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Abstract

Implicit neural representations (INRs) are the workhorse
data structure in neural field algorithms, offering a flex-
ible, continuous, and compact encoding of complex sig-
nals. While simple in concept, INR designs now vary along
various axes, such as nonlinearities, parameter initializa-
tion schemes, training procedures, and interpretability tech-
niques. As such, there is a growing need for a systematic
library to ensure rapid, scalable, and reproducible INR de-
velopment. To fill this need, we present Alpine, an open-
source PyTorch library for flexible development, fitting, and
function visualization for INRs, with a focus on rapid pro-
totyping and ease of extensibility across a variety of scien-
tific applications, from applied physics to medical imaging.
Alpine provides a clean API to set up custom INR work-
flows, train them using gradient-based or sophisticated met-
alearners, and visualize learned features, learned INR ge-
ometry, and metrics. This paper presents the components of
Alpine, and its capabilities'.

1. Introduction

Implicit neural representations (INRs) are powerful learned
function approximators for signal data that are the
workhorse of neural fields algorithms. An INR F : R
RP maps coordinates lying in a d-dimensional space to a
value in a D-dimensional output space, with parameters
0, offering a continuous and potentially compact alterna-
tive to traditional array-based discrete signal representa-
tions. Due to their elegant and general formulation, they
have been successfully applied in a variety of domains in-
cluding image and video representation [6, 7, 23, 24, 26,
39, 40, 50, 52], shape representation [18, 19], signed dis-
tance fields (SDFs) [33], neural radiance fields [30, 47],
physics models [22, 35, 55], material rendering [25], com-
putational imaging [3, 9], medical imaging [42, 46, 51], lin-
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ear inverse problems [8, 45], virtual reality [11] and com-
pression [13, 27, 44, 56]. Despite the conceptual simplic-
ity of INRs, there are many design decisions that continue
to be explored and discovered that have significant impact
on their performance. These include choices of nonlinear-
ities [39, 40], parameter initializations [14, 50], training
methodologies [17, 40], and of late, interpretability meth-
ods [20, 32]. Navigating through these methods for a spe-
cific application requires practical expertise, which is often
infeasible for a scientist or engineer outside of the core dis-
ciplines developing INRs, such as computer graphics and
vision. Furthermore, existing INR implementations do not
follow standardized templates and often involve complex
codebases, making it challenging to reproduce and extend

INR workflows across different disciplines or data.

There is therefore a pressing need for a standardized li-
brary that provides an easy and convenient way to proto-
type, deploy, and test existing INRs on a variety of prob-
lems. Furthermore, as scientific signals grow in size, e.g.,
long video sequences and multispectral satellite imagery,
this library should gracefully scale up computation across
multiple GPUs and perform fast data I/O. And parallel to
core INR functionality, this library should also provide visu-
alization methods, such as XINC [32] and SplineCam [20,
21] that can provide users interpretability, if they require it,
into the function encoded by a given INR.

This paper presents Alpine, a new open-source Py-
Torch [34] library that addresses all of these needs. It’s key
characteristics are:

» Extensible data interfaces: Alpine offers a variety of
I/O functions and data-loaders for efficient handling of
d—dimensional coordinates and signals from various do-
mains.

* Rapid INR prototyping: Alpine is designed with modu-
larity at its core, providing low level INR building blocks
such as nonlinearities and layers which can be used inter-
changeably as well as high level functionality that allows
to quickly prototype INRs. Furthermore, we offer base
classes which can be inherited to seamlessly integrate
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Figure 1. Alpine, a library for all your INR needs. Alpine provides ready interfaces for data loading, INR modules, training routines,
and visualization. Alpine is modular, easily extensible, and comes with a rich set of examples, allowing users across disciplines immediate

plug-and-play access to INR functionality and extensibility.

custom models and activation functions into the Alpine
workflow.

¢ Reconfigurable INR training procedures: Alpine uses a
gradient-based fit_signal method which can be eas-
ily reconfigured using closures to allow custom forward
propagation and loss functions.

* Powerful under-the-hood visualizations: Alpine offers
visualization tools for tracking various metrics such as
PSNR and SSIM while training INRs, low-dimensional
projections of high-dimensional INR features and cluster-
ing methods for analyzing trends in the fit signal. Alpine
also includes tools to study the learned geometry and
spline partitions of INR models INRs [20, 21].

¢ Plug-n-Play integration with PyTorch ecosystem:
Based on PyTorch, Alpine permits plug-n-play INRs with
other PyTorch pipelines allowing users to freely take ad-
vantage of the myriad offerings of the PyTorch ecosystem
such as PyTorch-Lightning [15], TorchMetrics [12], and
TorchGeo [43].

2. Alpine Modules

In this section we describe each module in Alpine and their
key functionalities. Fig. | presents an overview.

alpine.dataloaders

alpine.dataloaders have the simple functional-
ity to directly load d—dimensional coordinates and D-
dimensional signal values in a scalable way, with options to
load in random batches suitable for available GPU memory.
Taking advantage of PyTorch’s dimension broadcasting, we

provide vectorized coordinate signal data pairs as well as
d—dimensional spatial coordinate signal data pairs. We fur-
ther provide support for loading atypical file formats such
as NIFTI [1] for neuroimaging, RCSB PDB formats [4] for
protein structures, loading categorical land cover data [54]
used in remote sensing etc.

alpine.models

alpine.models houses all INR building blocks such as
layers, Fourier encodings, and nonlinearities. We make a
conscious decision to decouple nonlinearities and INR layer
assembly to promote an object-oriented workflow and in-
terchangeability of building blocks. For all objects, we
follow PyTorch’s convention of defining model layers in
the constructor, and the forward function implementing
the forward pass. We additionally provide a new abstract
method forward-w_features for each model which re-
turns intermediate layer outputs which may be useful for
downstream visualization tasks such as clustering and low-
dimensional projection.

Each alpine.model inherits the alpine.base
class which holds fit_signal and render methods.
To further promote reconfigurable and custom training pro-
cesses (further discussed in Sec. 2,) we enforce all outputs
from an alpine model be a dictionary object holding out-
puts and auxiliary data (e.g., layer-wise features). Each INR
model comes with default parameter and hyperparameter
initialization strategies. We also offer data-driven initial-
ization techniques such as meta-learning (MAML) [17, 48]
and Strainer [50].



wire_ct.py

import alpine

import torch
from torchmetrics.image import PeakSignalNoiseRatio as PSNR

wire = alpine.models.Wire(in_featur
hidden

omegas = [10.0], sigmas = [10.0]).cuda()

wire.register_loss_function(MSE_TV_Loss())
coord_signal_dataloader = alpine.dataloaders.Bat
_ = wire.fit_signal(coord

clos ct_closure -
met : PSNRO})

al_dataloader,

dNDSigallLoader(...)

custo

MSE_TV_Loss(nn.Module):
__init__( f 0
super
self.alpha = alpha
self.beta = beta
self.mse = nn.MSELoss()
self.tv = TVLoss()

def forward 7, 5%, )8
x_sinogram = x['output']
x_img = x['output_img']
y_sinogram = y['signal']

mse = self.alpha * self.msel( m, 1ogram)
tv = self.beta * self.tv(x_imc

return mse + tv

def inverse_ct_closure(model_c input, signal

output_packet = model_ctx(input)
output_img = output_packet['output']
output_sinogram = radon(output_img.permute(

outputs = wire.render(...points ...)

return {'output’

: output_sinogram, 'output_img

Figure 2. Alpine makes INR workflows straightforward. We illustrate a sample Alpine workflow for sparse view CT reconstruction using
Wire [39], shown in red. Alpine makes it effortless to introduce a custom closure (shown in yellow) to further process the reconstructed CT
before computing loss. The custom loss function(shown in green) can also be integrated with the fitting process seamlessly.

(a) Hyperspectral Cube (b) Protein Molecules

(c) Categorical Land Cover Maps

(d) Medical Imaging (e) 3D Signals

Figure 3. Alpine can easily model signals of various types, across many scientific tasks. We illustrate various signals fit using Alpine:
(a) hyperspectral cube [2], (b) protein molecule from RCSB PDB [4], (c) land cover map from NLCD [54], (d) medical CT scan [10], and
(e) a 3D shape [37]. In all cases, loading, fitting, and rendering the signals required just a few lines of code.

Layer 0 Layer L

Figure 4. Alpine provides a lens for visualizing training dy-
namics for INRs. Using local complexity measure proposed by
Humayun et.al. [21], we visualize learned INR partition geometry
on the input domain.

alpine.trainers

INRs are generally trained using iterative gradient-based
updates to fit a given signal or measurement. Alpine’s base
class (which is inherited by the INR model as described
above) offers in-built and reconfigurable training and ren-
dering functionality exposed through the fit_signal and
render methods. fit_signal supports coordinate and
signal inputs as tensors, or as a torch or alpine dataloader.
Notably, while the fit_signal method provides a stan-
dard iterative training procedure for fitting the INR, it also
accepts an optional callable closure argument which im-
plements custom forward or inverse problem routines. We
discuss Alpine’s training workflow as shown in Fig. 2 in
detail in Sec. 2.2. Alpine trainers also offer sophisticated



training routines such as using MAML-based meta learn-
ing for training generalizable INRs over a dataset and also
training distributedly across multiple GPUs using PyTorch-
Lightining as discussed further in Section 2.1

We also include progress bars in alpine’ s trainers
that display key variables such as loss, reconstruction qual-
ity, and estimated time remaining for user-friendly, infor-
mative training process.

alpine.vis

Further qualitative and theoretical understanding of learned
INR characteristics is of increasing importance to the re-
search community [20, 21, 32]. To address this, we pro-
vide a rich toolkit with convenient visualization functions,
from tracking reconstruction metrics such as PSNR, to
visualizing learned INR features. As mentioned previ-
ously in Sec. 2, alpine models retain layer-wise fea-
tures, which are typically high-dimensional. Alpine offers
low-dimensional projections of these feature vectors using
PCA and k-means clustering. We also provide computa-
tion of the Local Complexity measure [21] proposed by Hu-
mayun et.al., to visualize underlying partition geometry of
the learned INR as shown in Figure 4.

2.1. Extending to the PyTorch ecosystem

We intentionally build Alpine in PyTorch to take advan-
tage of PyTorch’s wide ecosystem across various disciplines
such as optics (torchoptics [16]), climate science (Climate-
Learn [31], TorchGeo [43]), medical imaging (Monai [5]),
drug discovery (TorchDrug [57]), also leverage high per-
formance computing (Lightning [15], PyTorch-elastic [34])
and extending to modular runtime configurations using Hy-
dra [53].

First, we integrate TorchMetrics [12] as the default met-
ric logger for Alpine. The fit_signal methods accepts
optional forchmetric objects and can automatically compute
and track metrics throughout training iterations using its in-
built update and increment functions. For extending the
same workflow to any custom metric or a collection of met-
rics, we simply wrap those objects as a torchmetrics object.

Furthermore, fitting INRs to large signals requires train-
ing across multiple GPUs. To this end, we integrate
PyTorch-Lightning into Alpine to support distributed ma-
chine learning and show an example fitting of 3D Thai
statue in Section 2.2. Crucially, we use Lightning’s DDP
strategy to enable distributed INR learning. Furthermore,
we introduce a lightning trainer in alpine.trainers
module as a wrapper class that automatically promotes an
Alpine INR model into a PyTorch-Lightning model.

2.2. Examples

Figure 2 shows an illustration of Alpine’s compact inter-
face to instantiate, fit, and visualize INRs. Figure 2 (red),

presents a straightforward way to instantiate a baseline Wire
model [39] from alpine.models and to fit a sinogram
signal using a custom closure implementing a radon pro-
jection operator, explained in Figure 2 (yellow). We also
showcase Alpine’s modular ability to seamlessly integrate a
custom loss function, shown in Figure 2 (green), for fitting
the CT sinogram.

We further present a diverse set of examples obtained
using Alpine, demonstrating the package’s adaptability to
various scientific and computational disciplines in Figure 3.
The figure includes fitting a hyperspectral data cube [2],
protein macromolecule from PDB [4] (final molecular
structure rendered using Chimera-X [29]), categorical land
cover map [54] for geo-spatial modeling, CT scan from The
Cancer Genome Atlas [10], and 3D Thai statue [37]. The
statue was fit using Alpine’s distributed training function-
ality. To highlight a glimpse of our visualization toolkit,
in Figure 4, we show the learned partition geometry of a
Siren [40] INR trained to fit soil moisture patches [49] us-
ing the local complexity measure [21] providing a more the-
oretical insight into INR features.

3. Conclusion and Next Steps

The conceptual simplicity and compactness of INRs makes
them an attractive data structure for scientists and engi-
neers for various computational and scientific applications.
INR usage is expanding to various signal types beyond
normal RGB images, such as gigapixel imagery [28, 38],
videos [6, 7], and physical data [36, 41]. Furthermore, INR
methods related to architectures, activation functions, and
visualization techniques, are also expanding as researchers
understand more about their properties. Our goal with
Alpine is to facilitate INR development and integration to
general sciences and engineering, beyond just computer vi-
sion and computer graphics, with a gentle learning curve.
To enable easy adoption, we ship Alpine with detailed doc-
umentation and a diverse set of demo examples.

Alpine currently offers basic functionality for all the
modules described in Sec. 2 and Fig. |. We will work on ex-
panding Alpine with other researchers in the field along sev-
eral axes. These include expanding data I/O for more scien-
tific data types, continually integrating state-of-the-art INR
developments as they arise, and scaling Alpine for high-
performance computing (HPC) applications.
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