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Abstract
The use of large language models (LLMs) as fea-
ture enhancers to optimize node representations,
which are then used as inputs for graph neural
networks (GNNs), has shown significant poten-
tial in graph representation learning. However,
the fundamental properties of this approach re-
main underexplored. To address this issue, we
propose conducting a more in-depth analysis of
this issue based on the interchange intervention
method. First, we construct a synthetic graph
dataset with controllable causal relationships, en-
abling precise manipulation of semantic relation-
ships and causal modeling to provide data for
analysis. Using this dataset, we conduct inter-
change interventions to examine the deeper prop-
erties of LLM enhancers and GNNs, uncovering
their underlying logic and internal mechanisms.
Building on the analytical results, we design a
plug-and-play optimization module to improve
the information transfer between LLM enhancers
and GNNs. Experiments across multiple datasets
and models validate the proposed module. Codes
can be found in https://github.com/
WX4code/LLMEnhCausalMechanism.

1. Introduction
With the rapid development of LLMs (Brown et al., 2020;
Devlin et al., 2019; Dubey et al., 2024), their semantic un-
derstanding and feature generation capabilities have demon-
strated significant potential across various fields (Tian et al.,
2024; Mustapha, 2025; Liu et al., 2025). In the domain of
graph representation learning, recent studies have integrated
LLMs with GNNs to enhance performance (Mao et al.,
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2024). One category of methods employs LLMs as feature
enhancers to optimize node representations (Chen et al.,
2023; Huang et al., 2024a), which are then used as inputs
for GNNs to build a unified model. Such methods leverage
the pre-trained knowledge of LLMs to generate richer and
more semantically coherent features, addressing the lim-
itations of traditional GNNs while incorporating domain
knowledge from LLMs into the features (Yu et al., 2023).
They also demonstrate strong generalization capabilities in
heterogeneous graph representation learning scenarios (Li
et al., 2025). Numerous recent methods (Chen et al., 2023;
Huang et al., 2023b; Liu et al., 2024) have adopted this
LLM-enhancer-plus-GNN framework, achieving excellent
results across various graph representation learning tasks.

However, despite their broad applications, there is a notice-
able lack of dedicated research examining the fundamental
framework of the LLM-enhancer-plus-GNN paradigm. The
deeper properties and mechanisms underlying this frame-
work remain largely unexplored. This paper aims to address
this gap. Meanwhile, achieving this is far from straightfor-
ward. Since both the LLM enhancer and GNN are composed
of neural networks, each is inherently challenging to model
formally (Lu et al., 2024). When these two complex net-
works are combined, conducting a unified analysis becomes
even more difficult.
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Figure 1. A simple illustration
of variable alignment achieved
by interchange intervention.

To address this issue, we
introduce the interchange
intervention approach (Wu
et al., 2023a; Huang et al.,
2023a) from causality the-
ory (Pearl, 2022) to per-
form the analysis. Specifi-
cally, we construct a novel
synthetic graph dataset
with controllable causal re-
lationships. Here, causal
relationships refer to the

ground-truth cause-and-effect connections, which can be
utilized to evaluate the model’s ability to accurately capture
and represent key underlying information. While synthetic
graph datasets are often used to analyze the properties of
graph representation learning algorithms (Wu et al., 2022),
our dataset is further enhanced to enable precise manipula-
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tion of complex semantic relationships. This feature makes
the dataset more suitable for evaluating the performance
and characteristics of the LLM-enhancer-plus-GNN mod-
els. Based on this dataset, we generate training and testing
data. Using the predefined data synthesis process, we model
the intrinsic causal relationships in the data as a high-order
causal model, which accurately captures the complex rela-
tional structures within the dataset. Subsequently, we train
and test the GNN model enhanced by the LLM enhancer
using the synthetic data. Through the interchange interven-
tion method, we systematically analyze the correspondence
between the LLM-enhancer-plus-GNN model and the high-
order causal model, aiming to uncover the internal logical
structure of the black-box neural network. Figure 1 provides
a simplified illustration of the objectives we aim to achieve.
Furthermore, we theoretically validate the reliability of this
analytical approach and derive a series of important findings.

Additionally, based on our findings, we identify areas for
improvement in the information transfer between the LLM
enhancer and GNN. To address this, we developed a plug-
and-play optimization module designed to better assist the
LLM enhancer in optimizing GNN performance. The effec-
tiveness of this module has been validated across multiple
datasets and various models. Our contributions are summa-
rized as follows:

• We construct a synthetic graph dataset with control-
lable causal relationships, capable of simulating com-
plex semantic associations within graphs.

• We design an analysis framework based on interchange
intervention and demonstrate its effectiveness both the-
oretically and experimentally. Additionally, we also
conduct a comprehensive study on the LLM-enhancer-
plus-GNN paradigm, yielding a series of findings.

• We propose a novel optimization module to enhance
the information transfer between the LLM enhancer
and the GNN, validating its effectiveness through ex-
periments on multiple datasets and models.

2. Related Works
Causal Mechanism Identification within Neural Net-
works. Research on explaining and understanding deep
learning models has been ongoing. For this purpose, some
studies attempt to uncover interpretable causal mechanisms
within neural networks (Geiger et al., 2020; 2021) and train-
ing methods for inducing such interpretable mechanisms
(Geiger et al., 2022b; Huang et al., 2023a). These methods
can be classified into iterative nullspace projection (Rav-
fogel et al., 2020; Elazar et al., 2021; Lovering & Pavlick,
2022), causal mediation analysis (Meng et al., 2022; Vig
et al., 2020), and causal effect estimation (Abraham et al.,

2022; Elazar et al., 2022; Wu et al., 2023b). We utilize the
causal mechanism identification approach for the specific
analysis of the LLM-enhancer-plus-GNN paradigm.

Enhancing GNNs with LLM. Using LLM for initial node
feature processing followed by GNN to explore inter-node
relationships has become a popular research direction (Mao
et al., 2024; Fatemi et al., 2023; Chen et al., 2023; Huang
et al., 2023b; Liu et al., 2024; Huang et al., 2024a; Tang
et al., 2024). Among the methods within this field, some
combine prompt learning for graph data enhancement (Liu
et al., 2024; He et al., 2024; Tang et al., 2024), others em-
phasize the use of LLMs for class-level information and
application usages (Yu et al., 2023; Ren et al., 2024; Lyu
et al., 2023). Our research aims to conduct a thorough eval-
uation of the overall framework of these methods. Further
related works can be found in Appendix A.

3. Analysis
3.1. CCSG Dataset

Our goal is to investigate the LLM-enhancer-plus-GNN
paradigm, studying its capabilities in data relationship mod-
eling. To accurately assess such capabilities, it is essential to
first identify the relationships present in the dataset. Given
the challenges of determining causal relationships in general
graph datasets, we have developed a semantically rich graph
dataset with controllable internal causal relationships, re-
ferred to as the Controlled Causal-Semantic Graph (CCSG)
dataset.

The CCSG dataset is constructed based on Wikipedia en-
tries, incorporating various types of causal relationships that
we have defined. Table 1 presents a comparison between
the CCSG dataset and other similar datasets. This includes
attributed graph datasets (Citeseer, Wiki-CS), which con-
tain semantic node attributes, as well as synthetic graph
datasets (Synthetic Graph, Spurious-Motif, CRCG), which
are manually generated datasets that are used for analyzing
the properties of GNNs. We provide a detailed introduction
below.

3.1.1. NODE ATTRIBUTES

The node attributes of the CCSG dataset include manually
generated features and 5,660 Wikipedia entries, organized
into three main categories and fifteen subcategories, ensur-
ing diverse information. This dataset forms the foundation
for graph construction of CCSG dataset, with detailed de-
scriptions provided in Appendix C.

3.1.2. GRAPH CONSTRUCTION

For graph construction, the CCSG dataset ensures control-
lable generation of node features, connections, and topolog-
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Table 1. Comparative analysis of our dataset with other similar datasets. The term “Total Combinations” refers to the maximum possible
number of combinations attainable when all available graphical elements are employed and juxtaposed in pairs.

Dataset
Adjustable Node Semantic Node Adjustable Multi-order Relationship Controllable Semantic Aware Total

Attributes Attributes Edges Adjustment Causal Relationship Relationship Manipulation Combinations (↑)
Citeseer

× ✓ × Fixed × × Fixed(Kipf & Welling, 2016)
Wiki-Cs

× ✓ × Fixed × × Fixed(Wittmann & Fey, 2020)
Synthetic Graph

× × ✓
Adjustable

✓ × 25(Ying et al., 2019) First-order Relationship
Spurious-Motif

× × ✓
Adjustable

✓ × 36(Wu et al., 2022) First-order Relationship
CRCG

✓ × ✓
Adjustable

✓ × 3750(Gao et al., 2024) First-order Relationship

CCSG ✓ ✓ ✓
Adjustable

✓ ✓ 226400Multi-order Relationship

ical structures. Data generation is controlled in four aspects:
1) Node features, the semantic information of node features
can be actively controlled based on the collected data. 2)
Node correlation, node feature correlations are adjusted
based on the collected categories, subclasses, and reference
relationships. 3) Topological structure, diverse topolo-
gies are introduced and linked to label data to analyze the
impact of graph structure on outcomes. Such controllable
graph construction enable the injection of predefined and
will formulated causal relationships to be added to the data.

3.2. Interchange Intervention Based Evaluation

We analyze the LLM-enhancer-plus-GNN paradigm by eval-
uating its ability to model predefined causal relationships.
To do this, we apply the interchange intervention method
(Geiger et al., 2022a) from causal inference. This method
treats the neural network as a low-level model and the
dataset’s causal relationships as a high-level causal model.
By modifying the neural network’s internal feature repre-
sentations and comparing them to changes in the high-level
causal model, it evaluates the correspondence between the
two. This process enables us to explore the underlying
mechanisms of the model in greater depth.

3.2.1. EVALUATION METHOD OUTLINE

Based on the CCSG dataset, we first construct the data
and a high-level causal model, denoted as h(·). The
model h(·) represents the underlying causal relationships
between the data and the corresponding labels, and it out-
puts the ground truth label based on the input G. Our ob-
jective is to employ an interchange intervention to iden-
tify which hidden variables in the low-level neural net-
work model f(·)—specifically, an LLM enhancer-plus-
GNN model—correspond to the variables in h(·).

Specifically, we select two different graph samples: Gorig

and Gdiff. We first input Gorig into the model h(·). Then, we
select a variable Zh within h(·) and replace its value with
the value it would take if Gdiff were the input. This produces

a new output for h(·) where the input remains Gorig, but the
variable Zh reflects the state it would have under Gdiff. We
denote the resulting output as INTINT(h,Gorig, Gdiff, Zh),
where INTINT(·) denotes the conducted interchange inter-
vention operation.

Subsequently, we perform interchange intervention on
f(·) using both Gorig and Gdiff, which is denoted as
INTINT(f,Gorig, Gdiff, Zf ). Here, Zf refers to an in-
ternal variable within f(·). Intuitively, if Zf is the
hidden layer variable corresponding to Zh in the neu-
ral network model, then INTINT(h,Gorig, Gdiff, Zh) and
INTINT(f,Gorig, Gdiff, Zf ) should be equal. We compute
interchange intervention loss LII to measure the discrepancy
between them:

LII =
1

G2

∑
Gorig∈G

∑
Gdiff∈G

D
(

INTINV
(
h,Gorig, Gdiff, Zh

)
,

INTINV
(
f,Gorig, Gdiff, Zf

))
, (1)

where D(·) represents the metric used to measure
the difference between INTINV

(
h,Gorig, Gdiff, Zh

)
and

INTINV
(
f,Gorig, Gdiff, Zf

)
, e.g., for classification tasks,

D(·) can be the cross-entropy loss. The set G denotes the
dataset being utilized. We search for the optimal Zf that
minimizes LII, which would ensure Zf in f(·) best aligns
with Zh in h(·). See Section 3.2.3 for justifications. In
this way, we can establish the correspondence between the
low-level neural network and the high-level causal model.

3.2.2. RUNNING EXAMPLE

We present a simplified example to illustrate the application
of the interchange intervention-based analysis method. As
shown in Figure 2, the process is divided into four steps.
Below, we provide a detailed step-by-step explanation of
the process.

Step 1: Data Generation. In this step, as shown in Figure 2,
we construct only two attributed graph samples, G1 and G2.
In practice, the number of samples would be significantly
larger. The task is to classify node v depicted in the figure.
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Figure 2. The framework of the running example.

During data generation, we also define the high-level causal
model h(·) for this example. Specifically, we manually
establish that the class of node v is determined by first
identifying the classes of all its neighboring nodes and then
selecting the most frequent class among them as the class
of v. This logic can be formally expressed as C(v) =
m({C(u) | u ∈ N (v)}), where C(·) represents the classes
of nodes and N (v) denotes the set of neighbors of v, m(·)
selects the most frequent class. Consequently, we have:

h(G) = C(v) = m({C(u) | u ∈ N (v)}). (2)

We then select C(u3) within h(·) as Zh for performing the
interchange intervention.

Step 2: Calculating INTINV(h,Gorig, Gdiff, Zh). We se-
lect G1 as Gorig and input it into h(·) to accurately compute
the values of various variables and outcomes within the
model. We then select G2 as Gdiff and input it into h(·),
performing another round of calculations for the variables
and outcomes. As shown in Figure 2, Step 2, when the input
is Gorig, we replace the value of Zh, i.e., C(u3), with its
value obtained from Gdiff as input and compute the output.
This final output represents INTINV(h,Gorig, Gdiff, Zh).

Step 3: Calculating INTINV(f,Gorig, Gdiff, Zf ). We se-
lect G1 as Gorig and input it into f(·). Similarly, we select
G2 as Gdiff and input it into f(·). Since the optimal selec-
tion of Zf is not yet known, we randomly choose certain
hidden layer variables as Zf . We then take the values of
Zf obtained when Gdiff is used as input and replace the cor-
responding values in the model f(·) when Gorig is used as
input. The model then outputs INTINV(f,Gorig, Gdiff, Zf ).

Step 4: Loss Calculation and Minimization. Repeat
Step 2 and 3 to acquire all INTINV(h,Gorig, Gdiff, Zh) and
INTINV(f,Gorig, Gdiff, Zf ) values, then utilize Equation 2
to calculate the loss LII. We then repeat the process to locate
optimal Zf that minimizes LII, finding the best alignment of
Zh within f(·), so as to reveal part of the logical structure
within f(·) to facilitate analysis.

3.2.3. VALIDATION

To conduct validation of our analysis method, we introduce
the concept of total effect from causal theory (Pearl, 2009).
Definition 3.1. Total effect (Pearl, 2009) represents the over-
all causal impact of one variable Z on another variable Y .
It is denoted by TEz,z′(Y ), where z and z′ are two specific
values that Z can assume. The total effect TEz,z′(Y ) quan-
tifies the expected difference in the outcome Y when Z is
set to z compared to when it is set to z′.

Therefore, we can formalize our objective more precisely:
to find variables Zh in model h(·) and Zf in model f(·)
such that Zh and Zf exhibit consistent total effects on the
predicted outputs. As demonstrated in Equation 1, we aim
to find the aforementioned variable Zf by minimizing a loss
function LII. We use the following theorem to prove the
validity of this approach.
Theorem 3.2. Given a high-level causal model h(·) and a
low-level neural network model f(·), both of which accu-
rately map input graphs G ∈ G to outputs Y ∈ Y , such that
Y = f(G) = h(G). Assume there exists a subset Zf of
the intermediate variables in f(·) and a bijective mapping
η : Zf → Zh, where Zh represents certain variables in
h(·). If there exists a Zf that minimizes the loss LII, we
can conclude that the total effect TEzf ,zf′ (Y f ) of f(·) is
equal to the total effect TEzh,zh′ (Y h) of h(·) in all cases.
Here, zh and zf represent the values of Zh and Zf respec-
tively, given the same input graph G. Similarly, zh′

and zf ′

represent their values for a different input graph G′.

The demonstration can be found in Appendix B.1. Theorem
3.2 establishes that, under the condition where the model
f(·) performs sufficiently well and a bijection exists be-
tween the internal variables of f(·) and the internal variable
Zh of h(·), minimizing LII yields a Zf whose total effects
on the model outputs are exactly the same as those of the cor-
responding Zh. Equal total effects indicate that the neurons
modeling the variable Zh have been precisely identified,
thereby providing theoretical validation for the effectiveness
of the proposed method. However, if the aforementioned
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bijection does not exist, how will the results change? The
following corollary provides further analysis.

Corollary 3.3. Even if the condition that there exists a
subset Zf of the intermediate variables of f(·) satisfied
η : Zf → Zh where η is bijective does not hold, if
INTINV

(
f,Gorig, Gdiff, Zf

)
= INTINV

(
h,Gorig, Gdiff, Zh

)
holds, the conclusion given in Theorem 3.2 remains valid.

The demonstration can be found in Appendix B.2. Corol-
lary 3.3 shows that even if the aforementioned bijection
does not exist, the condition INTINV

(
f,Gorig, Gdiff, Zf

)
=

INTINV
(
h,Gorig, Gdiff, Zh

)
ensures the existence of a Zf

that fully corresponds to Zh. In practical analysis, we can
use the distance of LII from its possible minimum value to
assess the degree of matching between Zf and Zh.

Proposition 3.4. For a high-level causal model h(·) and a
low-level neural network f(·), both mapping input graphs
G ∈ G to outputs Y ∈ Y such that Y = f(G) = h(G),
if Zf within f(·) and Zh within h(·) minimize LII to its
optimal value L∗

II, then Zf aligns best with Zh and has an
identical total effect on the output prediction as Zh. The
minimal L∗

II is given by:

L∗
II =

1

G2

∑
Gorig∈G

∑
Gdiff∈G

D
(

INTINV
(
h,Gorig, Gdiff, Zh

)
,

INTINV
(
h,Gorig, Gdiff, Zh

))
. (3)

Please refer to Appendix B.3 for the justification. In our
experiments, we use cross-entropy loss as D(·), and the label
probabilities predicted by h(·) are either 0 or 1. Therefore,
in our experiments, L∗

II = 0. Consequently, we directly use
LII to represent the distance between LII and L∗

II.

3.3. Analytical Experiments

We analyze the LM-enhancer-plus-GNN framework using
the CCSG dataset and the approach from Section 3.2, look-
ing for deeper insights and possible optimization of the
framework. Following prior studies on causality in graph
representation learning (Wu et al., 2022; Gao et al., 2024),
we treat nodes as the smallest variable units, focusing on
node relationships without modeling internal node inter-
actions. Most approaches use fixed-parameter LLM en-
hancers to reduce training costs (Liu et al., 2024; Huang
et al., 2023b), our experiments also follow this setting.

Theorem 3.5. Given a high-level causal model h(·) and
a variable Z̄h within h(·), suppose there exists a variable
Z̄f within f(·), where f(·) is a GNN with LLM enhancers,
satisfying the following condition:

INTINV
(
f,Gorig, Gdiff, Z̄f

)
= INTINV

(
h,Gorig, Gdiff, Z̄h

)
,

(4)

(a) The results of node-level experiments where Zh is set to
the output variables Ψ1, Ψ2, and Ψ3 of hnode,1(·).

(b) The results of node-level experiments where Zh is set to
the output variables Φ1 and Φ2 of hnode,2(·).

(c) The results of graph-level experiments where Zh is set to
the output variables Γ1, Γ2, and Γ3 of hgraph,1(·).

(d) The results of graph-level experiments where Zh is set to
the output variables Ω1 and Ω2 of hgraph,2(·).

Figure 3. Analytical experiment results. In the figure, each small
square represents the optimal value of LII for a specific GNN
layer. Green squares indicate the minimum value of LII within the
corresponding row. Details concerning the variables can be found
in Appendix C.

where Gorig and Gdiff differ at or above the scale of indi-
vidual nodes. Then, the internal variables within the GNN
model are always sufficient to constitute Z̄f .

The proof can be found in Appendix B.4. According to
the theorem, and taking into account the difficulty of fixed
LLMs in modeling causal relationships, the subsequent anal-
ysis focuses on using the GNN model to examine causal
relationship modeling within the framework.

3.3.1. NODE-LEVEL ANALYSIS

We begin our analysis with node-level tasks by first con-
structing a node classification dataset that leverages the rich
information in the CCSG and designing hnode(·). hnode(·)
outputs the class of a target node v. Each graph sample is
used to classify only one target node v. This ensures the
elimination of potential mutual influences that may arise
when multiple nodes are classified simultaneously, which
could prevent hnode(·) from being accurately established.
The formal definition of hnode is as follows:

hnode(G) = hnode,3 ◦ hnode,2 ◦ hnode,1(G), (5)

Here, the symbol ◦ denotes function composition. The
function hnode,1(·) is responsible for processing single node
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(a) The results from experiments where Zh is set to the output
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(b) The results from experiments where Zh is
set to the output variables of hgraph,1(·), with dif-
ferent hidden dimension.

Figure 4. Experimental results under different GNN scales.

feature, while hnode,2(·) captures and analyzes the relation-
ships and properties among these nodes. Finally, hnode,3(·)
serves as the ultimate processing function, outputting the
features of the target node v. The details can be found in
Appendix C. To ensure generalizability, we construct our
LLM-enhancer-plus-GNN model based on commonly used
GNNs and LLMs. Specifically, the GNN module is im-
plemented using GCN (Kipf & Welling, 2016) and LLM
enhancer is built using Llama 3 (Dubey et al., 2024). To
ensure precise analysis, we adjust the number of training
epochs and modify the task difficulty so that all models
achieve an accuracy of at least 90%.

The results are presented in Figures 3(a) and 3(b). It can
be observed that the best alignment of variables (marked
in green) across different node levels occurs in layer 0 and
layer 1. These positions can be regarded as the locations
of the internal representations Zh within the GNN model.
Additionally, it can also be observed that the optimal align-
ment for hnode,1(·) is positioned slightly ahead of the optimal
alignment for hnode,2(·).

3.3.2. GRAPH-LEVEL ANALYSIS

For graph-level task analysis, we manually set the utilized
topological structures, node features, and their interrelations,
which collectively form the graph sample and determine the
label. The corresponding high-level causal model hgraph can
be formulated as follows:

hgraph(G) = hgraph,3 ◦ hgraph,2 ◦ hgraph,1(G), (6)

where hgraph,1(·) processes the features of substructures,
hgraph,2(·) denotes the function locating the topological
structures, and hgraph,3(·) denotes the final processing func-
tion that outputs the graph label. The details can be found
in Appendix C.

The results are presented in Figure 3(c) and Figure 3(d).
Similar to the phenomenon observed in the node-level ex-
periments, the optimal alignment for hgraph,1(·) is positioned
ahead of the optimal alignment for hgraph,2(·).

Based on the experimental results at both the node-level and
graph-level, it can be found that when Zh is more strongly
associated with node-level information and is closer to the
raw input data in the logical structure of the model h(·), its
corresponding latent variable Zf is more likely to appear
in the shallow layers of the GNN structure. This indicates
that the role of the LLM enhancer is to process node-level
and raw data-level information. Such a finding also partially
validates Theorem 3.5. In summary, this conclusion can be
further generalized into the following empirical finding.

Empirical Finding 1. For fixed-parameter LLM en-
hancers, the features output by the LLM serve the function
of representing information at the node level and the raw
data level.

3.3.3. DEEPER INSIGHT

For further analysis, we repeated the experiments under dif-
ferent model scales by increasing the number of layers and
the hidden dimensions of the GNN. The results are shown in
Figure 4. The experiments reveal an intriguing phenomenon:
for both node-level and graph-level variables, the alignment
results of Zh within the GNN exhibit a certain regularity
across different model scales. For example, as shown in
Figure 4, despite variations in model depth, the alignment
performance is consistently worse for even-numbered layers
than for odd-numbered layers, with the worst performance
observed in the final layer. Furthermore, for Zh = Φ3, the
performance remains suboptimal across all settings. Figure
4(b) illustrates that regardless of the size of the hidden di-
mensions, the optimal alignment results for Zh consistently
occur in the middle layers. In Appendix E, we present nu-
merous additional experiments, all of which corroborate the
existence of this phenomenon. This phenomenon leads to
the following conclusion:
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(a) Node-level task alignment
results with different number
of GNN Layers.
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(b) Node-level task model ac-
curacy with different number
of GNN Layers.
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(c) Graph-level task align-
ment results with different
number of GNN Layers.

0

0.02

0.04

0.06

2 4 6 8 10

A1 A1 A1

Number of GNN Layers

0.6

0.7

0.8

0.9

1

2 4 6 8 10
Number of GNN Layers

A
C

C

0

1

2

3

1 2 3 4

A1 A1 A1

LLM Types

0.6

0.7

0.8

0.9

1

2 4 6 8

LLM Types

A
C

C

w/o 
LLM

Llama2 
w/o 

Prompt

Llama2 
w 

Prompt

Llama3 
w 

Prompt
w/o 

LLM
Llama2 

w/o 
Prompt

Llama2 
w 

Prompt

Llama3 
w 

Prompt

0

0.5

1

1.5

2

1 3 5 7 10
Feature Location

A
C

C

0

0.5

1

1.5

2 4 6 8 10

A1 A1 A1

Number of GNN Layers

0.6

0.7

0.8

0.9

1

2 4 6 8 10
Number of GNN Layers

A
C

C

0

0.01

0.02

0.03

1 2 3 4

A1 A1 A1

LLM Types

0.99
0.992
0.994
0.996
0.998

1

2 4 6 8

LLM Types

A
C

C

w/o 
LLM

Llama2 
w/o 

Prompt

Llama2 
w 

Prompt

Llama3 
w 

Prompt
w/o 

LLM
Llama2 

w/o 
Prompt

Llama2 
w 

Prompt

Llama3 
w 

Prompt

Feature Location

0.5

0.6

0.7

0.8

0.9

1 3 5 7 10
0

0.2
0.4
0.6
0.8

1

1 3 5 7 10
Feature Location

A
C

C

Feature Location

0

2

4

6

1 3 5 7 10

O
pt

im
al

O
pt

im
al

O
pt

im
al

O
pt

im
al

O
pt

im
al

O
pt

im
al

(d) Graph-level task model
accuracy with different num-
ber of GNN Layers.
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(e) Node-level task alignment
results with different LLMs.
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(f) Node-level task model ac-
curacy with different LLMs.
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(g) Graph-level task align-
ment results with different
LLMs.
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(h) Graph-level task model
accuracy with different
LLMs.

Figure 5. Experimental results under different model scales and the use of LLMs.
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(a) Node-level task align-
ment results with different
feature positions.
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(b) Node-level task model
accuracy with different fea-
ture positions.
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(c) Graph-level task align-
ment results with different
feature positions.
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Figure 6. Experimental results under different feature positions.
The numbers represent the relative positions of the tokens corre-
sponding to the adopted features within the entire output, ranging
from a minimum of 1 to a maximum of 10.

Empirical Finding 2. After receiving input from the LLM
enhancer, the neural structure within the GNN exhibits a
relatively consistent logical pattern, maintaining a certain
degree of invariance despite changes in the model’s scale.

For further exploration, experiments were performed to
compare alignment with accuracy. To facilitate analysis,
accuracy is no longer forced to be above 90%. Within the
results in Figure 5, it can be observed that there is a certain
correlation between the optimal alignment, as represented
by LII, and the model’s performance.

Empirical Finding 3. The analysis based on LII can par-
tially reflect the capability of the model. Specifically, a
lower optimal LII value generally indicates stronger model
capability and vice versa.

Extra experiments within Appendix E indicate the same.
Combining with Empirical Finding 2, we hypothesize that
the scaling up of the GNN only enlarges its structure, with-
out enhancing its capacity for causal relation modeling.
Meanwhile, Figures 5(e), 5(f), 5(g), and 5(h) demonstrate
that more powerful LLMs enhance model performance. Yet,
improving the LLM backbone remains challenging due to
the high resource cost. Empirical Finding 1 shows that
the LLM enhancer in the architecture primarily provides
information at both the node level and the raw data level.
Thus, we instead shift our focus to the optimization of the
connection between the LLM enhancer and GNN.

We modified the features transmitted from the LLM en-
hancer to the GNN and conducted experiments to assess
their impact. Specifically, while conventional methods
(Chen et al., 2023; Huang et al., 2023b; Liu et al., 2024)
typically select last-layer features corresponding to specific
token positions in the LLM enhancer output as input for
the subsequent GNN, we varied these positions to alter the
transmitted information. Experimental results, as shown
in Figures 6, demonstrate that changes in the selection of
these positions significantly affect model performance, with
a greater impact than the previously discussed factors. As a
result, we chose to optimize the model based on the selec-
tion of these positions.
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Figure 7. Framework of the proposed AT module.

Table 2. Performance comparison across different backbone ‘matches of LLMs and GNNs. Diff denotes performance change achieved
with AT module.

Dataset Method GCN GAT GraphSAGE

w/o AT w/ AT Diff w/o AT w/ AT Diff w/o AT w/ AT Diff

Cora

Llama2 83.71 ± 1.05 84.67 ± 0.79 +0.96 83.67 ± 1.34 84.47 ± 0.43 +0.80 84.45 ± 0.98 85.12 ± 1.14 +0.67
Qwen2 84.33 ± 0.74 86.36 ± 0.35 +2.03 84.55 ± 0.77 86.13 ± 0.87 +1.58 84.11 ± 0.57 85.34 ± 0.75 +1.23
Llama3 84.98 ± 1.00 86.74 ± 0.32 +1.76 84.87 ± 0.85 86.29 ± 0.21 +1.42 85.13 ± 0.76 86.43 ± 0.22 +1.30

Pubmed

Llama2 81.18 ± 0.46 83.82 ± 0.60 +2.64 81.86 ± 0.84 83.86 ± 0.42 +2.00 81.82 ± 1.51 84.77 ± 0.57 +2.95
Qwen2 81.09 ± 0.34 84.04 ± 1.61 +2.95 81.45 ± 0.29 83.11 ± 0.14 +1.66 81.88 ± 1.29 84.35 ± 1.64 +2.47
Llama3 82.06 ± 1.35 84.43 ± 1.42 +2.37 82.48 ± 0.88 84.86 ± 1.60 +2.38 82.23 ± 0.79 85.32 ± 1.49 +3.09

Instagram
Llama2 62.81 ± 0.98 64.13 ± 0.82 +1.32 63.12 ± 0.75 64.82 ± 0.42 +1.70 64.55 ± 1.73 66.78 ± 0.43 +2.23
Qwen2 63.12 ± 1.45 64.45 ± 0.98 +1.33 62.81 ± 1.44 64.76 ± 1.18 +1.95 64.48 ± 0.87 66.23 ± 0.77 +1.75
Llama3 63.55 ± 0.43 64.86 ± 0.22 +1.31 63.64 ± 0.23 65.51 ± 0.10 +1.87 65.40 ± 0.15 67.17 ± 0.24 +1.77

4. Method
Based on the previous experimental analysis, we propose
optimizing the data transmission between the LLM en-
hancer and the GNN by introducing the Attention-based
Transmission (AT) module. The design of the AT module
is simple and straightforward, primarily leveraging an at-
tention mechanism to select the most optimal parts of the
information output by the LLM enhancer for downstream
transmission, thereby optimizing the model. Figure 7 illus-
trates the framework of the module.

Specifically, to conduct a more comprehensive feature
search, we first use the LLM to generate q different in-
put prompts for the LLM enhancer, where q is a hyperpa-
rameter. As a result, we obtain q different feature sets,
X1, X2, . . . , Xq. Each Xi contains the features corre-
sponding to the output tokens from the LLM enhancer using
the i-th prompt. Specifically, Xi = {xi

j}nj=1, where xi
j

denotes the feature of the j-th token from the final layer
of the LLM enhancer when the i-th prompt is provided as
input.

Since the number n of output tokens is not fixed and varies
with different inputs, we select a total of m feature vec-
tors, where m is a hyperparameter. The indices of the
selected vectors are determined based on n and m, and
are computed as follows: {⌊min(1 × n

m , 1)⌋, ⌊min(2 ×
n
m , 1)⌋, . . . , ⌊min(m × n

m , 1)⌋}. We then select the cor-
responding features and denote them as Si = {sij}mj=1.

Next, we input S1,S2, . . . , Sq into a transformer encoder
separately to generate attention scores. Specifically, for Si,
we acquire attention matrix Ai:

Ai = Qi(Ki)⊤, (7)

where Qi and Ki denote the output Query and Key matrices
of the final layer of the transformer encoder. Then, compute
the average attention scores for vector αi ∈ Rm, the j-th
element of αi can be represented as:

αi
j =

1

m

m∑
l=1

Ai
jl, for j = 1, 2, . . . ,m. (8)

we acquire q vectors, α1, α2, . . . , αq. Next, we applied
the softmax function to normalize all the elements within
all vectors together and acquired normalized results ᾱ1, ᾱ2,
. . . , ᾱq. Then, calculate the final output vector z of the
LLM enhancer:

z =
1

qm

q∑
i=1

m∑
j=1

āi
js

i
j , (9)

where z will be utilized as the node feature and input into
the GNN. We utilize δ epochs for training the selection of
the prompts, after δ epochs, we fix the utilized prompt and
remove the rest.

We validated our module on Cora (Kipf & Welling, 2016),
Pubmed (Hamilton et al., 2017), and Instagram (Huang et al.,
2024b) datasets. We utilize Llama2 (Touvron et al., 2023),
Qwen2 (Yang et al., 2024), and Llama3 (Dubey et al., 2024)
as the LLM backbones, and GCN (Kipf & Welling, 2016),
GAT (Velickovic et al., 2018), and GraphSAGE (Hamilton
et al., 2017) as the GNN backbones.The results are shown in
Table 2. It can be observed that the AT module is effective
across various LLM frameworks. All experimental settings
and details are provided in Appendix D.
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5. Conclusion
This paper analyzes the LLM-enhancer-plus-GNN paradigm
using the CCSG dataset and interchange intervention. The
proposed method is validated through theory and experi-
ments. Additionally, a novel AT module is proposed to
optimize the paradigm further.
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A. Extended Related Works
A.1. Causal Abstraction within Neural Networks

Causal abstraction, originating from research in causal theory, involves refining and summarizing the causal relationships
present in a low-level model into a high-level causal model (Iwasaki & Simon, 1994; Chalupka et al., 2017; Rubenstein et al.,
2017). This process ensures that both models exhibit the same causal effects under soft or hard interventions (Massidda
et al., 2023). Achieving a fully precise causal abstraction is challenging; therefore, the more commonly used and observed
approach is the approximate causal abstraction. Recent research on causal abstraction have been widely applied within
neural networks, which can be broadly classified into three key approaches: iterative nullspace projection, causal mediation
analysis, and causal effect estimation (Beckers et al., 2019).

Iterative nullspace projection (Ravfogel et al., 2020; Elazar et al., 2021; Lovering & Pavlick, 2022) leverages linear
transformations on a model’s representation space to project certain attributes into the nullspace, effectively removing their
influence. This technique has been employed to identify the role of specific features in model decisions. For example, in
(Ravfogel et al., 2020), the authors applied nullspace projection to remove gender-related information from word embeddings
to assess its impact on downstream tasks. Other works (Elazar et al., 2021) extended this to different fairness-related
contexts, assessing bias removal and its impact on neural network performance.

Causal mediation analysis (Vig et al., 2020; Meng et al., 2022) examines how an intermediary variable transmits the effect
from one variable to another. Notably, (Vig et al., 2020) applied this framework to interpret attention mechanisms in
Transformer models, showing how specific tokens influence model predictions through attention heads.

Causal effect estimation (Abraham et al., 2022; Elazar et al., 2022; Wu et al., 2023b) focuses on quantifying the causal
impact of changing specific input variables on the output. For example, (Abraham et al., 2022) explored how modifying
specific neurons in a neural network can alter model predictions, allowing the identification of neurons with strong causal
influence over particular tasks. Similarly, (Wu et al., 2023b) demonstrated how such interventions could uncover causal
dependencies in integrated architectures like GNNs combined with LLMs, offering insights into their interaction and
decision-making mechanisms. On the other hand, Interchange Intervention Training (IIT) (Geiger et al., 2022b) based
methods achieve causal abstraction by aligning the causal effects between high-level and low-level models through the use
of interchange interventions (Wu et al., 2023a; Huang et al., 2023a). These methods have demonstrated excellent results
when applied to neural networks (Geiger et al., 2024).

These methods offer valuable tools for understanding the internal causal structure of complex deep learning models,
providing interpretable insights into their operation. We build on this foundation to explore the causal mechanisms in GNNs
integrated with LLMs by applying these methodologies to elucidate the interactions between their components and uncover
their causal dependencies.

A.2. LLM as GNN Enhancers

With the emergence of LLMs (Brown et al., 2020; Devlin et al., 2019; Dubey et al., 2024), a new research direction has
gained popularity in the field of graph representation learning: using LLMs for initial node feature processing, followed by
GNNs for in-depth exploration and utilization of inter-node relationships. This combined approach is expected to address
more complex graph data analysis problems effectively (Mao et al., 2024).

In this domain, related methods focus on optimizing the prompts used with LLMs and integrating the more flexible data
processing capabilities that LLMs offer. This integration results in graph data that is more readily analyzable by subsequent
GNN processes, allowing for better summarization and analysis of data features (Huang et al., 2024a; Chen et al., 2023).
Among these methods, most approaches focus on the utilization of LLMs to enhance the interpretation and alignment of
graph data. For instance, TAPE (He et al., 2024) prompts an LLM to perform zero-shot classification, requests textual
explanations for its decision-making process, and designs an LLM-to-LM interpreter to translate these explanations into
informative features for downstream GNNs. Similarly, OFA (Liu et al., 2024) represents both graph data and tasks as
nodes, aligning different textual contents into feature vectors of the same dimension. This alignment enables a consistent
representation of data, which is then processed using GNN. By ensuring that all data, regardless of its initial format, can be
uniformly processed, OFA improves the overall effectiveness of graph data analysis. CasMLN (Wang et al., 2024) also
follows this trend by introducing LLM-based external knowledge to effectively capture the implicit nature of graphs and
node types, thereby enhancing type- and graph-level representations.
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Some others utilize LLM to enhance class-level information. e.g., ENG (Yu et al., 2023) leverages LLMs to enhance
class-level information and seamlessly introduces labeled nodes and edges without altering the raw dataset, facilitating
node classification tasks in few-shot scenarios. Additionally, some works (Ren et al., 2024; Lyu et al., 2023) optimize node
attribute information using LLMs in specific recommendation tasks, followed by subsequent graph learning.

All these methods follow the general framework of using LLMs for initial data processing, making the data more amenable to
analysis, and then utilizing GNNs for a deeper investigation into the relationships and structures within the data. Our research
focuses on analyzing and expanding upon this overall framework, aiming to improve the integration and effectiveness of
LLM and GNN combinations in graph representation learning.

B. Proofs
B.1. Proof of Theorem 3.2.

Theorem 3.2. Given a high-level causal model h(·) and a low-level neural network model f(·), both of which accurately
map input graphs G ∈ G to outputs Y ∈ Y , such that Y = f(G) = h(G). Assume there exists a subset Zf of the
intermediate variables in f(·) and a bijective mapping η : Zf → Zh, where Zh represents certain variables in h(·). If
there exists a Zf that minimizes the loss LII, we can conclude that the total effect TEzf ,zf′ (Y f ) of f(·) is equal to the total
effect TEzh,zh′ (Y h) of h(·) in all cases. Here, zh and zf represent the values of Zh and Zf , respectively, for the same
input graph G. Similarly, zh′

and zf ′
represent their values for a different input graph G′.

To support the proof of Theorem 3.2, we first present the following lemma and provide the corresponding proof.

Lemma B.1. Given the conditions within Theorem 3.2, if LII reaches minimal, then for all Gorig ∈ G and Gdiff ∈ G, the
following equation holds:

INTINV
(
f,Gorig, Gdiff, Zf

)
= INTINV

(
h,Gorig, Gdiff, Zh

)
. (10)

Proof. According to Equation 1, LII can be represented as:

LII =
∑

Gorig∈G

∑
Gdiff∈G

D
(

INTINV
(
h,Gorig, Gdiff, Zh

)
, INTINV

(
f,Gorig, Gdiff, Zf

))
, (11)

as D(·) denotes difference between INTINV
(
f,Gorig, Gdiff, Zf

)
and INTINV

(
h,Gorig, Gdiff, Zh

)
, we have:

LII =
∑

Gorig∈G

∑
Gdiff∈G

D
(

INTINV
(
h,Gorig, Gdiff, Zh

)
, INTINV

(
f,Gorig, Gdiff, Zf

))
≥

∑
Gorig∈G

∑
Gdiff∈G

D
(

INTINV
(
h,Gorig, Gdiff, Zh

)
, INTINV

(
h,Gorig, Gdiff, Zh

))
, (12)

∑
Gorig∈G

∑
Gdiff∈G D

(
INTINV

(
h,Gorig, Gdiff, Zh

)
, INTINV

(
h,Gorig, Gdiff, Zh

))
is the minimal possible value for LII,

where Equation 10 holds. Next, we demonstrate step by step that there exists a certain set of Zf that allows LII =∑
Gorig∈G

∑
Gdiff∈G D

(
INTINV

(
h,Gorig, Gdiff, Zh

)
, INTINV

(
h,Gorig, Gdiff, Zh

))
. Given the conditions within Theorem

3.2, there exists a subset Zf of the intermediate variables of f(·) that satisfied η(Zf ) = Zh. As η is bijective, we can find
Zf that satisfied η−1(Zh) = Zf , furthermore, η(Zf ) = η(η−1(Zh)) = Zh. Then, by setting Zf = η−1(Zh), we have:

INTINV
(
f,Gorig, Gdiff, Zf

)
= f latter

((
f pre(Gorig) \ fZf

(Gorig)
)
∪ η−1

(
hZh

(Gdiff)
))

, (13)

Where f pre(·) outputs all the intermediate variables of the hidden layers corresponding to Zf , and fZf

(Gorig) denotes the
value of Zf given the input Gorig. The function f latter(·) represents the output of the model f(·) given the intermediate
variables output by f pre(·), and hZh

(Gdiff) denotes the value of Zh given Gdiff as input. Furthermore, given the conditions
within Theorem 3.2, we have:

f latter(f pre(Gorig)
)
= h

(
Gorig), (14)
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therefore:

f latter
(
f pre(Gorig) \ fZf

(Gorig) ∪ fZf

(Gorig)
)
= hlatter

(
hpre(Gorig) \ hZh(

Gorig) ∪ hZh(
Gorig)), (15)

Where hpre(·) outputs the intermediate variables within h(·) up to and including Zh, and hlatter(·) denotes the subsequent
computation of h(·) that produces the final output given the output of hpre(·). Furthermore, we have:

f latter
(
f pre(Gorig) \ fZf

(Gorig) ∪ η−1
(
hZh

(Gorig)
))

= hlatter
(
hpre(Gorig) \ hZh(

Gorig) ∪ hZh(
Gorig)). (16)

Then, we have:

INTINV
(
f,Gorig, Gdiff, Zf

)
= f latter

(
f pre(Gorig) \ fZf

(Gorig) ∪ η−1
(
hZh

(Gdiff)
))

= hlatter
(
hpre(Gorig) \ hZh(

Gorig) ∪ hZh(
Gdiff))

= INTINV
(
h,Gorig, Gdiff, Zh

)
. (17)

Therefore, we can conclude that the minimal possible value of LII which is∑
Gorig∈G

∑
Gdiff∈G D

(
INTINV

(
h,Gorig, Gdiff, Zh

)
, INTINV

(
h,Gorig, Gdiff, Zh

))
can be reached, where

INTINV
(
f,Gorig, Gdiff, Zf

)
= INTINV

(
h,Gorig, Gdiff, Zh

)
, the lemma is proved.

Next, we demonstrate Theorem 3.2 based on Lemma B.1. According to (Pearl, 2009), the total effect TEzf ,zf′ (Y f ) can be
represented as:

TEzf ,zf′ (Y f ) = DEzf ,zf′ (Y f ) + IEzf ,zf′ (Y f )

= E
(
Y f

(
zf ′

,
{

Pa(Y f ) \ Zf
}
(zf )

)
− E

(
Y f (zf )

))
+ E

(
Y f

(
zf ,

{
Pa(Y f ) \ Zf

}
(zf ′

)
)
− E

(
Y f (zf )

))
, (18)

where DEZ,Z′(Y f ) and IEZ,Z′(Y f ) denotes the natural direct effect and natural indirect effect respectively (Pearl, 2009),
Pa(·) denotes the ancestor variables. Y f (zf ) denotes the value of Y f given Zf = zf and Y f

(
zf ′

,
{

Pa(Y f ) \ Zf
}
(zf )

)
denotes the value of Y f given Zf = zf ′

while parents of Y f except for Zf are set as given Zf = zf .

Then, according to the proof of Lemma B.1, we have:

E
(
Y f (zf )

)
=

1

G2

∑
Gorig∈G

f latter
(
f pre(Gorig) \ fZf

(Gorig) ∪ zf
)

(19)

and, we can also conclude that:

Y f
(
zf ′

,
{

Pa(Y f ) \ Zf
}
(zf )

)
= f latter

(
f pre(Gorig) \ fZf

(Gorig) ∪ (zf \ Pa(Y f )) ∪ (zf ′
∩ Pa(Y f ))

)
, (20)

where Pa(Y f ) is certain feature variables within model f(·), Gorig represent the input sample here. Likewise, the following
equation holds:

Y f
(
zf ,

{
Pa(Y f ) \ Zf

}
(zf ′

)
)
= f latter

(
f pre(Gorig) \ fZf

(Gorig) ∪ (zf ′
\ Pa(Y f )) ∪ (zf ∩ Pa(Y f ))

)
. (21)
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Based on equation 19, 20 and 21, we have:

TEzf ,zf′ (Y f ) = E
(
Y f

(
zf ′

,
{

Pa(Y f ) \ Zf
}
(zf )

)
− E

(
Y f (zf )

))
+ E

(
Y f

(
zf ,

{
Pa(Y f ) \ Zf

}
(zf ′

)
)
− E

(
Y f (zf )

))
= E

(
f latter

(
f pre(Gorig) \ fZf

(Gorig) ∪ (zf \ Pa(Y f )) ∪ (zf ′
∩ Pa(Y f ))

)
− 1

G2

∑
Gorig∈G

f latter
(
f pre(Gorig) \ fZf

(Gorig) ∪ zf
))

+ E
(
f latter

(
f pre(Gorig) \ fZf

(Gorig) ∪ (zf ′
\ Pa(Y f )) ∪ (zf ∩ Pa(Y f ))

)
− 1

G2

∑
Gorig∈G

f latter
(
f pre(Gorig) \ fZf

(Gorig) ∪ zf
))

= E
(

INTINV(f, (Gorig)z
f

, (Gdiff)z
f′

, Zf ∩ Pa(Y f ))

− 1

G2

∑
Gorig∈G

f latter
(
f pre(Gorig) \ fZf

(Gorig) ∪ zf
))

+ E
(

INTINV(f, (Gorig)z
f′

, (Gdiff)z
f

, Zf \ Pa(Y f ))

− 1

G2

∑
Gorig∈G

f latter
(
f pre(Gorig) \ fZf

(Gorig) ∪ zf
))

, (22)

where (Gorig)z
f

and (Gorig)z
f′

denotes the graph samples that satisfied fZf

((Gorig)z
f

) = zf and fZf

((Gorig)z
f′

) = zf ′
.

Based on the above derivation and Equation 17, we have:

TEzf ,zf′ (Y f ) = E
(

INTINV(h, (Gorig)z
f

, (Gdiff)z
f′

, Zh ∩ Pa(Y h))

− 1

G2

∑
Gorig∈G

hlatter
(
hpre(Gorig) \ hZh

(Gorig) ∪ hZh(
(Gorig)z

f )))
+ E

(
INTINV(h, (Gorig)z

f′

, (Gdiff)z
f

, Zh \ Pa(Y h))

− 1

G2

∑
Gorig∈G

hlatter
(
hpre(Gorig) \ hZh

(Gorig) ∪ hZh(
(Gorig)z

f )))
= E

(
Y h

(
hZh(

(Gorig)z
f′

,
{

Pa(Y f ) \ Zf
}
(hZh(

(Gorig)z
f

)
)

− E
(
Y h(hZh(

(Gorig)z
f

)
))

+ E
(
Y h

(
hZh(

(Gorig)z
f

,
{

Pa(Y f ) \ Zf
}
(hZh(

(Gorig)z
f′

)
)

− E
(
Y h(hZh(

(Gorig)z
f

)
))

= TE
hZh

(
(Gorig)z

f
)
,hZh

(
(Gorig)z

f′ )(Y h), (23)

where η−1(zf ) can be represented as hZh(
(Gorig)z

f )
, the theorem is proved.

B.2. Proof of Corollary 3.3.

Corollary 3.3. Given the condition that there exist a subset Zf of the intermediate variables of f(·) satisfied η : Zf → Zh

where η is bijective does not hold, then if INTINV
(
f,Gorig, Gdiff, Zf

)
= INTINV

(
h,Gorig, Gdiff, Zh

)
holds, the conclusion

given in Theorem 3.2 remains valid.
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As Zf = η(Zh) no longer holds, we can then locate set Żf that satisfied:

Żf = η(Zh ∪ U), (24)

where U is the minimum set of extra variables that are required to determine the value of Żf . We will next analyze the two
possible scenarios, namely U ⊥⊥ Y f and U ̸⊥⊥ Y f . For case that U ⊥⊥ Y f , we could fix U as a constant set, and then have
the following equation hold:

Żf = η′(Zh), (25)

where η′(·) adopt a set of constant to replace U . In such case, we could follow the same demonstration given in Theorem
3.2 and prove that:

TEzf ,zf′ (Y f ) = TE
hZh

(
(Gorig)z

f
)
,hZh

(
(Gorig)z

f′ )(Y h), (26)

For case that U ̸⊥⊥ Y f , if INTINV
(
f,Gorig, Gdiff, Zf

)
= INTINV

(
h,Gorig, Gdiff, Zh

)
holds, we could follow Equation 22

and Equation 23 to proof that Equation 26 holds. The corollary is proven.

B.3. Justification of Proposition 3.4

Proposition 3.4. For a high-level causal model h(·) and a low-level neural network f(·), both mapping input graphs
G ∈ G to outputs Y ∈ Y such that Y = f(G) = h(G), if Zf within f(·) and Zh within h(·) minimize LII to its optimal
value L∗

II, then Zf aligns best with Zh and has an identical total effect on the output prediction as Zh. The minimal L∗
II is

given by:

L∗
II =

1

G2

∑
Gorig∈G

∑
Gdiff∈G

D
(

INTINV
(
h,Gorig, Gdiff, Zh

)
, INTINV

(
h,Gorig, Gdiff, Zh

))
. (27)

The loss LII defined in Equation 1 can be used to measure the correspondence between the neural network model f(·) and
the higher-order causal model h(·).

Specifically, given a high-level causal model h(·) and a low-level neural network model f(·), both of which accurately map
input graphs G ∈ G to outputs Y ∈ Y , such that Y = f(G) = h(G), the following holds:

1. For Zf within f(·) and Zh within h(·) that let LII reach the minimal possible value L∗
II, then Zf is the variable that best

align with Zh and holds identical total effect for the output prediction with Zh. L∗
II can be calculated with:

L∗
II =

∑
Gorig∈G

∑
Gdiff∈G

D
(

INTINV
(
h,Gorig, Gdiff, Zh

)
, INTINV

(
h,Gorig, Gdiff, Zh

))
. (28)

2. For different variables Zf,a and Zf,b within f(·) and the corresponding loss La
II and Lb

II, if La
II > Lb

II, we have total effect
of Zf,b upon the output Y is strictly similar to Zh than Zf,a under D(), formally:, formally:

TEzf ,zf′ (Y f )− TEzf ,zf′ (Y f ) > TEzh,zh′ (Y h). (29)

From the proof of Theorem 3.2, we have that the minimal possible value of LII is that:

LII =
∑

Gorig∈G

∑
Gdiff∈G

D
(

INTINV
(
h,Gorig, Gdiff, Zh

)
, INTINV

(
h,Gorig, Gdiff, Zh

))
, (30)

under which Equation 10 holds. According to Corollary 3.3, if Equation 10 holds, and Y = f(G) = h(G), we have the
total effect TEzf ,z′f (Y f ) of f(·) is equal to the total effect TEzh,z′h(Y h) of h(·). The conclusion is justified.

B.4. Proof of Theorem 3.5

Theorem 3.5. Given high-level causal model h(·), variable Z̄h within h(·), if Z̄f let INTINV
(
f,Gorig, Gdiff, Z̄f

)
=

INTINV
(
h,Gorig, Gdiff, Z̄h

)
, and Gorig and Gorig different in node level, variables within the GNN model are sufficient to

align Z̄f .
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Figure 8. The graphical representation of the proposed SCM. Elements in set {Z̃i,l̃−1
j }H̃l̃

j=1 holds right-arrows point to Z̃i,l̃
j and {Ẑ l̂−1

k |k ∈
N (i)∪{i}} holds right-arrows point to Ẑ l̂

i . Some of the above-mentioned arrows are omitted due to complexity. The red arrows represent
relationships that may not necessarily exist.

To prove Theorem 3.5, we need to conduct a more detailed and accurate analysis of the variables within the model. Therefore,
we introduce the concept of SCM (Structural Causal Model) (Pearl, 2009), which is a framework that uses equations and
directed graphs to represent and analyze causal relationships between variables.

Figure 8 shows the constructed SCM. In the figure, some variables have been omitted, and edges connecting or crossing
the ellipses have also been removed from the demonstration, e.g., edge Ẑ1

1 → Ẑ2
|V| is removed as it across the ellipses. In

Figure 8, we use Xi to denote the node attribute of i-th node, Z̃ l̃
j represents the output variable of the l̃-th hidden layer of the

LLM according to the j-th node feature. Ẑ l̂
i represents the node representation of the i-th node of layer l̂ in the GNN.

Within the SCM, for Ẑ l̂
i , we have set Pa(Ẑ l̂

i) = {Ẑ l̂−1
k |k ∈ N (i) ∪ {i}}, where N (i) denotes the neighboring nodes of

node i. Pa(Ẑ l̂
i) = {Ẑ l̂−1

k |k ∈ N (i) ∪ {i}} implies that Pa(Ẑ l̂
i) consists of the node representations of the last layer that the

corresponding node is adjacent to or the same as node i. We support the validity of the proposed SCM through the following
lemma and its corresponding proof.

Lemma B.2. The SCM that is demonstrated within figure 8 can represent the general causal relationships among variables
in the LLM-enhancer-plus-GNN model.

Proof. We can demonstrate Lemma B.2 by showing that such SCM is consistent with the results generated using the IC
algorithm (Pearl, 2009) for SCM construction. The IC algorithm is a commonly used method for constructing SCMs, please
refer to section 3.2 of (Pearl, 2009) for details. We follow the triple-step method of the IC algorithm for the proof.

Step 1. We connect Xi with Z̃1
i , as there exist none set Gdiff that satisfied Xi ⊥⊥ Z̃1

i |Gdiff. Furthermore, we connect Z̃ l̃
i

with Z̃ l̃−1
i , due to the neural network architecture used by the LLM. We no longer connect any other variables in the LLM.

Then, ẐL̃
j is connected to Z̃1

j , as such elements form the node representation of the GNN. Next, {Ẑ l̂−1
k |k ∈ N (i) ∪ {i}}

and Ẑ l̂
i is connected, as the node representation relies on the node representations of last layer that the corresponding node

is adjacent to or the same as node i. Y f and {ẐL̂
k }

|V|
k=1 are connected as Y f calculated through global pooling. For node

classification, the predicted label shall connect with the elements within {ẐL̂
k }

|V|
k=1 correspondingly. And the others are not

connected for the same reason as the LLM part.

Step 2. Based on the feed-forward mechanism of neural networks, all edges should be oriented in the feed-forward
direction.

Step 3. Since all edges are already directed, step three is unnecessary.

The constructed SCM is consistent with that in Figure 8, thus the lemma is proven.

With the proposed SCM within Figure 8 and Lemma B.2, we carry on demonstrating the proposed theorem. As the SCM

19



LLM Enhancers for GNNs: An Analysis from the Perspective of Causal Mechanism Identification

demonstrates, we have Ẑ1
j block all causal routes from Xj to Y f . Therefore, we have:

INTINV
(
f,Gorig, Gdiff, S

)
= INTINV

(
h,Gorig, Gdiff, Ẑ1

j

)
, S ∈ {Xj} ∪ {Z̃i

j}L̃i=1. (31)

If ∀S ∈ Z̄f , S ̸∈
{
Z̃i
j | 1 ≤ j ≤ |V|, 1 ≤ i ≤ L̃

}
, then the conclusion given in the theorem naturally holds. Otherwise, for

case that ∃S ∈ Z̄f , S ∈
{
Z̃i
j | 1 ≤ j ≤ |V|, 1 ≤ i ≤ L̃

}
we have:

INTINV
(
f,Gorig, Gdiff, Z̄f

)
= INTINV

(
f,Gorig, Gdiff, S̃ ∪ Ŝ

)
= INTINV

(
f, (Gorig)Ŝ , Gdiff, S̃

)
(32)

where S̃ ⊆
{
Z̃i
j | 1 ≤ j ≤ |V|, 1 ≤ i ≤ L̃

}
, Ŝ ⊆

{
Ẑi
j | 1 ≤ j ≤ |V|, 1 ≤ i ≤ L̂

}
, (Gorig)Ŝ denotes the input that ensure

Ŝ values changes to that of Gdiff as input. Based on equation 31, we have:

INTINV
(
f, (Gorig)Ŝ , Gdiff, S̃

)
= INTINV

(
f, (Gorig)Ŝ , Gdiff, Ŝ ′

)
,

Ŝ ′ ⊆
{
Ẑi
j | 1 ≤ j ≤ |V|, 1 ≤ i ≤ L̂

}
. (33)

Therefore, we have the following holds for certain S:

INTINV
(
f,Gorig, Gdiff, Z̄f

)
= INTINV

(
f,Gorig, Gdiff,S

)
(34)

= INTINV
(
h,Gorig, Gdiff, Z̄h

)
, (35)

S ⊆
{
Ẑi
j | 1 ≤ j ≤ |V|, 1 ≤ i ≤ L̂

}
. (36)

The theorem is proved.

C. Details of The CCSG Dataset
C.1. Node Features

Below, we provide a detailed introduction to the node features in CCSG. All data related to CCSG, as well as the methods
used to construct the data, will be made open-source. We have also provided the corresponding data and code in the
supplementary materials.

C.1.1. SELF-CONSTRUCTED FEATURES

We independently constructed a portion of the node features with the primary objective of thoroughly analyzing how graph
representation learning models effectively handle graph data when the node features are relatively simple. This design aims
to ensure that the information within the dataset is predominantly reflected in the graph’s topological structure, minimizing
the interference of complex node features with model performance. By doing so, we can better investigate the model’s
reliance on and ability to process structural information.

Specifically, we adopted two feature construction methods: First, we generated noise features based on random distributions.
This approach introduces randomness to ensure feature neutrality while eliminating the influence of specific patterns, thereby
enabling us to observe the model’s ability to capture topological information under random conditions. Second, we directly
assign feature values to nodes based on their categories, such as assigning unique feature identifiers to nodes of each class.
This provides the model with the most basic classification information and allows us to test its performance under minimal
feature conditions.

By employing these two feature construction methods, we ensure that the node feature design meets the analytical
requirements while functioning as a controlled variable. This not only enhances the precision and interpretability of our
experiments but also establishes a solid foundation for exploring the central role of graph structural information in model
learning.
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C.1.2. NODE FEATURES SOURCE FROM WIKIPEDIA

We extracted a large number of entries from Wikipedia to construct semantically rich node features with known interrelations.
As illustrated in Table 3, the entries we collected are categorized into three main classes: spaceflight, computer, and
software. These domains are further subdivided into 15 specific subcategories, providing a fine-grained classification
structure. Additionally, we recorded interlinking information among the entries in the dataset to facilitate the construction
of training data with explicit causal relationships. Table 4 presents three representative examples of the data we collected,
demonstrating the diversity and structure of the dataset. The contents of the “Background Categories,” “Related Terms,” and
“Similar Entries” fields will be used to identify similar nodes for constructing a coherent graph structure. This approach
ensures a comprehensive and well-documented framework for downstream applications and analysis.

Table 3. Classes of the entries collected from Wikipedia.
Class Count
Spaceflight 1665

Spaceflight 401
Satellite 401
Rocket 260
Outer Space 302
Space Science 301

Computer 2205
Computer engineering 401
Automation 401
Computer security 601
Computer science 401
Computer hardware 401

Software 2005
Computer programming 401
Software testing 401
Application software 401
Software development 401
Software architecture 401

5

v
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8 104

1
2

12

6 7 9

14

Figure 9. Example Graph.

C.2. Node Correlations

With a diverse set of rich, multi-category node features in place, the next step in constructing a graph dataset is to build its
topological structure. One approach to this is to base the construction on the interrelationships between nodes, connecting
them through associations and simple categorical relationships. For instance, this method is partially employed in the
analytical experiments presented in the main text. In this work, we leverage the interrelationships extracted from Wikipedia
entries, combined with manually crafted node features, to define these connections. This ensures that the causal relationships
between nodes are explicitly established, resulting in a well-defined and interpretable graph topology.

C.3. Topological Structures

We constructed a total of 10 distinct topological structures, with their types and specific configurations detailed in Table 5.
In addition to commonly used graph structures in causal representation learning analyses (Wu et al., 2022; Gao et al., 2024),
we incorporated a variety of graph topologies from graph theory, such as complete graphs and bipartite graphs. This was
done to ensure comprehensive coverage of potential graph structures that could have causal effects on classification tasks.
By diversifying the graph topologies, our approach aims to provide a robust framework for evaluating the influence of graph
structure on causal representation learning and downstream analytical performance.
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Table 4. Samples of the collected data
Name Content Class SubClass Background

Categories
Related Terms Similar En-

tries

Computational
social choice

Computational social choice is the
study of problems that arise from ag-
gregating the preferences of a group
of agents using computer science
and social choice theory. It focuses
on efficiently computing voting out-
comes, the complexity of manipula-
tion, and representing preferences in
combinatorial contexts.

Computer Computer
engineer-
ing

Social choice
theory, Vot-
ing theory,
Computer
science

Voting theory, Social choice theory, Egal-
itarian rule, Utilitarian rule, Agreeable
subset, Anonymity, Arrow’s impossibil-
ity theorem, Bayesian regret, Budget-
proposal aggregation, Computational so-
cial choice, Dictatorship mechanism, Dis-
cursive dilemma, Electoral list, Elec-
toral system, Extended sympathy, Frac-
tional approval voting, Fractional social
choice, Gibbard–Satterthwaite theorem,
Gibbard’s theorem, Implicit utilitarian
voting, Independence of irrelevant al-
ternatives, Intensity of preference, Lib-
eral paradox, Christian List, May’s the-
orem, McKelvey–Schofield chaos theo-
rem, Mechanism design, Median graph,
Median voting rule, Nakamura num-
ber, Neutrality, Optimal apportionment,
Proportional-fair rule, Quasitransitive re-
lation, Ranked voting, Rated voting,
Sequential elimination method, Social
Choice and Individual Values, Social wel-
fare function, Unrestricted domain

Algocracy,
Algorithmic
game theory,
Algorithmic
mechanism
design, Cake-
cutting, Fair
division,
Hedonic
games

CEN/XFS CEN/XFS (extensions for financial
services) is a client-server architec-
ture for financial applications on the
Microsoft Windows platform, espe-
cially for devices like EFTPOS ter-
minals and ATMs. It is an interna-
tional standard promoted by the Eu-
ropean Committee for Standardiza-
tion and is based on the WOSA Ex-
tensions for Financial Services de-
veloped by Microsoft. XFS allows
financial institutions to choose t

Computer Computer
engineer-
ing

Windows
communi-
cation and
services, De-
vice drivers,
Embedded
systems

.NET Remoting, Administrative share,
Bonjour Sleep Proxy, CEN/XFS, Chan-
nel Definition Format, Discovery and
Launch, Distributed Component Object
Model, Dynamic Data Exchange, Eter-
nalBlue, Indexing Service, Internet Con-
nection Sharing, Internet Locator Server,
Ipconfig, Layered Service Provider, Link
Layer Topology Discovery, Link-Local
Multicast Name Resolution, List of prod-
ucts that support SMB, LMHOSTS, Lo-
cal Inter-Process Communication, Mi-
crosoft Message Passing Interface, Mi-
crosoft Message Queuing, Poison mes-
sage, Microsoft Messenger service, Mi-
crosoft Transaction Server

Xpeak, Auto-
mated teller
machine,
Teller assist
unit

iDempiere iDempiere is an open source ERP
software fully navigable on various
devices. It includes CRM and SCM
functions, and is community pow-
ered, unlike proprietary ERP solu-
tions.

Software Software
Develop-
ment

Free ERP
software,
Free business
software

Adaxa Suite, Adempiere, Apache OFBiz,
Compiere, Dolibarr, ERP5, ERPNext, He-
liumV, IDempiere, InoERP, IntarS, JFire,
Kuali Foundation, LedgerSMB, Metas-
fresh, Odoo, Postbooks, Tryton

OSGI, Java,
Compiere,
List of ERP
software
packages

Kallithea
(software)

Kallithea is a free and cross-
platform source code management
system that focuses on providing
repository hosting services for col-
laboration. It offers features such
as forking, pull requests, code re-
view, and issue tracking. Kallithea
was created as a fork of Rhode-
Code due to changes in the license
terms. While earlier versions of
RhodeCode were licensed under the
GNU GPL version 3, version 2.0 in-
troduced exceptions

Software Software
Develop-
ment

Open-source
hosted devel-
opment tools,
Project man-
agement soft-
ware, Free
software
programmed
in Python,
Free project
management
software

Cloud9 IDE, GitLab, Gitorious, Kallithea
(software), Travis CI

Comparison
of project
management
software,
List of tools
for code
review, Com-
parison of
source code
hosting facil-
ities, Apache
Allura

Lunar Re-
connaissance
Orbiter #Pay-
load

The Lunar Reconnaissance Orbiter
(LRO) is a NASA spacecraft cur-
rently orbiting the Moon, collect-
ing essential data for future human
and robotic missions. Launched in
2009 as part of the Lunar Precur-
sor Robotic Program, LRO has cre-
ated a detailed 3-D map of the lunar
surface at 100-meter resolution, in-
cluding high-resolution images of
Apollo landing sites

Spaceflight Space Sci-
ence

Lunar Re-
connaissance
Orbiter,
Missions to
the Moon,
NASA space
probes,
Space probes
launched
in 2009,
Satellites
orbiting the
Moon

Lunar Reconnaissance Orbiter, Diviner,
LCROSS, Mini-RF

Exploration
of the Moon,
LCROSS,
List of mis-
sions to the
Moon, Lunar
Atmosphere
and Dust
Environment
Explorer,
Lunar out-
post (NASA),
Lunar water
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Table 5. Details concerning the utilized topological structures.
Structure Type Grid Circle Chain Tree Star

Illustration

Description

Nodes are connected
in a grid pattern,
and the number of
nodes is adjustable.

Nodes form a closed
loop, and the
number of nodes
is adjustable.

Nodes are connected
in a chain without
branches, useful
for over-squashing.

Nodes form a tree,
branching and height
are adjustable.

Multiple nodes connect
to a central node,
and the number of
nodes is adjustable.

Structure Type Complete Graph Chordal Cycle Bipartite Graph Bipartite Graph Fixed Structure

Illustration

Description

Every pair of nodes
is connected, and
the number of nodes
is adjustable.

Graph with chords
in the cycle, with
adjustable nodes
and chords.

Vertices are divided
into two disjoint
sets, adjustable
nodes.

Outer nodes connected
in a ring with a
central node,
adjustable nodes.

A random graph
structure with fixed
topology.

Table 6. Accuracy corresponding to different q values, using different numbers of prompts. Llama3 was used as the enhancer. The
standard deviation of results over 10 trials.

Dataset q = 1 q = 2 q = 3 q = 4
Cora 84.94±0.81 86.45±0.49 85.79±0.51 83.33±0.23

Pubmed 83.84±0.77 84.32±1.06 83.98±0.39 82.58±0.44

C.4. Node-level Analytical Experiments Dataset Details

For node-level classification datasets, as described in Section 3.3.1, we fix the nodes to be classified and ensure that their
associated causal relationships are controllable and analyzable. A specific example is provided in Figure 9. We further
utilize the subcategories and interrelationship information included in CCSG to construct edges between the related nodes.
At the same time, we partition the nodes into sets based on the shortest path lengths from each node to the target node v and
the associations between nodes. The attributes of each node set are processed by hnode,1. The outputs of hnode,1 serve as the
inputs to hnode,2(·). The function determines the output based on the categories of the node itself and its neighboring nodes.
These outputs will serve as the input for hnode,3(·), which produces the final classification result for the node. hnode,3(·) takes
as input the outputs of hnode,2(·) corresponding to the multi-order neighbors of the target node v and generates the final
result.

Specifically corresponding to the experimental results in Figures 1 and 2, Ψ1, Ψ2, and Ψ3 represent the categories of nodes
at distances of 1, 2, and 3 from node v, respectively. These categories are determined by the predominant category of
these nodes. Subsequently, Φ1 and Φ2 are features constructed based on the categories of nodes and the categories of their
neighboring nodes. The difference lies in that Φ2 considers multi-order neighboring nodes.

For node-level analytical experiments, we construct up to 3,000 graph samples, each containing a single target node for
classification, 3 classes. On average, each graph consists of 28.9 nodes. We select 500 samples for testing and all samples
for training. The test set is utilized for interchange intervention-based analysis. To reduce computational complexity, we
also exclude sample pairs that remain completely unchanged before and after the interchange intervention based on h(·).

C.5. Graph-level Analytical Experiments Dataset Details

For graph-level classification datasets, we utilize the topological structures and node features together. Specifically, we use
certain substructures and their connections within the topological structures as the output of hgraph,1(·). Subsequently, the
output of hgraph,2(·) represents the category of the entire topological structure, while hgraph,3(·) produces the final result
based on the category of the topological structure and its connection patterns.

In the results shown in Figures 1 and 2, Γ1, Γ2, and Γ3 are defined as substructures of the topological structures, differing in
the number of nodes they contain: Γ1 consists of structures with 3 nodes, Γ2 consists of structures with 6 nodes, and Γ3

consists of structures with 9 nodes. Ω1 and Ω2 specifically refer to the types of graph structures commonly used in causal
representation learning analyses, as well as the graph topologies derived from graph theory. Both types of structures are
present in each sample.
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(b) Graph-level experiment results.

Figure 10. Alignment results of graph-level and node-level experiments with varying GNN layers.

For graph-level analytical experiments, we construct up to 1500 graph samples, use a total of 10 topological structures, each
of which consists of 20.5 node. We select 300 samples for testing and all samples for training. We utilize these samples in
Node-level Analytical Experiments.

D. Experimental Details
D.1. Hyperparameters

We conducted all our experiments on a computer equipped with a single A100 GPU, running the Ubuntu 20.04 operating
system. The learning rate for the model was set to 0.001, and the total number of training epochs was 200. For the LLM
components, we utilized pre-trained parameters from publicly available open-source models, keeping them fixed during
our experiments. Unless explicitly stated otherwise, Llama3 and a GCN with 4 layers and 256 hidden dimensions (if not
specifically declared) were employed as the backbone networks in all analytical experiments. For experiments related to the
AT module, the hyperparameter m was set to 2, δ is set to 10, and q was set to 10.
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D.2. Implementation Details of the AT module

The AT module utilizes a Transformer with a 4-layer network and a hidden dimension of 512. It employs an LLM to
automatically generate prompts, with the content of the prompt as follows:

Prompt Generation

In order to summarize the content of <data information>, please provide <q> different prompts. The prompts
should be in the format of [Prompt Content] + [Content to be Summarized]. Only output the [Prompt Content].

<data information> refers to the details regarding the dataset, whereas <q> represents the hyperparameter q. It is worth
noting that the AT module also supports the use of manually designed prompts, which can help in selecting more effective
prompts.

E. Extra Experiments.
In Figures 10 and 11, we provide a more comprehensive presentation of the experimental results, including the alignment
outcomes from several additional experiments. It is evident from all the experimental results that the phenomenon described
in Empirical Finding 2 consistently emerges—indicating that, as the size of the model changes, it retains certain specific
logic structures that remain unaffected by these variations. Furthermore, the results illustrated in Figure 12 also reveal
the correlation between the optimal LII and the model’s accuracy. Figure 13 presents further experiments conducted with
different datasets. Finally, Table 6 summarizes the hyperparameter experiment for q.
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(b) Results of GNN with 4 layers.
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(c) Results of GNN with 6 layers.
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(d) Results of GNN with 8 layers.

Figure 11. Alignment results of graph-level experiments with varying GNN layers and hidden dimensions.
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(a) Graph-level task align-
ment results with the number
of GNN layers set to 2 and
varying hidden dimensions.
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(b) Graph-level task model
accuracy with the number of
GNN layers set to 2 and vary-
ing hidden dimensions.
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(c) Graph-level task align-
ment results with the number
of GNN layers set to 4 and
varying hidden dimensions.
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(d) Graph-level task model
accuracy with the number of
GNN layers set to 4 and vary-
ing hidden dimensions.

0.5
0.6
0.7
0.8
0.9
1

16 64 256 2048

Hidden Dimension

A
C

C

0.5
0.6
0.7
0.8
0.9
1

16 64 256 2048

Hidden Dimension

A
C

C

0.5
0.6
0.7
0.8
0.9
1

2 4 6 8
Hidden Dimension

A
C

C

0.5
0.6
0.7
0.8
0.9
1

16 64 256 2048
Hidden Dimension

A
C

C
2 4

6 8

0

0.5

1

1.5

2

16 64 256 2048

A1 A1 A1

O
pt

im
al

0

0.5

1

1.5

2

16 64 256 2048

A1 A1 A1

O
pt

im
al

0

0.5

1

1.5

2

16 64 256 2048

A1 A1 A1

O
pt

im
al

0

0.5

1

1.5

16 64 256 2048

A1 A1 A1

O
pt

im
al

Hidden Dimension

Hidden Dimension

Hidden Dimension

Hidden Dimension

(e) Graph-level task align-
ment results with the number
of GNN layers set to 6 and
varying hidden dimensions.
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(f) Graph-level task model ac-
curacy with the number of
GNN layers set to 6 and vary-
ing hidden dimensions.

0.5
0.6
0.7
0.8
0.9
1

16 64 256 2048

Hidden Dimension

A
C

C

0.5
0.6
0.7
0.8
0.9
1

16 64 256 2048

Hidden Dimension

A
C

C

0.5
0.6
0.7
0.8
0.9
1

2 4 6 8
Hidden Dimension

A
C

C

0.5
0.6
0.7
0.8
0.9
1

16 64 256 2048
Hidden Dimension

A
C

C
2 4

6 8

0

0.5

1

1.5

2

16 64 256 2048

A1 A1 A1

O
pt

im
al

0

0.5

1

1.5

2

16 64 256 2048

A1 A1 A1

O
pt

im
al

0

0.5

1

1.5

2

16 64 256 2048

A1 A1 A1

O
pt

im
al

0

0.5

1

1.5

16 64 256 2048

A1 A1 A1

O
pt

im
al

Hidden Dimension

Hidden Dimension

Hidden Dimension

Hidden Dimension

(g) Graph-level task align-
ment results with the number
of GNN layers set to 8 and
varying hidden dimensions.
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(h) Graph-level task model
accuracy with the number of
GNN layers set to 8 and vary-
ing hidden dimensions.

Figure 12. Experimental results under different number of GNN layers and hidden dimensions.

(a) The results of node-level experiments, where Zh

corresponds to the output variables Ψ1, Ψ2 and Ψ3 of
hnode,1(·), using OGBN-Arxiv data as node features, are
presented. Bold values indicate the minimum LΠ.

(b) The results of node-level experiments, where Zh cor-
responds to the output variables Φ1 and Φ2 of hnode,2(·),
using random data as node features, are presented. Bold
values indicate the minimum LΠ.

Figure 13. Extra experiments using OGBN-Arxiv and random data.
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