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Abstract

Recent work has shown the utility of developing machine learning models that
respect the structure and symmetries of eigenvectors. These works promote sign
invariance, since for any eigenvector v the negation —v is also an eigenvector.
However, we show that sign invariance is theoretically limited for tasks such as
building orthogonally equivariant models and learning node positional encodings
for link prediction in graphs. In this work, we demonstrate the benefits of sign
equivariance for these tasks. To obtain these benefits, we develop novel sign
equivariant neural network architectures. Our models are based on a new analytic
characterization of sign equivariant polynomials and thus inherit provable expres-
siveness properties. Controlled synthetic experiments show that our networks can
achieve the theoretically predicted benefits of sign equivariant models.

1 Introduction

The need to process eigenvectors is ubiquitous in machine learning and the computational sciences.
For instance, there is often a need to process eigenvectors of operators associated with manifolds or
graphs [Belkin and Niyogi, 2003, Rustamov et al., 2007], principal components (PCA) of arbitrary
datasets [Pearson, 1901], and eigenvectors arising from implicit or explicit matrix factorization
methods [Levy and Goldberg, 2014, Qiu et al., 2018]. However, eigenvectors are not merely
unstructured data—they have rich structure in the form of symmetries [Ovsjanikov et al., 2008].

Specifically, eigenvectors have sign and basis symmetries. An

eigenvector v is sign symmetric in the sense that the sign-flipped Equnenant +
vector —v is also an eigenvector of the same eigenvalue. Basis —

symmetries occur when there is a repeated eigenvalue, as then

there are infinitely many choices of eigenvector basis for the %" f(v1,v2) 0
same eigenspace. Prior work has developed neural networks

that are invariant to these symmetries, improving empirical —

performance in several settings [Lim et al., 2023]. ey oorv) _

The goal of this paper is to demonstrate why sign equivari-

ance can be useful and to characterize fundamental expressive Figure 1: Tllustration of a sign
sign equivariant architectures. Our first contribution is to show equivariant function f. When col-
that sign equivariant models are a natural choice for several |, ;hn 1 of the input is negated, col-
applications, whereas sign invariant architectures are provably ;mn 1 of the output is also negated.
insufficient for these applications. First, we show that sign and

basis invariant networks are theoretically limited in expressive power for learning edge representa-
tions (and more generally multi-node representations) in graphs because they learn structural node
embeddings that are known to be limited for link prediction and multi-node tasks [Srinivasan and
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Ribeiro, 2019, Zhang et al., 2021]. In contrast, we show that sign equivariant models can bypass this
limitation by maintaining positional information in node embeddings. Furthermore, we show that sign
equivariance combined with PCA can be used to parameterize expressive orthogonally equivariant
point cloud models, thus giving an efficient alternative to PCA-based frame averaging [Puny et al.,
2022, Atzmon et al., 2022]. In contrast, sign invariant models can only parameterize orthogonally
invariant models in this framework, which excludes many important application areas.

The second contribution of this work is to develop the first sign equivariant neural network archi-
tectures, with provable expressiveness guarantees. We first present a difficulty in developing sign
equivariant models: the “Geometric Deep Learning Blueprint” [Bronstein et al., 2021] suggests
developing an equivariant neural network by interleaving equivariant /inear maps and equivariant
elementwise nonlinearities [Cohen and Welling, 2016, Ravanbakhsh et al., 2017, Finzi et al., 2021],

but we show that our attempts to apply this approach are insufficient for expresswe sign equivari-
ant models. Namely, we show that sign equ1var1ant linear maps between various input and output
representations are very limited in their expressive power.

Hence, to develop our models, we derive a complete characterization of the sign equivariant polyno-
mial functions. The form of these equivariant polynomials directly inspires our equivariant neural
network architectures. Further, our architectures inherit the theoretical expressive power guarantees of
the equivariant polynomials. Our characterization is also broadly useful for analysis and development
of sign-symmetry-respecting architectures—for instance, we provide a new proof of the universality
of SignNet [Lim et al., 2023] by showing that it can approximate all sign invariant polynomials.

To validate our theoretical results, we conduct various numerical experiments on synthetic datasets.
Experiments in link prediction, n-body problems, and node clustering in graphs support our theory
and demonstrate the utility of sign equivariant models.

1.1 Background

Let f : R™*k — R™*F be a function that takes eigenvectors vy, . .., v € R™ of an underlying matrix
as input, and outputs representations f(v1,...,vx). We often concatenate the eigenvectors into a
matrix V = [v1,...,v;] € R"** and write f(V') as the application of f. For simplicity, in this work
we assume the eigenvectors come from a symmetric matrix, so they are taken to be orthonormal.

Sign and basis symmetries. Eigenvectors have symmetries, because there are many possible choices
of eigenvectors of a matrix. For instance, if v is a unit-norm eigenvector of a matrix, then so is the
sign-flipped —wv. If the eigenvalue of v is simple, then —uv is the only other choice of unit-norm
eigenvector of this eigenvalue.

If v1,...v,, are an orthonormal basis of eigenvectors for the same eigenspace (meaning they all
have the same eigenvalue), then there are infinitely many other choices of orthonormal basis for this
eigenspace; these other choices of basis can be written as V'@, where V = [v; ... v,,] € R"*™ and
Q@ € O(m) is an arbitrary orthogonal matrix.

We refer to these symmetries collectively as sign and basis symmetries, or more simply as eigenvector
symmetries. Note that sign symmetries are a special case of basis symmetries, as —1 and 1 are the
only orthogonal 1 x 1 matrices. Previous work has developed neural networks that are invariant to
these symmetries—that is, networks that have the same output for any choice of sign or basis of the
eigenvector inputs [Lim et al., 2023].

Sign equivariance means that if we flip the sign of an eigenvector, then the corresponding column of
the output of a function f has its sign flipped. In other words, for all choices of signs s1, ..., s €
{_17 l}k’

fls1v1,. ., 860k). 5 = s f(v1, ... vk). 4, (1)
where A, ; is the j-th column of an n x k matrix A. See Figure 1 for an illustration. In matrix form,
letting diag({—1,1}*) represent all k& x k diagonal matrices with —1 or 1 on the diagonal, f is sign
equivariant if

f(VS)=f(V)S  forall S € diag({—1,1}%). )

As O(1) = {—1, 1}, we can write sign equivariance as equivariance with respect to a direct product
of orthogonal groups O(1) x...x O(1). This is different from the equivariance to a single orthogonal
group O(d) considered in works on Euclidean-group equivariant networks [Thomas et al., 2018].
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Figure 2: (a) First nontrivial normalized Laplacian eigenvector of a graph, which is positional. Nodes
u1 and wuo are far apart in the graph, but automorphic. (b) Sign invariant node features, which are
structural. Nodes u; and ug have the same feature. (c) Sign equivariant node features, which are
positional. Nodes u; and us have opposite signs. A link prediction model with sign invariant node
features assigns u; and us the same probability of connecting to w, while sign equivariant node
features could give higher probability to u;.

Permutation equivariance is often also a desirable property of our functions f. We say that f is
permutation equivariant if f(PV) = P f(V) for all n X n permutation matrices P. For instance,
eigenvectors of matrices associated with simple graphs of size n have such permutation symmetries,
as the ordering of nodes is arbitrary.

2 Applications of Sign Equivariance

In this section, we present several applications for which modeling networks with sign equivariant
architectures is beneficial. We identify that sign invariant networks are provably insufficient for these
tasks, motivating the development of sign equivariant networks to address these limitations.

2.1 Multi-Node Representations and Link Prediction

In several settings, we desire a machine learning model that computes representations for tuples of
several nodes in a graph. For instance, link prediction tasks generate probabilities for pairs of nodes,
and both hyperedge prediction and subgraph prediction tasks learn representations for collections of
nodes in a graph [Alsentzer et al., 2020, Wang et al., 2023]. For ease of exposition, the rest of this
section discusses link prediction, though the discussion applies to general multi-node tasks as well.

In link prediction, we typically want to learn structural node-pair representations, meaning adjacency-
permutation equivariant functions that give a representation for each pair of nodes; more precisely, a
structural node-pair representation is a map f : R**" — R™"*" guch that f(PAP") = Pf(A)PT,
where f(A); ; is the representation of the pair of nodes (7, j) in the graph with adjacency matrix
A [Srinivasan and Ribeiro, 2019] (see Appendix A.5 for more discussion). One method to do this is
to use a graph model such as a standard GNN to learn node representations z;, and then obtain a node-
pair representation for (¢, j) as some function fecode(2i, 2;) Of 2; and z;. However, this approach
is limited because standard GNNSs learn structural node encodings—that is, adjacency-permutation
equivariant node features fnode : R™*" — R™ such that fyoqe(PAPT) = P fuode(A) [Srinivasan
and Ribeiro, 2019, Zhang et al., 2021]. % Structural node encodings give automorphic nodes the
same representation, which can be problematic since automorphic nodes can be far apart in the graph.
For instance, in Figure 2, u; and uo are automorphic, so a link predictor based on structural node
encodings would give both u; and wus the same probability of connecting to w, but one would expect
u1 to have a higher probability of connecting to w. Most state-of-the-art link prediction methods on
the Open Graph Benchmark leaderboards [Hu et al., 2020] were deliberately developed to avoid the
issues of structural node encodings.

One way to surpass the limitations of structural node encodings is to use positional node embeddings,
which can assign different values to automorphic nodes. Intuitively, positional encodings capture
information such as distances between nodes and global position of nodes in the graph (see [Srinivasan
and Ribeiro, 2019] for a formal definition). Laplacian eigenvectors are an important example of node

’This adjacency permutation equivariance is different from permutation equivariance of general vectors as
defined in Section 1.1.
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positional embeddings that capture much useful information of graphs [Chung, 1997, Von Luxburg,
2007]. In Figure 2 (a), the first nontrivial Laplacian eigenvector captures cluster structure in the graph,
and as such assigns u; and uy very different values.

Pitfalls of sign and basis invariance. When processing eigenvectors of matrices associated with
graphs, invariance to the symmetries of the eigenvectors has been found useful [Dwivedi et al., 2022a,
Lim et al., 2023], especially for graph classification tasks. However, we show that exact invariance
to these symmetries removes positional information, and thus the outputs of sign invariant or basis
invariant networks are in fact structural node encodings (see Appendix A.5).> Hence, eigenvector-
symmetry-invariant networks cannot learn node representations that distinguish automorphic nodes,
and thus face the aforementioned difficulties when used for link prediction or multi-node tasks:

Proposition 1. Ler f : R"*F — R"*douwt he q permutation equivariant function, and let V =
[V1,...,ve] € R"K be k orthonormal eigenvectors of an adjacency matrix A. Let nodes i and j be
automorphic, and let z; and z; € Rt be their embeddings, i.e, the ith and jth row of Z = f(V).

o If f is sign invariant and the eigenvalues associated with the v; are simple and distinct, then
Zi = Zj.

o If f is basis invariant and vy, . . . , vy, are a basis for some number of eigenspaces of A then z; = z;.

A novel link prediction approach via sign equivariance. The problem z; = z; arises from the
sign/basis invariances, which remove crucial positional information. We instead propose using sign
equivariant networks (as in Section 3) to learn node representations z; = f(V);. € RF. These
representations z; maintain positional information for each node thanks to preserving sign information
(see Figure 2 (c)). Then we use a sign invariant decoder faccode(2i,2j) = fdecode(S%i, Sz;) for
S € diag({—1, 1}*) to obtain node-pair representations. For instance, the commonly used fgecode =
MLP(z; ® z;), where @ is the elementwise product, is sign invariant. When the eigenvalues are
distinct, this approach has the desired invariances (yielding structural node-pair representations) and
also maintains positional information in the node embeddings; see Appendix A.5 for a proof of the
invariances, and Appendix A.5.1 for an example of where sign equivariant models can be used to
compute strictly more expressive node-pair representations than sign invariant models. More details
and the proof of Proposition 1 are in Appendix A.4.

Our sign equivariance based approach differs substantially from existing methods for learning
structural pair representations without being bottlenecked by structural node representations. Many
of these methods are based on labeling tricks [Zhang et al., 2021, Wang et al., 2023], whereby the
representation for a node-pair is obtained by labeling the two nodes in the pair and then processing an
enclosing subgraph. Without special modifications [Zhu et al., 2021, Chamberlain et al., 2023], this
requires a separate expensive subgraph extraction and forward pass for each node-pair. In contrast,
our method only requires one forward pass on the original graph to compute all positional node
embeddings, after which pair representations can be obtained with a cheap, parallelizable decoding.

2.2 Orthogonal Equivariance

For various applications in modelling physical systems, we desire equivariance to rigid transfor-
mations; thus, orthogonally equivariant models have been a fruitful research direction in recent
years [Thomas et al., 2018, Weiler et al., 2018, Anderson et al., 2019, Deng et al., 2021]. We say that
a function f : R"** — R™*¥ is orthogonally equivariant if f(XQ) = f(X)Q for any Q € O(k),
where O(k) is the set of orthogonal matrices in R¥**, Orthogonal equivariance imposes infinitely
many constraints on the function f. Several works have approached this problem by reducing to a
finite set of constraints using so-called Principal Component Analysis (PCA) based frames [Puny
et al., 2022, Atzmon et al., 2022, Xiao et al., 2020].

PCA-frame methods take an input X € R"** compute orthonormal eigenvectors Rx € O(k)
of the covariance matrix cov(X) = (X — 1117 X)T(X — 1117 X) (assumed to have distinct
eigenvalues), then average outputs of a base model & for each of the 2* sign-flipped inputs X Rx S,
where S € diag({—1, 1}*). We instead suggest using a sign equivariant network to parameterize an
efficient O(k) equivariant model, which allows us to bypass the need to average the exponentially

3When there are repeated eigenvalues, sign invariant embeddings maintain some positional information.
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Figure 3: Using sign equivariant functions h to parameterize orthogonally equivariant f(X) =
h(X Rx)R, where Ry is a choice of principal components for the point cloud. We first transform
X via Rx into an orientation that is unique up to sign flips, then process X Rx using the sign
equivariant model A, and finally reintegrate orientation information back into the output via R .

Table 1: Sign invariant or equivariant polynomials and corresponding neural network architectures for
different input and output spaces. v € R¥ or V'€ R™** are inputs to the polynomials or networks.
Appendix C contains more details on the polynomials.

Constraints Polynomials Neural Networks
: 2d 2d
RF — Rinv. Zr?l,...,dk:t)wdl _____ dj, V1 1 ERRECA k MLP(|v|)
R™>* 5 Rinv. q([Viy,j - Vig,jlis enl igeln],jck]) SignNet(V) = p([¢(vi) + ¢(—vi)li=1,....k)
R* — RF equiv. v © Pinv (V) v © MLP(Jv|)
RX* 5 R XE equiy, W (WOV) © piae (V) W01, W] © SignNet, (V)

many sign-flipped inputs. For a sign equivariant network h, we define our model f to be
F(X) = h(XRx)Ry. 3)

See Figure 3 for an illustration. Intuitively, this first transforms X by Rx into a nearly canonical
orientation that is unique up to sign flips; this can be seen as writing the points in the principal
components basis, or aligning the principal components of X with the coordinate axes. Then we
process X Rx using the model & that respects the sign symmetries, and finally, we incorporate
orientation information back into the output by post-multiplying by R . Our approach only requires
one forward pass through h, whereas frame averaging requires 2* forward passes through a base model.
The following proposition shows that f is O(k) equivariant, and inherits universality properties of h.*

Proposition 2. Consider a domain X C R™ ¥ such that each X € X has distinct covariance
eigenvalues, and let Rx be a choice of orthonormal eigenvectors of cov(X) for each X € X. If
h: X C R™F — Rk js sign equivariant, and if f(X) = h(XRx)RY, then f is well defined
and orthogonally equivariant.

Moreover, if h is from a universal class of sign equivariant functions, then the f of the above form
universally approximate O(k) equivariant functions on X.

We include a proof of this result in Appendix A.6. This result also follows from Theorems 3.1 and
3.3 of Kaba et al. [2023], who show that generally we can canonicalize up to a subgroup K of a
group G, and achieve G-equivariance via a K-equivariant base predictor. In our case, G = O(k) and
K={-1,1}*

Sign invariance only gives orthogonal invariance. In a similar way, a sign invariant model can be
used to obtain an orthogonally invariant model with PCA frames, but it cannot be used for orthogonal
equivariance; instead, sign equivariance is needed.



3 Sign Equivariant Polynomials and Networks

In this section, we analytically characterize the sign equivariant polynomials, and use this characteri-
zation to develop sign equivariant architectures. As equivariant polynomials universally approximate
continuous equivariant functions [Yarotsky, 2022], our architectures inherit universality guarantees.
We summarize our results on polynomials and neural network architectures in Table 1. Our character-
ization of the invariant polynomials also allows us to give an alternative proof of the universality of
the sign invariant neural network SignNet [Lim et al., 2023] (see Appendix C.4).

3.1 Sign Equivariant Linear Maps

First, we consider the important case of degree one polynomials, i.e. sign equivariant linear maps

from R"**F — R™ %k These maps are very limited in expressive power, as they act independently
on each eigenvector.

Lemma 1. A linear map W : R"*F — R™ ** s sign equivariant if and only if it can be written as
W(X)=[W1X; ... WpXy] 4)

for some linear maps W1, ..., Wy, : R" = R where X; € R" is the ith column of X € R"*F

See Appendix B.1 for the proof. Notably, when n. = n/ = 1, the linear maps are diagonal matrices.

This means a model with elementwise nonlinearities and sign equivariant linear maps will not capture
any interactions between eigenvectors. For instance, when used for parameterizing orthogonally
equivariant models as in Section 2.2, such a model would process each principal component direction
of the point cloud independently. Hence, the popular approach —outlined in the “Geometric Deep
Learning Blueprint” [Bronstein et al., 2021]—of interleaving equivariant linear maps and equivariant
nonlinearities [Cohen and Welling, 2016, Zaheer et al., 2017, Kondor and Trivedi, 2018, Maron et al.,
2018, 2019, Finzi et al., 2021] is not as fruitful here.

However, one may choose instead different group representations for the input and output space, but
our attempts to do this do not lead to efficient models. For instance, a common method to improve
expressive power of models that use equivariant linear maps is to use tensor representations [Maron
et al., 2018, 2019, Finzi et al., 2021]; in our case, this would correspond having equivariant hidden
representations in R™**™ for some tensor order m. This is also inefficient, as we explain in
Appendix ??; we show that such an approach would have to lift to tensors of at least order 3, and that
there are many sign equivariant linear maps between tensors of order 3. There is a possibility that
some other group representations may allow the Geometric Deep Learning Blueprint to work better
for sign equivariant networks, but we could not find any such representations.

For these reasons, we will now analyze the entire space of sign equivariant polynomials.

3.2 Sign Equivariant Polynomials

Consider polynomials p : R"** — R *¥ that are sign equivariant, meaning p(V'S) = p(V)S for
S € diag({—1,1}*). We can show that a polynomial p is sign equivariant if and only if it can be
written as the elementwise product of a simple (linear) sign equivariant polynomial and a general
sign invariant polynomial, followed by another linear sign equivariant map.

Theorem 1. A polynomial p : R"** — R™ <k g sign equivariant if and only if it can be written
p(V) =W (WOV) © piny (V) )
for sign equivariant linear W® and W), and a sign invariant polynomial piy, : R"¥F — R %k,

This reduction of sign equivariant polynomials to sign invariant polynomials combined with simple
operations is convenient, as it enables us to leverage recent universal models for sign invariant
functions [Lim et al., 2023]. The proof of this statement is in Appendix C, which proceeds by
showing that sign equivariance leads to linear constraints on the coefficients of a polynomial, which
requires the polynomial to take the form stated in the Theorem.

*A class of model functions Fy, from X — ) is universal with respect to a target class J; if for all compact
DCX, fi € Fr,and € > 0, there is an fr, € Fin such that || fn (z) — fi(x)|| < eforall z € D.



Table 2: Link prediction AUC and runtime per epoch for structural edge models.

Erd&s-Rényi Barabasi-Albert
Model Test AUC  Runtime (s) Test AUC  Runtime (s)
GCN (constant input)  .4974.06 .058+.00 705+£.01 .048+£.00
SignNet 498+£.00 .120+.00 .707+£.00 .095+.00
‘/iT;‘/j,: .570+.01 .010+.01 .597+.01 .008+.00
MLP(V;,. ©'V;) .614+.02 .050+.00 .651+.03 .040=£.00
Sign Equivariant J751+£.00 .0634.00 J773+.01 .0544.00

3.3 Sign Equivariance without Permutation Symmetries

Using Theorem 1, we can now develop sign equivariant architectures. We parameterize sign equivari-
. ’ ..
ant functions f : R"** — R™ ** ag a composition of layers f;, each of the form

(V) =] 1(1)1)1, o W,gl)vk] ® SignNet; (V), 6)

in which the Wi(l) :R" — R are arbitrary linear maps, and SignNet, : R"** — R™ %k js sign
invariant [Lim et al., 2023]. In the case of n = n’ = 1, there is a simple universal form: we
can write a sign equivariant function f : R¥ — RF as f(v) = v ® MLP(Jv|), where |v| is the
elementwise absolute value. These two architectures are universal because they can approximate sign
equivariant polynomials. Here, the sign invariant part captures interactions between eigenvectors that
the equivariant linear maps cannot.

Proposition 3. Functions of the form v — v © MLP(|v|) universally approximate continuous sign
equivariant functions f : R¥ — RF.

Compositions fs o f1 of functions f; as in equation 6 universally approximate continuous sign
. . . ’
equivariant functions f : R"<F — R™ ¥k,

3.4 Sign Equivariance and Permutation Equivariance

For models on eigenvectors that stem from graphs or point clouds, in addition to sign equivariance,
we may demand permutation equivariance, i.e., f(PV) = Pf(V) for all permutation matrices
P € R™"*™. To add permutation equivariance to our neural network architecture from Section 3.3,
we use it within the framework of DeepSets for Symmetric Elements (DSS) [Maron et al., 2020].
For a hidden dimension size of dy, each layer f; : R"***ds — Rnxkxds of our DSS-based sign
equivariant network takes the following form on row i:

7y = 10 i) + 12 > Vi), %)

where fl(l) and fl(Z) are sign equivariant functions as in Section 3.3. Sometimes we take dy = 1,
in which case we can use the simpler R* — R* sign equivariant networks (v ® MLP(|v])) as fl(l)

and fl(g). If we have graph information, then we can do message-passing by changing the sum over
j # i to a sum over a neighborhood of node i. DSS has universal approximation guarantees [Maron
et al., 2020], but they only apply for groups that act as permutation matrices, whereas the sign
group {—1,1}* does not. Hence, the universal approximation properties of our proposed DSS-based
architecture are still an open question.

4 Experiments

Our theoretical results in Section 2 predict benefits of sign equivariance in various tasks: link
prediction in nearly symmetric graphs, orthogonally equivariant simulations in n-body problems, and
node clustering with positional information. Next, we probe these suggested benefits empirically.

4.1 Link Prediction in Nearly Symmetric Graphs.

We begin with a synthetic link prediction task, which is carefully controlled to test the theoretically
foreseen benefits of sign equivariance explained in Section 2.1. With the intuition of Figure 2 we first



either generate an Erd6s-Rényi [Erdés et al., 1960] or Barabasi-Albert [Barabasi and Albert, 1999]
random graph H of 1000 nodes. Then we form a larger graph G that contains two disjoint copies
of H, along with 1000 uniformly-randomly added edges (both between and within copies of H).
Without the random edges, each node in one copy of H is automorphic to the corresponding node in
the other copy, so we expect many nodes to be nearly automorphic with the randomly added edges.

In Table 2, we show the link prediction performance of several models that learn structural edge
representations. The methods that use eigenvectors have a sign invariant final prediction for each
edge. GCN [Kipf and Welling, 2017] where the node features are all ones and SignNet [Lim et al.,
2023] both completely fail on the Erdés-Rényi task (these two models map automorphic nodes
to the same embedding), while our sign equivariant model outperforms all methods. We also try
two eigenvector baselines that maintain node positional information, but do not update eigenvector
representations: taking the dot product VzTVj to be the logit of a link existing, or learning a simple
decoder MLP(V; . ® V; .). Both perform substantially worse than our sign equivariant model, which
shows that updating eigenvector representations is important here. Further, the sign equivariant model
takes comparable runtime to GCN, and is significantly faster than SignNet. This is because we use
networks of the form v — v ® MLP(|v|) in these experiments instead of the full SignNet-based
model in equation 6. See Appendix E.2 for more details.

4.2 Orthogonal Equivariance in n-body Problems
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Figure 4: Sign equivariant model versus frame averaging model for n-body experiments in varying
dimensions. Lower y-axis is better for both plots. (Left) The runtime of frame averaging increases
exponentially in dimension while the sign equivariant runtime is approximately constant. Frame
averaging runs out of memory on d = 11. (Right) The error of the sign equivariant model is very
similar to that of frame averaging.

In this section, we empirically test the ability of our sign equivariant models to parameterize or-
thogonally equivariant functions on point clouds, as outlined in Section 2.2. For this purpose, we
consider simulating n-body problems, following the setup in Fuchs et al. [2020] and building on
the code from Puny et al. [2022]. To test the favorable scaling of our method in the dimension d of
the problem against the exponential 2¢ scaling of frame averaging, we generalize this problem to
general dimensions d > 3. We maintain the choice of n = 5 particles, and generate new point clouds
using the same procedure as in Fuchs et al. [2020] (sampling random points and initial velocities in
a general dimension d). We measure model performance via mean squared error (MSE). We use a
DSS-based model that we describe in more detail in Appendix E.3.

Figure 4 illustrates the runtime and MSE. The sign equivariant model scales well with dimension—the
time-per-epoch is nearly constant as we increase the dimension. In contrast, frame averaging suffers
from the expected exponential slowdown with dimension, and runs out of memory on a 32GB V100
GPU for d = 11. Considering the MSE, the equivariant model’s performance closely follows that of
frame averaging, i.e., we only have a small loss in accuracy with much better scalability. For d = 3,
the sign equivariant model has an MSE of .00646, compared to the .00575 of frame averaging [Puny
et al., 2022]. Additional d = 3 comparisons to other baselines are included in Appendix E.3.

4.3 Node Clustering with Positional Information

As explained in Section 2.1, some applications on graph data call for positional node embeddings
that can assign different representations to automorphic nodes. For instance, consider community
detection or node clustering tasks on graphs, where a model makes a prediction for each node that



assigns it to a cluster. Structural encodings are insufficient for this task, as there may be automorphic
or nearly-automorphic nodes that are far apart in the graph but look alike in a structural encoding.
Hence, node structural encodings would guide the model to assign these nodes to the same cluster,
even though they should belong to different clusters. As a concrete example, consider a graph of two
clusters, and using Laplacian eigenvectors as positional encodings. The first nontrivial eigenvector
will tend to assign a positive sign to one cluster and a negative sign to the other cluster. Thus, the sign
information in the eigenvectors is crucial, so we expect sign equivariant models to perform well.

We test models on the CLUSTER dataset [Dwivedi
et al., 2022a] for semi-supervised node clustering
(viewed as node classification) in synthetic graphs.

Table 3: Results on the CLUSTER node classi-
fication task, for which positional information
is needed. We compare different SOTA and

In these experiments, we build on the empirically
well-performing GraphGPS model [Rampasek et al.,
2022], and incorporate our sign equivariant models
to update eigenvector representations within the ver-
sion of GraphGPS that uses PEG [Wang et al., 2022]
to process positional encodings. See Appendix E.4
for more experimental details.

As seen in Table 3, our sign equivariant models
outperform all of the other GraphGPS-based eigen-
vector methods. Moreover, we achieve the second
best performance across all methods, showing that
sign equivariant models can indeed achieve the the-
oretically expected benefits in this setting.

Laplacian eigenvector-based methods.

Model

Test Acc. (%)

GCN [Kipf and Welling, 2017]

GIN [Xu et al., 2019]

GAT [Velickovié et al., 2018]
GatedGCN [Bresson and Laurent, 2017]
SAN [Kreuzer et al., 2021]

K-Subgraph SAT [Chen et al., 2022]
EGT [Hussain et al., 2022]

GPS [Rampasek et al., 2022]

68.49810.976
64.716 +1.553
70.587+0.447
73.840+0.326
76.69110.650
77.85640.104
79.23240.348
78.016+0.180

Eigenvector Methods (GPS base model)
No PE

LapPE [Dwivedi et al., 2022a]

PEG [Wang et al., 2022]

SignNet [Lim et al., 2023]

77.42310.241
77.2501+0.280
77.94540.310
77.44240.102

Sign Equivariant (ours) 78.20140.118

5 Related Work

Structural and Positional Representations. Es-

pecially for link prediction, the need for structural

node-pair representations that are not obtained from structural node representations has been dis-
cussed in several works [Srinivasan and Ribeiro, 2019, Zhang et al., 2021, Cotta et al., 2023]. As such,
various methods have been developed for learning structural node-pair representations that incorporate
node positional information. SEAL and other labeling-trick based methods [Zhang and Chen, 2018,
Zhang et al., 2021] use added node features depending on the node-pair that we want a representation
of. This is empirically successful in many tasks, but typically requires a separate subgraph extraction
and forward pass through a GNN for each node-pair under consideration. Distance encoding [Li
et al., 2020] uses relative distances between nodes to capture positional information. PEG [Wang
et al., 2022] similarly maintains positional information by using eigenvector distances between nodes
in each layer of a GNN, but does not update eigenvector representations. Identity-aware GNNs [You
et al., 2021] and Neural Bellman-Ford Networks [Zhu et al., 2021] learn pair representations by
conditioning on a source node from the pair.

Eigenvectors as Graph Positional Encodings. When using eigenvectors of graphs as node po-
sitional encodings for graph models like GNNs and Graph Transformers, many works have noted
the need to address the sign ambiguity of the eigenvectors. This is often done by encouraging sign
invariance through data augmentation—the signs of the eigenvectors are chosen randomly in each
iteration of training [Dwivedi et al., 2022a,b, Kreuzer et al., 2021, Mialon et al., 2021, Kim et al.,
2022, He et al., 2022, Miiller et al., 2023]. In contrast, SignNet [Lim et al., 2023] enforces exact sign
invariance, by processing eigenvectors with a sign invariant neural architecture; this approach has
been taken by some recent works [Rampasek et al., 2022, Geisler et al., 2023, Murphy et al., 2023].

Equivariant Neural Network Design. Equivariant neural network architectures have been pro-
posed for various types of data and symmetry groups. A common paradigm is to interleave equivariant
linear maps and equivariant pointwise nonlinearities [Wood and Shawe-Taylor, 1996, Cohen and
Welling, 2016, 2017, Ravanbakhsh et al., 2017, Maron et al., 2018, Kondor and Trivedi, 2018, Finzi
et al., 2021, Bronstein et al., 2021, Pearce-Crump, 2022]; this is often used when the group acts
as some subset of the permutation matrices. However, the sign group does not act as permutation
matrices, and as we explained above this approach is not expressive for sign equivariant models.



More similarly to our approach, many equivariant machine learning works heavily leverage invariant
or equivariant polynomials (or other equivariant nonlinear functions). These works include polyno-
mials as operations within a network [Thomas et al., 2018, Puny et al., 2023], add polynomials as
features [Yarotsky, 2022, Villar et al., 2021], build networks that take a similar form to equivariant
polynomials [Villar et al., 2021], and/or analyze neural network expressive power by determining
which equivariant polynomials a given architecture can compute [Zaheer et al., 2017, Segol and
Lipman, 2019, Maron et al., 2019, 2020, Chen et al., 2020, Dym and Maron, 2021, Puny et al., 2023].

6 Conclusion

In this work, we identify and study an important method of respecting the symmetries of eigenvector
data—sign equivariant models. For multi-node representation tasks, link prediction, and orthogonally
equivariant tasks, sign equivariance provides a natural inductive bias; in contrast, we show that sign
invariant models are provably limited in these tasks. To develop sign equivariant neural networks,
we analytically characterize the sign equivariant polynomials, and then define neural networks that
parameterize functions of similar form. Our neural networks are thus expressive, and inherit universal
approximation guarantees of the equivariant polynomials. In several experiments, we show that our
neural networks can indeed achieve the theoretically predicted benefits of sign equivariant models.

Limitations and Future Work. While we developed sign equivariant architectures in this work, we
did not explore basis-change equivariant architectures, which would have the desired symmetries for
inputs with repeated eigenvalues. As eigenvalue multiplicities are known to occur in many real-world
graphs [Lim et al., 2023], future work in this area could be useful. Further, we give evidence that
sign equivariance could help in some node-level and multi-node-level prediction tasks on graphs,
but we do not have theoretical reason to believe that sign equivariance could help in graph-level
representation tasks, which for instance are common in molecule processing. Our theoretical results
are focused on expressive power, but we do not have results on other properties that are important for
learning, such as optimization [Xu et al., 2021], stability [Wang et al., 2022, Huang et al., 2023], or
generalization [Keriven and Vaiter, 2023]. Finally, while we can prove universality of our models
in the non-permutation-equivariant setting, we do not know of the exact expressive power in the
permutation equivariant setting. Lim et al. [2023] also faces this issue for sign invariant models;
future work on analyzing and possibly improving the expressive power of these models — if they are
not universal — is promising.
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A Applications of Sign Equivariance

A.1 Improving Invariant Eigenvector Networks

Neural networks that are invariant to eigenvector symmetries have been shown to empirically improve
graph learning models and achieve theoretically high expressive power. SignNet [Lim et al., 2023], a
sign invariant neural network, takes the form

f(ui, .. o) = p(o(v1) + d(=v1), ..., d(vk) + d(—vk)) ®)

for neural networks p and ¢. This directly enforces invariant representations, without any intermediate
equivariant representations. However, many successful invariant models first have many equivariant
layers before a final invariant operation as equivariant layers are more expressive: this includes
convolutional neural networks [LeCun et al., 1989], message passing graph neural networks [Gilmer
et al., 2017], invariant graph networks [Maron et al., 2018], and group convolutional neural net-
works [Cohen and Welling, 2016]. Thus, sign equivariant layers may lead to better sign invariant
networks. Moreover, sign equivariant layers may improve on other aspects of SignNet, such as
expressiveness of node features (Proposition 1) and efficiency (Appendix A.2)

A.2 Efficiency Gains from Sign Equivariant Networks

Here, we show that our sign equivariant models can reduce the complexity of equivariant or invariant
networks for two different types of applications. Throughout, we consider functions f : R"** —
R™** and we consider our permutation equivariant and sign equivariant DSS-based architecture
from Section 3.4.

The time cost (in floating point operations) per layer of our DSS-based model is O(n(kd + d?)),
where d is the maximum hidden dimension of the MLP and we assume constant depth MLPs. To see
this, note that we can precompute 2?21 V.., so that each > j2i Vi, can be computed in constant

time by subtracting V; . from the total sum. Then for each of the n rows, the MLPs require O(kd + d?)
to evaluate matrix multiplications. In this process, we only form tensors of size O(n(k + d)), as the
inputs and outputs are of size O(nk), and the hidden layers of the MLPs form tensors of size O(nd).

A.2.1 Efficient Orthogonally Equivariant Networks

Consider the case of O(k) equivariant models f : R"*¥ — R"*¥ such that f(XQ) = f(X)Q for
all orthogonal matrices Q € O(k). There are many orthogonally equivariant neural architectures
that are specialized to the special case of k = 3, which is very useful for applications in the physical
sciences [Thomas et al., 2018, Fuchs et al., 2020]. Here we consider models that directly work for
general dimension k.

Frame averaging approaches [Puny et al., 2022, Atzmon et al., 2022] require 2¥ forward passes of a
base network fy, one for each sign flip of the principal components. Letting their base network be a
permutation equivariant DeepSets [Zaheer et al., 2017], this means that they require O (n(kd + d?)2%)
time to evaluate their model, where d is the hidden dimension of the base model. Note that this has
an extra exponential 2% factor compared to our O(n(kd + d?)) cost.

Another general approach with universality guarantees comes from Villar et al. [2021], who analyze
invariant polynomials to develop equivariant architectures. However, their method for O (k) invariance
or equivariance requires forming X X ', an n x n matrix. Thus, the complexity is at least O(n?),
which is a problem in applications, since oftentimes n is much larger than k. Variants of their method
do not need to compute all O(n?) inner products, but it is unclear how to maintain permutation
equivariance when doing this.

A.2.2 Efficient Sign Invariant Networks

Consider again the form of SignNet [Lim et al., 2023], f(V) = p([¢(v;) + &(—v;)]i=1,... k). In the
permutation equivariant version, e.g. when ¢ is a DeepSets [Zaheer et al., 2017] or a message passing
neural network [Gilmer et al., 2017], ¢ maps from R" — R™*4 where d is the hidden dimension.
Thus, computing ¢(v;) + ¢(—v;) for all k vectors v; require an O(nkd) sized tensor to be formed
(even if the output space of ¢ is R™, a vectorized implementation computes all ¢(v;) + ¢(—v;) in
two batched inference calls to ¢, which would require O(nkd) sized intermediate tensors). This is
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a multiplicative factor larger than the sign equivariant requirement of O(n(k + d)) sized tensors.
Moreover, it would take O(nkd?) time to compute ¢(v;)+¢(—v;) for each i, which is a multiplicative
factor larger than the O(n(kd + d?)) time for the sign equivariant architecture.

A.3 Potential Societal Impacts

We do not foresee direct societal impacts from our work. This project is primarily theoretical and
aims to improve models for two general application areas: multi-node representation learning and
orthogonal equivariant models. Potential societal impacts may arise in downstream applications
that may be affected by general progress in geometric machine learning, such as social network
analysis and recommender systems. These two applications are known to have negative societal
impacts in certain circumstances, so care must be taken in future related work to avoid major negative
consequences.

A.4 Edge Representations and Link Prediction
A.4.1 Sign Invariant Link Prediction Decoders

Here, we present an ansatz for universal permutation invariant and sign invariant functions for n = 2,
that is f : R2X* — Rdut, Note that SignNet is only known to be universal for such functions for
n = 1, where there are no permutation symmetries [Lim et al., 2023].

We will parameterize such functions as
flor,...ok) = @ (v @vy,v Orev(vy),. .., vE ® v, vp @ rev(vg)) . 9)

Here, rev : R? — R? reverses the vector, so rev(a); = as and rev(a)s = a;. Moreover, ¢ :
R2x2k 5 Rdout j5 a permutation invariant neural network, so p(PX) = ¢(X) for all 2 x 2
permutation matrices P. Note that it is easy to parameterize permutation invariant functions ¢
in a maximally expressive way, e.g. via DeepSets [Zaheer et al., 2017]. Now, we show that this
parameterization is universal:

Proposition 4. Functions f : R2*F — Rt of the above form are permutation invariant and sign
invariant, and they universally approximate permutation invariant and sign invariant functions.

Proof. Tnvariance of f is easy to see; let P be a 2 X 2 permutation matrix and s; € {—1, 1} for each
1. Then

f(Pvisy, ..., Pugsg) = @ (Pvis1) © (Pvisy), (Pvisy) @ rev(Puisy),...) (10)
= ¢ (P(v1s1 ©®v181), P(v151 @ rev(vysy)),...) (11)
= (P(v; ©®v1), P(v; @ rev(vy)),...) (12)
= (v ©v1, v Orev(vy),...) (13)
= f(v1,..., k), (14)

where the second to last inequality is by permutation invariance of ¢. Next, we show universal
approximation.

Let h : R2X* — Rdout be a continuous permutation invariant and sign invariant function. Then by
the decomposition theorem in Lim et al. [2023], we can write

h(vlv"'avk) :p(gb(vlvlT)v---vqs(vkvl;r))v (15)

for continuous functions p and ¢. As a composition of continuous functions, the function ¢ : B C
R2x2k 5 Rdout given by ¢(Ay, ..., Ar) = p(¢(A1),...,¢(Ar)) is continuous, where B is the

subset of R%*2* consisting of (v1v] ..., vxv, ) such that each v; € R?. Note that 1 is permutation
invariant on B, in the sense that for any 2 x 2 permutation matrix P, we have
Y(PALPT, ..., PAPT) =4(Ay, ..., Ap), (16)

because if viv;'— = A;, then
Y(PALPT,...,PALP") = h(Puy,...,Pu) = h(vy,...,v1) = (A1, ..., Ap), (17)

by permutation invariance of h.

17



Now, we define our permutation invariant function ¢ : C' C R2%2k _y Rdoutop the domain

C = {[v1 ®vi,v1 Orev(vy),..., v © vk, v © rev(vg)] : v; € R?}. (18)
We define ¢ by
_ Ay Az Ayz Aggs Aror—1 Azop
P(A) =9 ([A2,2 Ay1| ' |Asa Axg| | Asor Asak—1]| ) (19)
To see that ¢ is permutation invariant, we need only consider the case where P = [(1) (1)] , in which
case
Asy A12 As 3 A14 A22k 1 A12k
’ 2
1/J<[ |Ars Azl Ao Aok (20)
Aia A2,2 T A1 3 Aga A1 2k—1 A9k T
=Y ( [AQ 2 Aon| T T A0 Az Ao Asgia) T ) @D
Ay Agp| Az Aoy Aror—1 Aoop .
= ' ’ ' Sl P ’ ’ . inv. 22
¥ <{A2,2 Ao 1|’ |A2a Azs|’ Asor Aok (4 perm. inv.) ~ (22)
= ¢(4), (23)
where in the second equality, we use the fact that Ay o; = Ay 95,7 =1,...,kfor A € C, because

Az o = (v; ©Orev(vj))e = (v; @ rev(v;))1 = Aj2; for some v; € R2 Moreover  is clearly
continuous and sign invariant. Defining f : R?** — R%ut ysing this ¢, we compute that

flv1,...01) = ¢ (v1 © 1,01 Orev(vy),..., v, © vg, v O rev(vg)) (24)
2 2
V11 V1,101,2 Vi1 Uk, 1Vk,2
- : el I 25
¥ ({”1,17}1,2 U%,z } L}k,l“kﬂ ”1%,2 }) 2
= (v1v] . 0y (26)
= h(”lv'”;”k)? (27)

so we are done.

If o instead comes from a universally approximating class of permutation invariant neural networks
(rather than being an arbitrary continuous permutation invariant function), then on a compact domain
we can get € approximation of f to h by letting ¢ approximate v to € accuracy. O

A.4.2 Proof of Proposition 1

Proposition 1. Let f : R"*F — R"*dout he q permutation equivariant function, and let V =
[v1,...,v] € R"*F be k orthonormal eigenvectors of an adjacency matrix A. Let nodes i and j be
automorphic, and let z; and z; € Rout be their embeddings, i.e, the ith and jth row of Z = f (V).

o If f is sign invariant and the eigenvalues associated with the v; are simple and distinct, then
Zi = Zj.

o If f is basis invariant and v1, . . . , vy, are a basis for some number of eigenspaces of A then z; = z;.

Proof. We only prove the basis invariance claim, as the sign invariance claim is a special case; basis
invariance is sign invariance when eigenvalues are distinct.

Let P € R™*" be a permutation matrix associated to an automorphism that maps node ¢ to node j,
so PAPT = A and Pe; = e, where ¢, is the Ith standard basis vector. Let V; = [v,,, . .. s Ury, | bE
the matrix whose columns are the eigenvectors v, that are associated to eigenvalue \;. The columns
of V; are thus an orthonormal basis for the eigenspace associated to \;. Note that for any of these
eigenvectors, we have

A(Pv,,) = PAP" (Pv,,) = PAv,, = P\jv,, = \¢(Puv,,), (28)

so Pu,, is also an eigenvector of A with eigenvalue \;. As P is orthogonal, note that Pv,, ..., Pv, 4

is still an orthonormal basis of the eigenspace. Thus, there exists an orthogonal matrix Q; € R%*d
such that PV, = V;(Q;—see Lim et al. [2023].
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Repeat the above argument to get such a (), for each of the eigenbases V7, ..., V;. We can then see
that

=fVi,..., i)y
= f(V1Q1,...,ViQy);.: basis invariance
= f(PVi,... ,PVl)j,: choice of Q,
=PfV,..., W), permutation equivariance
=f(V1,..., V). choice of P
= 2.
So we are done. O

A.5 Sign Invariance and Structural Node or Node-Pair Encodings

In this section, we show that when the eigenvalues Ay, . . ., A are distinct, then sign invariant functions
of the orthonormal eigenvectors vy, . . ., vg give structural node or node-pair representations. This
can also be generalized in a straightforward way to larger tuples of nodes beyond pairs, though we
only consider nodes and node-pairs for ease of exposition. First, we give formal definitions.

Definition 1 (Structural Representations [Srinivasan and Ribeiro, 2019]). Let A € R™*" be the
adjacency matrix of a graph on node set {1,...,n}.

A function f : R — R™ is a node structural representation if f(PAP") = Pf(A) foralln x n
permutation matrices P.

A function f : R"™" — R"*" js a node-pair structural representation if f(PAPT) = Pf(A)PT
for all n. x n permutation matrices P.

Importantly, these structural representations are permutation equivariant functions of adjacency
matrices, not arbitrary matrices. For each adjacency matrix A, let V(A4) = [v1(A),...,vi(A)] be a
choice of orthonormal eigenvectors for the first k eigenvalues A1(A), ..., A\ (A). We assume in this
section that these first k eigenvalues are distinct for all A under consideration, so V' (A) is defined up
to sign flips. Let h : R"**¥ — R™ be a permutation equivariant function of sets, so h(PX) = Ph(X)
for all permutations matrices P. Then of course h(PV (A)) = Ph(V(A)), but this does not make h a
node structural encoding. This is because A — h(V'(A)) is in general not a well-defined function of
the adjacency, since the choice of V' (A) is not well-defined (the choices of sign are arbitrary). If we
constrain h to not depend on the signs (sign invariance), or to depend on the signs in a predictable way
(sign equivariance), then we can compute structural node or node-pair encodings from eigenvectors.

We capture these observations in the below proposition. First, we define three types of functions:

s Let fuode : R™* — R™ be sign invariant and permutation equivariant; that is,
fnode(Pv181, ..., PUrsy) = P fuode(v1,...,vx) for s; € {—1,1} and P a permutation
matrix.

e Let faecode : R?** — R be sign invariant; that is, faecode(S2i, 92;) = fdecode(2i, z;) for
S € diag({—1,1}*).

* Let foquiv : R™** s R™*k be a permutation equivariant and sign equivariant function; that
is, foquiv(PV(A)S) = Pfequiv(V(A))S for S € diag({—1,1}*) and P a permutation

matrix.
Proposition 5. Let A C R™*" denote the matrices with distinct first-k eigenvalues. For A € A, let
V(A) = [v1(A),...,vp(A)] be a choice of orthonormal eigenvectors of A, associated to the first-k

(distinct) eigenvalues \1(A), ..., A\ (A). Then

(a) The map Gnode = A — R™ given by qnode(A)i = fnode (fequiv(V (A))), is well-defined and gives
a structural node representation.

(b) The map qpair : A — R™™" defined by qpair(A)i,j = fdecode (fequiv(V(A))i,:, fequiv(V(A));,:)
is well-defined and gives a structural node-pair representation.

Note that the identity mapping V' (A4) — V' (A) is permutation equivariant and sign equivariant, so
using frode OF fdecode directly on eigenvectors also gives structural representations. The statement
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(b) means that our link prediction pipeline with sign equivariant node features and sign invariant
decoding produces structural node-pair representations.

Proof. Part (a) We first show that g,0qe : A — R™ is well-defined. Suppose we had another choice
of eigenvectors, so the eigenvectors we input are V (A)S for some S € diag({—1,1}*). Then

fnodc (fcqmv(v(A)S)) = fnodc (fcqmv(v(A))S) = fnodc (fcquiv(V(A)) 5 (29)

where the first equality is by sign equivariance, and the second equality by sign invariance. Thus, the
value of gnode(A) is unchanged.

Now, let P be any permutation matrix. Then for each eigenvector v;(A4), i € [k], we have
(PAPT)Puv;(A) = PAv;(A) = \i(A)Pv;(A), so Pv;(A) is an eigenvector of PAPT associ-
ated to \;(A) = X\;(PAPT). Hence, we denote v;(PAPT) = Pv;(A) (the choice of sign does not
matter as ¢ does not depend on the sign. Now, we have that

Gnode(PAPT) = fuode (Jeauiv(V(PAPT))) (30)
= fnode (fequiv(PV(A))) GD
= anode (fequiv(V(A))) (32)
= PQnode(A) 33)

where the second to last equality is by permutation equivariance of fnode and foquiv-

Part (b) That gpair : A — R™*" is well-defined follows from a similar argument to the gyoqe case.
Let P be a permutation matrix, and o : [n] — [n] its underlying permutation. We compute that

Gpair (PAPT); ; = faccode (fequiv(V(PAPT)); ., foquiv(V(PAPT));.) (34)
= faecode (fequiv(PV (A))i,:, fequiv(PV (A));,.) (35)
=fdecode([Pfequw( (A)]i,:s [P foquiv(V(A))]5:) (36)
= faecode (fequiv(V (A))o=1(1),: foquiv(V(A))o=1(5,:) (37
= Gpair(A)o—1(i),0-1(j) (38)
= (Pgpair(A)P )i (39)

O

A.5.1 Sign Equivariance is Provably More Expressive for Link Prediction

Our arguments in Section 2.1 and Figure 2 explain why we can expect sign equivariant models to
be more powerful than sign invariant models in link prediction. To give a theoretically rigorous
explanation, here we provide an example where sign equivariant models can provably compute more
expressive link representations than sign invariant models.

Consider a cycle graph Cyy; for some even length 2k, where k£ > 3. All nodes are automorphic in this
graph, so any model based on structural node representations must assign the same representation
to each node-pair. For instance, consider the eigenvalue —2 of the adjacency matrix, which is a
simple eigenvalue with eigenvector [1,—1,1,—1,...,1, —1] [Lee et al., 1992]. Then a sign invariant
model will lose the sign information and map each node to the same encoding, which means that
each node-pair will also have the same encoding. However, a sign equivariant model can preserve the
sign of each node (for instance by learning the identity function). Then for any pair of nodes that are
one hop away, it can take a dot product to compute the pair representation —1, whereas it can take
a dot product between any nodes that are two hops away to compute the pair representation 1. Of
course, using more eigenvectors would allow for more complex representations to be computed.

A.5.2 More on Sign Equivariance and Link Prediction

Key to our method is the ability to update a positional node embedding in an equivariant way,
which respects the graph symmetries. To elaborate, consider the aforementioned definition of node
positional encodings as samples from a permutation equivariant probability distribution over node
features [Srinivasan and Ribeiro, 2019]. Laplacian eigenvector positional embeddings are samples
from the distribution of orthonormal bases of the eigenspaces of the Laplacian. Our sign equivariance
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based approach is possible because the randomness in Laplacian eigenvector positional encodings is
exceptionally structured (consisting only of sign flips when eigenvalues are distinct). In contrast, a
general way to obtain structural pair representations from node positional embeddings is to average
some function over the randomness of the positional encoding (i.e., over many samples of the
positional encoding) [Srinivasan and Ribeiro, 2019], but this is highly expensive, often intractable,
and introduces substantial variance into the learning procedure. For instance, one may have to average
samples of the n! assignments of unique node identifiers [Murphy et al., 2019] or approximate an
integral over Gaussian random features [Abboud et al., 2021].

A.6 Proof of Proposition 2, Orthogonal Equivariance via Sign Equivariance

Proposition 2. Consider a domain X C R™*? such that each X € X has distinct covariance
eigenvalues, and let Rx be a choice of orthonormal eigenvectors of cov(X) for each X € X. If
h:X C R — R4 s sign equivariant, and if f(X) = h(X Rx)RY, then f is well defined and
orthogonally equivariant.

Moreover; is h is from a universal class of sign equivariant functions, then the f of the above form
universally approximate O(k) equivariant functions on X.

Proof. First, we show that f is well defined. Rx is only unique up to sign flips, as Rx S is an
orthonormal set of eigenvectors of cov(X) for S € diag({—1,1}*). However, no matter the choice
of signs, f(X) takes the same value, since

h(XRxS)(RxS)" = h(XRxS)S'Rx (40)
= h(XRx)SSTRY sign equivariance 41)
= h(XRx)RY. (42)

Next, we show that f is O(k) equivariant. Let Q € O(k) be any orthogonal matrix. Note that

i
cov(XQ) = (XQ — 71111TXQ) (XQ — illTXQ> = Q" cov(X)Q. (43)

Thus, Q" Ry is an orthonormal set of eigenvectors of cov(X Q). This means that there is a choice of
signs S € diag({—1,1}*) such that Q" Rx S = Rx(. Hence, we have that

f(XQ) = MXQRxq)RXo (44)
= h(XQQ"RxS)(Q"RxS)" (45)
= h(XRx)SS TR; sign equivariance (46)
= h(XRx)RY (47)
=f(X)Q", (48)

so f is O(k) equivariant.

Universal Approximation. Our proof of the universality of this class of functions builds on the
proof of the universality of frame averaging [Puny et al., 2022]. Let fiarget be a continuous O(k)
equivariant function and let ¢ > 0 be a desired approximation accuracy. Then fiarget iS also sign
equivariant (as the sign matrices S € diag({—1, 1}*) are orthogonal).

Hence, by sign equivariant universality, we can choose a sign equivariant h such that
[|1R(X) — frarget (X)|| < € forall X € X (where |-|| is the Frobenius norm). Define the O(k)
equivariant f(X) = h(XRx)R%. Then for all X € X we have that

| fearget(X) = FOON = || frarget (X) = (X Rx)Rx || (49)

= || frarget (X)Rx Rk — (X Rx)Rx|| Rx orthogonal ~ (50)

= Hftarget(XRX)R; — h(XRX)R; H orthogonal equivariance (51)

= || frarget (X Rx) — h(X Rx)|| Ry orthogonal  (52)

<e (53)

So f approximates fiarget Within € accuracy on &, and we are done. O
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B Sign Equivariant Linear Maps
B.1 Sign Equivariant Linear Map Characterization

We first prove our result characterizing the form of the equivariant linear maps from R™** — R %k,
Lemma 1. A linear map W : R"*F — R™ ** s sign equivariant if and only if it can be written as

W(X) = [W1X1 Wka.] 54

for some linear maps W, ..., Wy : R" — R™, where X; € R™ is the ith column of X € Rk,

Proof. For one direction, suppose W can be written as in equation 4. To see that W is sign equivariant,
note that for any S € diag({—1,1}*), we have

W(XS) = [s1Wi Xy ... sxWeXy] = Wi Xy ... WeXi] S = W(X)S. (55)

For the other direction, let W be a sign equivariant linear map. For any i’ € [n’] and j' € [k], we can
write the action of W as

n k
W(X)igr =Y Wil X, (56)
i=1 j=1

where W;/"Z-, € R are coefficients representing the linear map. Let ¢ # j’ be a column that is not j'.

Further, for any row [ € [n], let X € R"%¥ be such that X, e =1, and X is zero elsewhere. Then we
have that

5 )
W(X )i o = Wi, (57)

Now, let S € diag({—1,1}*) have a —1 in the j’th column and a 1 elsewhere. Then X.S = X. This
implies that

WS, = W(X)w (58)
=W(XS)i (59)
= —W(X)ir (60)
=W, (61)

where in the second to last equality we used sign equivariance. This implies that Wil/"}, =0.

Hence, for any i’ € [n'], j' € [k'], we have that W (X),s ;» only depends on X/, so we are done. [J

B.2 Sign Equivariant Linear Maps between Tensor Representations

Since the sign equivariant linear maps from R"** — R™ %k are very weak, we now characterize sign
equivariant linear maps between higher order tensor representations, as past work has done for other
groups [Maron et al., 2018, 2019, Finzi et al., 2021]. In particular, we will consider representations
R*"™ for natural numbers m. The action of s € {—1,1}* on V' € R*" is as follows:

(62)

foriy, ..., 4, € [k]. We now prove a result showing that there are no sign equivariant linear maps
between many pairs of tensor representations.

= Siy " 80, Vi

seeytm

Proposition 6. If m, + ms is odd, then the only sign equivariant linear map L : RF™" — RF"™ s

the zero map.

Proof. Let L : R¥"* %K™ be the matrix associated with a sign equivariant linear map from R¥™" —

R*™? This means that for V€ R*"" fori1,.. ., iy, € [k] we have that
k
(LV)i17...,im2 = Z Lilv---;imQ7j1="‘7j7711 ‘/}17"*7.71711' (63)
j17~--7j7n1=1

22



Then by sign equivariance, we have that

L(s-V)=s-(LV), (64)
for s € {—1,1}*, which means that for all i1, ... 4., € [k],
k
Z Lilv"'viWL27jlv--'7jml 'Sjl o 'Sjml ‘/jlv-uvjml (65)
Jiseesdmy =1
k
:Sil U Simz Z Li17...,im27]'1,...,jml ‘/.vjlynw]"ml ? (66)
j17---1j7n1=1
which means that
k
Z Lil;nwimz ;jl7~--»jm1 57;1 U Si7n2 Sjl T Sjvnl ‘/}17---7j7711 (67)
wsdm
k
= j{: Liy,.imydisesimg Vitseeogmy - (68)
J1y--odmy =1
This gives that s - L = L. Choose some arbitrary indices iy, ..., my, j1,---,Jm, € [k]. Since

mq + mq is odd, then one of these values appears an odd number of times — say it is some index
p € [k]. Let s € {—1,1}* have s; = 1 fori # p and s, = —1. Then s - L = L implies that

L. - L,

115ty s J 150 Jmy U1seenslmg sJ15Jmy *

(69)

Which implies that L is zero at these indices, and hence L = 0 everywhere, since these were
arbitrarily chosen indices. O

This implies that we cannot map from RF — RK using sign equivariant linear maps. Thus, if we
want to lift our order-one tensor mput to higher tensor orders in a linear way, then we need to at least

map to third order tensors in RF’. This requires substantial memory cost. Furthermore, we next show
that even if we could map to third order tensors, learning representations of third order tensors with
sign equivariant linear maps is expensive.

Proposition 7. The dimension of the space of sign equivariant linear maps from RF"™' — R*¥"™ g

1
v Z (81 + ...+ Sk)m1+m2- (70)

se{—1,1}*

Proof. This is a direct consequence of the First Projection Formula: see Fulton and Harris [2013]
Section 2.2. In particular, it can be seen that the dimension of this space is equal to

1

o8 Z trace( S (mi+ma)) (71)

SeDiag({—1,1}F)

by the First Projection Formula. Since trace(A ® B) = trace(A) - trace(B), this is equal to

1 1
ok Z trace(S)™1 12 = ok Z (514 ...+ sp)™Hm2, (72)
SeDiag({—1,1}F) se{—1,1}*

O

Using Proposition 7, we have numerically computed the dimension of the space of sign equivariant

linear maps from R’ — R*’; see Table 4. The dimension appears to be 15k — 30k? + 16k for k
up to 20. In particular, when k& = 8, we compute that the space of sign equivariant linear maps from

R — R*” is of dimension 5888, which is already quite large.
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Table 4: Dimension of the space of sign equivariant linear maps between third-order tensor represen-
tations R** — RF’.

k  Dimension
1 1

2 32

3 183

4 544

5 1,205
6 2,256
7 3,787
8 5,888
9 8,649
10 12,160
11 16,511
12 21,792
13 28,093
14 35,504
15 44,115
16 54,016
17 65,297
18 78,048
19 92,359
20 108,320

C Characterization of Sign Equivariant Polynomials

In this Appendix, we characterize the form of the sign equivariant polynomials. This is useful,
because for a finite group, equivariant polynomials universally approximate equivariant continuous
functions [Yarotsky, 2022]; thus, if a model universally approximates equivariant polynomials, then it
universally approximates equivariant continuous functions. Using equivariant polynomials to analyze
or develop equivariant machine learning models has been done successfully in many contexts [Zaheer
et al., 2017, Yarotsky, 2022, Segol and Lipman, 2019, Dym and Maron, 2021, Maron et al., 2019,
2020, Villar et al., 2021, Dym and Gortler, 2022, Puny et al., 2023].

C.1 Sign Invariant Polynomials R* — R

Next, we characterize the form of sign invariant and equivariant polynomials. For simplicity, we start
with the case of sign invariant polynomials p : R¥ — R. The sign equivariant polynomials take a
very similar form. We can write any polynomial from R to R in the form

D
p) = Y Wi o)t -oft (73)
di,...,dp=0

for some coefficients Wy, 4, € R and some D € N. Sign invariance tells us that for any
S = diag(si,...,sx) € diag({—1,1}*), we must have

D D
d d d dy, d d
W, a,vi v =p(v) = p(Sv) = Z Wi, a1 - sptort - ot (74)
dl,...,dk:() dl,...,dk:O
This holds for any v € R¥, so for all choices of d1, .. ., d; we must have

W, Ly :Sill "'S(Iikwdh...,dkv for all (517"'7Sk) € {7171}]6' (75)

Tyeen

Note that sf = 1if d; is an even number. Hence, there are no constraints on Wy, 4, if all d; are
even. On the other hand, suppose d; is odd for some j. Let s; = 1 for ¢ # j and s; = —1. Then the
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constraint says that Wy, 4. = —Wg, . 4,, so we must have Wy, 4 = 0. To summarize, we
have

free d; even for each ¢
Wi, ..., { (76)

0 else

Where being free means that the coefficient may take any value in R. Thus, any sign invariant p only
has terms where each variable v; is raised to an even power. It is also easy to see that any polynomial
p where each variable v; is raised to only even powers is sign invariant, so we have the following
proposition:

Proposition 8. A polynomial p : R¥ — R is sign invariant if and only if it can be written

D
d dy
p(v) = E Wd17 dk'U% 1 ’Ui k 77
i, dp=0

for some coefficients Wy, . 4, € Rand D € N.

In other words, p is sign invariant if and only if there exists a polynomial ¢ : R* — R such that
p(v) = q(v3,...,vd).

C.2 Sign Equivariant Polynomials R — RF

The case of sign equivariant polynomials p : R¥ — R is very similar. For [ € [k], the Ith output
dimension of any polynomial p : R¥ — R¥ can be written

l d d
p(v) = Z W el (78)
di,...,dp=0
where W Ly, € R are coefficients (note the extra [ index, so there are k times more coefficients
than in the invariant case). By sign equivariance, we have
s pv); = p(Sv) (79
d d 5l dy,.d d
s Z Wy a0t = Z Wy gt sl ot (80)
dy,...,d=0 dy,...,dp=0

As this holds for all inputs v € R, we have the following constraints on the coefficients:
sWY o= stsiew) @1)
ngll),...,dk =g - S‘lh .. skkwdll),...,dk’ (82)

where we use the fact that s; = 1/s; since s; € {—1,1}. If d; is odd for j # [, then similarly to
the invariant case, we can take s; = 1 for ¢ # j and s; = —1 in the above equation to see that

ng)v__' a4, = 0. If dy is even, then d; + 1 is odd, so we have that ng)v___ 4, = 0 by the same argument.
Thus, we must have

0) _ [free d; odd, and d; even for each i #1 83)
diseendi 7] else '
Thus, the /th entry p(v); only contains monomials of the term v7® - .. p2#+1 ... 2% where each
term besides v; is raised to an even power. We can factor out a v; and write such terms as v; -

v%dl . id" It is also easy to see that any polynomial with monomials only of this form is sign
equivarlant Thus, we have proven Proposition 9.
Proposition 9. A polynomial p : R — R¥ is sign equivariant if and only if it can be written

D

p(v) = - Z ng)ywdkvfdl . Zd’“ ) (84)
di,...,dp=0

In vector format, p is sign equivariant if and only if it can be written as p(v) = v © piny (V) for a
sign invariant polynomial pi,, : RF — RF,
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C.3 Sign Equivariant Polynomials R"** — R **

Finally, we will handle the case of polynomials p : R*** — R™ %k equivariant to diag({—1, 1}¥).
This is the case we most often deal with in practice, when we have input V"= [v1 ... wy] for
k eigenvectors v; € R™ of some n x n matrix. For a € [n'] and b € [k], the (a, b)th output of a

polynomial R"*k — R™ %k jg

D
PV)ap= > W “’HHVJ , (85)
di, ;=0 i=1j=1

where the sum ranges over d;; € {0,...,D} for ¢ € |[n] and j € [k], and

d=(di1,...,dn1,d1,2,...,dn) is a shorthand to index coefficients Wfia’b) € R. By sign equiv-
ariance, we have that:

Sb‘p(v)a = (VS) (86)
S W TV = 3 Wb TV (87)
di, ;=0 1=1j=1 d;, ;=0 i=1j=1

where J Z’f 1 dir J is the number of times that an entry from column j of V appears in the
product [T, [T% =1 V . As this holds over all V, we thus have that

WY = g, st s W), (88)

By analogous arguments to the previous subsections, if Jj is odd for j # b, we have that the
Wfia’b) = 0. Likewise, if d; is even, we have W((ia’b) = 0. Thus, the constraint on W is

Wfimb) _ {free > ;dipodd, and ), d; ; even for each j # b (89)

0 else

In particular, this means that the only nonzero terms in the sum that defines p(V'), , have an even
number of entries from column j for j # b, and an odd number of entries from column b. Thus, each
term can be written as Vi , - pinv(V')q for some index iq € [n] and sign invariant polynomial pj..
Moreover, it can be seen that any polynomial that only has terms of this form is sign equivariant.
Thus, we have shown the following proposition:

Proposition 10. A polynomial p : R"**F — R *F jg sign equivariant if and only if it can be written

as
D

PV)ar =Y WEVis b pine(V)a, (90)
d,;,j—O

where piny is a sign invariant polynomial, the sum ranges over all d, and iq € [n] for each d.

Now, we show that this implies Theorem 1. In particular, we will write p in the form
p(V) =W (WOV) 0 gin(V)) o1

for sign equivariant linear maps W® and WM, and a sign equivariant polynomial ¢i,,. To do
so, let D denote the number of all possible d that the sum in equation 90 ranges over. We take
W) Rrxk _y RO xk ang |7(2) ; RO xk _y Rn'Xk_ These sign equivariant linear maps have to
act independently on each column of their input, so WMV = [Wl(l)vl, . Wél)vk] for linear maps
Wi(l) ‘R™ — RP™, We define Wb(l) to be the linear map such that (Wb(l)vb)d,a = Wﬁ(la’b) Via,b for
a € [n/]. For the sign invariant polynomial giny, we take giny (V)d,a = Pinv(V)a.

Finally, we define TW(?) to compute the sum in equation 90. In particular, for X = [z1,..., 23] €
RO %k we write W2 X = [W1(2)x1, ce Wéz)xk], where (Wb@)xb)a = Y 4 Tig,b- It can be seen
that with these definitions of W(2), 7W(1) and g;,,,,, we have written p in the desired form.
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C.4 Sign Invariant Polynomials and SignNet

For completeness, here we state the form of the sign invariant polynomials p : R"** — R on
inputs V = [v,...,v;] € R"**. The derivation very closely follows that of the sign equivariant

polynomials from R"** — R™ %k in Appendix C.3, so we omit this derivation.

Proposition 11. A polynomial p : R"** — R is sign invariant if and only if it can be written

D n k
(V)= Wa [T V%, (92)
d

i.5=0 i=1j=1

where Wq # 0 ford = (dy1,...,dy1,d12,...,dypy) only if Y1, d; j is even for each column
j € [k].

In particular, p is sign invariant if and only if there is a polynomial q : R™*"** — R such that
p(V) = a(Virj - Vis.jlis el ineml.jetk))-

The polynomials V' — V;, ; - V;, ; for iy, i € [n] and j € [k] are thus generators of the ring of sign
invariant polynomials from R"** — R.

Notably, Lim et al. [2023] propose universal sign invariant neural architectures, but do not characterize
or otherwise use the sign invariant polynomials. Instead, their proof of universality uses topological
constructions and shows that all sign invariant continuous functions can be decomposed in a simple
form—namely, p([¢(v;) + ¢(—v;)]i=1,... ) for continuous functions p and ¢. Our characterization
of sign invariant polynomials provides another path to developing and analyzing the expressive power
of sign invariant architectures.

In particular, we can give an alternative proof for the universality of SignNet.

Proposition 12 (Universality of SignNet). Let f : X C R"** — R be a continuous sign invariant
function on a compact domain X, and let € > 0. Then there exists a continuous p : R™* - R and
continuous ¢ : R™ — R such that | f(V') — p([¢(v;) + d(—v))i=1,..k)| < eforallV € X.

Proof. First, let p be a sign invariant polynomial that approximates f to within € on &X’. Then using
Proposition 11, let ¢ be a polynomial such that p(V') = q([Vi, j - Vi, jli e[n) izeln).jelk])-

Define ¢ : R® — R" to map a v € R to the vector of pairwise products of elements in v scaled by
1/2, that is

o(v) = %VGC(UUT) 93)

Then ¢(v) + ¢(—v) is equal to the vector of pairwise products of v. Finally, we let p = ¢, which
gives that

p(V) = p([¢(vi) + d(—vi)]i=1,....k)> (94)

and hence
|F(V) = p([6(vi) + d(=vi)li=1,.. k)| = [F(V) —=p(V)| < e (95)
forall V € X. O]

Given the form of the sign invariant polynomials, this proof is quite simple. However, it is technically
weaker than the result of Lim et al. [2023], as they invoke the Strong Whitney Embedding Theorem

and only require ¢ to map to R?" instead of R™". Still, further arguments could probably reduce the
dimension required to about 27 in this polynomial-based proof; as the Gram matrix vv | is rank one,
it can be recovered almost always from about 2n of its entries [Pimentel-Alarcén et al., 2016].

D Sign Equivariant Architecture Universality

In this section, we prove Proposition 3 on the universality of our proposed sign equivariant architec-
tures, which we restate here:
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Proposition 3. Functions of the form v — v © MLP(|v|) universally approximate continuous sign
equivariant functions f : RF — RF.

Compositions fs o f1 of functions f; as in equation 6 universally approximate continuous sign
. . . /
equivariant functions f : R"<F — R™ ¥k,

We prove the two statements of the proposition in the next two subsections.

D.1 Universality for functions R* — R*

Proof. Let X C R* be a compact set, let € > 0, and let fiarget : X — R* be a continuous sign
equivariant function that we wish to approximate within e. Choose a sign equivariant polynomial p
that approximates fiarget to within e /2 on X. By compactness, we can choose a finite bound B > 0
such that |v;| < B forallv € X.

By Proposition 9, we can write p(v); = v; - Zdl dp=0o Wai,..,a,v V24 ~v,§d". By the universal

approximation theorem for multilayer perceptrons we can choose a MLP : X — R” such that
approximates q(v) = Zdl ‘‘‘‘ doeo Wa,.....d, 07 2 2% up to ¢/(2B). Note that ¢(|v|) = ¢(v), s
v — MLP(|v|) also approximates ¢ within €/ (2B) accuracy.

Thus, for all v € X, we have that

D
()i = p(w)il = vi - MLP(o]); —v; - > Wa,a, 07 - 0f™ ] (96)
d=1
= |o|IMLP(Jo]); del ..... PR 97
< B - |MLP(|v|); del, PR Rt (98)
<¢/2, (99)
so || f — pll., < €/2on X and we are done by the triangle inequality. O

D.2 Universality for functions R™*¥ — R" xk

Recall that each layer of our sign equivariant network from R™** — R™ % takes the form

AV =W, ., W] © SignNet, (V).

Proof. Let X C R™** be compact, and let frarget : X — R™ ** be a continuous sign equivariant
function that we wish to approximate. Since X is compact, we can choose a finite bound B > 0 such
that |V;;| < Bforall V € X. Letp : X C R™¥ — R"** be a sign equivariant polynomial that
approximates fiarget Up to €/2 accuracy. Using Proposition 10, we can write

D
p(v)aﬁb = Z W((jmb)‘/id,b 'pinv(V)dv
di,jzo

for some sign invariant polynomials pi,y (V')q. We will have one network layer f; approximate the
summands, and have the second network layer f; compute the sum.

First, we absorb the coefficients ng’b) into the sign invariant part, by defining the sign invariant
polynomial giny (V)d a0 = W(a’b)pinV(V)d, SO we can write

a b= § ‘/;d b Q1nv )d,a,b-

di ;=0

Now, let dpigqen € N denote the number of all possible d that appear in the sum, multiplied by n'.
We define f; : X — Rnidden Xk aq follows. As SignNet [Lim et al., 2023] universally approximates
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sign invariant functions on compact sets, we can let SignNet; : X' — Rdnidden ¥k he 3 SignNet that
approximates giny (V') up to €/(2B) accuracy, so
€

|SignNet; (V) (d,a),6 — Ginv(V)d a0 < 2B diaen” (100)

we also define the weight matrices Wb(l) € Réniaden X of the layer by letting the (d, a)th

For b € [k,
)(d,a),: for any a € [n] only be nonzero in the iqth index, where it is equal to 1. Thus,

row (W,

(K], w
w®
b
(Wb( )vb)(d a) = Vig,b- (101)
Hence, the first layer takes the form
AV )(da): = [Viaa - SignNety (V) @ayq -+ Viak - SignNety (V) a,a) 6] € R, (102)

Now, for the second layer, we let SignNet(V); ; = 1 for all ¢ € [n],j € [k], which can be
represented exactly. Then for each column b € [k] we will define weight matrices Wb(2) such that
(W;Q))ay(dyi) = lif a = ¢ and is 0 otherwise. Then we can see that

f20 fiV)ap =Y Vigs - SignNet; (V)(a,a).5- (103)
d

To see that this approximates the polynomial p, for any V' € A we can bound

‘ ( )a b — f2 o fl a b| Z id,b qlnv )d,a,b - SignNetl(V)(d,a),b) (104)
< Z“/zd, CImV )d,a,b - SignNetl(V)(d,a),bH (105)
S B Z’ Qinv d,a,b - SigIlNetl(V)(d7a)7b)| (106)
d
€
<BY ——— (107)
q 2Bdhidden
€
<€ 108
<3 (108)

By the triangle inequality, fo o f; is e-close to fiarget, SO We are done.

E Experimental Details

E.1 Miscellaneous Experimental Details

We ran the experiments on a HPC server with CPUs and GPUs. Each experiment was run on a single
NVIDIA V100 GPU with 32GB memory. The runtimes for some of our experiments are included in
the main paper. Our codes for our models and experiments will be open-sourced and permissively
licensed.

E.2 Link Prediction in Nearly Synthetic Graphs

The base graphs I we generate are Erdos-Renyi or Barabdsi-Albert graphs with 1000 nodes. We
use NetworkX [Hagberg et al., 2008] to generate and process the graphs. The Erdos-Renyi graphs
have edge probability p = .05 and the Barabdsi-Albert graphs have m = 20 new edges per new node.
Let V = [vy, ..., v;] be Laplacian eigenvectors of the graph. We take & = 16 in these experiments.
The unlearned decoder baseline simply takes the predicted probability of a link between ¢ and j to
be proportional to the dot product of the eigenvectors embeddings of node ¢ and node j; this has no
learnable parameters. In other words, the node embeddings z; and z; are taken to be V; . and V.
respectively, and the edge prediction is 2;" z;. The learned decoder baseline takes the same z; and z;,
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but takes the edge prediction to be MLP(z; ® z;). Every other method learns node embeddings z;
and z;, and takes the edge prediction to be z] Zj.

Each model is restricted to around 25,000 learnable parameters (besides the Unlearned Decoder,
which has no parameters). We train each method for 100 epochs with an Adam optimizer [Kingma
and Ba, 2015] at a learning rate of .01. The train/validation/test split is 80%/10%/10%, and is chosen
uniformly at random.

E.3 Details on n-body Simulations

We follow the experimental setting and build on the code of Puny et al. [2022] (no license as far as
we can tell) for the n-body learning task. The code for generating the data stems from Kipf et al.
[2018] (MIT License) and Fuchs et al. [2020] (MIT License). There are 3000 training trajectories,
2000 validation trajectories, and 2000 test trajectories. We modify the data generation code to apply
to general dimensions d > 3. We do not change any of the scaling factors in doing so. For each
dimension d, we use the same hyperparameters for both the frame averaging model and the sign
equivariant model.

Table 5: n-body simulation results for dimension d = 3. Lower MSE is better. Results are
from [Satorras et al., 2021, Puny et al., 2022, Kaba et al., 2023].

Model Test MSE
Linear .0819
SE(3) Transformer [Fuchs et al., 2020] .0244
TFN [Thomas et al., 2018] .0155
Radial Field [Kohler et al., 2020] .0104
EGNN [Satorras et al., 2021] .0071
FA-GNN [Puny et al., 2022] .0057
CN-GNN [Kaba et al., 2023] 0043
Sign Equivariant (Ours) .0065

In Table

E.4 Node Classification on CLUSTER

In Section 4.3, we show results for the node classification task CLUSTER [Dwivedi et al., 2022a],
where the task is to cluster nodes in graphs drawn from Stochastic Block Models [Abbe, 2017].
Models are restricted to a 100k learnable parameter budget. We largely follow the experimental
setting of Rampasek et al. [2022], except we report results for the eigenvector based methods on 5
runs instead of 10.

We test several eigenvector based methods within the GraphGPS framework and codebase [Rampasek
et al., 2022] (MIT License), which is a state of the art Transformer / GNN hybrid. Firstly, we make
use of the PEG style GraphGPS, which means that the MPNN in the /th GraphGPS layer takes as edge
2
features el(é) = HVi(l) - Vj(l) H , Where Vi(l) € R¥ is the eigenvector embedding of node i in layer (.
This is fully O(k) invariant (which is much stricter than sign / basis invariance), so we relax this to
Also, the standard GraphGPS only updates eigenvector representations (in a nonz-equivariant manner)
before most of the neural network modules. When we add our sign equivariant model, we instead

update eigenvector representations within each GraphGPS layer via V() = fél) (V(l‘l)) for a sign
equivariant fél) : RPxk s RXE,

just be sign invariant in our model by learning a diagonal matrix D) such that e(é) = Vi(l)TD(l) Vj(l).
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