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Abstract

Model-Based Reinforcement Learning (MBRL) has been a powerful tool for visual
control tasks. Despite improved data efficiency, it remains challenging to use MBRL
to train agents with generalizable perception. Training with visual distractions
is particularly difficult due to the high variation they introduce to representation
learning. Building on Dreamer, a popular MBRL method, we propose a simple yet
effective auxiliary task – to reconstruct task-relevant components only. Our method,
Segmentation Dreamer (SD), works either with ground-truth masks or by leveraging
potentially error-prone segmentation foundation models. In DeepMind Control suite
tasks with distraction, SD achieves significantly better sample efficiency and greater
final performance than comparable methods. SD is especially helpful in a sparse
reward task otherwise unsolvable by prior work, enabling the training of a visually
robust agent without the need for extensive reward engineering.

1 Introduction
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Figure 1: World model learning with
3 choices of an auxiliary task target.

Among recent advances in MBRL (Sutton, 1991; Ha &
Schmidhuber, 2018; Hansen et al., 2022), the Dreamer fam-
ily (Hafner et al., 2020; 2021; 2023) has shown great promise
in diverse visual control tasks, achieving high sample effi-
ciency. This is accomplished by close cooperation between
a world model and an actor–critic agent. The world model
learns to emulate the environment’s forward dynamics and
reward function in a latent state space, and the agent is
trained by interacting with this world model in place of the
original environment.

Dreamer employs image reconstruction as an auxiliary task
in world model training to facilitate representation learning
(Fig. 1a). In environments with little distraction, image re-
construction works effectively by delivering rich learning sig-
nals. In the presence of distractions, however, the image
reconstruction task encourages the encoder to keep all image
information regardless of task relevance, which wastes model
capacity (Fu et al., 2021) and degrades sample efficiency.

Prior approaches (Zhang et al., 2021; Nguyen et al., 2021;
Deng et al., 2022; Fu et al., 2021; Bharadhwaj et al., 2022)
work around the noisy reconstruction problem by devising
reconstruction-free auxiliary tasks. However, many of them
suffer from sample inefficiency, requiring many trajectories
to isolate the task-relevant information. Moreover, training with these methods becomes more
challenging in sparse reward environments where the signal for task relevance is very weak.
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Our proposed solution takes advantage of the observation that identifying task-relevant components
within images is often straightforward with a bit of domain knowledge. Given this assumption, we
introduce a simple yet effective auxiliary task to reconstruct only the task-related components of
image observations (Fig. 1b). We achieve this by using segmentation masks of task-related objects,
which are readily available in simulations. By doing this, the world model can now learn features
from a rich pixel-reconstruction loss signal without being hindered by the noise of visual distractions.

To make our auxiliary task more practical, we present a way of using it with segmentation estimates.
This is made possible by the recent advances in segmentation foundation models (Kirillov et al., 2023;
Zhang et al., 2023). Specifically, we leverage PerSAM (Zhang et al., 2023) finetuned with just a
single pair of training data and use it to generate pseudo-labels (Fig. 1c). We further enhance
robustness to prediction errors by identifying pixels where pseudo-labels may be wrong but the world
model decoder is correct, ignoring L2 loss for such pixels to avoid providing wrong signals.

We demonstrate the effectiveness of our method on six tasks in DeepMind Control Suite (DMC-
1M) (Tassa et al., 2018), perturbed with visual distraction. Training with ground-truth masks,
SDGT, in the presence of distraction reaches the performance of training in standard environment
with little distraction. Training with approximate masks, SDapprox., also shows impressive perfor-
mance, often matching SDGT, with the help of the selective L2 loss. Our experiment shows that
SDapprox. achieves higher sample efficiency than previous approaches and higher or comparable with
those w.r.t. final performance.

2 Method

Task-Relevant Reconstruction as an Auxiliary Task. Under the assumption that task-
relevant parts are easily identifiable within images with domain knowledge, we propose a new image
reconstruction-based auxiliary task that spotlights task-relevant regions. Specifically, we employ a
task-relevant segmentation mask applied RGB image (Fig. 1b) as a target to reconstruct. Since
the reconstruction target only contains parts that are salient to a downstream task, learned latent
representations would also only focus on important regions concerning the task. By explicitly avoid-
ing capturing task-irrelevant parts, the latent dynamics can also become much simpler and easier
to learn than the original over-complicated dynamics, allowing more sample-efficient training. We
term the variant of Dreamer trained with this new auxiliary task Segmentation Dreamer (SD).

Task-Relevant Reconstruction with Approximations. To make our auxiliary task more use-
ful in practice, e.g. when no GT mask is available during training, we integrate a segmentation
foundation model into the pipeline. Among off-the-shelf segmentation models, we choose PerSAM-
F (Zhang et al., 2023) as it can obtain a personalized segmentation model by finetuning on a single
in-domain data, consisting of an RGB image and a segmentation mask. For the RGB, we obtain an
image observation corresponding to a state sampled from the initial state distribution and manip-
ulate it to keep the RGB values of task-relevant pixels and fill the rest with zeros, which in effect
makes task-irrelevant pixels black-colored. For the segmentation mask, the regions of interest are
filled with one, otherwise zero. Once finetuning is complete, we incorporate the PerSAM-F model
into the SD pipeline to create pseudo-labels for the auxiliary task.

A Strategy to Improve Error Robustness. Although PerSAM provides decent mask predic-
tions, it is inevitable to have some errors in the prediction, as illustrated in Fig. 1c. For example,
PerSAM on videos has flickering effects since each frame is handled independently. Missing informa-
tion, i.e. false negatives, would be particularly detrimental when combined with the naive L2 loss on
image reconstruction. With occasionally missing task-relevant parts in auxiliary targets, the encoder
may be trained to encode a complete agent embodiment or to drop some task-related information.
This would lead to large variances in latent representations and confuse the forward dynamics learn-
ing in the world model. However, SD can still produce correct results despite noisy targets, as long
as most of the data is accurately labeled during training. When this happens, it is not desirable to
flow gradients from those regions where the pseudo-label is wrong but the SD prediction is correct.
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If we did, the incorrect target would provide a misleading signal to the model. We address this by
masking out pixels in which to omit the L2 loss computation, which we referred to as a selective L2
loss. To do so, we present a heuristic method of estimating which pixels should not be included in
the L2 loss. Details, including formal descriptions, can be found in the Appendix A.

3 Experiments

We evaluate our method on six tasks in DeepMind Control Suite 1M (DMC-1M) (Tassa et al.,
2018). The standard DMC environment comes with a simple background with little distraction.
To create distracting environments, the background is replaced with color videos randomly sampled
from the ‘driving car’ class in the Kinetics 400 dataset (Kay et al., 2017), similar to the setups in
past work (Zhang et al., 2021; Nguyen et al., 2021; Deng et al., 2022).

Comparison with Dreamer. We first study how our methods, SDGT and SDapprox., the latter
trained with a selective L2 loss, compare to the standard Dreamer. Dreamer* is the standard
Dreamer trained in standard DMC whereas Dreamer is trained in distracting DMC. In effect, we
would expect Dreamer* to be an upper bound of all the Dreamer-based methods (including SD)
trained on distracting environments, to the extent that the original environments are distraction-
free. Fig. 2a shows evaluation returns during training. As expected, Dreamer struggles in all
tasks because task-irrelevant information in reconstruction targets makes forward dynamics training
difficult and confuses the agent training. On the other hand, SDGT is on par with Dreamer* in
most tasks. Notably, it achieves a somewhat better curve in a few tasks, e.g. Cartpole Swingup
(Sparse) and Hopper Stand, which tells us that even a little but non-zero distraction in the standard
DMC (e.g. little moving dots in the background) can slow down standard Dreamer training. We
find that SDapprox. reaches the final performance of SDGT in most tasks. Certainly, it takes longer
to converge due to noisy targets, but in a few tasks such as Walker Run, the curve seems very similar
to its GT counterpart. One failure case is Reacher Easy, where the goal is to move a two-jointed
robot arm’s end effector close to a target. SDapprox. struggles in this task because the task-relevant
objects (a robot arm and a target) are small, making it challenging to predict correct segmentation.

Comparison with Baselines. We compare SDapprox. with the state-of-the-art methods, which in-
clude: 1) DreamerPro (Deng et al., 2022) which uses prototypical representation learning (Caron
et al., 2020) in the Dreamer framework; 2) RePo (Zhu et al., 2023) which minimizes mutual
information between the observation and the representation, while maximizing it between the rep-
resentation and all future rewards, to only keep predictable information; and 3) TIA (Fu et al.,
2021) which learns separate representations for task-relevant and task-irrelevant parts which are
then combined to reconstruct the original, distracting image. There are other reconstruction-free

(a) Dreamer vs. SD (b) Our method vs. Baselines

Figure 2: Evaluation return during training on DMC-1M. X-axis is the number of environment steps
and y-axis is evaluation return. All curves show the mean over 4 seeds with the standard deviation
shaded. Best viewed in color.



The Training Agents with Foundation Models Workshop at RLC 2024

model-based RL methods, such as TD-MPC (Hansen et al., 2022; 2023), but it is shown that they
have difficulty training in the presence of distractions (Zhu et al., 2023).

The results in Fig. 2b suggest that our final performance is always better or on par with prior
methods. Our method also achieves higher sample efficiency in all tasks, except comparable in
Reacher Easy. TIA appears to underperform the most in many tasks. Since it has to infer what
the task-relevant parts are during training, it not only requires much data but also is very sensitive
to hyper-parameters used to balance the task-relevant and -irrelevant branches. Even with the best
hyper-parameters, it sometimes ends up in a degenerate solution where a single branch takes all
information. In contrast, our method can effectively focus only on task-relevant parts without any
additional hyper-parameter tuning, empowered by the off-the-shelf segmentation model and prior
knowledge. RePo shows comparable performance to our method in Cartpole Swingup but under-
performs significantly in other tasks and converges very slowly. Again, it requires many trajectories
to infer which perceptual features are predictable. Also, backgrounds can sometimes be predictable
yet distracting, in which case RePo would count them as task-relevant. Among these methods,
DreamerPro performs most competitively, which demonstrates the effectiveness of the prototypical
representation learning in learning useful features for control. However, it still needs more environ-
ment interactions for training in many cases and converges to lower performance. Most importantly,
none of the baselines are able to train an agent in a sparse reward since it becomes extremely chal-
lenging to infer task-relevance when the signal hinting at task-relevance is very weak. Nevertheless,
our method achieves compelling performance, being the first method that is able to train an agent
with sparse rewards under distraction.

An interesting perspective on our method is that behind its strength is the power of segmentation
foundation models. As the foundation model had been trained on web-scale data, its fine-tuned
version with a one-shot data can generalize well, e.g. to different poses. Our method effectively
addresses the difficulty of training agents with distraction by offloading the task of identifying task-
relevant regions to the out-of-the-box segmentation model, achieving high sample efficiency and
generalization ability. In contrast, previous work has faced difficulty in training with highly noise-
susceptible RL algorithms and learning robust representations at the same time.

Table 1: Final performance of SD with selective
and naive L2 loss. Mean scores over 4 seeds with
standard deviations are presented.

Task SDapprox. SDL2

Cartpole Swingup 730 ± 129 719 ± 108
Cartpole Swingup Sparse 521 ± 160 408 ± 198
Cheetah Run 619 ± 61 486 ± 101
Hopper Stand 846 ± 47 790 ± 88
Reacher Easy 597 ± 168 415 ± 87
Walker Run 730 ± 22 557 ± 89

How does the selective L2 loss help over-
come noisy auxiliary targets originating
from segmentation prediction errors? Tab. 1
shows that SDapprox. consistently outperforms
SDL2 across all tasks and tends to have lower vari-
ance overall. This trend is particularly discernible
in complex locomotion tasks such as Cheetah Run
and Walker Run, where cooperation of the joints
is crucial in achieving high rewards.

4 Conclusion

In this paper, we propose SD, a simple yet effective way to learn task-relevant features in MBRL
framework using segmentation masks. A variant trained with the ground-truth masks achieves
near-oracle performance with a great sample efficiency on distracting environments given good prior
knowledge. The main method, trained with the estimates leveraging the off-the-shelf segmentation
model with a single pair of training data and using a modified L2 loss, also reaches a decent perfor-
mance and outperforms baselines. It is particularly notable that our approach is the first method
that is able to train an agent in a sparse reward environment under distraction, enabling agent
training robust to distractions without extensive reward engineering. This work also furthers the
combining of computer vision and RL approaches by presenting a novel way of leveraging the recent
advances in segmentation for addressing difficulties in visual control tasks. The proposed method
also provides interface with human to indicate task relevance effectively. This enables practitioners
to readily train an agent for their own purpose without extensive reward engineering.
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Appendix

A Details on Selective L2 Loss

Selective L2 Loss. Even when targets are noisy, neural networks can overcome label errors and
predict correctly if a large majority of the data is labeled correctly. In addition, since Dreamer’s
latent dynamics employs GRUs (Cho et al., 2014) as part of its neural architecture, its outcome
would inherently tend to be temporally consistent even when the targets are flickering. When this
happens, as illustrated in Fig. 3a (2)&(3), it is not desirable to flow gradients from those regions
where the pseudo-label is wrong but the SD prediction is correct. Fig. 3a (4) shows a ground-truth
filter mask that reveals, as zeroed-out pixels, where PerSAM is wrong and the SD is correct. In
these pixels, we should not compute the L2 loss. In many practical settings, of course, the ground-
truth filter mask is unavailable even in training. Thus we next describe a selective L2 loss using an
estimated mask.

Selective L2 Loss with Estimated Filter Mask. We present a heuristic method for estimating
a filtering mask for selective L2 loss. Preliminary experiments suggested that binary mask prediction
with a sigmoid layer on top, as an auxiliary task, recovers very well from false negative labels. Based
on this observation, we devise a world model with two reconstruction tasks (Fig. 3b) — one for RGB
with spotlights on task-relevant parts as described in Sec. 2 and the other for binary segmentation
mask with stop gradient — and use the binary mask prediction branch for selective L2 loss filtering
mask estimates.
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Figure 3: (a) Components of the selective L2 loss. (b) A world model equipped with two decoders,
one for reconstructing task-relevant RGB and the other for binary mask, the targets for which
are generated by a segmentation model. Note that latent representations in the world model are
subjected to a training signal only from the RGB branch, and the binary branch is only utilized to
estimate the filtering masks.

The first component of the estimated filter mask is that we always include in the L2 loss compu-
tation pixels within the SAM prediction. This comes with the trade-off of including false positives
occasionally, but we designed this rule to provide a strong signal to true positives. The second
component is that we compute the loss for pixels which SD predicts are task-irrelevant. Formally,
we compute the L2 loss on the mask

maskestimate = maskSAM ∨ ¬maskSD, (1)

where maskSD is obtained by binning the SD binary mask prediction using a threshold of 0.9.
Fig. 3a (5-7) describes the components to estimate filter mask. Intuitively, pixels are ruled out
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from the L2 computation when SD is confident that they are task-relevant but they are excluded
from the PerSAM prediction. The estimates are, of course, not the same as the true filtering mask,
as in Fig. 3a (4) vs. (7). However, our experiments suggest that this selective loss is effective in
overcoming noisy labels from segmentation prediction.


