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ABSTRACT

High-quality instruction data is critical for aligning large language models (LLMs).
Although some models, such as Llama-3-Instruct, have open weights, their align-
ment data remain private, which hinders the democratization of AI. High human
labor costs and a limited, predefined scope for prompting prevent existing open-
source data creation methods from scaling effectively, potentially limiting the
diversity and quality of public alignment datasets. Is it possible to synthesize
high-quality instruction data at scale by extracting it directly from an aligned
LLM? We present a self-synthesis method for generating large-scale alignment data
named MAGPIE. Our key observation is that aligned LLMs like Llama-3-Instruct
can generate a user query when we input only the pre-query templates up to the
position reserved for user messages, thanks to their auto-regressive nature. We
use this method to prompt Llama-3-Instruct and generate 4 million instructions
along with their corresponding responses. We further introduce extensions of MAG-
PIE for filtering, generating multi-turn, preference optimization, domain-specific
and multilingual datasets. We perform a comprehensive analysis of the MAGPIE-
generated data. To compare MAGPIE-generated data with other public instruction
datasets (e.g., ShareGPT, WildChat, Evol-Instruct, UltraChat, OpenHermes, Tulu-
V2-Mix, GenQA), we fine-tune Llama-3-8B-Base with each dataset and evaluate
the performance of the fine-tuned models. Our results indicate that using MAGPIE
for supervised fine-tuning (SFT) solely can surpass the performance of previous
public datasets utilized for both SFT and preference optimization, such as direct
preference optimization with UltraFeedback. We also show that in some tasks,
models supervised fine-tuned with MAGPIE perform comparably to the official
Llama-3-8B-Instruct, despite the latter being enhanced with 10 million data points
through SFT and subsequent preference optimization. This advantage is evident on
alignment benchmarks such as AlpacaEval, ArenaHard, and WildBench.

1 INTRODUCTION

Large language models (LLMs) such as GPT-4 (Achiam et al., 2023) and Llama-3 (Meta, 2024)
have become integral to AI applications due to their exceptional performance on a wide array
of tasks by following instructions. The success of LLMs is heavily reliant on the data used for
instruction fine-tuning, which equips them to handle a diverse range of tasks, including those not
encountered during training. The effectiveness of instruction tuning depends crucially on access to
high-quality instruction datasets. However, the alignment datasets used for fine-tuning models like
Llama-3-Instruct are typically private, even when the model weights are open, which impedes the
democratization of AI and limits scientific research for understanding and enhancing LLM alignment.

To address the challenges in constructing high-quality instruction datasets, researchers have developed
two main approaches. The first type of method involves human effort to generate and curate instruction
data (Databricks, 2023; Köpf et al., 2023; Zhao et al., 2024; Zheng et al., 2024; 2023), which is
both time-consuming and labor-intensive (Liu et al., 2024a). In contrast, the second type of methods
uses LLMs to produce synthetic instructions (Ding et al., 2023; Yin et al., 2023; Li et al., 2024a;
Sun et al., 2023; Taori et al., 2023; Wang et al., 2023; 2024c; Xu et al., 2023a;b; Li et al., 2023a).
Although these methods reduce human effort, its success heavily depends on prompt engineering
and the careful selection of initial seed questions. The diversity of synthetic data tends to decrease
as the dataset size grows. Despite ongoing efforts, the scalable creation of high-quality and diverse
instruction datasets continues to be a challenging problem.
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Figure 1: This figure illustrates MAGPIE, the process of self-synthesizing alignment data from aligned
LLMs (e.g., Llama-3-8B-Instruct) to create a high-quality instruction dataset. In Step 1, we input only
the pre-query template into the aligned LLM and generate an instruction along with its response using
auto-regressive generation. In Step 2, we use a combination of a post-query template and another
pre-query template to wrap the instruction generated from Step 1, prompting the LLM to generate the
response. This completes the construction of the instruction dataset. MAGPIE efficiently generates
diverse and high-quality instruction data, which can be further extended to multi-turn (MAGPIE-MT),
preference optimization (MAGPIE-DPO), domain-specific, and multilingual datasets.

Is it possible to synthesize high-quality instructions at scale by directly extracting data from advanced
aligned LLMs? A typical input to an aligned LLM contains three key components: the pre-query
template, the query, and the post-query template. For instance, an input to Llama-2-chat could be
“[INST] Hi! [/INST]”, where [INST] is the pre-query template and [/INST] is the post-query
template. These templates are predefined by the creators of the aligned LLMs to ensure the correct
prompting of the models. We observe that when we only input the pre-query template to aligned
LLMs such as Llama-3-Instruct, they self-synthesize a user query due to their auto-regressive nature.
Our experiments indicate that these random user queries are of high quality and great diversity,
suggesting that the abilities learned during the alignment process are effectively utilized.

Based on these findings, we developed a self-synthesis method to construct high-quality instruction
datasets at scale, named MAGPIE (as illustrated in Figure 1). Unlike existing methods, our approach
does not rely on prompt engineering or seed questions. Instead, it directly constructs instruction
data by prompting aligned LLMs with a pre-query template for sampling instructions. We also
demonstrated the extensibility of MAGPIE in generating multi-turn, preference optimization, domain-
specific, and multilingual datasets. We applied MAGPIE to the Llama-3-8B-Instruct and Llama-3-
70B-Instruct models, creating two instruction datasets: MAGPIE-Air and MAGPIE-Pro, respectively.

Our MAGPIE-Air and MAGPIE-Pro datasets were created using 206 and 614 GPU hours, respectively,
without any human intervention or API access to production LLMs like GPT-4. The statistics and
advantages of MAGPIE datasets compared to existing ones are summarized in Table 4 in Appendix A.
We perform a comprehensive analysis of these two datasets in Section 3, allowing practitioners to
filter and select data instances for fine-tuning models according to their particular needs.

To compare MAGPIE data with other public instruction datasets (e.g., ShareGPT (Chiang et al.,
2023), WildChat (Zhao et al., 2024), Evol Instruct (Xu et al., 2023a), UltraChat (Ding et al., 2023),
OpenHermes (Teknium, 2023a;b), GenQA (Chen et al., 2024), Tulu V2 Mix (Ivison et al., 2023)), we
conducted supervised fine-tuning (SFT) of the Llama-3-8B-Base model with each dataset and assess
the performance of the fine-tuned models on alignment benchmarks such as AlpacaEval 2 (Li et al.,
2023b), Arena-Hard (Li et al., 2024b), and WildBench (Lin et al., 2024). Our results show that models
supervised fine-tuned with MAGPIE achieve superior performance, even surpassing models that utilize
both SFT and direct preference optimization (DPO) (Rafailov et al., 2023) with UltraFeedback (Cui
et al., 2023). Notably, MAGPIE-aligned models outperform the official Llama-3-8B-Instruct model
on AlpacaEval 2, despite the latter being fine-tuned with over 10 million data points for SFT and
subsequent preference optimization. Not only does MAGPIE excel in SFT alone compared to prior
public datasets, but also delivers the best results when combined with preference optimization methods
such as DPO. By leveraging MAGPIE extensions to generate high-quality preference optimization
datasets, MAGPIE-aligned Llama-3 models can even outperform GPT-4-Turbo(1106) on AlpacaEval
2. These findings show the exceptional quality of instruction data generated by MAGPIE, enabling it
to outperform even the official, extensively optimized, and proprietary LLMs.
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2 MAGPIE: A SCALABLE METHOD TO SYNTHESIZE ALIGNMENT DATA

Chat Templates of Aligned LLMs. For an aligned LLM (e.g., Llama-3-8B-Instruct), the input
sequence can be represented as x = Tpre−query ⊕ q ⊕ Tpost−query. Here, q is the user query (e.g.,
"What material should I use to build a nest?"), while Tpre−query and Tpost−query are pre-query and
post-query templates. The pre-query template shows up before the user query, and the post-query
template is defined as the conversation template between the user query and the LLM response. These
templates are defined by the model provider to ensure the correct prompting. For example, for Llama-
3-8B-Insturct model, Tpre−query = <|start_header_id|>user<|end_header_id|>, and
Tpost−query =<|eot_id|><|start_header_id|>assistant<|end_header_id|>.

2.1 MAGPIE PIPELINE

Overview of MAGPIE. In what follows, we describe our lightweight and effective method, MAGPIE,
to synthesize alignment data from aligned LLMs. An instance of instruction data consists of at least
one or multiple instruction-response pairs. Each pair specifies the roles of instruction provider (e.g.,
user) and follower (e.g., assistant), along with their instruction and response. As shown in Figure 1,
MAGPIE consists of two steps: (1) instruction generation, and (2) response generation. The MAGPIE
pipeline can be fully automated without any human intervention, and can be readily adapted for the
generation of multi-turn, preference, and domain-specific datasets, as detailed in Section 2.2. We
describe each step in the following.

Step 1: Instruction Generation. The goal of this step is to generate an instruction for each instance
of instruction data. Given an open-weight aligned LLM (e.g., Llama-3-70B-Instruct), MAGPIE crafts
a pre-query template in the format of the predefined instruction template of the LLM. Note that
the auto-regressive LLM has been fine-tuned using instruction data in the format of the pre-query
template. Thus, the LLM autonomously generates an instruction when the pre-query template crafted
by MAGPIE is given as an input. MAGPIE stops generating the instruction once the LLM produces
an end-of-sequence token. Sending the crafted query to the LLM multiple times leads to a set of
instructions. We note that compared with existing synthetic approaches (Ding et al., 2023; Li et al.,
2024a; Taori et al., 2023; Wang et al., 2023; 2024c; Xu et al., 2023a;b), MAGPIE does not require
specific prompt engineering techniques since the crafted query follows the format of the predefined
instruction template. In addition, MAGPIE autonomously generates instructions without using any
seed question, ensuring the diversity of generated instructions.

Step 2: Response Generation. The goal of this step is to generate responses to the instructions
obtained from Step 1. MAGPIE sends these instructions to the LLM to generate the corresponding
responses. Combining the roles of instruction provider and follower, the instructions from Step 1,
and the responses generated in Step 2 yields the instruction dataset.

Applicability of MAGPIE on Different LLMs. MAGPIE can be readily deployed to state-of-the-art
open-weight language models including but not limited to Llama-3 (Meta, 2024), Llama-3.1 (Dubey
et al., 2024), Qwen2 (Yang et al., 2024), Gemma-2 (Team et al., 2024), and Phi-3 (Abdin et al., 2024).
Please refer to Appendix A for detailed support and corresponding datasets.

Remark. MAGPIE generates high-quality instructions even when the instruction loss is masked during
alignment. We hypothesize that LLMs retain an implicit memorization of instruction distributions.
We leave it as a potential future research problem.

2.2 MAGPIE EXTENSIONS

Dataset Filtering. MAGPIE allows practitioners to select instruction data from the raw dataset
generated from the above two steps based on their needs. In Appendix C, we explores potential filter
configurations with eight available metrics for users to customize their own MAGPIE datasets. We
also provide 6 off-the-shelf filter configurations and discuss their performance in Appendix F.5.

Generating Multi-Turn Instruction Datasets. MAGPIE can be readily extended to generate multi-
turn instruction datasets. To construct a multi-turn dataset (denoted as MAGPIE-MT), we initially
follow Steps 1 and 2 to generate the first turn of instruction and response. For subsequent turns, we
append the pre-query template to the end of the full prompt from the previous round of communication.
We observe that the model may occasionally forget its role as the user, especially for the 8B model. To
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mitigate this, we employ a system prompt designed to control the behavior of the LLM and reinforce
its awareness of the multi-round conversation context. The full prompt for building the instructions
of MAGPIE-MT can be found in Figure 14 in Appendix G. We follow the procedure in Step 2 of
Section 2.1 to generate responses to form the multi-turn instruction dataset.

Generating Preference Optimization Datasets. Leveraging the diverse and high-quality instructions
produced by MAGPIE, we present a simple and effective method for generating preference optimiza-
tion data, inspired by Meng et al. (2024) and Tran et al. (2023). We first select a small proportion of
high-quality instructions from the raw dataset generated by the MAGPIE pipeline, ensuring diverse
task categories. For each selected instruction, we sample responses from the aligned LLM k times,
using a temperature of T < 1. We then employ a reward model (RM) to annotate scores for these
responses. The response with the highest RM score is labeled as the chosen response, while the one
with the lowest RM score is designated as the rejected response.

Generating Domain-Specific and Multilingual Datasets. In certain scenarios, users may wish
to fine-tune LLMs using domain-specific or multilingual instruction data to enhance performance
within specific domains or languages. To address this need, we introduce a lightweight method to
control both the task category and the language of generated instructions. Our approach involves
guiding LLMs through a tailored system prompt, specifying that the model is a chatbot designed for
a particular domain and outlining the types of user queries it might encounter. Examples of system
prompts designed to control the generation of math, code, translation, and multilingual instructions
are illustrated in Figure 15 in Appendix G.

Furthermore, we note that domain-specific and multilingual instruction data can also be generated
using models that are tailored to particular fields. MAGPIE demonstrates broad applicability beyond
diverse chat models, extending to specialized code models (e.g., DeepSeek-Coder-V2 (Zhu et al.,
2024)) and math models (e.g., Qwen2-Math-7B-Instruct (Yang et al., 2024)). By leveraging the
unique strengths and specializations of different models, MAGPIE can create a rich and diverse corpus
of instructions. Examples of MAGPIE-generated instructions from different domain-specific models
and multilingual models are provided in Appendix I.

3 DATASET ANALYSIS

To demonstrate the effectiveness of MAGPIE compared with baseline methods for generating diverse
high-quality alignment datasets, we apply MAGPIE to the Llama-3-8B-Instruct and Llama-3-70B-
Instruct models (Meta, 2024) to construct two instruction datasets: Llama-3-MAGPIE-Air (hereafter
referred to as MAGPIE-Air) and Llama-3-MAGPIE-Pro (hereafter referred to as MAGPIE-Pro), respec-
tively. Examples of instances in both datasets can be found in Appendix I. In this section, we present
a comprehensive analysis of the MAGPIE-Air and MAGPIE-Pro datasets, including topic coverage,
difficulty, quality, similarity of instructions, and the quality of the responses. We also provide the
safety analysis and cost analysis of MAGPIE.

3.1 DATASET COVERAGE

We follow Zhao et al. (2024) and analyze the coverage of MAGPIE-Pro in the embedding space.
Specifically, we use the all-mpnet-base-v2 embedding model1 to calculate the input embed-
dings, and employ t-SNE (Van der Maaten & Hinton, 2008) to project these embeddings into a
two-dimensional space. We adopt three synthetic datasets as baselines, including Alpaca (Taori
et al., 2023), Evol Instruct (Xu et al., 2023a), and UltraChat (Ding et al., 2023), to demonstrate the
coverage of MAGPIE-Pro. The detailed analysis can be found in Appendix D.1. We observe that the
t-SNE plot of MAGPIE-Pro encompasses the area covered by the plots of Alpaca, Evol Instruct, and
UltraChat. This suggests that MAGPIE-Pro provides a broader or more diverse range of topics.

We also follow Wang et al. (2023) and present the most common verbs and their top direct noun
objects in instructions in Appendix D, indicating the diverse topic coverage of MAGPIE dataset.

1https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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3.2 DATASET ATTRIBUTES

Attribute: Task Categories of Instructions. We use Llama-3-8B-Instruct to categorize the in-
stances in MAGPIE-Pro (see Figure 9 in Appendix D.1 for detail). The prompts used to query
Llama-3-8B-Instruct can be found in Appendix G. Our observations indicate that over half of the
tasks in MAGPIE-Pro pertain to information seeking, making it the predominant category. This is
followed by tasks involving creative writing, advice seeking, planning, and math. This distribution
over the task categories aligns with the practical requests from human users (Li et al., 2023b).

(a) Statistics on Input Quality 

(b) Statistics on Input Difficulty

Figure 2: The statistics of instruc-
tion difficulty and quality.

Attribute: Quality of Instructions. Similar to methods in
(Chen et al., 2023), we prompt the Llama-3-8B-Instruct model
to assess the quality of each instruction in MAGPIE-Air and
MAGPIE-Pro, categorizing them as ‘very poor’, ‘poor’, ‘aver-
age’, ‘good’, and ‘excellent’. We present the histograms of
qualities for both datasets in Figure 2-(a). We have the follow-
ing two observations. First, both datasets are of high quality,
with the majority of instances rated ‘average’ or higher. In
addition, the overall quality of MAGPIE-Pro surpasses that of
MAGPIE-Air. We hypothesize that this is due to the enhanced
capabilities of Llama-3-70B compared with Llama-3-8B.

Attribute: Difficulty of Instructions. We use the Llama-3-
8B-Instruct model to rate the difficulty of each instruction in
MAGPIE-Air and MAGPIE-Pro. Each instruction can be labeled
as ‘very easy’, ‘easy’, ‘medium’, ‘hard’, or ‘very hard’. Fig-
ure 2-(b) presents the histograms of the levels of difficulty for
MAGPIE-Air and MAGPIE-Pro. We observe that the distribu-
tions across difficulty levels are similar for MAGPIE-Air and MAGPIE-Pro. Some instructions in
MAGPIE-Pro are more challenging than those in MAGPIE-Air because MAGPIE-Pro is generated by a
more capable model (Llama-3-70B-Instruct).

(a) Min Input Embedding Distance

(b) Reward Difference between Base Model and Instruct Model

Figure 3: This figure summarizes
the minimum neighbor distances
and reward differences.

Attribute: Instruction Similarity. We quantify the similarity
among instructions generated by MAGPIE to remove repeti-
tive instructions. We measure the similarity using minimum
neighbor distance in the embedding space. Specifically, we
first represent all instructions in the embedding space using
the all-mpnet-base-v2 embedding model. For any given
instruction, we then calculate the minimum distance from the in-
struction to its nearest neighbors in the embedding space using
Facebook AI Similarity Search (FAISS) (Douze et al., 2024).
The minimum neighbor distances of instructions in MAGPIE-
Air after removing repetitions are summarized in Figure 3-(a).

Attribute: Quality of Responses. We assess the quality of re-
sponses using rewards assigned by a reward model, denoted as
r∗. For each instance in our dataset, we also calculate reward
difference as r∗ − rbase, where rbase is the reward assigned
by the same reward model to the response generated by the Llama-3 base model for the same in-
struction. We use URIAL (Lin et al., 2023) to elicit responses from the base model. A positive
reward difference indicates that the response from our dataset is of higher quality, and could poten-
tially benefit instruction tuning. In our experiments, we follow Lambert et al. (2024) and choose
FsfairX-LLaMA3-RM-v0.1 (Xiong et al., 2024) as the reward model. Our results on the reward
difference are presented in Figure 3-(b).

3.3 SAFETY ANALYSIS

We use Llama-Guard-2 (Team, 2024) to analyze the safety of MAGPIE-Air and MAGPIE-Pro. Our
results indicate that both datasets are predominantly safe, with less than 1% of the data potentially
containing harmful instructions or responses. Please see Appendix D.2 for detailed safety analysis.
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3.4 COST ANALYSIS

We perform experiments on a server with four NVIDIA A100-SXM4-80GB GPUs, an AMD EPYC
7763 64-Core Processor, and 512 GB of RAM, using the VLLM inference framework (Kwon et al.,
2023). The models are loaded in the bfloat16 format.

When creating the 3M MAGPIE-Air dataset, our MAGPIE spent 1.55 and 50 hours to generate the
instructions (Step 1) and responses (Step 2), respectively. For the 1M MAGPIE-Pro dataset, MAGPIE
used 3.5 and 150 hours to generate the instructions (Step 1) and responses (Step 2), respectively.
Compared to existing approaches to create instruction datasets, the pipeline of MAGPIE is fully
automated without any human intervention or API access to advanced commercial models such as
GPT-4 (Achiam et al., 2023). Consequently, MAGPIE is cost-effective and scalable. On average,
implementing MAGPIE on a cloud server2 would incur costs of $0.12 and $1.1 per 1,000 data instances
for MAGPIE-Air and MAGPIE-Pro, respectively.

3.5 ADDITIONAL ANALYSIS

Additional dataset analysis, including the impact of generation configurations on the quality and
difficulty of the generated instructions, is detailed in Appendix D.3. We provide ablation analysis on
annotating models for assessing quality and difficulty in Appendix D.4.

4 PERFORMANCE ANALYSIS

In this section, we evaluate the quality of MAGPIE-generated datasets by utilizing them to align base
models including Llama-3 (Meta, 2024), Qwen1.5 (Bai et al., 2023), and Qwen2 (Yang et al., 2024).

4.1 EXPERIMENTAL SETUPS

Baselines for Supervised Fine-Tuning and Preference Optimization. We compare the family
of instruction datasets generated by MAGPIE with eight SOTA open-source instruction datasets:
ShareGPT (Chiang et al., 2023), WildChat (Zhao et al., 2024), Evol Instruct (Xu et al., 2023a),
UltraChat (Ding et al., 2023), GenQA (Chen et al., 2024), OpenHermes 1 (Teknium, 2023a),
OpenHermes 2.5 (Teknium, 2023b), and Tulu V2 Mix (Ivison et al., 2023). ShareGPT and WildChat
are representative human-written datasets containing 112K and 652K high-quality multi-round
conversations between humans and GPT, respectively. Evol Instruct, UltraChat, and GenQA are
representative open-source synthetic datasets. Following Meng et al. (2024), we use the 208K
sanitized version of Ultrachat provided by HuggingFace3. OpenHermes 1, OpenHermes 2.5, and
Tulu V2 Mix are crowd-sourced datasets consisting of a mix of diverse open-source instruction
datasets, with 243K, 1M, and 326K conversations, respectively. We also create an instruction dataset
with 100K conversations using the Self-Instruct (Wang et al., 2023) and Llama-3-8B-Instruct model,
denoted as Self-Instruct (Llama-3).

We compare the models aligned using MAGPIE with preference optimization baselines using direct
preference optimization (DPO) (Rafailov et al., 2023). Specifically, we follow Meng et al. (2024)
and use the models fine-tuned with the UltraChat dataset (for instruction tuning) and Ultrafeedback
dataset (for preference optimization) (Cui et al., 2023).

MAGPIE Setups. To demonstrate the quality of MAGPIE-generated instruction datasets for SFT, we
select the first 300K MAGPIE-Air and MAGPIE-Pro raw datasets generated by Llama-3-8B-Instruct
and Llama-3-70B-Instruct models, respectively. Apart from these raw datasets, we also applied the
filters detailed in Appendix C and created two filtered datasets: MAGPIE-Air-Filtered and MAGPIE-
Pro-Filtered, each contains 300K conversations. For preference optimization, we generate two
additional datasets: MAGPIE-Air-DPO (generated by Llama-3-8B-Instruct) and MAGPIE-Pro-DPO
(generated by Llama-3-70B-Instruct) with k = 5 and T = 0.8, each contains 100K conversations.
We use RLHFlow/ArmoRM-Llama3-8B-v0.1 (Wang et al., 2024a) as the reward model.

2https://lambdalabs.com/service/gpu-cloud
3https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k
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Table 1: This table compares the performance of models instruction-tuned on the Llama-3-8B base
models using MAGPIE-generated datasets and baseline datasets. We observe that models aligned
with our datasets significantly outperform those aligned with baseline datasets of the same order of
magnitude in terms of data size. In addition, our fine-tuned models achieve comparable performance
to the official aligned model, despite only undergoing SFT with a much smaller dataset. Numbers in
bold indicate that MAGPIE outperforms the official Llama-3-8B-Instruct model.

Alignment Setup
(Base LLM = Llama-3-8B) #Convs

AlpacaEval 2 Arena-Hard
GPT-4-Turbo (1106) Llama-3-8B-Instruct

LC (%) WR (%) SD LC (%) WR (%) SD WR(%)

SFT +Self-Instruct (Llama-3) (Wang et al., 2023) 100K 7.21 5.18 0.7 17.86 12.73 1.05 4.0
+ShareGPT (Chiang et al., 2023) 112K 9.73 7.2 0.81 27.26 18.32 1.18 6.5
+Evol Instruct (Xu et al., 2023a) 143K 8.52 6.25 0.76 20.16 14.98 1.1 5.1
+OpenHermes 1 (Teknium, 2023a) 243K 9.94 6.27 0.73 29.19 17.92 1.16 4.4
+Tulu V2 Mix (Ivison et al., 2023) 326K 9.91 7.94 0.86 24.28 18.64 1.18 5.4
+WildChat (Zhao et al., 2024) 652K 14.62 10.58 0.92 34.85 26.57 1.32 8.7
+OpenHermes 2.5 (Teknium, 2023b) 1M 12.89 9.74 0.91 32.68 25.01 1.30 8.2
+GenQA (Chen et al., 2024) 6.47M 9.05 7.11 0.82 21.90 16.09 1.12 3.0
+UltraChat (Ding et al., 2023) $ 208K 8.29 5.44 0.71 23.95 15.12 1.11 3.6

+ DPO +UltraFeedback((Cui et al., 2023)) 64K 18.36 17.33 1.14 44.42 42.36 1.46 14.8

SFT MAGPIE-Air-300K-Raw 300K 21.99 21.65 1.21 48.63 48.06 1.42 15.8
MAGPIE-Air-300K-Filtered $ 300K 22.66 23.99 1.24 49.27 50.8 1.44 14.9

+ DPO +MAGPIE-Air-DPO 100K 45.48 50.43 1.48 75.06 79.64 1.18 35.9
SFT MAGPIE-Pro-300K-Raw 300K 21.65 22.19 1.2 49.65 50.84 1.42 15.9

MAGPIE-Pro-300K-Filtered $ 300K 25.08 29.47 1.35 52.12 53.43 1.44 18.9
+ DPO +MAGPIE-Pro-DPO 100K 50.10 53.53 1.45 78.52 80.82 1.17 35.7

Llama-3-8B-Instruct (SFT+DPO) >10M4 22.92 22.57 1.26 50 50 - 20.6

Model Alignment Details. For supervised fine-tuning, we follow Touvron et al. (2023) and use a
cosine learning rate schedule with an initial learning rate of 2 × 10−5 when fine-tuning Llama-3,
Qwen1.5 and Qwen2 base models. The maximum sequence length is 8192. For DPO, we use a
cosine learning rate of 5× 10−7. The detailed parameters can be found in Appendix E.2. We follow
the official instruction templates of each model.

Evaluation Benchmarks. We evaluate the performance of the aligned models using two widely
adopted instruction-following benchmarks: AlpacaEval 2 (Li et al., 2023b) and Arena-Hard (Li et al.,
2024b). AlpacaEval 2 consists of 805 representative instructions chosen from real user interactions.
Arena-Hard is an enhanced version of MT-Bench (Zheng et al., 2023), containing 500 challenging
user queries. Both benchmarks employ a GPT evaluator to assess responses generated by the model
of interest and a baseline model. Specifically, we use GPT-4-Turbo (1106) and Llama-3-8B-Instruct
as baselines for AlpacaEval 2. By default, Arena-Hard uses GPT-4 (0314) as its baseline model.

Metrics. We adopt two metrics to measure the capabilities of instruction-following of fine-tuned
models. The first metric is the win rate (WR), which calculates the fraction of responses that are
favored by the GPT evaluator. This metric is applied in both benchmarks including AlpacaEval 2
and Arena-Hard. The second metric is the length-controlled win rate (LC) (Dubois et al., 2024),
a debiased version of WR. The GPT evaluator considers the lengths of responses generated by
the baseline model and model under evaluation when computing LC. By accounting for response
length, LC reduces its impact on the win rate. This metric is specifically applied to the AlpacaEval 2
benchmark (Li et al., 2023b).

More Experimental Setups. We provide more detailed descriptions of our experimental setups,
including more model alignment details and benchmark decoding hyper-parameters in Appendix E.

4.2 EXPERIMENTAL RESULTS

MAGPIE datasets outperform baselines with SFT only. In Table 1, we compare the perfor-
mance of Llama-3 models fine-tuned with instruction datasets generated by MAGPIE against
those supervised fine-tuned with baseline datasets. Using the AlpacaEval 2 benchmark, we ob-
serve that both the LC and WR of our supervised fine-tuned models surpass all those mod-
els fine-tuned with baseline SFT datasets. This indicates that the datasets generated by MAG-
PIE are of higher quality, leading to significantly enhanced instruction-following capabilities.

4https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
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Table 2: This table compares the performance of models instruction-tuned on the Qwen base models
using the MAGPIE-Pro-300K-Filtered dataset and the official instruction-tuned models. The Qwen
base model enhanced with MAGPIE outperforms the official instruction-tuned model.

Alignment Setup
AlpacaEval 2

GPT-4-Turbo (1106) Official Aligned Model as Ref.

LC (%) WR (%) SD LC (%) WR (%) SD

Qwen2-1.5B Qwen2-1.5B-Instruct 3.91 3.00 0.54 50 50 -
Base Model + MAGPIE 3.48 5.32 0.67 56.66 66.27 1.50

Qwen1.5-4B Qwen1.5-4B-Chat 5.89 4.74 0.67 50 50 -
Base Model + MAGPIE 9.1 10.96 0.93 68.09 72.42 1.42

Qwen1.5-7B Qwen1.5-7B-Chat 14.75 11.77 0.97 50 50 -
Base Model + MAGPIE 15.10 18.51 1.14 46.28 58.53 1.44

A similar observation is made when using the Arena-Hard evaluation benchmark. We high-
light that the Llama-3 base models supervised fine-tuned with instruction datasets generated by
MAGPIE outperform even those models that have undergone preference optimization (i.e., STF
followed by DPO), which further emphasizes the high quality of data generated by MAGPIE.

Reasoning & 
Planning

Creative
Tasks

Coding
& Debugging

Info Seeking
Math &  Data

Figure 4: This figure shows the perfor-
mance breakdown by category of MAG-
PIE-Pro and baselines on WildBench.

To investigate the advantages of MAGPIE across differ-
ent task categories, we also compare the performance
of models fine-tuned with MAGPIE-Pro compared with
baseline datasets using WildBench benchmark (Lin et al.,
2024). This benchmark consists of 1024 tasks carefully
selected from real-world human-LLM conversation logs.
The results are demonstrated in Figure 4. We observe that
MAGPIE consistently outperforms baseline datasets across
categories.

Models aligned with data generated by MAGPIE
achieve comparable or even higher performance to
the official aligned model, but with fewer data. In Table
1, we also compare the performance of models aligned
with data generated by MAGPIE against the official aligned
model (Llama-3-8B-Instruct). We observe that the Llama-
3-8B base model supervised fine-tuned with data from
MAGPIE outperforms Llama-3-8B-instruct using the Al-
pacaEval 2 benchmark. For example, when Llama-3-8B-Instruct is chosen as the baseline model
of AlpacaEval 2, we observe that LC of Llama-3-8B base models fine-tuned with instruction data
from MAGPIE exceeds 50%, indicating a preference for our SFT models over the official aligned
model. In addition, when DPO is applied, our aligned model demonstrates remarkable performance
gains. Specifically, it outperforms the official Llama-3-8B-Instruct model on both the AlpacaEval
2 and Arena-Hard benchmarks. Most notably, our model even surpasses GPT-4-Turbo(1106) on
AlpacaEval 2. Finally, we highlight that our alignment process uses no more than 400K data, whereas
the official aligned models are aligned with more than 10M data samples. This demonstrates the high
quality of the data generated by MAGPIE.

MAGPIE can enhance the performance of other backbone models. Table 2 illustrates the efficacy
of MAGPIE when applied to generate instruction dataset and fine-tune other base models, i.e., Qwen2-
1.5B, Qwen1.5-4B, and Qwen1.5-7B. The results demonstrate that our fine-tuned models achieve
better performance than the official aligned models, which have undergone both supervised fine-
tuning and preference tuning. These results underscore the effectiveness of MAGPIE and the quality
of its generated instructions. In addition, we apply MAGPIE-generated datasets to align Llama-3.1-
Minitron-4B-Width-Base (Sreenivas et al., 2024) and Llama-3.1-8B-Instruct (Dubey et al., 2024)
using SFT followed by DPO. The resulting aligned model, which we term MagpieLM, achieves
remarkable performance and ranks first among popular open-source instruction models with fewer
than 10 billion parameters. The details of MagpieLM are deferred to Appendix B.

Performance of MAGPIE on More Benchmarks. We report the performance of models supervised
fine-tuned using MAGPIE-Air and MAGPIE-Pro, evaluated across a range of tasks featured on the
Huggingface Open LLM Leaderboard (Beeching et al., 2023) in Table 3. The tasks includes MMLU
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Table 3: This table compares the performance of models supervised-fine-tuned on MAGPIE-Air,
MAGPIE-Pro, and MAGPIE-Pro-Mix against baselines and official instruct model across various
downstream benchmarks. All models are supervised-fine-tuned on the Llama-8B base models.

Alignment Setup MMLU (5) ARC (25) HellaSwag (10) TruthfulQA (0) WinoGrande (5) GSM8K (5) MMLU-Redux (0) Average
ShareGPT 66.03 58.45 81.50 52.34 74.03 48.67 50.68 61.67

Evol Instruct 65.62 60.75 82.70 52.87 76.16 42.91 52.73 61.96
GenQA 63.45 58.53 79.65 48.85 74.03 43.14 51.87 59.93

OpenHermes 1 65.42 62.29 82.15 50.85 75.61 47.16 46.07 61.36
OpenHermes 2.5 65.70 61.86 82.53 51.35 76.09 67.02 46.07 66.24

Tulu V2 Mix 66.34 59.22 82.80 47.99 76.16 58.07 46.97 62.51
WildChat 65.95 59.22 81.39 53.18 75.30 48.75 52.59 62.34
UltraChat 65.23 62.12 81.68 52.76 75.53 50.57 50.75 62.66

MAGPIE-Air-300K-Filtered 64.45 61.01 79.90 53.48 72.38 52.24 52.34 62.25
MAGPIE-Pro-300K-Filtered 64.25 60.41 80.52 52.46 73.32 47.92 52.16 61.58
MAGPIE-Pro-Mix-Filtered 65.65 59.64 80.72 50.81 73.24 63.08 56.34 64.21

Llama-3-8B-Instruct 67.82 61.52 78.67 52.47 72.14 71.72 58.60 66.13

(Hendrycks et al., 2020), ARC Challenge (Clark et al., 2018), HellaSwag (Zellers et al., 2019),
TruthfulQA (Lin et al., 2021), WinoGrande (Levesque et al., 2012), and GSM8K (Cobbe et al., 2021).
We also perform experiments on MMLU-Redux (Gema et al., 2024) with zero-shot prompting. Our
experimental results demonstrate that models fine-tuned with MAGPIE-Air and MAGPIE-Pro achieve
comparable performance to the official instruct model and other baselines.

We note that the performance of MAGPIE may degrade on reasoning tasks, which is attributed to the
small proportion of reasoning instructions in MAGPIE-Air and MAGPIE-Pro datasets. In response, we
provide a supplementary "booster" dataset containing 150K math, code, and reasoning instructions
using the MAGPIE extension mentioned in Section 2.2. We combine this booster dataset with
MAGPIE-Pro-300K-Filtered and create MAGPIE-Pro-Mix-Filtered. Experimental results presented
in Table 3 demonstrate that the model supervised fine-tuned using the mixed dataset effectively
addresses the initial weakness in reasoning tasks. Notably, this new model ranks among the top-3 of
all model checkpoints, performing only slightly weaker than OpenHermes 2.5 (1M conversations) and
Llama-3-8B-Instruct (>10M conversations). This significant improvement showcases the flexibility
and adaptability of the MAGPIE framework in generating task-specific instruction data.

Additional Experimental Results. We defer additional experimental results and analysis of multi-
turn datasets, i.e., MAGPIE-Air-MT and MAGPIE-Pro-MT, to Appendix F.1. We conduct a detailed
comparison between MAGPIE and Self-Instruct in Appendix F.2. In addition, ablations on data
quantity, quality, filter designs, and response generator are deferred in Appendices F.4, F.5, and F.6.
MAGPIE model’s performance on trustworthiness benchmarks is reported in Appendices F.7.

5 RELATED WORK

LLM Alignment. Instruction tuning (Wei et al., 2022) and preference tuning (Bai et al., 2022)
are widely used to align the responses of LLMs with human values. Instruction tuning utilizes an
instruction dataset to fine-tune LLMs, where each instruction data consists of one turn or multiple
turns of instructions and desired responses. The performance of instruction tuning heavily relies on
the quality of instruction data (Taori et al., 2023; Wang et al., 2023; Zhou et al., 2023a). Preference
tuning further improves responses of LLMs using reinforcement learning human feedback (RLHF)
(Bai et al., 2022) or preference optimization (Azar et al., 2024; Ethayarajh et al., 2024; Hong et al.,
2024; Rafailov et al., 2023) based on a preference dataset.

Alignment Dataset Construction. We classify the existing methods of creating datasets for model
alignment into two main categories: human interactions with LLMs and synthetic instruction genera-
tion. To create datasets for alignment, previous studies have collected human interactions with LLMs
(Databricks, 2023; Zhao et al., 2024; Zheng et al., 2024; 2023; Köpf et al., 2023). However, manually
crafting instructions is not only time-consuming and labor-intensive, but may also incorporate toxic
content (Zhao et al., 2024). Another category of approaches (Wang et al., 2023; Taori et al., 2023; Xu
et al., 2023a;b; Wang et al., 2024c; Sun et al., 2023) focus on prompting LLMs to generate synthetic
instruction datasets, beginning with a small set of human-annotated seed instructions and expanding
these through few-shot prompting. However, these methods face a diversity challenge, as few-shot
prompting often results in new instructions that are too similar to the original seed questions (Li et al.,
2024a). To enhance coverage, some research (Ding et al., 2023; Li et al., 2024a) summarizes world
knowledge and employs it to generate synthetic datasets. We note that our MAGPIE dataset also
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belongs to the synthetic dataset. However, we leverage the prompt template without any requirement
for seed questions or prompt engineering.

Compared to the above two main categories, alignment data can also be generated by transforming
existing data (Wang et al., 2022; Sanh et al., 2022; Gandhi et al., 2024). However, the constrained
variety of NLP tasks in these datasets may impede the ability of tuned LLMs to generalize in real-
world scenarios (Li et al., 2024a). There are also mixture datasets (e.g., (Ivison et al., 2023; Teknium,
2023a; Liu et al., 2024b; Zhou et al., 2023a)) that combine or select high-quality instruction data from
various existing open-source instruction datasets to enhance coverage (Ivison et al., 2023; Teknium,
2023a) and/or improve overall performance (Liu et al., 2024b; Zhou et al., 2023a). There are also
data synthesis methods focusing on improving reasoning and math abilities (Yue et al., 2023; 2024),
which can be further merged with MAGPIE for creating a better mixture of data for instruction tuning.

Training Data Extraction. Language models have the capability to memorize examples from their
training datasets, potentially enabling malicious users to extract private information (Brown et al.,
2022; Biderman et al., 2023; Carlini et al., 2021). Pioneering work (Krishna et al., 2020; Carlini
et al., 2021; Nasr et al., 2023) has demonstrated that it is possible to extract private pre-training data
from BERT (Devlin et al., 2018), GPT-2 (Radford et al., 2018), and ChatGPT (Achiam et al., 2023),
respectively. Yu et al. (2023) propose several techniques including adjusting sampling strategies to
better extract training datasets from language models. Recently, Kassem et al. (2024) propose a black-
box prompt optimization method that uses an attacker LLM to extract high levels of memorization in
a victim LLM. Wang et al. (2024b) leverage membership inference attack (MIA) to extract fine-tuning
datasets from fine-tuned language models. Bai et al. (2024) extract the training dataset of production
language models via special characters (e.g., structural symbols of JSON files, and , # in emails and
online posts). Different from the prior work, we aim to create publicly available alignment datasets
with minimal human effort by leveraging the remarkable generation capabilities of LLMs, rather than
extracting private training data from LLMs.

6 LIMITATIONS, DISCUSSIONS, AND ETHICAL CONSIDERATIONS

Limitations and Discussions. MAGPIE-aligned LLMs demonstrate strong performance on instruc-
tion following benchmarks compared to the official Llama-3-8B-Instruct. However, we observe a
performance degradation on math and reasoning benchmarks. Although we leverage the techniques
described in Section 2.2 to generate specialized booster reasoning datasets, there is still a performance
gap between MAGPIE-aligned LLMs and the official models. Enhancing the reasoning ability of
MAGPIE-aligned models presents a promising direction for future research.

Societal Impact and Potential Harmful Consequences. The primary objective of this paper is
to develop a scalable method to synthesize instruction data to enhance the instruction-following
capabilities of LLMs, and thus align them with human values. However, the data generated by
MAGPIE may contain harmful instructions and/or responses, which may lead to unsafe behaviors if
used raw in instruction tuning. Our empirical evaluations indicate that such harmful data instances
constitute less than 1% of the dataset. Our data filtering technique in Appendix C can identify and
remove these instances, thus mitigating the risk.

7 CONCLUSION

In this paper, we developed a scalable method, MAGPIE, to synthesize instruction data for fine-tuning
large language models. MAGPIE leveraged the predefined instruction templates of open-weight LLMs
and crafted a prompt specifying only the role of instruction provider. Given the crafted prompt, the
LLM then generated detailed instructions due to their auto-regressive nature. MAGPIE then sent the
generated instructions to the LLM to generate corresponding responses. These pairs of instructions
and responses constituted the instruction dataset. We used Llama-3-8B-instruct to label the instruction
dataset and developed a filtering technique to select effective data instances for instruction tuning.
We fine-tuned the Llama-3-8B base model using the selected data, and demonstrated that the fine-
tuned model outperformed those fine-tuned using all baselines. Moreover, our fine-tuned models
outperformed the official aligned model, Llama-3-8B-Instruct, which has been instruction-tuned
and preference-optimized using more than 10M data instances. This highlighted the quality of the
instruction data synthesized by MAGPIE.
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A STATISTICS OF INSTRUCTION DATASETS GENERATED BY MAGPIE
COMPARED TO OTHER INSTRUCTION DATASETS.

MAGPIE can be readily deployed to state-of-the-art open-weight model families, including but
not limited to Llama-3 (Meta, 2024), Llama-3.1 (Dubey et al., 2024), Qwen2 (Yang et al., 2024),
Gemma-2 (Team et al., 2024), and Phi-3 (Abdin et al., 2024) model families.

In what follows, we compare datasets generated by MAGPIE with the above model families compared
to other state-of-the-art instruction datasets. The MAGPIE dataset family encompasses over 11.4
million diverse and high-quality instructions and corresponding responses generated from state-of-
the-art open-source models. This corpus represents the largest alignment dataset for LLMs that does
not rely on human-written questions or employ complex multi-stage pipelines.

Table 4: Statistics of MAGPIE family compared to other instruction datasets. Tokens are counted
using the tiktoken library (OpenAI, 2024).

Instruction
Source Dataset Name #Convs #Turns Human

Effort
Response
Generator #Tokens / Turn #Total Tokens

Synthetic
Alpaca (Taori et al., 2023) 52K 1 Low text-davinci-003 67.38±54.88 3.5M
Evol Instruct (Xu et al., 2023a) 143K 1 Low ChatGPT 473.33±330.13 68M
UltraChat (Ding et al., 2023) 208K 3.16 Low GhatGPT 376.58±177.81 238M

Human

Dolly (Databricks, 2023) 15K 1 High ChatGPT 94.61±135.84 1.42M
ShareGPT (Zheng et al., 2023) 112K 4.79 High ChatGPT 465.38±368.37 201M
WildChat (Zhao et al., 2024) 652K 2.52 High GPT-3.5 & GPT-4 727.09±818.84 852M
LMSYS-Chat-1M (Zheng et al., 2024) 1M 2.01 High Mix 260.37±346.97 496M

Mixture
Deita (Liu et al., 2024b) 9.5K 22.02 - Mix 372.78±182.97 74M
OpenHermes (Teknium, 2023a) 243K 1 - Mix 297.86±258.45 72M
Tulu V2 Mixture (Ivison et al., 2023) 326K 2.31 - Mix 411.94±447.48 285M

MAGPIE

Llama-3-MAGPIE-Air 3M 1 No Llama-3-8B-Instruct 426.39±217.39 1.28B
Llama-3-MAGPIE-Air-MT 300K 2 No Llama-3-8B-Instruct 610.80±90.61 366M
Llama-3-MAGPIE-Pro 1M 1 No Llama-3-70B-Instruct 478.00±211.09 477M
Llama-3-MAGPIE-Pro-MT 300K 2 No Llama-3-70B-Instruct 554.53±133.64 333M
Llama-3.1-MAGPIE-Pro 1M 1 No Llama-3.1-70B-Instruct 482.35±378.45 482M
Llama-3.1-MAGPIE-Pro-MT 300K 2 No Llama-3.1-70B-Instruct 552.53±325.49 331M
Qwen2-MAGPIE-Air 3M 1 No Qwen2-7B-Instruct 577.87±416.10 1.73B
Qwen2-MAGPIE-Pro 1M 1 No Qwen2-72B-Instruct 424.87±339.71 424M
Gemmma-2-MAGPIE-Pro 1M 1 No Gemma-2-27b-it 483.90±237.80 259M
Phi-3-MAGPIE-Pro 534K 1 No Phi-3-Medium-Instruct 391.38±414.32 391M
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Figure 5: This figure shows the performance of MAGPIELM-4B-Chat and MAGPIELM-8B-Chat
compared with baselines. MAGPIELM significantly outperforms baselines of similar sizes.
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In this section, we discuss the details of our MAGPIELM. To construct the SFT and DPO datasets
for aligning MAGPIELM, we select 550K and 200K high-quality instructions, respectively, from the
MAGPIE family. These instructions cover diverse categories, ensuring a comprehensive training set.
We then generate corresponding responses using the Gemma-2-9b-it model (Team et al., 2024).

The benchmark performance of both models is demonstrated in Figure 5. Notably, MAGPIELM
significantly outperforms other baselines of similar model sizes across multiple benchmarks, including
Alpaca Eval 2 (Li et al., 2023b), Arena Hard (Li et al., 2024b), and Wildbench (Lin et al., 2024).

C FILTER SETUPS

In this section, we explore potential filter configurations for selecting high-quality instructional data
for fine-tuning purposes. We provide the following metrics to enable users to customize their filtered
MAGPIE dataset:

1. Input Length: The total number of characters in the instructions.
2. Output Length: The total number of characters in the responses.
3. Task Category: The specific category of the instructions. See Appendix D.1 for details.
4. Input Quality: The clarity, specificity, and coherence of the instructions, rated as ‘very

poor’, ‘poor’, ‘average’, ‘good’, and ‘excellent’.
5. Input Difficulty: The level of knowledge required to address the task described in the

instruction, rated as ‘very easy’, ‘easy’, ‘medium’, ‘hard’, or ‘very hard’.
6. Minimum Neighbor Distance: The embedding distance to the nearest neighbor. Can be

used for filtering out repetitive or similar instances.
7. Reward: Denoted as r∗. See Section 3 for details. This metric can be used to filter out

low-quality responses, such as repetitions or refusals.
8. Reward Difference: Denoted as r∗ − rbase. See Section 3 for details.

We provide several off-the-shelf configurations, as demonstrated in Table 5. We defer the detailed
performance analysis of each filter configuration for MAGPIE-Pro to Appendix F.5.

Table 5: Different filter configurations we provide. We note that the Output Length filter is applied
last. Specifically, this filter selects the k instances of the longest responses. In our experiments, we
empirically set τ1 = −12, and τ2 = 0.

Source Dataset Filter Name #Convs Input
Length

Output
Length

Task
Category

Input
Quality

Input
Difficulty

Min Neighbor
Distance Reward Reward

Difference

MAGPIE-Air Filter 300K - Longest - ≥ good ≥ medium > 0 - > τ2

MAGPIE-Pro

Filter 300K - Longest - ≥ average - > 0 > τ1 -
Filter2 300K - Longest - ≥ good ≥ easy > 0 > τ1 -
Filter3 300K - Longest - - - > 0 > τ1 -
Filter4 300K - Longest - ≥ good ≥ easy > 0 - > τ2
Filter5 338K - - - ≥ good ≥ easy > 0 > τ1 -
Filter6 200K - Longest - - 50% easy + 50% > easy > 0 > τ1 -

D MORE DATASET ANALYSIS

This section provides additional dataset analysis, complementing the discussions in Section 3.
Statistics including lengths of instructions and responses are illustrated in Figure 6.

D.1 ADDITIONAL ANALYSIS ON DATASET COVERAGE AND ATTRIBUTES.

Dataset Coverage Measured by T-SNE and UMAP. Figure 7 presents the t-SNE and UMAP
plots of MAGPIE, Alpaca, Evol Instruct, and UltraChat. Each t-SNE and UMAP plot is generated
by randomly sampling 10,000 instructions from the associated dataset. We observe that the t-SNE
and UMAP plot of MAGPIE encompasses the area covered by the plots of Alpaca, Evol Instruct, and
UltraChat. This suggests that MAGPIE datasets provides a broader or more diverse range of topics,
highlighting its extensive coverage across varied themes and subjects.
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(a) Input Length of MAGPIE-Air (in tokens)

(b) Output Length of MAGPIE-Air (in tokens)

(c) Input Length of MAGPIE-Pro (in tokens)

(d) Input Length of MAGPIE-Pro (in tokens)

Figure 6: Lengths of instructions
and responses in MAGPIE-Air/Pro.

Figure 7: This figure compares the t-SNE plot of MAGPIE-Pro
with those of Alpaca, Evol Instruct, and UltraChat, each of
which is sampled with 10,000 instructions. The t-SNE plot of
MAGPIE-Pro encompasses the area covered by the other plots,
demonstrating the comprehensive coverage of MAGPIE-Pro.

Figure 8: This figure compares the UMAP plot of MAGPIE-Air
with those of Alpaca, Evol Instruct, and UltraChat, each of which is
sampled with 10,000 instructions. The UMAP plot of MAGPIE-Air
encompasses the area covered by the other plots, demonstrating
the comprehensive coverage of MAGPIE-Air.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Task Categories of MAGPIE-Pro and MAGPIE-Air. Figure 9 illustrates the task category dis-
tributions for MAGPIE-Pro and MAGPIE-Air, as labeled by Llama-3-Instruct. We observe that the
task category distributions of these two datasets are largely similar, however, MAGPIE-Pro exhibits a
higher percentage of creative writing tasks.
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(a) Task categories of MAGPIE-Pro.
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(b) Task categories of MAGPIE-Air.

Figure 9: This figure visualizes the task category of MAGPIE-Pro and MAGPIE-Air by topic tags.

Topic Diversity of MAGPIE-Pro and MAGPIE-Air. To validate the diversity of generated instruc-
tions, we conducted additional analysis using Topic Diversity metric from UltraChat (Ding et al.,
2023). Our results are summarized in Table 6. The results demonstrate that our generated instructions
are indeed more diverse in topic compared with other baselines.

Table 6: Comparison of Topic Diversity Across Different Synthetic Datasets

Dataset Alpaca Evol Instruct UltraChat Magpie-Air Magpie-Pro

Topic Diversity (↓) 0.13 0.09 0.10 0.05 0.06

Visualization of Root Verbs and Their Direct Noun Objects. Figure 10 visualizes the top
common root verbs and their direct noun objects of MAGPIE-Air dataset. This indicates the diverse
topic coverage of MAGPIE-Air.

D.2 ADDITIONAL SAFETY ANALYSIS

Table 7 illustrates the percentage of different unsafe categories of MAGPIE-Air and MAGPIE-Pro, as
labeled by Llama-Guard-2 (Team, 2024). We have two key observations. First, the proportion of data
containing potentially harmful queries is minimal, with less than 1% for both datasets. Second, the
majority of unsafe responses fall into the category of specialized advice, which includes responses
that may offer specialized financial, medical, or legal advice, or suggest that dangerous activities or
objects are safe.

Table 7: This table shows the percentage of different unsafe categories of MAGPIE-Air and MAGPIE-
Pro tagged by Llama-Guard-2 Team (2024) model.

Dataset Safe Violent
Crimes

Non-Violent
Crimes

Sex-Related
Crimes

Child Sexual
Exploitation

Specialized
Advice Privacy Intellectual

Property
Indiscriminate

Weapons Hate Suicide &
Self-Harm

Sexual
Content Others

MAGPIE-Air 99.128% 0.001% 0.073% 0.003% 0.000% 0.636% 0.022% 0.026% 0.038% 0.001% 0.002% 0.009% 0.062%
MAGPIE-Pro 99.347% 0.001% 0.049% 0.002% 0.000% 0.446% 0.015% 0.074% 0.014% 0.001% 0.004% 0.011% 0.036%

D.3 ABLATION ANALYSIS ON GENERATION CONFIGURATIONS
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Figure 10: This figure demonstrates the top 20 most common root verbs (shown in the inner circle)
and their top 5 direct noun objects (shown in the outer circle) within the MAGPIE-Air dataset. This
indicates that MAGPIE encompasses a broad range of topics.
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Figure 11: This figure illustrates the impact of varying decoding parameters on the quality, difficulty,
and diversity of generated instructions. We observe that while higher temperature and top-p values
may decrease the overall quality, they tend to increase both the difficulty and diversity of the
instructions.

(a) Comparison of Input Quality w/wo System Prompts 

(b) Comparison of Input Difficulty w/wo System Prompts 

Figure 12: This figure compares the
input quality and difficulty with and
without system prompts.

Ablation Analysis on Decoding Parameters. We conduct
an ablation analysis on the decoding parameters used in gen-
erating instruction with MAGPIE. Specifically, we use three
different temperatures (i.e., 1, 1.1, and 1.2) and top-p values
(i.e., 1, 0.995, and 0.99) during Step 1 of MAGPIE. We use
three metrics, Average Quality Score, Average Difficulty
Score and Average Minimum Neighbor Distance to charac-
terize the quality, difficulty, and diversity of instructions using
different decoding parameters. The Average Quality Score is
calculated by averaging the ratings of all data within a specific
temperature-top-p pair, on a scale from 1 (‘very poor’) to 5
(‘excellent’). Similarly, the Average Difficulty Score is rated
on a scale from 1 (‘very easy’) to 5 (‘very hard’). The Average
Minimum Neighbor Distance is calculated by averaging the
minimum neighbor distances, as defined in Section 3, for all
data generated using the same decoding parameters.
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The findings are summarized in Figure 11. We observe that higher temperature and top-p values may
slightly decrease the overall quality of instructions, while simultaneously increasing the difficulty
and remarkably enhancing the diversity of the instructions generated. The selection of these hyper-
parameters should be tailored to the user’s specific requirements, balancing the trade-offs between
quality, difficulty, and diversity.

Ablation Analysis on the System Prompt. Figure 12 compares the use of system prompt compared
with not using it in Step 1 of MAGPIE. Since the Llama-3 model does not have an official system
prompt, we use the default system prompt from Vicuna (Chiang et al., 2023): A chat between a
curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite
answers to the user’s questions. We observe that using a system prompt generally results in a decrease
in the overall quality of instructions, and the instructions are easier. Consequently, we recommend
not appending system prompts in default settings.

D.4 IMPACT OF ANNOTATING MODELS

(a) Statistics on Input Quality Using Different Annotators 

(b) Statistics on Input Difficulty Using Different Annotators 

Figure 13: This figure compares
the impact of different annotators
on evaluating the instruction qual-
ity and difficulty.

We note that LLMs may occasionally favor its own response
(Deutsch et al., 2022). In what follows, we conduct experi-
ments to evaluate the impact of annotating models when label-
ing quality and difficulty of the MAGPIE-Air dataset. We used
the Qwen-2-7B-Instruct model (outside the Llama-3 family) to
annotate the quality and difficulty of our MAGPIE-Air dataset.
The statistics are summarized in Figure 13.

Our findings show that even when evaluated by Qwen-2-7B-
Instruct, the MAGPIE-Air dataset maintains high quality and
difficulty, which is even higher than those originally anno-
tated by Llama-3-8B-Instruct. This suggests that our dataset’s
quality is robust across different annotators.

E DETAILED EXPERIMENTAL SETUPS

E.1 EXPERIMENTAL SETUPS FOR GENERATING MAGPIE-AIR AND MAGPIE-PRO

As detailed in Appendix D.3, varying decoding parameters in Step 1 can significantly influence
the quality, difficulty, and diversity of the generated instructions. To optimize the trade-offs among
these attributes, we employ diverse decoding parameters for the generation of MAGPIE-Air and
MAGPIE-Pro. Table 8 presents the configurations of MAGPIE-Air and MAGPIE-Pro, showcasing how
diverse decoding parameters shape each dataset.

We employ greedy decoding to generate responses in Step 2 for MAGPIE-Air and MAGPIE-Pro. The
intuition is that the word with the highest probability is more likely to originate from the model’s
training dataset.

E.2 EXPERIMENTAL SETUPS FOR INSTRUCTION TUNING AND PREFERENCE TUNING

Supervised Fine-Tuning Hyper-parameters. Table 9 demonstrates the detailed supervised fine-
tuning hyper-parameters. These experiments were conducted using Axolotl5.

Preference Tuning Hyper-parameters. Table 10 demonstrates the detailed DPO hyper-parameters
for aligning Llama-3-8B using MAGPIE-Air-DPO and MAGPIE-Pro-DPO. These experiments were
conducted using Alignment Handbook6.

Decoding parameters for evaluation benchmarks. For Arena-Hard (Li et al., 2024b) and Wild-
Bench (Lin et al., 2024), we follow its default setting and use greedy decoding for all settings. For
AlpacaEval 2 (Li et al., 2023b) which allows the model provider to specify decoding parameters,
we also employ greedy decoding in all experiments with a slightly increased repetition penalty
(RP = 1.2) to mitigate the potential repetitive outputs during the generation.

5https://github.com/OpenAccess-AI-Collective/axolotl
6https://github.com/huggingface/alignment-handbook
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Table 8: This table demonstrates the configurations of generating instructions of MAGPIE-Air and
MAGPIE-Pro datasets with varying decoding parameters.

Dataset Decoding Parameters Total #Convs
Temperature Top-p #Convs

MAGPIE-Air

1.0 1.00 300K

3M

1.0 0.995 300K
1.0 0.990 300K
1.1 1.00 300K
1.1 0.995 300K
1.1 0.990 300K
1.2 1.00 300K
1.2 0.995 300K
1.2 0.990 300K

1.25 1.00 100K
1.25 0.995 100K
1.25 0.990 100K

MAGPIE-Pro

1.0 1.00 300K

1M1.1 0.995 300K
1.2 0.995 300K

1.25 0.990 100K

Table 9: This table shows the hyper-parameters for supervised fine-tuning.

Hyper-parameter Value

Learning Rate 2× 10−5

Number of Epochs 2
Number of Devices 4
Per-device Batch Size 1
Gradient Accumulation Steps 8
Effective Batch Size 32
Optimizer Adamw with βs = (0.9, 0.999) and ϵ = 10−8

Learning Rate Scheduler cosine
Warmup Steps 100
Max Sequence Length 8192

Table 10: This table shows the hyper-parameters for direct preference optimization.

Hyper-parameter Value

Learning Rate 5× 10−7

Number of Epochs 1
Number of Devices 4
Per-device Batch Size 2
Gradient Accumulation Steps 16
Effective Batch Size 128
Optimizer Adamw with βs = (0.9, 0.999) and ϵ = 10−8

Learning Rate Scheduler cosine
Warmup Ratio 10%
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F ADDITIONAL EXPERIMENTAL RESULTS

F.1 PERFORMANCE OF MAGPIE-MT

Table 11 compares the performance of MAGPIE-Air-MT and MAGPIE-Pro-MT with their respec-
tive single-turn counterparts. We observe that the multi-turn datasets have enhanced performance,
particularly in the Arena-Hard benchmark.

Table 11: This table compares the performance of the multi-turn versions, MAGPIE-Air-MT and
MAGPIE-Pro-MT, with their single-turn counterparts. All models are instruction-tuned on the Llama-
8B base models.

Dataset
AlpacaEval 2 Arena-Hard

GPT-4-Turbo (1106) Llama-3-8B-Instruct

LC (%) WR (%) SD LC (%) WR (%) SD WR (%)

MAGPIE-Air Single-Turn 22.66 23.99 1.24 49.27 50.80 1.44 14.9
MT 22.98 24.02 1.27 49.63 51.42 1.40 15.5

MAGPIE-Pro Single-Turn 25.15 26.50 1.30 50.52 52.98 1.43 18.9
MT 24.21 25.19 1.28 52.92 54.80 1.41 20.4

F.2 COMPARE MAGPIE AND SELF-INSTRUCT USING LLAMA-3-8B-INSTRUCT

To compare the performance of MAGPIE and other synthetic dataset generation methods using the
same model, we follow the official Self-Instruct (Wang et al., 2023) setup and generate a 100K
supervised fine-tuning dataset using Llama-3-8B-Instruct. For a fair comparison, we select the first
100K data samples from the MAGPIE-Air dataset generated by Llama-3-8B-Instruct. The performance
of models fine-tuned with these two datasets is shown in the table 12.

Table 12: This table compares the performance of models fine-tuned using 100K instruction-following
datasets generated by Self-Instruct and MAGPIE. All models are supervised-fine-tuned on the
Llama-8B base models. We observe that MAGPIE significantly outperforms Self-Instruct across all
benchmarks.

Dataset #Convs

AlpacaEval 2 Arena-Hard
GPT-4-Turbo (1106) Llama-3-8B-Instruct

LC (%) WR (%) SD LC (%) WR (%) SD WR (%)

MAGPIE-Air-100K 100K 20.17 21.33 1.21 46.82 48.76 1.44 15.7
Self-Instruct (Llama-3) 100K 7.21 5.18 0.7 17.86 12.73 1.05 4.0

We observe a significant performance gap between models fine-tuned with datasets generated by Self-
Instruct and our MAGPIE. Our analysis revealed that the instruction format in Self-Instruct-generated
datasets is predominantly constrained by the patterns defined in the seed instructions, resulting in
a lack of diversity. This comparison indicates the novelty of our MAGPIE in generating diverse
high-quality instructions without any seed questions.

F.3 PERFORMANCE OF DOMAIN-SPECIFIC AND MULTILINGUAL MAGPIE DATASETS

Domain Specific Data Evaluation. We choose code data as representative domain-specific data.
We generated domain-specific data using the code instruction system prompt detailed in Appendix
G. Using Qwen2.5-72B-Instruct as data generator, we created 100K synthetic code instructions via
MAGPIE. We then fine-tuned both Llama-3-8B base and Llama-3-8B-Instruct models using this
dataset. The models were evaluated on HumanEval (Chen et al., 2021). The results shown in Table 13
demonstrate that our MAGPIE-generated code dataset effectively enhances Llama-3’s performance on
code-related tasks, validating MAGPIE’s applicability to domain-specific instruction tuning.

Multilingual Data Evaluation. We evaluated MAGPIE’s multilingual capabilities using Chinese as
our representative language case. Following the method described in Section 2.2, we used Qwen2-
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Table 13: Performance Comparison on HumanEval.

Alignment Setup Pass@1 Pass@10 Pass@100

Llama-3-8B-Instruct 0.5574 0.7174 0.8049
Llama-3-8B-base + MAGPIE-Code-100K 0.5327 0.7134 0.8293
Llama-3-8B-Instruct + MAGPIE-Code-100K 0.5768 0.7334 0.8232

72B-Instruct to generate 200K Chinese synthetic instructions. We then fine-tuned the Llama-3-8B
base model with this dataset and evaluated its performance using multilingual MT-Bench. The results
are presented in Table 14. The results demonstrate that models fine-tuned with our Chinese MAGPIE
dataset outperform the official Llama-3-8B-Instruct on multilingual MT-Bench (zh-cn). This suggests
MAGPIE’s applicability to generate high-quality multilingual datasets.

Table 14: Performance Comparison on Chinese MT-Bench.

Alignment Setup Zh MT-Bench

Meta-Llama-3-8B-Instruct 7.75
Llama-3-8B-base + MAGPIE-Chinese-200K 7.80
Llama-3-8B-base + MAGPIE-Chinese-200K + MAGPIE-Pro-MT 7.96

F.4 ABLATION ANALYSIS ON DATA QUANTITY AND QUALITY

In what follows, we compare within the family of datasets generated by MAGPIE in Table 15. These
datasets differ in size, deployment of filtering, and models used to generate data. We observe
that as the dataset’s size increases, the fine-tuned model’s performance improves, indicating that
data quantity plays a critical role in enhancing instruction-following capabilities. Furthermore, the
model fine-tuned with MAGPIE-Pro-300K-Filtered outperforms those fine-tuned with the same or
even higher amounts of raw data. This demonstrates the effectiveness of our filtering technique,
and underscores the importance of data quality. Finally, we observe that the models fine-tuned
with MAGPIE-Pro consistently outperform those fine-tuned with MAGPIE-Air. The reason is that
MAGPIE-Pro is generated by the more capable model, i.e., Llama-3-70B-Instruct.

Table 15: This table compares MAGPIE datasets within its family that differ in size, deployment of
filtering, and models used to generate data. All models are supervised-fine-tuned on the Llama-8B
base models.

Dataset #Convs
AlpacaEval 2 Arena-Hard

GPT-4-Turbo (1106) Llama-3-8B-Instruct

LC (%) WR (%) SD LC (%) WR (%) SD WR(%)

MAGPIE-Air
300K-Raw 300K 21.99 21.65 1.21 48.63 48.06 1.42 15.8
3M-Raw 3M 22.96 21.09 1.20 50.57 48.40 1.42 16.1
300K-Filtered 300K 22.66 23.99 1.24 49.27 50.8 1.44 14.9

MAGPIE-Pro

300K-Raw 300K 21.65 22.19 1.2 49.65 50.84 1.42 15.9
1M-Raw 1M 24.16 23.93 1.25 49.97 50.34 1.43 16.7
100K-Filtered 100K 20.47 24.52 1.25 47.92 52.75 1.43 17.2
200K-Filtered 200K 22.11 26.02 1.26 51.17 56.76 1.41 15.9
300K-Filtered 300K 25.08 29.47 1.35 52.12 53.43 1.44 18.9

MAGPIE-Air + MAGPIE-Pro 4M-Raw 4M 24.45 24.08 1.26 51.96 52.08 1.42 15.5

F.5 ABLATION ANALYSIS ON FILTER DESIGNS

We conduct an ablation analysis on various filter designs within MAGPIE-Pro to assess their impact
on the performance of supervised fine-tuned models. The results are presented in Table 16. We
observe that different filtering strategies yield optimal performance on different benchmarks, and no
single filter consistently achieves the best performance across all benchmarks. Therefore, determining
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how to select instructional data to enhance the performance in supervised fine-tuning is an interesting
topic for future research.

Table 16: This table compares the performance of different filter designs within MAGPIE-Pro. All
models are supervised-fine-tuned on the Llama-8B base models.

Dataset and Filter
AlpacaEval 2 Arena-Hard

GPT-4-Turbo (1106) Llama-3-8B-Instruct

LC (%) WR (%) SD LC (%) WR (%) SD WR (%)

MAGPIE-Pro

Filter 25.08 29.47 1.35 52.12 53.43 1.44 18.9
Filter 2 25.15 26.50 1.30 50.52 52.98 1.43 18.9
Filter 3 23.90 25.21 1.25 51.45 53.64 1.41 18.3
Filter 4 24.20 25.33 1.27 52.43 54.34 1.43 17.9
Filter 5 24.85 25.12 1.26 52.12 53.43 1.44 18.4
Filter 6 23.20 28.43 1.26 51.34 57.29 1.41 17.9

F.6 ABLATION ANALYSIS ON RESPONSE GENERATOR

To investigate the impact of the response generator on the supervised fine-tuning performance using
MAGPIE, we conduct an ablation study by replacing the response generator with Qwen-2-7B-Instruct
(Yang et al., 2024) within MAGPIE-Air-300K-Filtered. We note that the performance of Qwen-2-7B-
Instruct is comparable to, or slightly weaker than, Llama-3-8B-Instruct. The results are summarized
in Table 17.

We observe that although there is a slight performance degradation, the model fine-tuned using
Qwen-2-7B-Instruct as the response generator still outperforms all baselines, including those using
GPT-4 as the response generator. These findings indicate two key points: (1) The success of MAGPIE
depends little on the specific response generator used, and (2) the instructions generated by MAGPIE
are of high quality and diversity.

Table 17: This table compares the impact of different response generators on the model performance.
All models are supervised-fine-tuned on the Llama-8B base models.

Response Generator
AlpacaEval 2 Arena-Hard

GPT-4-Turbo (1106) Llama-3-8B-Instruct

LC (%) WR (%) SD LC (%) WR (%) SD WR (%)

Llama-3-8B-Instruct 22.66 23.99 1.24 49.27 50.80 1.44 14.9
Qwen2-7B-Instruct 15.01 15.60 1.05 41.09 42.07 1.47 13.7

F.7 TRUSTWORTHINESS OF MAGPIE-ALIGNED MODELS

In what follows, we conduct more experiments to compare MAGPIE model and Llama-3-8B-Instruct
on the TrustLLM benchmark (Huang et al., 2024). The results for safety, fairness, ethics, privacy, and
robustness are summarized in Table 18.

We observe that our supervised-fine-tuned model slightly underperforms Llama-3-8B-Instruct in
terms of safety and fairness. However, it outperforms the official instruct model on ethics, privacy, and
robustness. Considering that our fine-tuned model uses much fewer data samples (300K compared to
over 10M), these results again highlight the high quality of data generated by MAGPIE.

F.8 IFEVAL EVALUATIONS OF MAGPIE-ALIGNED MODELS AND BASELINES

We compare the models fine-tuned with MAGPIE against baselines on IFEval Zhou et al. (2023b)
using the LM-Evaluation-Harness framework Gao et al. (2024). The results are presented in Table 19.

Our results demonstrate that MAGPIE-generated datasets achieve comparable prompt-level and
instruction-level strict accuracy scores to existing baseline datasets. Moreover, MAGPIE exhibits
significantly higher performance in both prompt-level and instruction-level loose accuracy metrics.
These findings indicate the high quality of MAGPIE-generated datasets.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 18: This table compares the performance of model supervised-fine-tuned using MAGPIE-Pro-
300K-Filtered and the official Llama-3-8B-Instruct on the TrustLLM benchmark (Huang et al., 2024).

TrustLLM Evaluation/Dataset Llama-3-8B-Instruct MAGPIE-Pro-300K-Filtered

Safety
Jailbreak (RtA↑) 0.93 0.80
Misuse (RtA↑) 0.85 0.80

Exaggerated Safety (RtA↓) 0.54 0.52

Fairness

Stereotype Recognition (Acc↑) 0.49 0.40
Stereotype Query Test (RtA↑) 1.00 0.99
Disparagement Sex (p-value↑) 0.99 0.99

Disparagement Race (p-value↑) 0.55 0.47

Ethics

Social Chemistry 101 (Acc↑) 0.94 0.63
ETHICS (Acc↑) 0.65 0.69

MoralChoice (Acc↑) 0.97 0.95
MoralChoice (RtA↑) 0.97 0.98

Privacy
Privacy Awareness-Normal (RtA↑) 0.33 0.71

Privacy Awareness-Augmented (RtA↑) 1.00 0.98
Privacy Leakage (RtA↑) 0.66 0.87

Robustness
AdvGlue (RobustScore↑) 0.42 0.58
OOD Detection (RtA↑) 0.37 0.26

OOD Generalization (F1-Score↑) 0.83 0.84

Table 19: This table compares the performance of model supervised-fine-tuned using MAGPIE and
other baseline datasets on the IFEval benchmark Zhou et al. (2023b).

Alignment Data prompt_level_strict inst_level_strict prompt_level_loose inst_level_loose
Self-Instruct (Llama-3) 0.333 0.465 0.372 0.501
ShareGPT 0.331 0.454 0.372 0.492
Evol Instruct 0.344 0.463 0.377 0.494
OpenHermes 1 0.340 0.453 0.377 0.488
Tulu V2 Mix 0.338 0.458 0.370 0.499
WildChat 0.372 0.489 0.423 0.538
OpenHermes 2.5 0.381 0.493 0.436 0.536
GenQA 0.307 0.458 0.331 0.484
Ultrachat 0.298 0.421 0.346 0.466
MAGPIE-Air-300K-Raw 0.366 0.489 0.477 0.590
MAGPIE-Air-300K-Filtered 0.355 0.484 0.475 0.597
MAGPIE-Air-300K-MT 0.368 0.496 0.495 0.614
MAGPIE-Pro-300K-Raw 0.338 0.472 0.455 0.582
MAGPIE-Pro-300K-Filtered 0.298 0.432 0.401 0.529
MAGPIE-Pro-300K-MT 0.336 0.452 0.455 0.568
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G PROMPT TEMPLATES

G.1 PROMPT TEMPLATES FOR MAGPIE EXTENSION

This section presents the prompt template used to generate MAGPIE-MT and control instruction tasks,
as detailed in Figure 14 and Figure 15, respectively.

Prompt for generating MAGPIE-MT

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

You are a helpful Al assistant. The user will engage in a multi−round conversation with you,
asking initial questions and following up with additional related questions. Your goal is
to provide thorough, relevant and insightful responses to help the user with their
queries.<|eot_id|><|start_header_id|>user<|end_header_id|>

{instruction}<|eot_id|><|start_header_id|>assistant<|end_header_id|>

{response}<|eot_id|><|start_header_id|>user<|end_header_id|>

Figure 14: Prompt for generating MAGPIE-MT. We take Llama-3-8B-Instruct as an example. The
placeholder {instruction} and {response} are from the first turn.

G.2 PROMPT TEMPLATES FOR EVALUATION

Here, we present the prompt template employed to generate task categories, quality, and difficulty, as
detailed in Figure 16, Figure 17, and Figure 18, respectively. The placeholder input represents the
instructions to be evaluated.

H EXAMPLE OUTPUTS OF MAGPIE MODELS

In the following Figure 19 and Figure 20, we present example outputs generated by the MAGPIE
models and compare them with GPT-4-Turbo (1106), using Alpaca Eval 2 for evaluation.
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System Prompt Template

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

{System Prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>

System prompt for controlling math instruction tasks

You are an AI assistant designed to provide helpful, step-by-step guidance on solving math
problems. The user will ask you a wide range of complex mathematical questions. Your
purpose is to assist users in understanding mathematical concepts, working through equations,
and arriving at the correct solutions.

System prompt for controlling code instruction tasks

You are an AI assistant designed to provide helpful, step-by-step guidance on coding problems.
The user will ask you a wide range of coding questions. Your purpose is to assist users in
understanding coding concepts, working through code, and arriving at the correct solutions.

System prompt for controlling translation tasks

You are an AI assistant designed to provide accurate and contextually appropriate translations.
Users will ask you to translate text between various languages. Your purpose is to assist users
in understanding and conveying meaning across languages, maintaining the original context
and nuances.

System prompt for controlling multilingual instruction generation (Japanese + Math)

あなたはAIアシスタントで、数学のを解くために役立つ、ステップバイステップ
のガイダンスを提供するようにされています。

Figure 15: Prompts for controlling instruction generation tasks. These examples illustrate how to
guide Llama-3-8B-Instruct in generating instructions for specific domains: mathematics, coding,
translation, and multilingual tasks. To adapt this approach for different instruction tasks, replace the
System Prompt placeholder in the System Prompt Template with the appropriate domain-specific
prompt.
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Prompt for generating task categories

# Instruction
Please label the task tags for the user query.

## User Query
‘‘‘{input}‘‘‘

## Tagging the user input
Please label the task tags for the user query. You will need to analyze the user query and

select the most relevant task tag from the list below.

all_task_tags = [
"Information seeking", # Users ask for specific information or facts about various topics.
"Reasoning", # Queries require logical thinking, problem−solving, or processing of

complex ideas.
"Planning", # Users need assistance in creating plans or strategies for activities and

projects.
"Editing", # Involves editing, rephrasing, proofreading, or other tasks related to the

composition of general written content.
"Coding & Debugging", # Users seek help with writing, reviewing, or fixing code in

programming.
"Math", # Queries related to mathematical concepts, problems, and calculations.
"Role playing", # Users engage in scenarios requiring ChatGPT to adopt a character or

persona.
"Data analysis", # Requests involve interpreting data, statistics, or performing analytical

tasks.
"Creative writing", # Users seek assistance with crafting stories, poems, or other

creative texts.
"Advice seeking", # Users ask for recommendations or guidance on various personal or

professional issues.
"Brainstorming", # Involves generating ideas, creative thinking, or exploring possibilities.
"Others" # Any queries that do not fit into the above categories or are of a miscellaneous

nature.
]

## Output Format:
Note that you can only select a single primary tag. Other applicable tags can be added to

the list of other tags.
Now, please output your tags below in a json format by filling in the placeholders in <...>:
‘‘‘
{{

"primary_tag": "<primary tag>",
"other_tags": ["<tag 1>", "<tag 2>", ... ]

}}
‘‘‘

Figure 16: Prompt for generating task categories
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Prompt for generating quality of instructions

# Instruction
You need to rate the quality of the user query based on its clarity, specificity, and coherence.
The rating scale is as follows:

− very poor: The query is unclear, vague, or incoherent. It lacks essential information and
context.

− poor: The query is somewhat unclear or lacks important details. It requires significant
clarification.

− average: The query is moderately clear and specific. It may require some additional
information for a complete understanding.

− good: The query is clear, specific, and mostly well−formed. It provides sufficient context for
understanding the user’s intent.

− excellent: The query is very clear, specific, and well−articulated. It contains all the
necessary information and context for providing a comprehensive response.

## User Query
‘‘‘{input}‘‘‘

## Output Format
Given the user query, you first need to give an assessment, highlighting the strengths and/or

weaknesses of the user query. Then, you need to output a rating from very poor to
excellent by filling in the placeholders in [...]:

‘‘‘
{{

"explanation": "[...]",
"input_quality": "[very poor/poor/average/good/excellent]"

}}
‘‘‘
’’’

Figure 17: Prompt for generating quality of instructions

Prompt for generating difficulty of instructions

# Instruction
You first need to identify the given user intent and then label the difficulty level of the user

query based on the content of the user query.

## User Query
‘‘‘{input}‘‘‘

## Output Format
Given the user query, in your output, you first need to identify the user intent and the

knowledge needed to solve the task in the user query. Then, rate the difficulty level of
the user query as ‘very easy‘, ‘easy‘, ‘medium‘, ‘hard‘, or ‘very hard‘.

Now, please output the user intent and difficulty level below in a json format by filling in the
placeholders in [...]:

‘‘‘
{{

"intent": "The user wants to [....]",
"knowledge": "To solve this problem, the models need to know [....]",
"difficulty": "[very easy/easy/medium/hard/very hard]"

}}
‘‘‘

Figure 18: Prompt for generating difficulty of instructions
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Question

Hi, I’m trying to solve a crossword puzzle, but I’ve never done one of these before. Can you
help me out?

GPT-4-Turbo(1106)

Absolutely! I’d be delighted to help you with your crossword puzzle. Just tell me the clues
and the number of letters needed for each answer (and any letters you may have already filled
in), and I’ll do my best to help you find the solutions. If you have any specific questions about
how to approach solving crossword puzzles in general, feel free to ask those as well!

MAGPIE-Pro-DPO

# **Crossword Crusader’s Guide**

Welcome to the world of crosswords! We’re thrilled to assist you in navigating your first puzzle. This primer will cover the basics, tips, and
tricks to get you started.

## **Understanding the Grid**

− A crossword puzzle consists of a grid with black squares (obstacles) and white squares (answer spaces).
− The grid is divided into rows and columns, usually labeled with numbers.
− Each answer spans one or more squares horizontally (across) or vertically (down).

## **Key Concepts**

1. **Clues**: These are the instructions to fill in the answers. Clues are usually written above (across) or to the left (down) of the answer
space.

− **Across clues** are read from left to right, like a sentence.
− **Down clues** are read from top to bottom, like a column.

2. **Answer Length**: The number of squares an answer occupies is indicated by a digit(s) next to the clue. For example, "5−letter answer"
or "Down: 7".

3. **Wordplay**: Crosswords often employ wordplay, which means clues might use:
− **Anagrams**: Rearranged letters to form the answer.
− **Homophones**: Words with similar sounds (e.g., "bank" and "bank").
− **Double Definitions**: Two separate definitions for the same answer.
− **Prefixes/Suffixes**: Clues might ask for a word with a specific prefix or suffix.

## **Tips for Solving**

1. **Start with easy clues**: Begin with shorter answers (3−5 letters) and work your way up.
2. **Fill in obvious answers**: Look for words that are easily recognizable or have only one possible answer.
3. **Use the grid**: Pay attention to the grid’s structure. Look for patterns, symmetry, and blocked areas to help guide your answers.
4. **Check for intersections**: When filling in an answer, make sure it doesn’t conflict with other answers at intersections.
5. **Don’t be afraid to guess**: If you’re unsure, try a few possibilities. You can always erase and try again.
6. **Use the "X" method**: When unsure, write an "X" in the square to indicate a possible answer. This helps you keep track of possibilities.
7. **Take breaks**: Crosswords can be mentally taxing. Take a break to refresh your mind.
8. **Consult the puzzle’s instructions**: If you’re stuck, check the puzzle’s website or instructions for hints or special rules.

## **Additional Resources**

− If you’re still unsure, try online crossword solvers like Crossword Solver, XWordInfo, or Cruciverb.
− Watch video tutorials or YouTube channels dedicated to crosswords, like Crossword Corner or The Crossword Guy.

## **Good Luck!**

Now, go ahead and dive into your crossword puzzle. Remember, the more you practice, the better you’ll become. Have fun, and happy
solving!

Figure 19: Comparison between outputs of MAGPIE-Pro-DPO and GPT-4-Turbo (1106) (Example 1).
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Question

Do you know why turkeys became the official food of thanksgiving?

GPT-4-Turbo(1106)

The tradition of eating turkey for Thanksgiving is rooted in the history of the United States. There are a few reasons why turkey became the
centerpiece of the Thanksgiving meal:

1. **Historical Accounts**:
Although there is no definitive record that turkey was eaten at the very first Thanksgiving in 1621, when the Pilgrims celebrated a

successful harvest with the Wampanoag Native Americans, it is known that wildfowl was part of the feast. Turkey, being a large
bird native to North America, could feed a large group of people and was likely a convenient choice for such gatherings.

2. **Practicality**:
Turkeys were abundant in North America and were a practical choice for a celebratory meal. Unlike chickens, which were more valuable

for their eggs, and cows, which were more useful for their milk, turkeys were often kept for their meat and could be slaughtered
without a significant loss to the homestead.

3. **Influence of Writings**:
Sarah Josepha Hale, a prominent writer and editor in the 19th century, campaigned for the establishment of Thanksgiving as a national

holiday. She published recipes and descriptions of Thanksgiving meals that included turkey, which may have influenced the
tradition as Americans sought to replicate the ideal feast she depicted.

4. **Presidential Tradition**:
In 1863, during the American Civil War, President Abraham Lincoln proclaimed Thanksgiving a national holiday to be celebrated on the

last Thursday in November. As the holiday became more formalized, so did the menu, with turkey at the center.

5. **Symbolic and Practical Choice**:
By the 19th and early 20th centuries, turkey had become the symbolic and practical choice for Thanksgiving. It was large enough to

feed a crowd, relatively inexpensive, and not something that Americans would eat every day, which made it special for the
occasion.

As a result of these factors, turkey became entrenched as the traditional main dish of Thanksgiving celebrations in the United States.

MAGPIE-Pro-DPO

A delightful question with a rich historical background. While not exclusively tied to a single event, the turkey’s rise to Thanksgiving fame is
a fascinating blend of cultural, economic, and symbolic factors. Here’s the story:

## **Early American Tradition (1600s−1700s)**

In colonial New England, harvest festivals were common, celebrating the bounty of the land. These gatherings, often called "harvest home"
or "thanksgiving," featured roasted meats, bread, and vegetables. Wildfowl, like ducks, geese, and even swans, were popular
choices. Turkeys, although present, weren’t the primary dish.

## **The Pilgrims’ Influence (1621)**

The famous Pilgrim−Indian harvest feast at Plymouth Colony in 1621, often mislabeled as the "first Thanksgiving," played a significant role.
While the menu is not fully documented, it’s likely that wildfowl, including turkeys, were served, along with venison, corn, and other
local foods. The Pilgrims, being English, were familiar with turkey consumption, which was already a staple in their homeland.

## **Economic and Ecological Factors (1700s−1800s)**

As the American colonies grew, so did the turkey population. The bird thrived in the New World’s forests, where it was abundant and easy
to hunt. This led to:

1. **Availability**: Turkeys were plentiful and relatively inexpensive, making them a practical choice for large gatherings.
2. **Dietary shift**: As the American diet transitioned from primarily fish and game to more domesticated animals, turkeys became a

convenient, familiar, and nutritious alternative to beef and pork.
3. **Ecological advantage**: Turkeys were well−suited to the New World’s climate and could be raised on small farms, reducing

dependence on imported meats.

## **Symbolism and Cultural Evolution (1800s−1900s)**

The turkey’s popularity at harvest festivals and family gatherings continued to grow. Over time, the bird became associated with:

1. **Abundance and Plenty**: Turkeys represented the harvest’s bounty and the nation’s prosperity.
2. **Family and Tradition**: The turkey became a symbol of togetherness and shared meals, which were essential to American culture.
3. **National Identity**: As the United States grew, the turkey’s association with Thanksgiving helped create a sense of national identity

and shared heritage.

## **The Official Food of Thanksgiving (1930s)**

In the 1930s, the turkey industry, which had been growing steadily, began to promote the bird as the quintessential Thanksgiving food.
This effort was led by the National Turkey Federation (now the National Turkey Federation of America) and supported by the poultry
industry, farmers, and food manufacturers.

In 1947, the National Turkey Federation officially declared the turkey the "traditional food of Thanksgiving." This declaration was not a
government decree, but rather a cultural recognition of the bird’s widespread acceptance and symbolic significance.

## **In Conclusion**

The turkey became the official food of Thanksgiving due to a combination of historical, economic, ecological, and cultural factors. Over
time, the bird’s availability, familiarity, and symbolism made it the perfect choice for a national harvest celebration. Today, the turkey
remains an integral part of American Thanksgiving traditions. Happy Thanksgiving!

Figure 20: Comparison between outputs of MAGPIE-Pro-DPO and GPT-4-Turbo (1106) (Example 2).
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I MAGPIE EXAMPLES

In this section, we demonstrate several representative instructions generated by MAGPIE with different
task categories. The following instructions are generated by the Llama-3-70B-Instruct model.

Information Seeking

A few days ago, I was at a restaurant and I got a cup of coffee. However, when I went to take
a sip, I realized it was a little too hot. So, I decided to let it cool down for a few minutes. As I
waited, I noticed that coffee is actually two different colors. The part that was closest to the
surface of the coffee is a lighter color, and the part that is deeper is a darker color. Have you
ever observed this phenomenon before?

Reasoning

You have 3 switches but they are not labeled. Each switch corresponds to one of three light
bulbs in a room. Each light bulb is either on or off. You can turn the switches on and off as
many times as you want, but you can only enter the room one time to observe the bulbs. How
can you figure out which switch corresponds to which light bulb?

Planning

You are the Founder of a Financial Planning Company. As a professional financial advisor,
you are scheduled to meet a new client tomorrow. Specifically, what are you planning to do to
prepare for this meeting?

Editing

What is the best way to re-write the sentence: "We call this the ‘core’ product or the ‘core’
offering" using proper quotation marks and avoiding the word "this"?

Coding & Debugging

Write a Python program that calculates the total cost of a customer’s order. The program
should ask for the customer’s name, the number of items they want to purchase, and the price
of each item. It should then calculate the total cost by multiplying the number of items by the
price of each item and adding 8% sales tax. The program should display the customer’s name,
the number of items, the price of each item, and the total cost, including sales tax.

Math
In the following problem, please use integers to solve it. A water tank has 1000 L of water.
On the first day, 1/5 of the water was drained. On the second day, 3/10 of the remaining water
was drained. On the third day, 2/5 of the remaining water was drained. On the fourth day, 3/4
of the remaining water was drained. How many liters of water are left after the fourth day?

Role Playing

In this game, you will be the host, and I will be the contestant. You will ask me a series of
questions, and I will try to answer them correctly. The questions will be multiple choice, and
I will have a 25% chance of getting the correct answer if I just randomly guess. However, I
am a clever contestant, and I will try to use logic and reasoning to increase my chances of
getting the correct answer.
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Data Analysis

The personnel manager at a company is tasked with finding the average salary of new hires.
She has collected data on the salaries of 13 new hires. She wants to know if there is a
statistical difference between the average salary of new hires and the national average salary.
The national average salary is $45,000. The sample of new hires has a mean salary of $42,800
and a standard deviation of $4,200.

Creative Writing

Write a paragraph about a mythical creature that you created. The creature is small, no larger
than a house cat. It has shimmering scales that reflect light, and can emit a soft, pulsing glow
from its body. It has large, round eyes that seem to see right through you, but with a gentle
kindness. It has a soft, melodious voice, and can communicate with humans through a form
of telepathy.

Advice Seeking

How do you handle stress and overwhelm?

Brainstorming

Can you give me some ideas for a spontaneous, fun and memorable birthday celebration for
my partner?

Others
What does "sdrawkcaB" mean?

MAGPIE can also generate domain-specific instructions using models that are tailored to particular
fields, as mentioned in Section 2.2. The following instructions are generated by DeepSeek-Coder-V2
(Zhu et al., 2024) and Qwen2-Math-7B-Instruct (Yang et al., 2024), respectively.

DeepSeek-Coder-V2 (Code Instruction)

You are given a list of emails. You need to write a Python function that returns the domain,
excluding the @ symbol, for each email.

Qwen2-Math-7B-Instruct (Math Instruction)

A rectangle with length 12 units and width 8 units is scaled by a factor of 2 to form a new
rectangle. Determine the dimensions of the new rectangle and calculate its area. Compare the
area of the new rectangle to the area of the original rectangle.

We note that MAGPIE’s capabilities extend beyond generating English datasets to producing diverse
multilingual datasets. The following instructions are generated by the Qwen2-72B-Instruct model.

Chinese

从给定的两个整数中找到较大的一个。但是你不能使用任何比较操作符（如>, <,
!=等）或数学运算符（如+, -, *, /等）来实现它。你只能使用位操作符和逻辑操作
符。

German
Das Debate-System ’Oxford-Oberhaus’ wird bei ersten Auseinandersetzungen verwendet.
Bitte erklären sie, wie dieses System funktioniert.
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Spanish

Según la encuesta anual de satisfacción al cliente que acabamos de realizar, parece que la
satisfacción general de los clientes con nuestro rendimiento ha disminuido. ¿Podrías preparar
una presentación detallada para la reunión del lunes que analice los resultados, identifique las
áreas problemáticas y proporcione posibles soluciones basadas en los datos recogidos?

Portuguese

Ho comprato una nuova inchiostriera sulla quale è presente la scritta "Non manipolare". Cosa
signidica?

Italian
Crie um exemplo de uma conversa entre dois personagens, um MC de hip hop e um pianista
clássico, discutindo sobre seus estilos favoritos de música.
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