Alpine: % Flexible, User-Friendly, and Distributed
PyTorch Library for Implicit Neural Representation Development

Kushal Vyasl, Vishwanath SaragadamQ, Ashok Veeraraghavanl, Guha Balakrishnan

1

! Electrical and Computer Engineering, Rice University,
Electrical and Computer Engineering, University of California, Riverside.

1{kvyas, vashok, guha}@rice.edu 2vishwanath.saragadam@rice.edu

Abstract

Implicit neural representations (INRs) are the workhorse
data structure in neural field algorithms, offering a flex-
ible, continuous, and compact encoding of complex sig-
nals. While simple in concept, INR designs now vary along
various axes, such as nonlinearities, parameter initializa-
tion schemes, training procedures, and interpretability tech-
niques. As such, there is a growing need for a systematic
library to ensure rapid, scalable, and reproducible INR de-
velopment. To fill this need, we present Alpine, an open-
source PyTorch library for flexible development, fitting, and
function visualization for INRs, with a focus on rapid pro-
totyping and ease of extensibility across a variety of scien-
tific applications, from applied physics to medical imaging.
Alpine provides a clean API to set up custom INR work-
flows, train them using gradient-based or sophisticated met-
alearners, and visualize learned features, learned INR ge-
ometry, and metrics. This paper presents the components of
Alpine, and its capabilities'.

1. Introduction

Implicit neural representations (INRs) are powerful learned
function approximators for signal data that are the
workhorse of neural fields algorithms. An INR F : R
RP maps coordinates lying in a d-dimensional space to a
value in a D-dimensional output space, with parameters
0, offering a continuous and potentially compact alterna-
tive to traditional array-based discrete signal representa-
tions. Due to their elegant and general formulation, they
have been successfully applied in a variety of domains in-
cluding image and video representation [6, 7, 23, 24, 26,
39, 40, 50, 52], shape representation [18, 19], signed dis-
tance fields (SDFs) [33], neural radiance fields [30, 47],
physics models [22, 35, 55], material rendering [25], com-
putational imaging [3, 9], medical imaging [42, 46, 51], lin-

! Alpine public repository: https:/github.com/kushalvyas/alpine

ear inverse problems [8, 45], virtual reality [11] and com-
pression [13, 27, 44, 56]. Despite the conceptual simplic-
ity of INRs, there are many design decisions that continue
to be explored and discovered that have significant impact
on their performance. These include choices of nonlinear-
ities [39, 40], parameter initializations [14, 50], training
methodologies [17, 40], and of late, interpretability meth-
ods [20, 32]. Navigating through these methods for a spe-
cific application requires practical expertise, which is often
infeasible for a scientist or engineer outside of the core dis-
ciplines developing INRs, such as computer graphics and
vision. Furthermore, existing INR implementations do not
follow standardized templates and often involve complex
codebases, making it challenging to reproduce and extend

INR workflows across different disciplines or data.

There is therefore a pressing need for a standardized li-
brary that provides an easy and convenient way to proto-
type, deploy, and test existing INRs on a variety of prob-
lems. Furthermore, as scientific signals grow in size, e.g.,
long video sequences and multispectral satellite imagery,
this library should gracefully scale up computation across
multiple GPUs and perform fast data I/O. And parallel to
core INR functionality, this library should also provide visu-
alization methods, such as XINC [32] and SplineCam [20,
21] that can provide users interpretability, if they require it,
into the function encoded by a given INR.

This paper presents Alpine, a new open-source Py-
Torch [34] library that addresses all of these needs. It’s key
characteristics are:

» Extensible data interfaces: Alpine offers a variety of
I/O functions and data-loaders for efficient handling of
d—dimensional coordinates and signals from various do-
mains.

* Rapid INR prototyping: Alpine is designed with modu-
larity at its core, providing low level INR building blocks
such as nonlinearities and layers which can be used inter-
changeably as well as high level functionality that allows
to quickly prototype INRs. Furthermore, we offer base
classes which can be inherited to seamlessly integrate

https://github.com/kushalvyas/alpine

Data I/0 § INR Modules &

(CTTTTTTTTrTTTT RN A S

= L} o \
: d c(iil.mensllonsl ro alpine.base: higher- |
oot mate loaders 1 4 order functionalities |
e mmmmmmmmmm— -~ : for INRs such as :
{ Scientific data: o fit_signal/render I
| protein, medical, geo- | ~_____________ A
1 1 1 | e e - - - - ~
L _Sensing, Eh_y 0 e;t(i' - Nonlinearities such

as Sine, ReLU+PE,
Wavelets, Gauss,
N HOSC, etc.

——— o ————

\
.{ Easily Extensible to :
1 custom signals 1

{ 1 loadi k I’ Models: Siren, Wire,

1 g oa}dlng aird 1 1 ReLU + PE, Strainer,

\ saving o eto

N e e e 7 M ___ % o .

AnBuimi

" Distributed learning

Trainers 11T

alpine.base: base
trainers offering
simple gradient-

Visualization L3

Low dimensional }
projections such as 1
[}

/

Support for custom
training closures and
loss functions y;

Sophisticated meta- N
learning methods for
learning over data __, | ~-

——

,{ Extensive Metric, loss
1
\

\

i 1

using PyTorch] and gradient Logging
/

Figure 1. Alpine, a library for all your INR needs. Alpine provides ready interfaces for data loading, INR modules, training routines,
and visualization. Alpine is modular, easily extensible, and comes with a rich set of examples, allowing users across disciplines immediate

plug-and-play access to INR functionality and extensibility.

custom models and activation functions into the Alpine
workflow.

¢ Reconfigurable INR training procedures: Alpine uses a
gradient-based fit_signal method which can be eas-
ily reconfigured using closures to allow custom forward
propagation and loss functions.

* Powerful under-the-hood visualizations: Alpine offers
visualization tools for tracking various metrics such as
PSNR and SSIM while training INRs, low-dimensional
projections of high-dimensional INR features and cluster-
ing methods for analyzing trends in the fit signal. Alpine
also includes tools to study the learned geometry and
spline partitions of INR models INRs [20, 21].

¢ Plug-n-Play integration with PyTorch ecosystem:
Based on PyTorch, Alpine permits plug-n-play INRs with
other PyTorch pipelines allowing users to freely take ad-
vantage of the myriad offerings of the PyTorch ecosystem
such as PyTorch-Lightning [15], TorchMetrics [12], and
TorchGeo [43].

2. Alpine Modules

In this section we describe each module in Alpine and their
key functionalities. Fig. | presents an overview.

alpine.dataloaders

alpine.dataloaders have the simple functional-
ity to directly load d—dimensional coordinates and D-
dimensional signal values in a scalable way, with options to
load in random batches suitable for available GPU memory.
Taking advantage of PyTorch’s dimension broadcasting, we

provide vectorized coordinate signal data pairs as well as
d—dimensional spatial coordinate signal data pairs. We fur-
ther provide support for loading atypical file formats such
as NIFTI [1] for neuroimaging, RCSB PDB formats [4] for
protein structures, loading categorical land cover data [54]
used in remote sensing etc.

alpine.models

alpine.models houses all INR building blocks such as
layers, Fourier encodings, and nonlinearities. We make a
conscious decision to decouple nonlinearities and INR layer
assembly to promote an object-oriented workflow and in-
terchangeability of building blocks. For all objects, we
follow PyTorch’s convention of defining model layers in
the constructor, and the forward function implementing
the forward pass. We additionally provide a new abstract
method forward-w_features for each model which re-
turns intermediate layer outputs which may be useful for
downstream visualization tasks such as clustering and low-
dimensional projection.

Each alpine.model inherits the alpine.base
class which holds fit_signal and render methods.
To further promote reconfigurable and custom training pro-
cesses (further discussed in Sec. 2,) we enforce all outputs
from an alpine model be a dictionary object holding out-
puts and auxiliary data (e.g., layer-wise features). Each INR
model comes with default parameter and hyperparameter
initialization strategies. We also offer data-driven initial-
ization techniques such as meta-learning (MAML) [17, 48]
and Strainer [50].

wire_ct.py

import alpine

import torch
from torchmetrics.image import PeakSignalNoiseRatio as PSNR

wire = alpine.models.Wire(in_featur
hidden

omegas = [10.0], sigmas = [10.0]).cuda()

wire.register_loss_function(MSE_TV_Loss())
coord_signal_dataloader = alpine.dataloaders.Bat
_ = wire.fit_signal(coord

clos ct_closure -
met : PSNRO})

al_dataloader,

dNDSigallLoader(...)

custo

MSE_TV_Loss(nn.Module):
__init__(f 0
super
self.alpha = alpha
self.beta = beta
self.mse = nn.MSELoss()
self.tv = TVLoss()

def forward 7, 5%,)8
x_sinogram = x['output']
x_img = x['output_img']
y_sinogram = y['signal']

mse = self.alpha * self.msel(m, 1ogram)
tv = self.beta * self.tv(x_imc

return mse + tv

def inverse_ct_closure(model_c input, signal

output_packet = model_ctx(input)
output_img = output_packet['output']
output_sinogram = radon(output_img.permute(

outputs = wire.render(...points ...)

return {'output’

: output_sinogram, 'output_img

Figure 2. Alpine makes INR workflows straightforward. We illustrate a sample Alpine workflow for sparse view CT reconstruction using
Wire [39], shown in red. Alpine makes it effortless to introduce a custom closure (shown in yellow) to further process the reconstructed CT
before computing loss. The custom loss function(shown in green) can also be integrated with the fitting process seamlessly.

(a) Hyperspectral Cube (b) Protein Molecules

(c) Categorical Land Cover Maps

(d) Medical Imaging (e) 3D Signals

Figure 3. Alpine can easily model signals of various types, across many scientific tasks. We illustrate various signals fit using Alpine:
(a) hyperspectral cube [2], (b) protein molecule from RCSB PDB [4], (c) land cover map from NLCD [54], (d) medical CT scan [10], and
(e) a 3D shape [37]. In all cases, loading, fitting, and rendering the signals required just a few lines of code.

Layer 0 Layer L

Figure 4. Alpine provides a lens for visualizing training dy-
namics for INRs. Using local complexity measure proposed by
Humayun et.al. [21], we visualize learned INR partition geometry
on the input domain.

alpine.trainers

INRs are generally trained using iterative gradient-based
updates to fit a given signal or measurement. Alpine’s base
class (which is inherited by the INR model as described
above) offers in-built and reconfigurable training and ren-
dering functionality exposed through the fit_signal and
render methods. fit_signal supports coordinate and
signal inputs as tensors, or as a torch or alpine dataloader.
Notably, while the fit_signal method provides a stan-
dard iterative training procedure for fitting the INR, it also
accepts an optional callable closure argument which im-
plements custom forward or inverse problem routines. We
discuss Alpine’s training workflow as shown in Fig. 2 in
detail in Sec. 2.2. Alpine trainers also offer sophisticated

training routines such as using MAML-based meta learn-
ing for training generalizable INRs over a dataset and also
training distributedly across multiple GPUs using PyTorch-
Lightining as discussed further in Section 2.1

We also include progress bars in alpine’ s trainers
that display key variables such as loss, reconstruction qual-
ity, and estimated time remaining for user-friendly, infor-
mative training process.

alpine.vis

Further qualitative and theoretical understanding of learned
INR characteristics is of increasing importance to the re-
search community [20, 21, 32]. To address this, we pro-
vide a rich toolkit with convenient visualization functions,
from tracking reconstruction metrics such as PSNR, to
visualizing learned INR features. As mentioned previ-
ously in Sec. 2, alpine models retain layer-wise fea-
tures, which are typically high-dimensional. Alpine offers
low-dimensional projections of these feature vectors using
PCA and k-means clustering. We also provide computa-
tion of the Local Complexity measure [21] proposed by Hu-
mayun et.al., to visualize underlying partition geometry of
the learned INR as shown in Figure 4.

2.1. Extending to the PyTorch ecosystem

We intentionally build Alpine in PyTorch to take advan-
tage of PyTorch’s wide ecosystem across various disciplines
such as optics (torchoptics [16]), climate science (Climate-
Learn [31], TorchGeo [43]), medical imaging (Monai [5]),
drug discovery (TorchDrug [57]), also leverage high per-
formance computing (Lightning [15], PyTorch-elastic [34])
and extending to modular runtime configurations using Hy-
dra [53].

First, we integrate TorchMetrics [12] as the default met-
ric logger for Alpine. The fit_signal methods accepts
optional forchmetric objects and can automatically compute
and track metrics throughout training iterations using its in-
built update and increment functions. For extending the
same workflow to any custom metric or a collection of met-
rics, we simply wrap those objects as a torchmetrics object.

Furthermore, fitting INRs to large signals requires train-
ing across multiple GPUs. To this end, we integrate
PyTorch-Lightning into Alpine to support distributed ma-
chine learning and show an example fitting of 3D Thai
statue in Section 2.2. Crucially, we use Lightning’s DDP
strategy to enable distributed INR learning. Furthermore,
we introduce a lightning trainer in alpine.trainers
module as a wrapper class that automatically promotes an
Alpine INR model into a PyTorch-Lightning model.

2.2. Examples

Figure 2 shows an illustration of Alpine’s compact inter-
face to instantiate, fit, and visualize INRs. Figure 2 (red),

presents a straightforward way to instantiate a baseline Wire
model [39] from alpine.models and to fit a sinogram
signal using a custom closure implementing a radon pro-
jection operator, explained in Figure 2 (yellow). We also
showcase Alpine’s modular ability to seamlessly integrate a
custom loss function, shown in Figure 2 (green), for fitting
the CT sinogram.

We further present a diverse set of examples obtained
using Alpine, demonstrating the package’s adaptability to
various scientific and computational disciplines in Figure 3.
The figure includes fitting a hyperspectral data cube [2],
protein macromolecule from PDB [4] (final molecular
structure rendered using Chimera-X [29]), categorical land
cover map [54] for geo-spatial modeling, CT scan from The
Cancer Genome Atlas [10], and 3D Thai statue [37]. The
statue was fit using Alpine’s distributed training function-
ality. To highlight a glimpse of our visualization toolkit,
in Figure 4, we show the learned partition geometry of a
Siren [40] INR trained to fit soil moisture patches [49] us-
ing the local complexity measure [21] providing a more the-
oretical insight into INR features.

3. Conclusion and Next Steps

The conceptual simplicity and compactness of INRs makes
them an attractive data structure for scientists and engi-
neers for various computational and scientific applications.
INR usage is expanding to various signal types beyond
normal RGB images, such as gigapixel imagery [28, 38],
videos [6, 7], and physical data [36, 41]. Furthermore, INR
methods related to architectures, activation functions, and
visualization techniques, are also expanding as researchers
understand more about their properties. Our goal with
Alpine is to facilitate INR development and integration to
general sciences and engineering, beyond just computer vi-
sion and computer graphics, with a gentle learning curve.
To enable easy adoption, we ship Alpine with detailed doc-
umentation and a diverse set of demo examples.

Alpine currently offers basic functionality for all the
modules described in Sec. 2 and Fig. |. We will work on ex-
panding Alpine with other researchers in the field along sev-
eral axes. These include expanding data I/O for more scien-
tific data types, continually integrating state-of-the-art INR
developments as they arise, and scaling Alpine for high-
performance computing (HPC) applications.

References

[1] NIfTI; Neuroimaging Informatics Technology Initiative —
nifti.nimh.nih.gov. https://nifti.nimh.nih.gov/.
[Accessed 25-04-2025]. 2

[2] Boaz Arad and Ohad Ben-Shahar. Sparse recovery of hyper-
spectral signal from natural rgb images. In European Con-
ference on Computer Vision, pages 19-34. Springer, 2016. 3,
4

https://nifti.nimh.nih.gov/

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

(16]

Benjamin Attal, Eliot Laidlaw, Aaron Gokaslan, Changil
Kim, Christian Richardt, James Tompkin, and Matthew
O’Toole. Torf: Time-of-flight radiance fields for dynamic
scene view synthesis. Advances in neural information pro-
cessing systems, 34:26289-26301, 2021. 1

Helen M. Berman, John Westbrook, Zukang Feng, Gary
Gilliland, T. N. Bhat, Helge Weissig, Ilya N. Shindyalov, and
Philip E. Bourne. The protein data bank. Nucleic Acids Re-
search, 28(1):235-242, 2000. 2, 3, 4

M Jorge Cardoso, Wenqi Li, Richard Brown, Nic Ma, Eric
Kerfoot, Yiheng Wang, Benjamin Murrey, Andriy Myro-
nenko, Can Zhao, Dong Yang, et al. Monai: An open-source
framework for deep learning in healthcare. arXiv preprint
arXiv:2211.02701,2022. 4

Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser Nam Lim,
and Abhinav Shrivastava. Nerv: Neural representations for
videos. Advances in Neural Information Processing Systems,
34:21557-21568, 2021. 1, 4

Hao Chen, Matthew Gwilliam, Ser-Nam Lim, and Abhinav
Shrivastava. HNeRV: Neural representations for videos. In
CVPR, 2023. 1,4

Yinbo Chen, Sifei Liu, and Xiaolong Wang. Learning con-
tinuous image representation with local implicit image func-
tion. In CVPR, 2021. 1

Chiun-Hong Chien and Jake K Aggarwal. Volume/surface
octrees for the representation of three-dimensional objects.
Computer Vision, Graphics, and Image Processing, 36(1):
100-113, 1986. 1

Kenneth Clark, Bruce Vendt, Kirk Smith, John Freymann,
Justin Kirby, Paul Koppel, Stephen Moore, Stanley Phillips,
David Maffitt, Michael Pringle, Lawrence Tarbox, and Fred
Prior. The Cancer Imaging Archive (TCIA): Maintaining and
Operating a Public Information Repository. Journal of Digi-
tal Imaging, 26(6):1045-1057, 2013. 3, 4

Nianchen Deng, Zhenyi He, Jiannan Ye, Budmonde
Duinkharjav, Praneeth Chakravarthula, Xubo Yang, and Qi
Sun. Fov-nerf: Foveated neural radiance fields for virtual
reality. IEEE Transactions on Visualization and Computer
Graphics, 28(11):3854-3864, 2022. 1

Nicki Skafte Detlefsen, Jiri Borovec, Justus Schock,
Ananya Harsh Jha, Teddy Koker, Luca Di Liello, Daniel
Stancl, Changsheng Quan, Maxim Grechkin, and William
Falcon. Torchmetrics - measuring reproducibility in pytorch.
Journal of Open Source Software, 7(70):4101, 2022. 2, 4
Emilien Dupont, Adam Golinski, Milad Alizadeh, Yee Whye
Teh, and Arnaud Doucet. Coin: Compression with implicit
neural representations. arXiv preprint arXiv:2103.03123,
2021. 1

Emilien Dupont, Hyunjik Kim, S. M. Ali Eslami, Danilo J.
Rezende, and Dan Rosenbaum. From data to functa: Your
data point is a function and you should treat it like one.
CoRR, abs/2201.12204, 2022. 1

William Falcon and The PyTorch Lightning team. PyTorch
Lightning, 2019. 2, 4

Matthew J. Filipovich and A. I. Lvovsky. Torchoptics: An
open-source python library for differentiable fourier optics
simulations, 2024. 4

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
In Proceedings of the 34th International Conference on Ma-
chine Learning - Volume 70, page 1126-1135. JMLR.org,
2017. 1,2

Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna,
William T Freeman, and Thomas Funkhouser. Learn-
ing shape templates with structured implicit functions. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 7154-7164, 2019. 1

Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna,
and Thomas Funkhouser. Local deep implicit functions for
3d shape. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 4857-4866,
2020. 1

Ahmed Imtiaz Humayun, Randall Balestriero, Guha Balakr-
ishnan, and Richard G. Baraniuk. Splinecam: Exact vi-
sualization and characterization of deep network geometry
and decision boundaries. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3789-3798, 2023. 1, 2, 4

Ahmed Imtiaz Humayun, Randall Balestriero, and Richard
Baraniuk. Deep networks always grok and here is why, 2024.
1,2,3,4

George Em Karniadakis, loannis G Kevrekidis, Lu Lu, Paris
Perdikaris, Sifan Wang, and Liu Yang. Physics-informed
machine learning. Nature Reviews Physics, 3(6):422-440,
2021. 1

Alper Kayabasi, Anil Kumar Vadathya, Guha Balakrishnan,
and Vishwanath Saragadam. Bias for action: Video implicit
neural representations with bias modulation. arXiv preprint
arXiv:2501.09277,2025. 1

Subin Kim, Sihyun Yu, Jacho Lee, and Jinwoo Shin. Scal-
able neural video representations with learnable positional
features. In Advances in Neural Information Processing Sys-
tems, pages 12718-12731. Curran Associates, Inc., 2022. |
Alexandr Kuznetsov. Neumip: Multi-resolution neural ma-
terials. ACM Transactions on Graphics (TOG), 40(4), 2021.
1

Zhen Liu, Hao Zhu, Qi Zhang, Jingde Fu, Weibing Deng,
Zhan Ma, Yanwen Guo, and Xun Cao. Finer: Flexi-
ble spectral-bias tuning in implicit neural representation by
variable-periodic activation functions, 2023. 1

Shishira R Maiya, Sharath Girish, Max Ehrlich, Hanyu
Wang, Kwot Sin Lee, Patrick Poirson, Pengxiang Wu, Chen
Wang, and Abhinav Shrivastava. Nirvana: Neural implicit
representations of videos with adaptive networks and au-
toregressive patch-wise modeling. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14378-14387, 2023. 1

Julien N.P. Martel, David B. Lindell, Connor Z. Lin, Eric R.
Chan, Marco Monteiro, and Gordon Wetzstein. Acorn:
Adaptive coordinate networks for neural representation.
2021. 4

Elaine C. Meng, Thomas D. Goddard, Eric F. Pettersen,
Greg S. Couch, Zach J. Pearson, John H. Morris, and
Thomas E. Ferrin. Ucsf chimerax: Tools for structure build-
ing and analysis. Protein Science, 32(11):e4792, 2023. 4

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]
(38]

(39]

[40]

[41]

[42]

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 1

Tung Nguyen, Jason Jewik, Hritik Bansal, Prakhar Sharma,
and Aditya Grover. Climatelearn: Benchmarking machine
learning for weather and climate modeling. arXiv preprint
arXiv:2307.01909, 2023. 4

Namitha Padmanabhan, Matthew Gwilliam, Pulkit Kumar,
Shishira R Maiya, Max Ehrlich, and Abhinav Shrivastava.
Explaining the implicit neural canvas: Connecting pixels to
neurons by tracing their contributions. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10957-10967, 2024. 1, 4

Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 165-174, 2019. 1

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zach DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu
Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library, 2019.
1,4

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
Physics, 378:686-707, 2019. 1

Nathan Ranno and Dong Si. Neural representations of cryo-
em maps and a graph-based interpretation, 2022. 4

Stanford 3D Scans Repository. Thai statue. 3, 4
Vishwanath Saragadam, Jasper Tan, Guha Balakrishnan,
Richard Baraniuk, and Ashok Veeraraghavan. Miner: Mul-
tiscale implicit neural representations. In European Conf.
Computer Vision, 2022. 4

Vishwanath Saragadam, Daniel LeJeune, Jasper Tan, Guha
Balakrishnan, Ashok Veeraraghavan, and Richard G Bara-
niuk. Wire: Wavelet implicit neural representations. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 18507-18516, 2023. 1, 3,4
Vincent Sitzmann, Julien Martel, Alexander Bergman, David
Lindell, and Gordon Wetzstein. Implicit neural representa-
tions with periodic activation functions. Advances in neural
information processing systems, 33:7462-7473, 2020. 1, 4
Luke Thomas Smith, Tom Horrocks, Naveed Akhtar, Eun-
Jung Holden, and Daniel Wedge. Implicit neural representa-
tion for potential field geophysics. Scientific Reports, 15(1):
9799, 2025. 4

Bowen Song, Liyue Shen, and Lei Xing. Piner: Prior-
informed implicit neural representation learning for test-time
adaptation in sparse-view ct reconstruction. In Proceed-
ings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pages 1928-1938, 2023. 1

[43]

[44]

[45]

[46]

(47]

(48]

[49]

[50]

[51]

(52]

(53]

[54]

Adam J. Stewart, Caleb Robinson, Isaac A. Corley, Anthony
Ortiz, Juan M. Lavista Ferres, and Arindam Banerjee. Torch-
Geo: Deep learning with geospatial data. ACM Transactions
on Spatial Algorithms and Systems, 2024. 2, 4

Yannick Striimpler, Janis Postels, Ren Yang, Luc Van Gool,
and Federico Tombari. Implicit neural representations for
image compression. In European Conference on Computer
Vision, pages 74-91. Springer, 2022. 1

Yu Sun, Jiaming Liu, Mingyang Xie, Brendt Wohlberg, and
Ulugbek S Kamilov. Coil: Coordinate-based internal learn-
ing for tomographic imaging. [EEE Transactions on Com-
putational Imaging, 7:1400-1412, 2021. 1

Yiran Sun, Tucker Netherton, Laurence Court, Ashok Veer-
araghavan, and Guha Balakrishnan. Ct reconstruction from
few planar x-rays with application towards low-resource ra-
diotherapy. In Deep Generative Models, pages 225-234,
Cham, 2024. Springer Nature Switzerland. 1

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan Barron, and Ren Ng. Fourier features
let networks learn high frequency functions in low dimen-
sional domains. Advances in neural information processing
systems, 33:7537-7547, 2020. 1

Matthew Tancik, Ben Mildenhall, Terrance Wang, Divi
Schmidt, Pratul P Srinivasan, Jonathan T Barron, and Ren
Ng. Learned initializations for optimizing coordinate-based
neural representations. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 2846-2855, 2021. 2

Noemi Vergopolan, Nathaniel W Chaney, Ming Pan, Justin
Sheffield, Hylke E Beck, Craig R Ferguson, Laura Torres-
Rojas, Sara Sadri, and Eric F Wood. Smap-hydroblocks, a
30-m satellite-based soil moisture dataset for the contermi-
nous us. Scientific data, 8(1):264, 2021. 4

Kushal Vyas, Ahmed Imtiaz Humayun, Aniket Dashpute,
Richard G. Baraniuk, Ashok Veeraraghavan, and Guha Bal-
akrishnan. Learning transferable features for implicit neural
representations. In Advances in Neural Information Process-
ing Systems, pages 42268-42291. Curran Associates, Inc.,
2024. 1,2

Yuehao Wang, Yonghao Long, Siu Hin Fan, and Qi Dou.
Neural rendering for stereo 3d reconstruction of deformable
tissues in robotic surgery. In Intl. Conf. Medical Image Com-
puting and Computer-Assisted Intervention, 2022. 1
Shaowen Xie, Hao Zhu, Zhen Liu, Qi Zhang, You Zhou, Xun
Cao, and Zhan Ma. Diner: Disorder-invariant implicit neural
representation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2023. 1

Omry Yadan. Hydra - a framework for elegantly configuring
complex applications. Github, 2019. 4

Limin Yang, Suming Jin, Patrick Danielson, Collin Homer,
Leila Gass, Stacie M. Bender, Adam Case, Catherine
Costello, Jon Dewitz, Joyce Fry, Michelle Funk, Brian
Granneman, Greg C. Liknes, Matthew Rigge, and George
Xian. A new generation of the united states national land
cover database: Requirements, research priorities, design,
and implementation strategies. ISPRS Journal of Pho-

[55]

[56]

[57]

togrammetry and Remote Sensing, 146:108-123, 2018. 2,
3,4

Lingchen Yang, Byungsoo Kim, Gaspard Zoss, Baran
Gozcii, Markus Gross, and Barbara Solenthaler. Implicit
neural representation for physics-driven actuated soft bodies.
ACM Transactions on Graphics, 41(4):1-10, 2022. 1
Yunfan Zhang, Ties van Rozendaal, Johann Brehmer,
Markus Nagel, and Taco Cohen. Implicit neural video com-
pression. In ICLR Workshop on Deep Generative Models for
Highly Structured Data, 2022. 1

Zhaocheng Zhu, Chence Shi, Zuobai Zhang, Shengchao Liu,
Minghao Xu, Xinyu Yuan, Yangtian Zhang, Junkun Chen,
Huiyu Cai, Jiarui Lu, Chang Ma, Runcheng Liu, Louis-
Pascal Xhonneux, Meng Qu, and Jian Tang. Torchdrug:
A powerful and flexible machine learning platform for drug
discovery, 2022. 4

	Introduction
	Alpine Modules
	Extending to the PyTorch ecosystem
	Examples

	Conclusion and Next Steps

