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ABSTRACT

In semi-supervised domain adaptation (SSDA), the model aims to leverage par-
tially labeled target domain data along with a large amount of labeled source do-
main data to enhance its generalization capability for the target domain. A key
advantage of SSDA is its ability to significantly reduce reliance on labeled data,
thereby lowering the costs and time associated with data preparation. Most ex-
isting SSDA methods utilize information from domain labels and class labels but
overlook the structural information of the data. To address this issue, this paper
proposes a graph learning perspective (AGLP) for semi-supervised domain adap-
tation. We apply the graph convolutional network to the instance graph which
allows structural information to propagate along the weighted graph edges. The
proposed AGLP model has several advantages. First, to the best of our knowl-
edge, this is the first work to model structural information in SSDA. Second, the
proposed model can effectively learn domain-invariant and semantic representa-
tions, reducing domain discrepancies in SSDA. Extensive experimental results
on multiple standard benchmarks demonstrate that the proposed AGLP algorithm
outperforms state-of-the-art semi-supervised domain adaptation methods.

1 INTRODUCTION

Domain Adaptation (DA) Venkateswara et al. (2017); Peng et al. (2019); Berthelot et al. (2021) is a
critical machine learning approach aimed at addressing the issue of training and test data originating
from two related but distinct domains. These domains are typically referred to as the source domain
and the target domain. In many practical applications, the source domain contains a wealth of la-
beled data, while the target domain may have only a few labels or even none at all. This discrepancy
often leads to a significant drop in model performance when directly transferring a model from the
source domain to the target domain. Much of the research has focused on Unsupervised Domain
Adaptation (UDA). In UDA scenarios, researchers cannot access labels from the target domain, re-
quiring models to rely on knowledge from the source domain and unlabeled data from the target
domain for learning. In recent years, Semi-Supervised Domain Adaptation (SSDA) has emerged
as a focal point of research. Unlike UDA, SSDA Jiang et al. (2020); Singh (2021); Berthelot et al.
(2021) allows researchers to access a small number of labeled samples in the target domain, pro-
viding the model with richer learning information. By combining the abundant labeled data from
the source domain with the limited labeled data from the target domain, SSDA can more effectively
capture the underlying structural relationships between the domains, thereby improving the model’s
performance and adaptability.

Prior SSDA methods can be broadly categorized into three groups: 1) statistical discrepancy mini-
mization methods Berthelot et al. (2021); Li & Zhang (2018), which utilize statistical regularizations
to explicitly reduce the cross-domain distribution discrepancy; 2) adversarial learning methods Jiang
et al. (2020); Singh (2021), which aim to learn domain-invariant representations across two domains
using adversarial techniques; and 3) multi-task learning methods Li et al. (2019); Qi et al. (2024),
which focus on simultaneously learning multiple related tasks to share knowledge and improve the
model’s generalization ability.

Indeed, these SSDA methods have achieved some success, but the main technical challenge in SSDA
lies in how to formally reduce the distribution discrepancy between different domains, typically the
labeled source domain and the sparsely labeled target domain. There is little literature addressing
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the significant enhancement of the adaptation capability of source-supervised classifiers, which is
crucial for SSDA problems, as shown in Figure 2. To achieve classifier adaptation, He et al.He et al.
(2020) propose a novel classification-aware semi-supervised translator that effectively addresses the
large gap between heterogeneous domains at the pixel level. Saito et al.Saito et al. (2019a) tackle
the SSDA setting by proposing a novel Minimax Entropy approach that adversarially optimizes an
adaptive few-shot model. The domain classifier is trained to determine whether a sample comes from
the source domain or the target domain. The feature extractor is trained to minimize classification
loss while maximizing domain confusion loss. Through the principled lens of adversarial training,
it appears possible to obtain domain-invariant yet discriminative features. All of these methods
overlook the aspect of learning domain-invariant features from the perspective of data structure.

Figure 1: Illustration of our AGLP. The data structure is constructed to build graph information.

To address the above issues, we propose an end-to-end Graph Convolutional Adversarial Network
(GCAN) aimed at achieving semi-supervised domain adaptation. This network enhances adaptabil-
ity by jointly modeling data structure and domain labels within a unified deep model. Inspired by
graph neural networks, we construct a densely connected instance graph using the CNN features
of samples, based on the similarity of their structural characteristics. Each node corresponds to the
CNN features of a sample extracted by a standard convolutional network. Next, we apply a Graph
Convolutional Network (GCN) to the instance graph, allowing structural information to propagate
along the weighted graph edges that can be learned from the designed network. During the class
centroid alignment process, we constrain the centroids of different classes to gradually move closer
as iterations increase, enabling the learned representations to effectively encode class label infor-
mation. This results in tighter embeddings for samples with the same category label in the feature
space. Our model introduces a class alignment loss to achieve this goal and employs a moving
centroid strategy to mitigate the influence of incorrect pseudo-labels. By modeling this alignment
mechanism, the deep network can generate domain-invariant and highly discriminative semantic
representations. The main contributions of this work can be summarized as follows.

• We propose a graph learning perspective (AGLP) by modeling data structure and domain
label for semi-supervised domain adaptation. To the best of our knowledge, this is the first
work to model graph information for semi-supervised domain adaptation.

• The proposed alignment mechanisms can learn domain-invariant and semantic representa-
tions effectively to reduce the domain discrepancy for SSDA.

• Extensive experimental results on several standard benchmarks demonstrate that the pro-
posed AGLP algorithm performs favorably against state-of-the-art SSDA methods.

2 METHODS

2.1 PRELIMINARIES

2.1.1 SEMI-SUPERVISED DOMAIN ADAPTATION

Semi-Supervised Domain Adaptation (SSDA) aims to learn a classifier for the target domain,
given labeled data S = {(xs

i , y
s
i )}

Ns
i=1 from a source domain, along with both unlabeled data

U = {(xu
i )}

Nu
i=1 and labeled data L = {(xl

i, y
l
i)}

Nl
i=1 from the target domain Saito et al. (2019a);

Li & Hospedales (2020); Berthelot et al. (2021); Wang et al. (2023). The primary goal of SSDA is
to leverage these data subsets to train a feature extractor F(·) and a classifier C(·), facilitating the
migration of learned knowledge from the source domain to the target domain, while minimizing the
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risk of migration loss. SSDA can be viewed as a more flexible yet practical extension of Unsuper-
vised Domain Adaptation (UDA)Yue et al. (2023); Litrico et al. (2023), where some labeled data
from the target domain is available. Typically, SSDA algorithms utilize a combination of three loss
functions:

LSSDA = Ls + Lℓ + Lu (1)

where Ls represents the loss from the source data, Lℓ and Lu correspond to the losses from the
labeled and unlabeled target data, respectively.

To train the model effectively using supervision from both the source and target domains, most
existing SSDA methods Yu & Lin (2023); Li & Hospedales (2020); Berthelot et al. (2021) include
the following standard cross-entropy loss for all labeled data:

Lℓ = LCE = −
∑

(x,y)∈S∪L

y log(p(x)) (2)

In Eq. 2, (x, y) represents the data points and their corresponding labels from the source domain
S and the labeled target domain L. The cross-entropy loss encourages the model to minimize the
negative log-likelihood of the predicted probability p(x) with respect to the true label y, thereby
facilitating effective learning from both domains.

2.1.2 CROSS-DOMAIN ADAPTIVE CLUSTERING (CDAC)

Inspired by a recent well-known method CDAC Li et al. (2021), we consider improving model per-
formance from the perspective of cross-domain clustering. CDAC introduce an adversarial adaptive
clustering loss in SSDA to align target domain features by forming clusters and aligning them with
source domain clusters. This loss computes pairwise feature similarities among target samples and
ensures that samples with similar features share the same predicted class labels. Pairwise similari-
ties are used to define binary pseudo-labels for sample pairs, sij = 1 for similar pairs and sij = 0
otherwise, based on the top-k ranked feature elements:

sij = 1{topk(G(xu
i )) = topk(G(xu

j ))} (3)

where topk(·) denotes the top-k indices of rank ordered feature elements and we set k = 5. And
1{·} is an indicator function.

The adversarial adaptive clustering loss LAAC is formulated as:

LAAC = −
M∑
i=1

M∑
j=1

sij log(P
T
i Pj) + (1− sij) log(1− PT

i Pj) (4)

where M is the number of unlabeled target samples in each mini-batch and Pi = p(xu
i ) =

σ(F (G(xu
i ))) represents the prediction of an image xu

i in the mini-batch. Also, P ′
i = p(x′

i) =
σ(F (G(x′

i))) indicates the prediction of a transformed image x′
i, which is an augmented version of

xu
i using a data augmentation technique. The inner product PT

i P ′
i in Eq. 4 is used as a similarity

score, which predicts whether image xu
i and the transformed version of image x′

i share the same
class label or not.

To address the lack of labeled target samples, CDAC apply pseudo labeling, retaining high-
confidence pseudo-labels to increase the number of labeled target samples. Pseudo labels are gen-
erated by feeding an unlabeled image xu

j into the model, with the prediction Pj = p(xu
j ) converted

into a hard label ỹuj = argmax(Pj). The final loss for pseudo-labeling is defined as:

LPL = −
M∑
j=1

1{max(Pj) ≥ τ}ỹuj log(p′′j ) (5)
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where P ′′
j = p(x′′

j ) = σ(F (G(x′′
j ))) denotes the model prediction of the transformed image x′′

j , and
τ is a scalar confidence threshold that determines the subset of pseudo labels that should be retained
for model training.

To improve the input diversity of our model, we create two different transformed versions of each
unlabeled image in the target domain to implement the adversarial adaptive clustering loss and the
pseudo-labeling loss, respectively. Therefore, CDAC employ a consistency loss, LCon, to keep the
model predictions on these two transformed images consistent:

LCon = w(t)

M∑
j=1

∥P ′
j − P ′′

j ∥2 (6)

w(t) = νe−5(1− t
T )2 is a ramp-up function used in with the scalar coefficient ν, the current time step

t, and the total number of steps T in the ramp-up process. So, the Lu is:

Lu = LCon + LPL + LAAC (7)

2.1.3 SOURCE LABEL ADAPTATION (SLA)

In SSDA, accessing only a few labeled target instances can lead to overfitting. To mitigate this,
SLAYu & Lin (2023) employs a prototypical network (ProtoNet) to address the few-shot problem.
Given a dataset, {(xi, yi)}Ni=1 and a feature extractor f , the prototype of class k is defined as the
mean of the feature representations for all samples belonging to class k:

ck =
1

Nk

N∑
i=1

1{yi = k} · f(xi). (8)

The set of all class prototypes is denoted as Cf = {c1, . . . , cK}. A ProtoNet is defined using these
class prototypes as:

PCf
(xi)k =

exp(−d(f(xi), ck) · T )∑K
j=1 exp(−d(f(xi), cj) · T )

(9)

where d(·) is a distance function in the feature space, typically Euclidean distance, and T controls
the smoothness of the output distribution.

To adapt to the target domain, labeled target centers C ′
f are computed from labeled target data.

The ProtoNet with labeled target centers PC′
f

serves as a label adaptation model. However, since
the number of labeled target samples is limited, the ideal centers C∗

f should be estimated from
both labeled and pseudo-labeled data. Pseudo centers C̃f are computed using pseudo-labels for the
unlabeled target data, which are predicted as:

ỹui = argmax
k

g(xu
i )k (10)

After deriving unlabeled target data with pseudo labels {(xu
i , ỹ

u
i )}

|U |
i=1, we can get pseudo centers

C ′
f by Eq. 8, and further define a ProtoNet with Pseudo Centers (PPC) PC′

f
by Eq. 9.

The ProtoNet with pseudo centers (PPC) P̃Cf
better approximates the ideal centers. Then the up-

dated source label is computed as:

ysi = (1− α) · ysi + α · PC̃f
(xs

i ) (11)

The source label adaptation loss L̃s replaces the standard cross-entropy loss for the source data:
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Ls = L̃s(g|S) =
1

|S|

|S|∑
i=1

H(g(xs
i ), ỹ

s
i ) (12)

The final loss function for SSDA with CDAC SLA is:

LCDACSLA = L̃s(g|S) + LCE + LAAC + LPL + LCon (13)

Figure 2: Overall framework of our model.

2.2 STRUCTURE-AWARE ALIGNMENT

In traditional domain alignment mechanisms Sun et al. (2023); Li et al. (2023), only global domain
statistics are aligned, overlooking the inherent structural information in mini-batch samples. Previ-
ous research has focused primarily on modeling data structure in unsupervised domain adaptation
(UDA) and has achieved promising results Oza et al. (2023). However, in the context of SSDA,
there has been no solution addressing the structural information within mini-batch samples, despite
its importance being demonstrated in UDA. To overcome this limitation in SSDA, we propose a
structure-aware alignment mechanism that more effectively captures the structural relationships be-
tween mini-batch source and target samples.

Our approach begins by utilizing a Data Structure Analyzer (DSA) network to generate structural
scores for mini-batch samples. These scores, together with the learned CNN features of the samples,
are used to construct a densely connected instance graph. This instance graph is then processed using
a Graph Convolutional Network (GCN) Kipf & Welling (2016), which learns features that encode
the structural information present in the data.

GCNs are designed to perform hierarchical propagation operations on graphs. Given an undirected
graph with m nodes and a set of edges represented by an adjacency matrix A ∈ Rk×m, the graph
convolution’s linear transformation is expressed as a graph signal G ∈ Rk×m, where Gi ∈ R repre-
sents the feature of the i-th node. This is combined with a filter W ∈ Rk×c for feature extraction.

Z = D̂− 1
2 ÂD̂− 1

2GTW (14)

In our method, the GCN is constructed by stacking multiple graph convolutional layers, each fol-
lowed by a non-linear activation (e.g., ReLU). Given the adjacency matrix Â = A + I , where I is
the identity matrix and Dii =

∑
j Âij , the output of the GCN is a c×m matrix Z.

5
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To build densely-connected instance graphs for GCN, the graph signal X is generated using a stan-
dard convolutional network:

G = F(xbatch) (15)

where xbatch represents mini-batch samples. The adjacency matrix Â is constructed using structure
scores Gsc produced by a Data Structure Analyzer (DSA) network:

Â = GscG
T
sc, (16)

where Gsc ∈ Rw×h, w is the batch size, and h is the dimension of the structure scores.

2.3 CLASS CENTROID ALIGNMENT

Domain invariance and structure consistency do not necessarily guarantee discriminability. For
example, features of the target class ”laptops” may be mapped near features of the source class
”screens” while still satisfying domain invariance. To address this, we draw inspiration from UDA
Ma et al. (2019), where class label information ensures that features of the same class from different
domains are mapped nearby. This motivates our use of class centroid alignment in UDA, following
the approach in Ma et al. (2019).

To implement the class centroid alignment, pseudo labels are first assigned using a target classifier
F , after which centroids are computed for both labeled and pseudo-labeled samples. The centroid
alignment objective is defined as:

LCA(XS ,YS ,XT ,YT ) =
K∑

k=1

ϕ(Ck
S , C

k
T ), (17)

where Ck
S and Ck

T are the centroids of class k in the source and target domains, respectively. The
distance measure ϕ(·, ·) is defined as the squared Euclidean distance ϕ(x, x′) = ∥x − x′∥2. By
minimizing the distance between centroids across domains, we ensure that features of the same
class are mapped nearby.

2.4 IMPLEMENTATION DETAILS

The overall framework of our final model is illustrated in Figure 2. After extracting features from
the input, we compute the structural score using Structure-aware Alignment and extract structural
features through Graph Convolutional Networks (GCN). These features are then concatenated with
the original features to create the final feature representation. Finally, we utilize the final loss for
convergence, which is defined as follows:

LAGLP = LCDACSLA + βLCA(XS ,YS ,XT ,YT )
= L̃s(g|S) + LCE + LAAC + LPL + LCon + βLCA(XS ,YS ,XT ,YT )

(18)

where β is a hyperparameter, which is typically set to 1 in our experiments.

3 EXPERIMENTS

3.1 EXPERIMENT DATASETS

We evaluate our proposed AGLP framework on two SSDA benchmarks: Office-Home Venkateswara
et al. (2017) and DomainNet Peng et al. (2019).

Office-Home Venkateswara et al. (2017) is an object recognition benchmark consisting of 15,500
images from 65 classes across four domains: Art (A), Clipart (C), Product (P), and Real World (R).
The domain shift primarily results from variations in image styles and perspectives.

DomainNet Peng et al. (2019) is a dataset featuring common objects across six different domains,
including 345 classes such as bracelets, airplanes, birds, and cellos. The domains include Clipart,

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1: AGLP algorithm.
Input:
1) Source domain data S = {(xs

i , y
s
i )}

Ns
i=1

2) Unlabeled target data U = {(xu
i )}

Nu
i=1

3) Labeled target data L = {(xl
i, y

l
i)}

Nl
i=1

4) Feature extractor F(·)
5) Classifier C(·)
6) GCN network

1 Initialize all parameters
33 for l← 0 to L do
55 Randomly sample a batch of data from S,U ,L.
77 Use F(·) to extract features and obtain G as shown in Eq. 15.
99 Obtain the structural information feature Â by passing G through the DSA in Eq. 16.

1111 Concatenate Â with G and feed the combined features into C(·).
1313 Train C(·) and F(·) using the losses L̃s(g|S),LCE ,LAAC ,LPL,LCon, and LCA.
14 end
15 return C(·), F(·)

which contains clipart images; Real, comprising photographs and real-world images; Sketch, featur-
ing sketches of tangible objects; Infograph, containing infographics with specific objects; Painting,
showcasing artistic representations; and Quickdraw, which consists of drawings made by players
worldwide. In line with prior works Yang et al. (2021); Li et al. (2021); Yan et al. (2022), we select
four domains—Clipart (C), Painting (P), Real (R), and Sketch (S)—to conduct experiments on 126
classes. For dataset processing, we employ the same sampling strategy for the training and valida-
tion sets as utilized in recent studies Yang et al. (2021); Li et al. (2021); Yan et al. (2022). Each
dataset is evaluated through both one-pass and three-pass experiments.

3.2 COMPARISON METHODS AND SETTINGS

We compare our results with several baselines, including S+T, DANN Ganin et al. (2016), ENT
Grandvalet & Bengio (2004), APE Kim & Kim (2020), DECOTA Yang et al. (2021), MME Saito
et al. (2019a), MME SLA Yu & Lin (2023), CDAC Li et al. (2021), and CDAC SLA Yu & Lin
(2023). Among these, S+T serves as the baseline method for SSDA, where training involves only
source data and labeled target data. DANN is a classical unsupervised domain adaptation method,
replicated here by training on additional labeled target data. ENT is the standard entropy minimiza-
tion method originally designed for semi-supervised learning.

Our framework can be applied to various state-of-the-art methods. To verify the effectiveness of
our approach, we select CDAC SLA Yu & Lin (2023) as the baseline. For a fair comparison, we
adopt ResNet34 He et al. (2016) as the backbone network. The backbone network is pre-trained on
the ImageNet1K dataset Deng et al. (2009), and we follow the same model architecture, batch size,
learning rate scheduler, optimizer, weight decay, and initialization strategies as in previous works
Li et al. (2021); Saito et al. (2019a). For MME and CDAC, we use the same hyperparameters as
recommended in their original papers. For SLA, we set the mixing ratio α to 0.3 and the temperature
parameter T to 0.6. The update interval is set to 500. For MME, the warmup parameter W is 500 on
Office-Home and 3000 on DomainNet, while for CDAC, W is 2000 on Office-Home and 5000 on
DomainNet. After the warmup phase, we reset the learning rate scheduler to allow label adaptation
loss updates at a higher learning rate. All hyper-parameters are fine-tuned through a validation
process. For each sub-task, we conduct three experiments. The hyper-parameters for the other
comparative models are kept identical to those in their original papers.

The parameters we use in the structure alignment module are as follows: the input channels for the
GCN are set to 1000, with hidden channels set to 256 and dropout set to 0.2. The output channels are
configured to 200 for the Office-Home dataset and 25 for DomainNet. The number of GCN layers
is set to 4 for the Office-Home dataset and 8 for DomainNet. Additionally, the hyper-parameter β in
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the class centroid alignment section is uniformly set to 1 throughout the paper. A robustness analysis
of these parameters is provided in the supplementary materials.

Table 1: In the 3-Shot comparison experiments conducted on the Office-Home dataset, the best
results are highlighted in bold.

Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg

S+T 54.0 73.1 74.2 57.6 72.3 68.3 63.5 53.8 73.1 67.8 55.7 80.8 66.2
DANNGanin et al. (2016) 54.7 68.3 73.8 55.1 67.5 67.1 56.6 51.8 69.2 65.2 57.3 75.5 63.5
ENTGrandvalet & Bengio (2004) 61.3 79.5 79.1 64.7 79.1 70.2 62.6 85.7 71.9 73.4 66.4 86.2 74.0
APEKim & Kim (2020) 63.9 81.1 80.2 66.6 79.9 76.8 67.1 65.2 82.0 74.0 70.4 87.7 75.7
DECOTAYang et al. (2021) 64.0 81.8 80.5 68.0 83.2 79.0 69.9 68.0 82.1 74.0 70.4 87.7 75.7
MMESaito et al. (2019a) 63.6 79.0 79.7 67.2 79.6 76.6 65.5 64.6 80.1 71.3 64.6 85.5 73.1
MME SLAYu & Lin (2023) 65.9 81.1 80.5 69.2 81.9 79.4 69.7 67.4 81.9 74.7 68.4 87.4 75.6
CDACLi et al. (2021) 66.7 79.0 83.6 66.7 78.0 80.0 64.1 67.2 86.2 68.7 69.7 86.2 74.7
CDAC SLAYu & Lin (2023) 65.6 81.4 81.1 68.2 82.1 80.1 67.7 68.9 82.6 69.0 69.7 86.3 75.2

AGLP(Ours) 68.9 85.1 87.2 70.3 82.1 81.0 70.3 71.3 88.2 71.3 70.3 85.6 77.6

Table 2: In the 1-Shot comparison experiments conducted on the Office-Home dataset, the best
results are highlighted in bold.

Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg.

S+T 50.9 69.8 73.8 56.3 68.1 70.0 57.2 48.3 74.4 66.2 52.1 78.6 63.8
DANNGanin et al. (2016) 52.3 67.9 73.9 54.1 66.8 69.2 55.7 51.9 68.4 64.5 53.1 74.8 62.7
ENTGrandvalet & Bengio (2004) 52.9 75.0 76.7 63.2 73.6 70.4 53.6 81.9 67.9 72.5 60.7 81.6 68.9
APEKim & Kim (2020) 53.9 76.1 75.2 63.6 69.8 72.3 58.3 78.6 72.5 71.3 56.0 79.4 64.8
DECOTAYang et al. (2021) 42.1 68.5 72.6 60.3 70.4 71.3 48.8 76.9 71.2 70.7 60.0 79.4 64.8
MMESaito et al. (2019a) 59.6 75.5 77.8 65.7 74.5 74.8 64.7 57.4 79.2 71.2 61.9 82.8 70.4
MME SLAYu & Lin (2023) 62.1 76.3 78.6 67.5 77.1 75.1 66.7 59.9 80.0 72.9 64.1 83.8 72.0
CDACLi et al. (2021) 61.2 75.9 78.5 64.5 75.1 75.3 64.6 59.3 80.0 72.7 61.9 83.1 71.0
CDAC SLAYu & Lin (2023) 61.4 77.8 79.2 66.9 76.2 75.9 66.3 60.6 80.5 71.6 65.6 84.3 72.2

AGLP(Ours) 66.2 84.1 85.6 67.2 75.5 76.8 68.2 62.1 84.6 71.9 69.7 84.6 74.7

Table 3: In the 3-Shot comparison experiments conducted on the DomainNet dataset, the best results
are highlighted in bold.

Method R→C R→P P→C C→S S→P R→S P→R Avg.

S+T 60.0 62.2 59.4 55.0 59.5 50.1 73.9 60.0
DANNGanin et al. (2016) 59.8 62.8 59.6 55.4 59.9 54.9 72.2 60.7
ENTGrandvalet & Bengio (2004) 71.0 69.2 71.1 60.0 62.1 61.1 78.6 67.6
APEKim & Kim (2020) 76.6 72.1 76.7 63.1 66.1 67.8 79.4 71.7
DECOTAYang et al. (2021) 80.4 75.2 78.7 68.6 72.7 71.9 81.5 75.6
MMESaito et al. (2019a) 72.2 69.7 71.7 61.8 66.8 61.9 78.5 68.9
MME SLAYu & Lin (2023) 73.3 70.1 72.7 63.4 67.3 63.9 79.6 70.0
CDACLi et al. (2021) 79.6 75.1 79.3 69.9 73.4 72.5 81.9 76.0
CDAC SLAYu & Lin (2023) 80.9 75.2 80.2 70.8 72.4 73.5 82.5 76.5

AGLP(Ours) 82.0 76.4 81.4 71.6 73.4 73.5 82.6 77.3

3.3 COMPARATIVE EXPERIMENTS

Comparative Experiments on Office-Home: We conducted 1-Shot and 3-Shot experiments on the
Office-Home dataset, with results summarized in Table. 1 and Table. 2. In the Office-Home 3-Shot
experiment, our method, AGLP, demonstrated excellent performance across multiple transfer tasks,
achieving an average accuracy of 77.6%, surpassing all other methods, including the baseline CDAC
SLA. In the more stringent Office-Home 1-Shot setting, AGLP maintained its lead with an average
accuracy of 74.7%, showcasing robust performance even under data-scarce conditions. The AGLP
method exhibited significant improvements in both the 3-Shot and 1-Shot experiments, exceeding
the previous state-of-the-art baseline by 2.4% and 1.8% in accuracy, respectively. These results
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Table 4: In the 1-Shot comparison experiments conducted on the DomainNet dataset, the best results
are highlighted in bold.

Method R→C R→P P→C C→S S→P R→S P→R Avg.

S+T 55.6 60.6 56.8 50.8 56.0 46.3 71.8 56.9
DANNGanin et al. (2016) 58.2 61.4 56.3 52.8 57.4 52.2 70.3 58.4
ENTGrandvalet & Bengio (2004) 65.2 65.9 65.4 54.6 59.7 52.1 75.0 62.6
APEKim & Kim (2020) 70.4 70.8 72.9 56.7 64.5 63.0 76.6 67.6
DECOTAYang et al. (2021) 79.1 74.9 76.9 65.1 72.0 69.7 79.6 73.9
MMESaito et al. (2019a) 70.0 67.7 69.0 56.3 64.8 61.0 76.1 66.4
MME SLAYu & Lin (2023) 71.8 68.2 70.4 59.3 64.9 61.8 77.2 68.8
CDACLi et al. (2021) 77.4 74.2 75.5 67.6 71.0 69.2 80.4 73.6
CDAC SLAYu & Lin (2023) 79.2 75.2 77.2 68.1 71.7 71.7 80.4 74.8

AGLP(Ours) 80.1 75.7 77.2 68.9 71.9 72.0 81.0 75.3

affirm the effectiveness of our approach in semi-supervised domain adaptation tasks across varying
data availability scenarios.

DomainNet:To further validate the performance of our model, we conducted 1-Shot and 3-Shot
experiments on the larger and more complex DomainNet dataset, with results summarized in Table.
3 and Table. 4. Our model achieved accuracies of 75.3% and 77.3%, outperforming all comparative
methods. Specifically, compared to the baseline (CDAC SLA), the model’s accuracy improved by
0.5% in the 1-Shot experiment and by 0.8% in the 3-Shot experiment. It is noteworthy that due to the
larger and more complex nature of the DomainNet dataset, the performance improvements were less
pronounced compared to those observed in Office-Home. Nevertheless, these results demonstrate
that our model maintains strong performance even on more challenging datasets.

Table 5: Ablation experiments were conducted on the Office-Home 3-Shot experiment, with the best
results indicated in bold.

Method Domain
Method baseline SAA CA A→C C→P P→R R→A Avg.

✔ ✘ ✘ 65.6 82.1 82.6 69.0 74.8
✔ ✔ ✘ 68.7 82.2 86.5 70.2 76.9
✔ ✘ ✔ 67.4 81.7 85.4 69.8 76.1

AGLP(Ours) ✔ ✔ ✔ 68.9 82.1 88.2 71.3 77.6

3.4 FURTHER PERFORMANCE ANALYSIS

3.4.1 ABLATION STUDY

To further validate the effectiveness of our model, we conducted an ablation study on Office-Home
3-Shot, as shown in Table 5. In this study, SAA refers to structure-aware alignment , and CA denotes
class centroid alignment. As presented in Table 5, each component provides significant improve-
ments over the baseline (CDAC SLA), although the enhancement from CA is less pronounced. This
may be attributed to CA primarily optimizing the scores of structure-aware alignment. When both
components are utilized together, optimal performance is achieved. Overall, our improvements are
evidently effective and can be transferred to other models.

3.4.2 VISUALIZATION ANALYSIS

To more intuitively validate our model, we conducted various analyses during the Office-Home 3-
Shot A→C domain adaptation experiment, including t-SNE dimensionality reduction visualization,
confusion matrix evaluation, loss convergence, and accuracy comparison.

Confusion Matrix: The confusion matrix comparison in Figure 3 (a) and (b) highlights the per-
formance of our model against the baseline (CDAC SLA). We calculated the confusion matrix for
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Figure 3: In the Office-Home 3-Shot A→C domain adaptation experiment, the confusion matrix and
visualization analysis were computed by randomly selecting 10 classes from the dataset.

the 10 selected categories from the test samples, showing that our model achieves higher accuracy
compared to the baseline.

Dimensionality Reduction Visualization: As shown in Figure 3 (c) and (d), we compared MME
SLAYu & Lin (2023), CDACLi et al. (2021), CDAC SLAYu & Lin (2023), and our model. We ran-
domly selected 10 categories from the 65 categories in Office-Home and extracted features using the
trained model, subsequently reducing them to a two-dimensional space using t-SNE. Our model ex-
hibits better clustering of sample features, demonstrating improved domain adaptation performance.

Loss Convergence: The loss convergence results are depicted in Figure 4 (a). Here, CA loss rep-
resents our improvement LCA, Source loss denotes L̃s(g|S), Target loss corresponds to LCE , and
Unlabeled loss represents Lu. Our model demonstrates rapid convergence during training. Notably,
L̃s(g|S) experiences a spike due to warmup but subsequently converges effectively.

Test Accuracy Comparison: The accuracy variation results, shown in Figure 4 (b), compare our
model with MME SLAYu & Lin (2023), CDAC, and CDAC SLA. Our model consistently maintains
superior accuracy, confirming its excellent performance.

Figure 4: (a) illustrates the convergence behavior of the four loss functions in our model during the
Office-Home 3-Shot A→C domain adaptation experiment. (b) depicts the accuracy variations of the
four models throughout the same experiment.

4 CONCLUSION

In this paper, we propose a novel method by leveraging graph structure information in a unified net-
work for semi-supervised domain adaptation. Our model introduces a class alignment loss to achieve
this goal and employs a moving centroid strategy to mitigate the influence of incorrect pseudo-labels.
To match source and target domain distribution robustly, we design an effective structure data align-
ment mechanism for SSDA. By modeling this alignment mechanism, the deep network can generate
domain-invariant and highly discriminative semantic representations. Experiments on standard do-
main adaptation datasets verify the effectiveness of the proposed model.
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A APPENDIX

A.1 RELATED WORK

A.1.1 UNSUPERVISED DOMAIN ADAPTATION

Unsupervised Domain Adaptation (UDA) Ganin & Lempitsky (2015); Wang & Deng (2018); Liu
et al. (2022) aims to adapt models trained on source domain data to unlabeled target domain data.
Most domain adaptation algorithms attempt to align feature distributions by minimizing the domain
shift between the source and target domains, facilitating the transfer of knowledge learned from
source data to improve classification performance in the target domain Ghosn & Bengio (2003);
Weiss et al. (2016). Many UDA methods employ a domain classifier to measure the distance Long
et al. (2018); Shu et al. (2018). The domain classifier is trained to distinguish whether the input
features originate from the source or the target, while the feature extractor is trained to deceive
the domain classifier by matching feature distributions. Recently, some studies have addressed this
issue by constructing an end-to-end mapping from the source domain to the target domain using
clustering-based Optimal Transport Liu et al. (2023), and Yue et al. Yue et al. (2023) proposed
Invariant Consistency Learning to tackle the spurious correlation between domain-specific features
and class features.

UDA has now been applied in various domains, such as image classification Liu et al. (2022), se-
mantic segmentation Sankaranarayanan et al. (2018), and object detection Saito et al. (2019b). It
has also spawned derivative directions, utilizing multiple source domains to generalize to unseen
target domains through domain generalization Wang et al. (2022); Zhou et al. (2022). Additionally,
test-time training/test-time adaptation employs unlabeled target domain data only during the testing
phase, without using source domain data Sun et al. (2020); Liu et al. (2021); Wang et al. (2020), and
semi-supervised domain adaptation leverages a small amount of labeled target domain data along
with a large amount of unlabeled data for transfer Saito et al. (2019a).

A.1.2 SEMI-SUPERVISED DOMAIN ADAPTATION

Semi-Supervised Domain Adaptation (SSDA) aims to leverage a small number of labeled samples
from the target domain, combined with source domain data and a large amount of unlabeled target
domain data, significantly improving domain adaptation performance compared to Unsupervised
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Domain Adaptation Saito et al. (2019a). Recently, SSDA has attracted widespread attention from
researchers Kim & Kim (2020); Li et al. (2021); Yu & Lin (2023); Li et al. (2024), with relevant
studies applying it to object detection to enhance performance Wang et al. (2023).

Saito et al. (2019a) addressed the SSDA problem by aligning features from both domains using
adversarial learning. Yu & Lin (2023) proposed a novel source adaptation paradigm that treats
the source domain as noisy target domain data, enhancing performance by cleaning label noise.
Rahman et al. (2023) introduced a new semi-supervised domain adaptation framework utilizing
autoencoders and synchronized learning to improve performance. Most prior methods have focused
on sample-level feature alignment to tackle the SSDA problem. In this work, we aim to utilize
Graph Convolutional Networks (GCNs) to capture structural information for aligning features from
the source domain to the target domain.

A.1.3 GRAPH ON DOMAIN ADAPTATION

Most domain adaptation frameworks are typically limited by their structure, often utilizing only do-
main labels and class labels, while neglecting important structural information from the data Ma
et al. (2019). Ma et al. (2019) were the first to enhance the performance of Unsupervised Do-
main Adaptation through three alignment strategies: structure-aware alignment, domain alignment,
and class centroid alignment. Zhu et al. (2021) introduced a novel graph for Unsupervised Ad-
versarial Domain Adaptation (DA) that integrates sample-level and class-level structural informa-
tion from both domains to improve performance. Ding et al. (2018) constructed a Graph Adaptive
Knowledge Transfer (GAKT) model to jointly optimize target labels and domain-invariant features
within a unified framework, thereby enhancing the performance of Unsupervised Domain Adapta-
tion. Furthermore, Dai et al. (2022) proposed a novel graph transfer learning framework, AdaGCN,
which leverages adversarial domain adaptation and graph convolutional techniques to enhance class-
discriminative node representations and mitigate the differences between the source and target do-
mains.

Overall, however, all existing research on graph structural information in domain adaptation has
primarily focused on Unsupervised Domain Adaptation, with little application in Semi-Supervised
Domain Adaptation.

A.2 PARAMETER ROBUSTNESS ANALYSIS

Our approach is based on an extension of the CDAC SLA, where we selected the optimal param-
eters as reported in the original paper. To verify the robustness of our model regarding parameter
sensitivity, we conducted a series of parametric experiments. These experiments were performed on
the OfficeHome dataset, specifically on the 3-shot and 1-shot A→C tasks. We evaluated the impact
of various parameters, including GCN’s output channels (Table. 5), GCN layers (Table. 6), and β
(Table. 7), on the model’s accuracy. During these experiments, other parameters were fixed at their
optimal values to better isolate the effects of the parameters under investigation. The experimental
results are shown in Table 5, 6 and 7 can be seen. As clearly illustrated in the figure, the model
maintains good accuracy within a certain range of parameter values, confirming the robustness of
our model across multiple parameters within the defined intervals.

A.3 COMPLETE CONFUSION MATRIX RESULT

The complete confusion matrix results are presented in Figure 8. In addition to the four models
mentioned in the main text, we also included experiments with S+T and ENT.

A.3.1 COMPLETE DIMENSIONALITY REDUCTION VISUALIZATION RESULT

The complete dimensionality reduction visualization results are presented in Figure 9. In addition
to the four models mentioned in the main text, we also included experiments with S+T and ENT.
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Figure 5: In the domain adaptation experiment of Office-Home 3-Shot A→C, we conducted a pa-
rameter analysis by varying the output channels.

Figure 6: In the domain adaptation experiment of Office-Home 3-Shot A→C, we conducted a pa-
rameter analysis by varying the GCN layers.

Figure 7: In the domain adaptation experiment of Office-Home 3-Shot A→C, we conducted a pa-
rameter analysis by varying the β.
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Figure 8: In the Office-Home 3-Shot A→C domain adaptation experiment, a confusion matrix was
computed by randomly selecting 10 classes from the dataset.

Figure 9: A visualization analysis was performed on the OfficeHome 3-Shot A→C domain adap-
tation experiment, where features were randomly extracted from 10 classes and reduced in dimen-
sionality using t-SNE.
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