 574

CLIPScore evaluation. 575

Oracle-region Optimization: When objects are 576

deemed relevant, we calculate the proportion of 577

image area occupied by their bounding boxes. If 578

the cumulative area exceeds 20% of the total image 579

space, we strategically select the most representa- 580

tive 20% of patches (prioritizing central regions of 581

large objects). For sub-20% coverage cases, we 582

preserve all object-associated patches. The remain- 583

ing oracle patches are then supplemented from the 584

highest-ranked CLIPScore regions to maintain con- 585

sistent selection quantities. 586

This hybrid approach synergistically combines 587

semantic understanding from object detection with 588

cross-modal alignment from CLIPScore, ensuring 589

both semantic relevance and visual-textual corre- 590

spondence in oracle selection. 591

C Datasets 592

We conducted experiments on the representa- 593

tive MMSS dataset (Li et al., 2018), which con- 594

tains 62,000/2,000/2,000 samples for the train- 595

ing/validation/test set, respectively. Each sam- 596

ple in the dataset is a triplet <sentence, image, 597

summary>. We also evaluated our method on 598

the English part of the multilingual multi-modal 599

abstractive summarization (MM-Sum-En) dataset 600

(Liang et al., 2023), which contains 326,725 sam- 601

ples and 867,817 images in total, all sourced from 602

BBC News. Using a 93%/3.5%/3.5% split, the 603

training, validation, and test sets contain 303,828, 604

11,437, and 11,460 samples, respectively. Each 605

sample consists of a triplet: <news article, 606

associated images, summary>. 607

D The Impact of Selection Ratios and 608

Balancing Factors 609

To investigate the impact of selection ratios in the 610

essential patch selector and balancing factors in the 611

3www.nltk.org
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Figure 2: The impact of different ratios for k and j on
model performance on the validation set of the MMSS
and MM-Sum-En datasets.

loss function on PRVIN’s performance, we tried612

different combinations of k, j, α, and β for evalua-613

tion.614

For the balancing factors, we searched the opti-615

mal α and β for each combination of k and j among616

the values of {0.25, 0.5, 0.75, 1.0, 1.25}. Eventu-617

ally, we found that our model is not sensitive to α618

and β because the differences were less than 0.05,619

and so we set both α and β to 1.0.620

For the selection ratios, as shown in Figure 2,621

PRVIN’s performance gradually improved with622

increasing k values, but it stagnated significantly623

when reaching approximately 70% of image in-624

formation utilization. Furthermore, PRVIN’s per-625

formance also gradually improves with increasing626

j values and then tends to stabilize. When the j627

value is too high, for example, exceeding 0.8, the628

model performance decreases. We conjecture that629

redundant patches not only prove unproductive but630

may potentially compromise summarization quality631

through information dilution. We obtained similar632

results on the MM-Sum-EN validation set.633

E Training Details634

For the MMSS dataset, we set the batch size to 16,635

the dropout to 0.1, the maximum training epochs636

to 50, and the beam size to 10. The model was opti-637

mized using Adam with β1 = 0.9 and β2 = 0.998,638

and the learning rate was set to 5e-6. The maxi- 639

mum input length was 64 and the maximum out- 640

put length was 32. For the MM-Sum-EN dataset, 641

the parameters remained identical to those in the 642

MMSS, except that the maximum input length was 643

1024 because of the limitation of BARTbase, the 644

maximum output length was 256, the batch size 645

was 8, and the maximum training epochs was 20 646

(Liang et al., 2023). All models were trained and 647

tested on a two A100-80GB GPU. 648

F Evaluation Metrics 649

Following previous studies, we presented our ex- 650

perimental results in terms of 6 automatic met- 651

rics: ROUGE-1, ROUGE-2, and ROUGE-L (Lin, 652

2004) as principal metrics, and BLEU (Papineni 653

et al., 2002), MOVERScore (Zhao et al., 2019), 654

and BERTScore (Zhang et al., 2019) as supplemen- 655

tary metrics to ensure a comprehensive assessment. 656

BLEU computes the n-gram precision between a 657

candidate and references, with a brevity penalty to 658

discourage overly short outputs. BERTScore lever- 659

ages contextual embeddings from BERT (Devlin, 660

2018) by calculating the cosine similarity between 661

candidate and reference tokens. MoverScore mea- 662

sures semantic distance using the Word Mover’s 663

Distance (Kusner et al., 2015) between the dis- 664

tributions of word embeddings in the candidate 665

and reference texts, enabling a robust evaluation of 666

meaning. 667

G Compared Methods 668

To evaluate the effectiveness of our method, we 669

compared it against some classic and strong base- 670

lines. For the MMSS dataset: Lead generates sum- 671

maries by directly extracting the first eight words 672

of the source. Compress employs an integer lin- 673

ear programming framework to achieve sentence 674

compression, leveraging the syntactic structure as 675

its foundational basis. ABS (Rush, 2015) utilizes 676

an attention-based CNN encoder paired with a neu- 677

ral language model decoder to produce abstrac- 678

tive summaries. SEASS (Zhou et al., 2017) intro- 679

duces a selective encoding mechanism that dynam- 680

ically filters and prioritizes salient textual features 681

during the summarization process. Multi-source 682

(Libovickỳ and Helcl, 2017) introduces flat and 683

hierarchical attention strategies to integrate mul- 684

tiple source modalities. Doubly-Attentive (Cal- 685

ixto et al., 2017) utilizes a doubly-attentive mecha- 686

nism to incorporate visual features. Table 3 shows 687
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Model R-1 R-2 R-L
MMSS

Lead† 33.64 13.40 31.84
Compress† 31.56 11.02 28.87

ABS† 35.59 18.21 31.89
SEASS† 44.86 23.03 41.92

Multi-Source† 39.67 19.11 38.03
Doubly-Attentive† 41.11 21.75 39.92

PRVIN 54.16 31.19 51.31

Table 3: Comparison with some classic baselines, The
results marked with “†” are reported in (Li et al., 2018).

the comparison of classic methods and our model.688

MAtt (Li et al., 2018) proposes a modality-based689

attention mechanism and an image filter to enhance690

the relation between modalities. VG-BART (Yu691

et al., 2021) utilizes PLMs as the backbone and in-692

jects visual features into the encoder layer through693

dot production. CFSum (Xiao et al., 2023) pro-694

poses a contribution network to calculate image695

contributions and guide the attention of both tex-696

tual and visual modalities. T-3 (Yuan et al., 2024)697

resorts Information Bottleneck (IB) to alleviate698

over-preservation and over-compression of visual699

information. VE-ELIN (Yan et al., 2024) consid-700

ers entity-level granularity to address the problem701

of under-utilization of multi-modal inputs and is a702

strong baseline.703

For the MM-Sum-En dataset, mT5 (Xue, 2020)704

uses a multilingual variant of T5, that was pre-705

trained on a new Common Crawl-based dataset cov-706

ering 101 languages, and is the text-only baseline.707

VG-mT5 (Liang et al., 2023) implements an atten-708

tion based text-vision fusion method to inject visual709

features into the mT5 model. SOV-MAS (Liang710

et al., 2023) proposes two summary-oriented auxil-711

iary tasks to enhance the MAS model based on the712

pre-trained language models.713

H Comparison with MLLM-based714

Methods715

Building on the remarkable achievements of Multi-716

modal Large Language Models (MLLMs) across717

diverse multi-modal tasks (Yin et al., 2023; Li718

et al., 2024), we further expanded our compar-719

ative analysis to include state-of-the-art MLLM-720

based approaches. To establish a comprehensive721

benchmark, we implemented a zero-shot evaluation722

protocol using LLaVA-v1.6-Mistral-7B (Liu et al.,723

2024), a leading MLLM architecture. Specifically,724

we prompted LLaVA-v1.6-Mistral-7B with the fol-725

lowing prompt to generate a multi-modal summary726

Model R-1 R-2 R-L
UniG † 46.22 24.28 43.47
BLIP -MMSS † 48.43 26.76 45.87
LLaV A-v1.6-Mistral-7B
zero-shot 15.72 4.02 14.01
PRVIN 54.16 31.19 51.31

Table 4: Comparision with MLLM-based methods on
the test set of MMSS. The results marked with † are
reported in (Yuan et al., 2024).

method R-1 R-2 R-L
Full model 54.11 31.17 51.27
w/o text encoder 49.12 28.07 47.91
w/o vision encoder 51.51 28.63 48.72

Table 5: The effectiveness of text and vision encoders
on the test set of MMSS

for the MMSS dataset: Combine the following text 727

with the image content, summarize coherently in- 728

cluding content from both the text and the image, 729

and compress to one sentences such that it captures 730

the most salient information from both modalities. 731

Following Yuan et al. (2024), we also conducted 732

comparison against vision-language pre-training 733

(VLP) models; UniG (Xiao et al., 2023) adopts an 734

identical architectural framework to CFsum, with 735

the primary distinction residing in its encoder com- 736

ponent, which utilizes the UNITER model (Chen 737

et al., 2020). The BLIP-MMSS framework is con- 738

structed through fine-tuning the BLIP (Li et al., 739

2022) model on the MMSS dataset. As shown in 740

Table 4, our model clearly far outperforms the zero- 741

shot capabilities of the current top-tier multi-modal 742

large models, indicating that further sophisticated 743

designs and approaches are needed for these mod- 744

els to be effectively applied to multi-modal sum- 745

marization tasks. Moreover, our model also out- 746

performs vision pre-training-based methods, such 747

as UniG and BLIP-MMSS, which demonstrates its 748

more efficient utilization of visual information. 749

I Case Study 750

Figure 3 shows examples of multi-modal summary 751

generation outputs using our model. 752

J The Effectiveness of the Text and Vision 753

Encoders 754

To validate whether PRVIN genuinely leverages 755

multi-modal information rather than relying on a 756

single modality, we conducted ablation studies by 757

masking specific components for the cross-modal 758
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Figure 3: Case study for our PRVIN

representation. Specifically, as shown in Table 5,759

“w/o text encoder” indicates masking the textual760

portion of the cross-modal representation, while761

“w/o vision encoder” refers to masking the visual762

counterpart. Our experimental results reveal two763

key findings. First, when removing the text en-764

coder, PRVIN still generates summaries of reason-765

able quality, which we attribute to the effective-766

ness of our vision-sum loss in maintaining visual767

semantic preservation. Second, removing either768

text or vision encoder causes a significant perfor-769

mance degradation, demonstrating that PRVIN ef-770

fectively exploits information from both modali-771

ties. This substantial performance difference be-772

tween single-modality and dual-modality ablation773

confirms that PRVIN successfully captures cross-774

modal correlations, enabling synergistic integra-775

tion of textual and visual information to enhance776

summarization quality. The empirical evidence777

suggests that, while each modality contributes in-778

dependently, their coordinated interaction through779

our concatenated representation learning yields op-780

timal performance.781
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