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Abstract

Multi-modal summarization (MMS) has
emerged as a critical research area driven
by the proliferation of multimedia content,
focusing on generating condensed summaries
by cross-modal complementary information
synthesis. Previous studies have demonstrated
the effectiveness of heterogeneous fusion
paradigms, particularly through visual-centric
feature extraction mechanisms, in construct-
ing cross-modal representations that yield
substantial performance gains. However,
the use of multi-modal information and the
inter-correlation among textual content, visual
elements, and summary generation are still
underestimated. We propose the Patch-Refined
Visual Information Network (PRVIN) to
address the insufficient exploitation of visual
information. The essential patch selector and
patch refiner components in PRVIN work
collaboratively to progressively identify and
refine critical visual features. An additional
vision-to-summary alignment mechanism is
also introduced to enhance the semantic con-
nections between multi-modal representations
and summary outputs. Extensive experiments
conducted on two public MMS benchmark
datasets demonstrate the superiority of PRVIN
while quantitatively validating the crucial
role of comprehensive visual information
utilization in MMS tasks.

1 Introduction

With the exponential growth of multimedia con-
tent, e.g., news articles with images, instructional
videos with audio narration, and social media posts
combining texts and visuals, the need to efficiently
process and distill information across modalities
has become critical. Multi-modal summarization
(MMS) addresses this challenge by generating con-
cise and coherent summaries that integrate key in-
formation from heterogeneous sources such as text,

'Our code will be available at https: //github.com/XXX.

image, audio, and video (Li et al., 2018; Sanabria
et al., 2018; Zhu et al., 2018; Jangra et al., 2020;
Palaskar et al., 2019). Unlike traditional text-only
summarization, MMS requires models to not only
understand intra-modal relationships but also cap-
ture cross-modal interactions to identify salient con-
tent and synthesize unified outputs.

Previous studies have focused on effectively ex-
tracting visual information and combining it with
textual information before injecting it into the sum-
marization model. For instance, Yu et al. (2021)
injected visual information into pre-trained lan-
guage models (PLMs) by designing an attention-
based add-on layer. Liu et al. (2020) proposed
a multi-stage fusion network with a fusion forget
gate that models fine-grained cross-modal interac-
tions. Liang et al. (2023) devised two auxiliary
tasks including a vision-to-summary task and a
masked image modeling task to enhance visual un-
derstanding. Zhang et al. (2024) extended BART
by integrating a dual weight-sharing multi-modal
encoder that concurrently processes textual and
visual data alongside entity-specific visual informa-
tion and introduced a gating mechanism to effec-
tively utilize the resulting multi-modal information
for text generation. Nonetheless, these methods
still under-utilize informative visual cues critical
for summarization while allowing for extraneous
visual data, which impair performance. These risks
will lead to the visual inputs failing to provide effec-
tive information for the summarization process and
over-reliance on textual sources, thereby limiting
the model’s multi-modal capabilities.

To alleviate the above mentioned issues, we pro-
pose a novel Patch-Refined Visual Information Net-
work (PRVIN), which uses a visual patch as the
smallest unit for selecting and refining visual in-
formation. To address the challenge of incomplete
utilization of visual information, PRVIN introduces
an innovative two-stage framework that systemat-
ically optimizes visual patch selection and refine-
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ment. In the first stage, the proposed essential
patch selector uses a dual-alignment mechanism
to evaluate the relevance of each visual patch to
both input text and task objectives. This module
generates alignment scores through multi-modal
correlation analysis, enabling selective retention
of the most pertinent patch tokens on the basis of
a predetermined threshold ratio. The subsequent
stage features a novel patch refinement network
(PRN) that implements hierarchical visual infor-
mation processing. Building upon the previously
selected patches, the PRN executes secondary fil-
tering to obtain two complementary patch token
sequences. These sequences undergo iterative re-
finement through cross-attention operations, allow-
ing for dynamic information exchange and feature
enhancement at the patch level. This cascaded re-
finement architecture effectively enhances visual
information completeness while maintaining com-
putational efficiency through progressive token re-
duction. We also introduce a vision-centric task
that exclusively uses visual inputs through masking
text inputs. This auxiliary task enhances cross-
modal alignment by establishing direct semantic
connections between visual patterns and summary
generation, while simultaneously improving visual-
representation learning through modality-specific
constraints, and mitigates the text preference bias
commonly observed in MMS, where models tend
to over-rely on textual cues while under-utilizing
visual information. Finally, we conducted exten-
sive experiments on two public MMS datasets, and
the experimental results indicate the effectiveness
of our PRVIN method.

2 Methodology

2.1 Problem Formulation

Given a source text D and its corresponding im-
age V, where D = (t1,ta,...,t,) is a sequence
of m tokens in the source text, the objective is to
generate a brief summary S = {s1, s9, ..., 5 } that
effectively captures the essential information from
both modalities. The model learns a mapping func-
tion f: (T,V) — S.

2.2 Text Encoding

We employ a pre-trained network, e.g., BARTbase
(Lewis et al., 2020), to encode the source text,
prepending a [CLS] token to capture global seman-
tic information. The resulting text representation is
formulated as T' = (tos, t1,t2, ---, tm ), Where t.s
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Figure 1: (a) Overview of PRVIN. The two networks in
right constitute integral components of our progressive
patch refinement process, i.e., (b) the patch refiner and
(c) the essential patch selector.

serves as a condensed semantic representation of
the entire text sequence.

2.3 Visual Encoding

The image encoding process employs the vision
Transformer (ViT) to map high-dimensional pixel
data into compact latent representations. We divide
each image into n non-overlapping patches and
prepend a [CLS] token to the patch sequence to rep-
resent the entire image: V' = (pers, P1, P2, -5 Pn)-
Each patch embedding p; encodes local visual in-
formation, while p.;; aggregates global image se-
mantics through transformer layers.

2.4 Essential Patch Selector

We propose an essential patch selector to deter-
mine the importance of each patch and its rele-
vance to the summary and source text. Drawing
inspiration from conventional extractive summa-
rization methods (Zhou et al., 2018; Liu and Lap-
ata, 2019), we formulate patch selection as a clas-
sification problem, aiming to determine whether
a patch aligns with the summary’s semantics and
should be selected. As illustrated in Fig 1, the se-
lector is integrated between the V'-th and (V' +1)-th
layers of the ViT in the image encoder. To estab-
lish an explicit correspondence between each patch
and the source text, we concatenate each individ-
ual visual patch token with the text [CLS] token:
p; = concat(pl, tys), where p¥ represents the i-th
patch in the output of the V'-th ViT layer.

The concatenated embeddings are then fed to
a multi-layer perceptron (MLP) which is used to
predict the relevance between patches and text in-



formation (both the source and summary). The
output of the MLP is passed through a sigmoid-
activation function to obtain the relevance score
ri: i = Sigmod(MLP(p;)). We then extract
top-k patches in the patch token sequence based
on their relevance score 7, and the new patch
sequence will be fed to the (V+1)-th ViT layer:
V= (pets, P1, P2, -, Dk)- This selection process
reduces computational complexity while preserv-
ing semantically salient visual information.

2.5 Patch Refinement

While we initially select significant patches based
on the relevance scores, we posit that further refine-
ment could reduce the length of visual sequences
and enhance the training and inference efficiency
of the vision-encoder network. Thus, we intro-
duce a post-processing refinement layer superim-
posed on the base vision encoder, implementing a
multi-stage feature enhancement strategy to actu-
alize patch refinement. Specifically, we first select
top-j patches (j < k) based on the relevance score
in the previous step: V' = (pcs, p1, D2, ..., j)-

The patch refiner consists of several transformer-
decoder blocks. Patch sequence V then under-
goes processing through the self-attention layer,
followed by the cross-attention operation with V:
V = CrossAttn(Sel f Attn(ps, p1, s D)5 V).

Consequently, the final representation for patch
sequence V ensures the refinement of the visual
sequence while preserving the structural and visual
integrity of each patch.

2.6 Multi-modal Decoder

To fuse textual and visual modalities, the out-
puts of the patch refiner and the text encoder
are concatenated and fed into the multi-modal
encoder to obtain a cross-modal representation:
C = concat(T,V). Then, the cross-modal
representation is fed into a multi-modal de-
coder composed of transformer decoder blocks
to generate the corresponding summary: s =
Decoder(C, s1, S2, ..., 8;,—1), where sj denotes
the k-th token in the generated summary, and
S1, 82, ..., §;—1 denote previous tokens.

2.7 Model Training

First, we employ the negative log-likelihood loss
to supervise the training of the summary gen-
eration model, which is formulated as £; =
- Z'ti‘l log(p(s¢|T,V, s<¢)). Second, to train the
essential patch selector, we assign a label O to

each patch based on oracle creation; set O = 1 if
the patch belongs to the oracle, otherwise 0. We
then train the model with a binary cross-entropy
loss function: Lo = —1 3", [0;log(r;) + (1 —
O;) log(1 — r;)], where O; is the label for the i-th
patch, and r; is the relevance score obtained from
the MLP. Finally, we expect the model to under-
stand the summary and grasp the vision-summary
correlation. To this end, we introduce a task in
which the model generates the corresponding sum-
mary S directly from visual information, without
access to the source text 7. This enables our model
to develop a preliminary understanding of the sum-
mary and grasp the overall context, formulated as
L3 =~ 32 log(p(siV, s<1)).

Overall Loss. The final loss is the combination of
the above three losses: £ = L1+« - Lo+ 5 - L3,
where « and ( are hyper-parameters for regulat-
ing the balance among the three loss components.
More details about the model are in Appendix A.

2.8 Oracle Creation

To facilitate supervised training of the essential
patch selector in PRVIN, an oracle label should
be assigned to each patch. We introduce a novel
method for oracle creation that synergizes im-
age—text similarity with an object detection model.
We first select candidate patches with image—text
similarity, and then verify them with an object de-
tection model to ensure they contain text-related
objects. This approach can mitigate bias by avoid-
ing reliance on a single metric. The details are in
Appendix B.

3 Experiments

3.1 Experimental Settings

We evaluated our model on two MMS datasets,
MMSS (Li et al., 2018) and MM-Sum-En (Liang
et al., 2023). We set Top-k and Top-j to 70% and
60% of all patches, respectively, and set both the
balancing factors a and 3 in the loss function to 1.0,
since we found they were optimal on the validation
set through tuning with grid search. More details
of the datasets, the selection of the ratios and the
balancing factors, and the experimental settings are
in Appendices C, D, and E.

3.2 Experimental Results

We employed six distinct evaluation metrics to
rigorously assess the performance of our model,;
ROUGE-1, 2, L (Lin, 2004), BLEU (Papineni



Model R-1 R-2 R-L
MMSS
M Att 4728 24.85 4448
CFSum 47.86 25.64 44.64
VG-BART* 51.73 29.17 48091
T-3 53.71 30.96 50.62
VE-ELIN 5420 31.24 51.47
PRVIN 54.16 31.19 51.31
MM-Sum-En
mT5 36.99 15.18 29.64
VG-mTH 37.17 14.88 29.41
SOV-MAS 3726 15.02 29.61
VG-BART* 37.27 1591 30.26
VE-ELIN 3997 18.09 3247
PRVIN 40.26 18.37 32.61
Model BLEU BertScore MoverScore
MMSS
CFSum 48.83 86.98 32.36
VG-BART*  51.63 91.80 4591
T-3 59.68 91.99 63.96
VE-ELIN  60.16 92.22 49.15
PRVIN 60.26 92.15 49.32
MM-Sum-En
VG-BART*  40.88 90.73 27.47
VE-ELIN 4544 96.61 30.85
PRVIN 45.90 97.04 31.18

Table 1: Experimental results on the test set of the
MMSS and MM-Sum-En datasets. Scores with an aster-
isk (x) are reproduced scores, otherwise reported scores
from the original paper.”> Our model is statistically sig-
nificantly better than the underlined scores at p-value <
0.01 with paired bootstrap resampling (Koehn, 2004).

et al., 2002), MOVERScore (Zhao et al., 2019),
and BERTScore (Zhang et al., 2019). The details
are described in Appendix F. We compared our
model with several SOTA models: CFSum (Xiao
et al., 2023), VG-BART (Yu et al., 2021), T-3
(Yuan et al., 2024), VE-ELIN (Yan et al., 2024),
SOV-MAS (Liang et al., 2023), and several clas-
sical methods. The details of these models are
described in Appendix G.

Table 1 presents the overall results of our prin-
cipal metrics on the two datasets. For the MMSS
dataset, PRVIN achieved competitive performance
to the state-of-the-art VE-ELIN model across all
metrics. In particular, it achieved a higher Mover-
Score (49.32) than VE-ELIN (49.15), indicating
better text-generation diversity. Notably, PRVIN
outperformed the strong baselines including CF-
Sum and T-3, indicating its effectiveness in leverag-
ing multi-modal information. For the MM-Sum-En
dataset, PRVIN outperformed all baselines. This
performance advantage indicates strong model ro-
bustness across different data types and reveals a

*While we tried to reproduce the strongest baseline for
each dataset, we failed it because of the unavailability of the
code. All our results were the average of 3 trials.

method R-1 R-2 R-L

MMSS

Full model 54.16 31.19 51.31
w/o re finer 51.74 29.10 49.76
w/o selector&refiner 51.03 28.33 48.75
w/o vision-sum loss 53.77 31.09 50.93
MM-Sum-En

Full model 40.26 18.37 32.61
w/o refiner 39.05 17.87 31.87
w/o selector&refiner 38.12 17.21 31.20
w/o vision-sum loss 40.04 18.12 32.33

Table 2: Ablation study results on two datasets.

distinctive capability in processing lengthy textual
content, which we attribute to our architecture’s ef-
fective integration of multi-modal features. To com-
prehensively evaluate our model, we performed
comparison with multi-modal large language mod-
els (Appendix H). We also shows example outputs
from our model in Appendix I.

3.3 Ablation Study

We conducted an ablation study to verify the im-
portance of each module in our model. Specifi-
cally, we evaluated PRVIN’s performance by re-
moving each component. The results are shown
in Table 2. Removing the patch refiner degrades
the performance, demonstrating that refining both
patch-level visual features and inter-patch correla-
tions enhances PRVIN’s effectiveness. Removing
the selector and refiner causes the performance
to markedly decline, highlighting their essential
contribution to text-relevant patch selection and re-
finement. Furthermore, removing the vision-sum
loss shows a performance drop, demonstrating that
direct image-summary alignment facilitates better
visual representation learning for summary genera-
tion. We also evaluated the impact of removing text
and image encoders on the model in Appendix J.

4 Conclusion

We proposed a Patch-Refined Visual Information
Network (PRVIN) for solving the MMS problems
at the image patch level. Our model consists of
an essential patch selector that identifies vision-
text-summary correlations and prioritizes semanti-
cally critical image patches, and a patch refiner that
processes the selected patch sequences to further
distill and optimize visual information. We addi-
tionally utilize a vision-to-summary auxiliary task
that explicitly models vision-summary interdepen-
dence. Extensive experiments conducted on two
benchmark datasets demonstrated the superiority
and effectiveness of our approach.



Limitations

This study is subject to two primary limitations.
First, the generalizability of our approach requires
further validation due to dataset constraints. The
current validation has been restricted to two bench-
mark datasets, potentially limiting the model’s
adaptability to other non-english languages and
other modalities.

Second, the model performance exhibits signif-
icant dependency on the oracle creation method.
While our oracle creation framework demonstrates
theoretical advancements over conventional meth-
ods, its empirical optimality remains unverified
due to the absence of systematic evaluation metrics.
This methodological uncertainty may impact the
model’s robustness, particularly when applied to
complex real-world scenarios, where oracle quality
could substantially affect downstream task perfor-
mance. We leave these as our future work.
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A  Model Details

PRVIN consists of the following components: a
6-layer transformer for the text encoder, a 12-layer
transformer for the vision encoder, a 3-layer trans-
former for the cross-modal encoder, a 3-layer per-
ceptron for the essential patch selector, a 2-layer
transformer for the patch refiner, and a 6-layer
transformer for the multi-modal decoder. Specif-
ically, we initialized the text encoder and multi-
modal decoder using the encoder and decoder of
BARTDbase (Lewis et al., 2020), respectively, with
a text feature dimension of 768. The patch re-
finer was initialized using the last two layers of
the BARTbase decoder and the cross-modal en-
coder network was initialized using the last three
layers of the BARTbase encoder. For the vision
encoder, we used the vision encoder from the “ViT-
B/32” version of CLIP (Radford et al., 2021), with
a patch size of 32x32 and an output visual feature
dimension of 768. The essential patch selector was
placed between the 8-th and 9-th transformer layers
in the vision decoder (V' =8).

B Oracle Creation

Our novel oracle creation approach begins with
an initial screening based on image—text similarity,
followed by the selection of oracle patches using
an auxiliary object detection model. Specifically,
we first employ CLIPScore (Hessel et al. (2021))
to compute the similarity between each patch and
both the input text and the reference summary:

Simy,—~7 = CLIP(p;,T), (1)

Simp,—~g = CLIP(p;, S). 2)

The resulting similarity values are then aggregated
into a comprehensive similarity sequence, from
which patch indices are extracted according to a
predefined ratio (20%) to form the oracle, and se-
lected patches are subsequently assigned a label of
1.

To enhance the precision of oracle selection, we
introduce a three-stage object detection-assisted
refinement framework. The pipeline operates as
follows:

Object Localization: We employ YOLOvI1m
(Khanam and Hussain, 2024) as our pre-trained
object detection backbone due to its optimal trade-
off between model compactness, computational
efficiency, and detection accuracy (Jegham et al.,

2024). This network generates object category pre-
diction along with the corresponding bounding box
for each image.

Semantic-relevance Filtering: For each de-
tected object, we verify its semantic alignment with
the target summary through synonym matching.
Specifically, we maintain a synonym set derived
from WordNet® for each object category. An ob-
ject is considered relevant if any lexical item from
its synonym set appears in the target summary. Im-
ages without relevant objects retain their original
CLIPScore evaluation.

Oracle-region Optimization: When objects are
deemed relevant, we calculate the proportion of
image area occupied by their bounding boxes. If
the cumulative area exceeds 20% of the total image
space, we strategically select the most representa-
tive 20% of patches (prioritizing central regions of
large objects). For sub-20% coverage cases, we
preserve all object-associated patches. The remain-
ing oracle patches are then supplemented from the
highest-ranked CLIPScore regions to maintain con-
sistent selection quantities.

This hybrid approach synergistically combines
semantic understanding from object detection with
cross-modal alignment from CLIPScore, ensuring
both semantic relevance and visual-textual corre-
spondence in oracle selection.

C Datasets

We conducted experiments on the representa-
tive MMSS dataset (Li et al., 2018), which con-
tains 62,000/2,000/2,000 samples for the train-
ing/validation/test set, respectively. Each sam-
ple in the dataset is a triplet <sentence, image,
summary>. We also evaluated our method on
the English part of the multilingual multi-modal
abstractive summarization (MM-Sum-En) dataset
(Liang et al., 2023), which contains 326,725 sam-
ples and 867,817 images in total, all sourced from
BBC News. Using a 93%/3.5%/3.5% split, the
training, validation, and test sets contain 303,828,
11,437, and 11,460 samples, respectively. Each
sample consists of a triplet: <news article,
associated images, summary>.

D The Impact of Selection Ratios and
Balancing Factors

To investigate the impact of selection ratios in the
essential patch selector and balancing factors in the

3 www.nltk.org
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Figure 2: The impact of different ratios for k£ and j on
model performance on the validation set of the MMSS
and MM-Sum-En datasets.

loss function on PRVIN’s performance, we tried
different combinations of &, j, a, and 3 for evalua-
tion.

For the balancing factors, we searched the opti-
mal « and 3 for each combination of k and j among
the values of {0.25,0.5,0.75,1.0,1.25}. Eventu-
ally, we found that our model is not sensitive to
and 3 because the differences were less than 0.05,
and so we set both o and /3 to 1.0.

For the selection ratios, as shown in Figure 2,
PRVIN’s performance gradually improved with
increasing k values, but it stagnated significantly
when reaching approximately 70% of image in-
formation utilization. Furthermore, PRVIN’s per-
formance also gradually improves with increasing
j values and then tends to stabilize. When the j
value is too high, for example, exceeding 0.8, the
model performance decreases. We conjecture that
redundant patches not only prove unproductive but
may potentially compromise summarization quality
through information dilution. We obtained similar
results on the MM-Sum-EN validation set.

E Training Details

For the MMSS dataset, we set the batch size to 16,
the dropout to 0.1, the maximum training epochs
to 50, and the beam size to 10. The model was opti-
mized using Adam with 51 = 0.9 and B2 = 0.998,

and the learning rate was set to 5e-6. The maxi-
mum input length was 64 and the maximum out-
put length was 32. For the MM-Sum-EN dataset,
the parameters remained identical to those in the
MMSS, except that the maximum input length was
1024 because of the limitation of BARTbase, the
maximum output length was 256, the batch size
was 8, and the maximum training epochs was 20
(Liang et al., 2023). All models were trained and
tested on a two A100-80GB GPU.

F Evaluation Metrics

Following previous studies, we presented our ex-
perimental results in terms of 6 automatic met-
rics: ROUGE-1, ROUGE-2, and ROUGE-L (Lin,
2004) as principal metrics, and BLEU (Papineni
et al., 2002), MOVERScore (Zhao et al., 2019),
and BERTScore (Zhang et al., 2019) as supplemen-
tary metrics to ensure a comprehensive assessment.
BLEU computes the n-gram precision between a
candidate and references, with a brevity penalty to
discourage overly short outputs. BERTScore lever-
ages contextual embeddings from BERT (Devlin,
2018) by calculating the cosine similarity between
candidate and reference tokens. MoverScore mea-
sures semantic distance using the Word Mover’s
Distance (Kusner et al., 2015) between the dis-
tributions of word embeddings in the candidate
and reference texts, enabling a robust evaluation of
meaning.

G Compared Methods

To evaluate the effectiveness of our method, we
compared it against some classic and strong base-
lines. For the MMSS dataset: Lead generates sum-
maries by directly extracting the first eight words
of the source. Compress employs an integer lin-
ear programming framework to achieve sentence
compression, leveraging the syntactic structure as
its foundational basis. ABS (Rush, 2015) utilizes
an attention-based CNN encoder paired with a neu-
ral language model decoder to produce abstrac-
tive summaries. SEASS (Zhou et al., 2017) intro-
duces a selective encoding mechanism that dynam-
ically filters and prioritizes salient textual features
during the summarization process. Multi-source
(Libovicky and Helcl, 2017) introduces flat and
hierarchical attention strategies to integrate mul-
tiple source modalities. Doubly-Attentive (Cal-
ixto et al., 2017) utilizes a doubly-attentive mecha-
nism to incorporate visual features. Table 3 shows



Model R-1 R-2 R-L

MMSS
Lead! 33.64 1340 31.84
Compresst 3156 11.02 28.87
ABSt 3559 1821 31.89
SEASSt 4486 23.03 41.92
Multi-Sourcet 39.67 19.11 38.03
Doubly-Attentive’  41.11 2175 39.92
PRVIN 54.16 31.19 51.31

Table 3: Comparison with some classic baselines, The
results marked with “1” are reported in (Li et al., 2018).

the comparison of classic methods and our model.
MALtt (Li et al., 2018) proposes a modality-based
attention mechanism and an image filter to enhance
the relation between modalities. VG-BART (Yu
et al., 2021) utilizes PLMs as the backbone and in-
jects visual features into the encoder layer through
dot production. CFSum (Xiao et al., 2023) pro-
poses a contribution network to calculate image
contributions and guide the attention of both tex-
tual and visual modalities. T-3 (Yuan et al., 2024)
resorts Information Bottleneck (IB) to alleviate
over-preservation and over-compression of visual
information. VE-ELIN (Yan et al., 2024) consid-
ers entity-level granularity to address the problem
of under-utilization of multi-modal inputs and is a
strong baseline.

For the MM-Sum-En dataset, mT5 (Xue, 2020)
uses a multilingual variant of TS5, that was pre-
trained on a new Common Crawl-based dataset cov-
ering 101 languages, and is the text-only baseline.
VG-mTS5 (Liang et al., 2023) implements an atten-
tion based text-vision fusion method to inject visual
features into the mT5 model. SOV-MAS (Liang
et al., 2023) proposes two summary-oriented auxil-
iary tasks to enhance the MAS model based on the
pre-trained language models.

H Comparison with MLLM-based
Methods

Building on the remarkable achievements of Multi-
modal Large Language Models (MLLMs) across
diverse multi-modal tasks (Yin et al., 2023; Li
et al., 2024), we further expanded our compar-
ative analysis to include state-of-the-art MLLM-
based approaches. To establish a comprehensive
benchmark, we implemented a zero-shot evaluation
protocol using LLaVA-v1.6-Mistral-7B (Liu et al.,
2024), a leading MLLM architecture. Specifically,
we prompted LLaVA-v1.6-Mistral-7B with the fol-
lowing prompt to generate a multi-modal summary

Model R-1 R-2 R-L
UniG 1 46.22 2428 4347
BLIP-MMSS 4843 26.76 45.87
LLaV A-v1.6-Mistral-7B

zero-shot 15.72 4.02 14.01
PRVIN 54.16 31.19 51.31

Table 4: Comparision with MLLM-based methods on
the test set of MMSS. The results marked with | are
reported in (Yuan et al., 2024).

method R-1 R-2 R-L

Full model 5411 31.17 51.27
w/o text encoder 49.12 28.07 47091
w/o vision encoder 51.51 28.63 48.72

Table 5: The effectiveness of text and vision encoders
on the test set of MMSS

for the MMSS dataset: Combine the following text
with the image content, summarize coherently in-
cluding content from both the text and the image,
and compress to one sentences such that it captures
the most salient information from both modalities.
Following Yuan et al. (2024), we also conducted
comparison against vision-language pre-training
(VLP) models; UniG (Xiao et al., 2023) adopts an
identical architectural framework to CFsum, with
the primary distinction residing in its encoder com-
ponent, which utilizes the UNITER model (Chen
et al., 2020). The BLIP-MMSS framework is con-
structed through fine-tuning the BLIP (Li et al.,
2022) model on the MMSS dataset. As shown in
Table 4, our model clearly far outperforms the zero-
shot capabilities of the current top-tier multi-modal
large models, indicating that further sophisticated
designs and approaches are needed for these mod-
els to be effectively applied to multi-modal sum-
marization tasks. Moreover, our model also out-
performs vision pre-training-based methods, such
as UniG and BLIP-MMSS, which demonstrates its
more efficient utilization of visual information.

I Case Study

Figure 3 shows examples of multi-modal summary
generation outputs using our model.

J The Effectiveness of the Text and Vision
Encoders

To validate whether PRVIN genuinely leverages
multi-modal information rather than relying on a
single modality, we conducted ablation studies by
masking specific components for the cross-modal



Source sentence:

rescue workers searched friday
for a #-year-old girl still missing a
day after an avalanche killed ##
people in a coastal village .

Gold summary: search continues for infant after avalanche
kills ##.

Summary from PRVIN: Rescue search continues for missing
girl after avalanche.

Source sentence:

the government said tuesday it
had intercepted another
boatload of about ### middle
eastern asylum seekers off the
northwest coast of australia .

Gold summary: government intercepts boat of middle
eastern asylum seekers on.

Summary from PRVIN: Australia intercepted Middle Eastern
asylum seekers’ boat off northwest coast.

Figure 3: Case study for our PRVIN

representation. Specifically, as shown in Table 5,
“wl/o text encoder” indicates masking the textual
portion of the cross-modal representation, while
“w/o vision encoder” refers to masking the visual
counterpart. Our experimental results reveal two
key findings. First, when removing the text en-
coder, PRVIN still generates summaries of reason-
able quality, which we attribute to the effective-
ness of our vision-sum loss in maintaining visual
semantic preservation. Second, removing either
text or vision encoder causes a significant perfor-
mance degradation, demonstrating that PRVIN ef-
fectively exploits information from both modali-
ties. This substantial performance difference be-
tween single-modality and dual-modality ablation
confirms that PRVIN successfully captures cross-
modal correlations, enabling synergistic integra-
tion of textual and visual information to enhance
summarization quality. The empirical evidence
suggests that, while each modality contributes in-
dependently, their coordinated interaction through
our concatenated representation learning yields op-
timal performance.
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