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ABSTRACT

We study a class of decision-making problems with one-sided feedback, where
outcomes are only observable for specific actions. A typical example is bank
loans, where the repayment status is known only if a loan is approved and remains
undefined if rejected. In such scenarios, conventional approaches to causal deci-
sion evaluation and learning from observational data are not directly applicable.
In this paper, we introduce a novel value function to evaluate decision rules that
addresses the issue of undefined counterfactual outcomes. Without assuming no
unmeasured confounders, we establish the identification of the value function us-
ing shadow variables. Furthermore, leveraging semiparametric theory, we derive
the efficiency bound for the proposed value function and develop efficient meth-
ods for decision evaluation and learning. Numerical experiments and a real-world
data application demonstrate the empirical performance of our proposed methods.

1 INTRODUCTION

Binary decision-making problems are pervasive in the real world, encompassing domains such as
bank loan approval (Pacchiano et al., 2021), job hiring (Raghavan et al., 2020), school admission
(Baker & Hawn, 2022), and criminal recidivism prediction (Lakkaraju et al., 2017). Often, feedback
in these scenarios is one-sided. Take bank loan approval as an example: a decision-maker is pre-
sented with covariates describing a loan applicant and decides whether to grant or deny the loan. If
the loan is approved, feedback regarding the applicant’s repayment is subsequently received. How-
ever, if the loan is denied, no further information is obtained. There are two main objectives in these
decision-making processes: (1) evaluating a decision rule that aims to approve loans for applicants
likely to repay while denying loans to those unlikely to do so, based on the expected outcomes it
achieves; and (2) deriving an optimal decision rule that maximizes the expected outcome.

Decision-making with one-sided feedback can be viewed as a special contextual bandit problem with
two actions, “approve” and “reject”, where the outcome is observable exclusively when an individ-
ual is approved. Significant challenges arise due to the inherent heterogeneity between the approved
and rejected groups—specifically, the conditional distribution of the outcome given the covariates
may differ between these two groups. As a result, using an outcome model trained on approved
samples to predict outcomes for the rejected group is generally unfeasible. To address model bias,
one category of approaches uses exploration strategies to gather additional information from new
samples, gradually reducing the bias over time (e.g. Jiang et al., 2021; Pacchiano et al., 2021). How-
ever, most existing works are restricted to binary outcomes and specific outcome models, lacking
robustness to model misspecification and unable to generalize to numerical outcomes. Moreover,
in real-world applications, exploration can be costly, risky, or even unethical, such as in healthcare,
finance, and education. This motivates us to develop practical approaches to decision evaluation and
learning for different types of outcomes from observational data (Dudı́k et al., 2014; Munos et al.,
2016; Wang et al., 2017; Fujimoto et al., 2019; Kallus & Uehara, 2020; Athey & Wager, 2021).

As mentioned above, disparities between approved and rejected groups often lead to variations in
outcome measures due to unobserved differences in action selection, which also serve as predictors
for the outcomes. This phenomenon violates a critical assumption in the causal inference literature
for identifying and estimating the value function, known as the no unmeasured confounders (NUC)
assumption (Imbens, 2004). This assumption, also referred to as strong ignorability (Rosenbaum &
Rubin, 1983) or exogeneity (Imbens & Rubin, 2015), posits that actions are independent of potential
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outcomes given the covariates. Under this assumption, various approaches have been developed for
estimating the value function, such as the inverse propensity weighting (IPW) method (Horvitz &
Thompson, 1952) and the doubly robust (DR) method (Dudı́k et al., 2011; Zhang et al., 2012; Jiang
& Li, 2016). The NUC assumption, however, can be often violated in many real-world scenarios.
When the NUC assumption does not hold, the identifiability of the value function may be com-
promised, and existing estimators under this assumption may no longer be consistent for the value
function.

To deal with such violations, the utilization of instrumental variables (IVs) emerges as a well-
established strategy in the literature (Angrist et al., 1996; Hernán & Robins, 2006; Aronow &
Carnegie, 2013; Wang & Tchetgen Tchetgen, 2018). An IV is defined as a pretreatment variable
that is independent of all unmeasured confounders, and does not have a direct causal effect on the
outcome other than through the action. However, it is acknowledged that identifying suitable IVs
poses a considerable challenge, given the potential existence of numerous unmeasured confounders
and the difficulty in eliminating the possibility of an IV’s dependence on all of them. In contrast to
IVs, we consider an alternative approach using a distinct type of variables known as shadow vari-
ables (SVs) (Wang et al., 2014; Shao & Wang, 2016; Miao et al., 2016; Li et al., 2024). SVs are
independent of the action after conditioning on fully observed covariates and the outcome itself.
Meanwhile, SVs are related to the outcome, potentially through unmeasured confounders. For ex-
ample, in fairness-oriented employment, sensitive attributes such the age of candidates should be
independent of the decision. However, these attributes may be related to the performance of candi-
dates, thereby qualifying them as SVs. With the utilization of SVs, we show that the proposed value
function is identifiable.

The contribution of this paper is multi-fold.

First, we propose a novel value function for decision-making with one-sided feedback. Without
assuming the NUC condition, we consider a model that involves both outcomes and covariates for
the action assignment mechanism. We provide identification for the proposed value function under
this model by leveraging SVs.

Second, we derive the efficient influence function (EIF) and the semiparametric efficiency bound of
the value function. Motivated by the EIF, we develop two different efficient estimators for the value
function with binary and continuous outcomes, respectively. Our proposed estimation strategy does
not require estimating the density when the outcome is continuous, thereby avoiding instability and
distinguishing our methods from existing literature.

Third, we establish theoretical properties for the proposed estimators. We show the estimators are
consistent and achieve semiparametric efficiency bound under mild conditions of nuisance functions
approximation.

Fourth, we propose a classification-based framework for learning the optimal decision rule, which
allows us to leverage a wide range of existing classification tools tailored to different classes of deci-
sion rules. Through numerical experiments, we demonstrate that the proposed method significantly
outperforms conventional decision learning methods.

2 RELATED WORK

Contextual Bandits, Off-policy Evaluation and Learning As formally described in Section 3,
decision-making with one-sided feedback can be formulated as a special type of contextual bandits
problem (Chu et al., 2011; Agrawal & Goyal, 2013; Zhou et al., 2020). There are a limited num-
ber of works focusing on one-sided feedback, with two notable related works in this setting. Jiang
et al. (2021) considered binary outcomes and estimated outcome functions using generalized linear
models, proposing an adaptive online learning approach that integrates uncertainty into outcome
estimation. Pacchiano et al. (2021) studied the same problem setting with binary outcomes, approx-
imating the outcome function using deep neural networks and proposing an online algorithm to train
an optimistic decision-making model. However, their methods cannot be generalized to numerical
outcomes and focus on the online learning setting. In contrast, the primary focus of our work is on
decision evaluation and learning using observational data, commonly referred to as off-policy evalu-
ation and learning in the context of contextual bandits. Off-policy methods have attracted significant
interest, particularly in fields such as finance, medicine, and education, where experimentation and
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exploration can be risky, costly, or even unethical (Dudı́k et al., 2011; Zhang et al., 2012; Wang
et al., 2017; Athey & Wager, 2021).

Selective/Non-Random-Missing Labels Although we study the problem under the contextual ban-
dits setting, it is intrinsically related to the selective/non-random-missing labels problems in semi-
supervised learning (Misra et al., 2016; Kleinberg et al., 2018; Sohn et al., 2020; Coston et al.,
2021). In these problems, only a subset of instances receive labels, determined by the choices of
decision-makers. This issue is further complicated by unmeasured confounders that influence both
human decisions and the resulting outcomes. Lakkaraju et al. (2017) proposed a model evaluation
method based on the assumption that the decisions in the historical dataset are made by different
decision-makers with varying thresholds for their yes-no decisions. Sportisse et al. (2023) studied
the problem in semi-supervised learning, adopting the assumption that the label-missing mechanism
is independent of covariates given the label itself, implying that all covariates are SVs. Based on
this assumption, they constructed consistent estimators for the loss function by modeling the label-
missing mechanism. Hu et al. (2022) adopted the same assumption but proposed estimators without
modeling the missing mechanism. The significant difference in our work is that we do not require all
covariates to be SVs; instead, we allow the missing mechanism to depend on both the covariates and
the outcome. More importantly, we develop the most efficient estimator by utilizing semiparametric
theory.

3 PRELIMINARIES

We consider a binary action A ∈ {0, 1}, where action 1 denotes “approve” and action 0 denotes
“reject”. Let X ∈ X ⊆ Rp denote a vector of covariates, and Y ∈ R denote the observed outcome of
interest. We assume larger values of Y are preferred by convention. We study the problem under the
counterfactual potential-outcome framework (Rubin, 2005). The potential outcomes Y (a), a = 0, 1,
which are the outcomes that would be observed if a subject received action a = 0 or a = 1, both
are well-defined in conventional decision-making problems. Under the Stable Unit Treatment Value
Assumption (SUTVA) (Rubin, 2005), we have Y = AY (1)+(1−A)Y (0). However, under the one-
sided feedback setting, only Y (1) is defined, and the outcome Y is only observed if an individual
is approved (A = 1). In this case, the observed outcome is always Y = Y (1). The observed data
are then {Oi = (YiAi, Ai,Xi), i = 1, . . . , n} and we assume they are independent and identically
distributed.

A decision rule π : X → [0, 1] is a map from covariates to a probability, so that a decision maker,
when presented with covariates X, will select action 1 with probability π(X). In conventional
decision-making, where potential outcomes are defined for both actions, implementing a decision
rule π in a population would yield the population mean outcome, commonly referred to as the value
function, defined as follows:

V (π) = E [Y (1)π(X) + Y (0){1− π(X)}] . (1)

Under the one-sided feedback setting, since Y (0) is not defined, we can no longer use the definition
of value function in (1). We define a new value function as

V1(π) = E{Y (1)π(X)}. (2)

The interpretation of V1(π) is straightforward. Consider a practical example of bank loans and a
deterministic decision rule π (where π(X) can only take on values 0 or 1). Let Y (1) denote the
money earned by the bank if a loan is approved. For an applicant with covariates X, if π(X) = 1,
indicating loan approval, then Y (1)π(X) = Y (1) represents the potential financial outcome for the
bank. On the other hand, if π(X) = 0, indicating loan rejection, the bank neither earns nor loses
any money. Therefore, the newly defined value function V1(π) quantifies the expected monetary
outcome for the bank when implementing decision rule π for loan approvals. We define the optimal
decision rule as the one that maximizes the defined value function: π∗ = argmaxπ∈Π V1(π). Our
first goal is to evaluate a given decision rule π by estimating V1(π) using the historical data {Oi =
(YiAi, Ai,Xi), i = 1, . . . , n}. Our second goal is to learn the optimal decision rule π∗.
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4 IDENTIFICATION, EIF, AND EFFICIENCY BOUND

In this section, we provide the identification of the value function V1(π), and establish the corre-
sponding EIF and efficiency bound under semiparametric theory.

4.1 IDENTIFICATION

Without assuming the NUC condition that Y (1)⊥⊥A | X, we consider a general action assignment
mechanism that depends not only on covariates but also on the potential outcome:

φ(x, y) ≡ P{A = 1 | X = x, Y (1) = y},

and we assume 0 < φ(x, y) < 1. Let f(x) denote the marginal density of X, and let f(y | x, 1)
denote the conditional density of Y (1) given X = x and A = 1. Let w(x) ≡ P(A = 1 | X = x).
We can show that the value function V1(π) has the following representation (details are given in
Appendix A.1) :

V1(π) = E{Y (1)π(X)} =
∫
f(x)w(x)

{∫
y
f(y | x, 1)
φ(x, y)

dy

}
π(x)dx. (3)

Therefore, we can identify V1(π) through identifying f(x), w(x), f(y | x, 1), and φ(x, y). The
likelihood function for a single observation is

f(x)w(x)a{1− w(x)}1−af(y | x, 1)a.

Thus, f(x), w(x), and f(y | x, 1) can be identified from the observed data distribution. However, as
noted in the literature (e.g. Wang et al., 2014; Miao et al., 2016), φ(x, y) is not identifiable without
further assumptions.

We assume that covariates X can be partitioned into two subsets of variables U and Z, i.e. X =
(UT ,ZT )T . U and Z are variables satisfying the following assumptions.

Assumption 4.1 Z⊥⊥A | U, Y (1) and Z⊥̸⊥ Y (1) | U.

Assumption 4.2 For any function h(Y (1),U), E{h(Y (1),U) | X, A = 1} = 0 implies
h(Y (1),U) = 0 almost surely.

Assumption 4.1 indicates Z are SVs and φ(x, y) = P{A = 1 | X = x, Y (1) = y} = P{A = 1 |
U = u, Y (1) = y} = φ(u, y). For example, in fairness-oriented employment, sensitive attributes
such as the age of candidates should be unrelated to the action assignment. If these attributes cor-
relate with the performance of candidates, they can be considered SVs. SVs can be selected based
on expert prior knowledge, or alternatively, representations that serve the role of shadow variables
can be generated directly from observed covariates without the need for prior knowledge (Li et al.,
2024). Assumption 4.2 is known as the conditional completeness assumption, which is widely used
in identification problems (Newey & Powell, 2003; Miao et al., 2015; Yang et al., 2019). This con-
dition guarantees the uniqueness of φ(u, y). When both Y (1) and Z are categorical variables with l
and m levels, respectively, Assumption 4.2 holds if l < m. When Y (1) is continuous, Assumption
4.2 holds when f(y | x, 1) follows some common distributions, such as exponential families.

Theorem 4.3 Under Assumptions 4.1 and 4.2, f(x),w(x), f(y | x, 1), and φ(u, y) are identifiable,
and thus V1(π) is identified by

V1(π) =

∫
f(x)w(x)

{∫
y
f(y | x, 1)
φ(u, y)

dy

}
π(x)dx. (4)

4.2 EIF AND EFFICIENCY BOUND

The identification (4) motivates a rich class of estimators for the value function. However, to guide
the construction of more principled estimators, we derive the EIF and the efficiency bound for the
value function using semiparemetric theory (Bickel et al., 1993; Tsiatis, 2006) in this section. Semi-
parametric models are sets of probability distributions that indexed by both finite-dimensional para-
metric and infinite-dimensional nonparametric components. The semiparametric efficiency bound is
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defined as the supremum of the Cramer-Rao lower bounds for all parametric submodels. The EIF is
the influence function of a semiparametric regular and asymptotically linear estimator that achieves
the semiparametric efficiency bound. We assume a general model for the action assignment mecha-
nism, denoted as φ(u, y; η), which is represented by a parameter η. Consider the Hilbert space T of
all measurable functions of the observed data with mean zero and finite variance, equipped with co-
variance inner product ⟨h1, h2⟩ = E{h1(·)Th2(·)}, where h1, h2 ∈ T . We first derive the nuisance
tangent space and its orthogonal complement, where the nuisance tangent space is defined as the
mean squared closure of all parametric submodel nuisance tangent spaces (Bickel et al., 1993; Tsi-
atis, 2006). For the ease of exposition, we simplify φ(U, Y (1); η) as φ(η) and ∂φ(U, Y (1); η)/∂η
as φ̇(η).

Theorem 4.4 The Hilbert space T can be decomposed as

T = Λ1 ⊕ Λ2 ⊕ Λ⊥,

where

Λ1 = [h1(X) : E{h1(X) = 0}] ,

Λ2 =

[
Ah2(X, Y (1)) +

w(X)−A
1− w(X)

E{h2(X, Y (1)) | X} : E{h2(X, Y (1)) | X, A = 1} = 0

]
,

Λ⊥ =

{
φ(η)−A
φ(η)

g(X)

}
,

g(X) is a function with the same dimension as η, and the notation ⊕ denotes the direct sum of two
spaces that are orthogonal to each other.

Based on Theorem 4.4, the EIF for V1(π) has the following form

ϕeff =h∗1(X)︸ ︷︷ ︸
∈Λ1

+Ah∗2(X) +
w(X)−A
1− w(X)

E{h∗2(X, Y (1)) | X}︸ ︷︷ ︸
∈Λ2

+DTSη,eff︸ ︷︷ ︸
∈Λ⊥

,

where E{h∗1(X) = 0},E{h∗2(X, Y (1)) | X, A = 1} = 0, Sη,eff is the efficient score for η, and D
is a vector with the same dimension as η. The efficient score Sη,eff can be obtained by projecting
the score function of η onto Λ⊥, as stated in the following theorem.

Theorem 4.5 Under Assumptions 4.1 and 4.2, the efficient score for η is

Sη,eff =
φ(η)−A
φ(η)

E
{

φ̇(η)
φ(η)2 | X, A = 1

}
E
{

φ(η)−1
φ(η)2 | X, A = 1

} .
By projecting the value function identification (4) onto Λ1,Λ2, and Λ⊥, we can derive h∗1(X),
h∗2(X), and D. The EIF and semiparametric efficiency bound for the value function are given
in the following theorem.

Theorem 4.6 Under Assumptions 4.1 and 4.2, the EIF for V1(π) is

ϕeff(π) = π(X)

 A

φ(η)
Y +

{
1− A

φ(η)

} E
{

1−φ(η)
φ(η)2 Y | X, A = 1

}
E
{

1−φ(η)
φ(η)2 | X, A = 1

}
− V1(π) +DSη,eff , (5)

where D =

(
E

[
π(X)

E
{

1−φ(η)

φ(η)2
Y |X,A=1

}
E
{

1−φ(η)

φ(η)2
|X,A=1

} φ̇(η)
φ(η)

]
− E

[
π(X)E

{
φ̇(η)
φ(η)2Y | X, A = 1

}])T

{Var(Sη,eff)}−1.

The semiparametric efficiency bound for V1(π) is Υ(π) = E{ϕ2eff(π)}.
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5 EFFICIENT DECISION EVALUATION AND LEARNING

5.1 EFFICIENT VALUE ESTIMATION

Based on the EIF (5), since D is a constant and Sη,eff is a score function with mean zero, we propose
the following estimator for V1(π):

V̂1(π) = Pn

π(x)
 a

φ(η̂)
y +

{
1− a

φ(η̂)

} Ê
{

1−φ(η)
φ(η)2 Y | x, 1

}
Ê
{

1−φ(η)
φ(η)2 | x, 1

}
 , (6)

where Pn[h(x)] =
1
n

∑n
i=1 h(xi) for any given function h(x), and quantities marked with hats are

estimates of their unmarked counterparts. To obtain the value estimator, we first need to estimate η
and two conditional expectations E

{
1−φ(η)
φ(η)2 Y | x, 1

}
and E

{
1−φ(η)
φ(η)2 | x, 1

}
. A general semipara-

metric estimator for η can be obtained by solving the following equation:

Pn

[
φ(u, y; η)− a
φ(u, y; η)

g(x; η)

]
= 0, (7)

where g(x; η) is a calibration function with the same dimension as η. Although this estimator
achieves consistency and asymptotic normality under certain regularity conditions, its efficiency is
not guaranteed. To ensure minimum estimation variability introduced by η̂, we need to derive the
efficient estimator of η, denoted as η̂eff . This estimator can be obtained by solving the estimation
equation based on the efficient score Sη,eff given in Theorem 4.5,

Pn

φ(η)− a
φ(η)

E
{

φ̇(η)
φ(η)2 | x, 1

}
E
{

φ(η)−1
φ(η)2 | x, 1

}
 = 0. (8)

However, the closed forms of the two conditional expectations in (8) are unknown and need to be
approximated. We consider the following two scenarios.

Scenario I: When the outcome Y is binary, say Y ∈ {0, 1}, we can specify a model for
P(Y = 1 | X, A = 1) and we denote its estimator as P̂(Y = 1 | X, A = 1). The conditional
expectations in (8) can be estimated by Ê

{
φ̇(η)
φ(η)2 | X, A = 1

}
= 1

φ(U,1;η)2
∂φ(U,1;η)

∂η P̂(Y = 1 |

X, A = 1) + 1
φ(U,0;η)2

∂φ(U,0;η)
∂η {1 − P̂(Y = 1 | X, A = 1)}, and Ê

{
φ(η)−1
φ(η)2 | X, A = 1

}
=

φ(U,1;η)−1
φ(U,1;η)2 P̂(Y = 1 | X, A = 1) + φ(U,0;η)−1

φ(U,0;η)2 {1 − P̂(Y = 1 | X, A = 1)}. Thus we can get the
efficient estimator η̂eff by solving (8). Next, the conditional expectations in (6) can be estimated by
Ê
{

1−φ(η)
φ(η)2 Y | X, A = 1

}
= 1−φ(U,1;η̂eff )

φ(U,1;η̂eff )2
P̂(Y = 1 | X, A = 1), and Ê

{
1−φ(η)
φ(η)2 | X, A = 1

}
=

1−φ(U,1;η̂eff )
φ(U,1;η̂eff )2

P̂(Y = 1 | X, A = 1) + 1−φ(U,0;η̂eff )
φ(U,0;η̂eff )2

{1 − P̂(Y = 1 | X, A = 1)}. By plugging

the estimators η̂eff , Ê
{

1−φ(η)
φ(η)2 Y | X, A = 1

}
, and Ê

{
1−φ(η)
φ(η)2 | X, A = 1

}
into (6), we obtain the

value estimator and denote it as V̂eff(π).

Scenario II: When the outcome Y is continuous, one can still first model the conditional density
f(y | x, 1). However, the density estimation often requires large sample sizes and complex al-
gorithms to achieve accurate estimates. This can be computationally intensive and prone to high
variance, particularly in high-dimensional spaces. Instead, we propose a two-step estimation strat-
egy. In step 1, we find a root-n consistent estimator η̂(1). For example, we can choose a simple
calibration function g(x; η) and solve the equation (7). In step 2, we construct pseudo-outcomes
φ̇(η̂(1))
φ2(η̂(1))

and φ(η̂(1))−1
φ2(η̂(1))

and the estimators of the conditional expectations, Ê
{

φ̇(η)
φ(η)2 | X, A = 1

}
and

Ê
{

φ(η)−1
φ(η)2 | X, A = 1

}
can then be obtained using regression with these pseudo-outcomes. Thus

we can get the efficient estimator η̂eff by solving (8). Similarly, we can construct pseudo-outcomes
1−φ(η̂eff )
φ(η̂eff )2

Y and 1−φ(η̂eff )
φ(η̂eff )2

. The estimators Ê
{

1−φ(η)
φ(η)2 Y | X, A = 1

}
, and Ê

{
1−φ(η)
φ(η)2 | X, A = 1

}
can be obtained using regression with these pseudo-outcomes. By plugging the estimators η̂eff ,

6
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Ê
{

1−φ(η)
φ(η)2 Y | X, A = 1

}
, and Ê

{
1−φ(η)
φ(η)2 | X, A = 1

}
into (6), we obtain the value estimator and

denote it as V̂eff(π).

We now establish the theoretical results for the proposed value estimator. We first make the following
assumptions for the nuisance functions and their approximations.

Assumption 5.1 For all x ∈ X , (i) {|k1(x)|, |k̂1(x)|} > 0, where k1(x) = Ê
{

φ(η)−1
φ(η)2 | x, 1

}
;

(ii) for any k2(x) ∈
{
E
{

φ̇(η)
φ(η)2 | x, 1

}
,E
{

1−φ(η)
φ(η)2 Y | x, 1

}}
, {|k2(x)|, |k̂2(x)|} < ∞. (iii) for

any k3(x) ∈
{
E
{

φ(η)−1
φ(η)2 | x, 1

}
,E
{

1−φ(η)
φ(η)2 Y | x, 1

}
,E
{

φ̇(η)
φ(η)2 | x, 1

}}
, k̂3(x)

p−→ k3(x).

Assumption 5.1 (i) and (ii) require that the conditional expectations and their estimations are
bounded. Assumption 5.1 (iii) requires that the conditional expectations are consistently estimated.
In the case of a binary outcome, the estimation of P(Y = 1 | X, A = 1) is required to be consistent.
For continuous outcomes, given the root-n consistency of η̂(1), we only require that the regression
with constructed pseudo-outcomes is consistent. This can be achieved by various machine and deep
learning models (e.g. Kennedy, 2016; Farrell et al., 2021).

Theorem 5.2 Under Assumptions 4.1, 4.2, and 5.1 (i) (ii), V̂eff(π) is a consistent estimator for
V1(π). Additionally, if Assumption 5.1 (iii) holds, V̂eff(π) achieves the semiparametric efficiency
bound Υ(π).

5.2 FROM EFFICIENT DECISION EVALUATION TO LEARNING

In this section, we propose a method based on the efficient estimator V̂eff(π) to learn the optimal
decision rule, π∗ = argmaxπ∈Π V1(π). A natural estimator for the optimal decision rule π∗ would
be π̂ = argmaxπ∈Π V̂eff(π). However, this direct search poses a significant challenge as it typically
involves non-convex and non-smooth optimization problems and can be computationally expensive.
We have the following proposition to transform it into a weighted classification problem.

Proposition 5.3 Maximizing the value estimator V̂eff(π) is equivalent to a weighted classification
problem of minimizing the following loss function over π ∈ Π,

n−1
n∑

i=1

I{I{ψ̂(xi, yi, ai) > 0} ≠ π(xi)}|ψ̂(xi, yi, ai)|, (9)

where ψ̂(xi, yi, ai) =
ai

φi(η̂eff )
yi +

{
1− ai

φi(η̂eff )

} Ê
{

1−φ(η)

φ(η)2
Y |xi,1

}
Ê
{

1−φ(η)

φ(η)2
|xi,1

} , for 1 ≤ i ≤ n.

With Proposition 5.3, we have transformed the optimal decision rule learning into a weighted clas-
sification problem (9) where for subject i with features xi , the true label is I{ψ̂(xi, yi, ai) > 0}
and the sample weight is |ψ̂(xi, yi, ai)|. The choice of classification approach dictates the restricted
class Π. We summarize the learning procedure in Algorithm 1. Compared to a direct search, a
classification-based optimizer facilitates handling more complex functional classes and allows for
the use of off-the-shelf machine learning and deep learning software packages.

6 EXPERIMENTS
Algorithm 1 Efficient Learning under One-sided Feedback

Input: Training data Dn = {YiAi, Ai,Xi}ni=1.
Output: Estimated optimal decision rule π̂.
Construct estimators η̂eff , Ê

{
1−φ(η)
φ(η)2 Y | X, A = 1

}
, and

Ê
{

1−φ(η)
φ(η)2 | X, A = 1

}
.

for i = 1 to n do
Construct labels Li = I{ψ̂(Xi, Yi, Ai) > 0}, and

weights Wi = |ψ̂(Xi, Yi, Ai)|.
end for
π̂ ← Build a weighted classification model with features
Xi, labels Li, and weights Wi, for 1 ≤ i ≤ n.
Return: π̂.

We have carried out extensive simu-
lation studies and a real data appli-
cation to evaluate the performance of
the proposed methods.

6.1 SYNTHETIC SCENARIOS

We compare the proposed method
with three alternative methods. One
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consistent but not efficient estimator for η is the solution to the estimation equation (7) with a
simple choice g(x; η). We denote this estimator as η̂naive. The first estimator for the value
function is the IPW estimator with η̂naive: V̂IPW−naive(π) = Pn

[
a

φ(η̂naive)
yπ(x)

]
. The sec-

ond estimator is also an IPW estimator but with η̂eff : V̂IPW−eff(π) = Pn

[
a

φ(η̂eff )
yπ(x)

]
.

The third estimator is the DR estimator (Zhang et al., 2012; Dudı́k et al., 2014): V̂DR(π) =

Pn

(
π(x)

[
a

ŵ(x)

{
y − Ê(y | x)

}
+ Ê(y | x)

])
.

Decision Evaluation: We first generate covariates X = (X1, X2, X3)
T ∼ N((1,−1, 0)T ,Σ),

where Σ =

(
1 −0.25 −0.25

−0.25 1 −0.25
−0.25 −0.25 1

)
.We consider two types of potential outcome, continuous

and binary.

Case 1: The potential outcome Y (1) is generated by Y (1) = 8X1 − 4X2
1 − 4X2 + 4X2

3 + ϵ,
where ϵ is generated from a normal distribution with mean 0 and standard deviation 0.5. The action
A is generated from A ∼ Bernoulli{φ(X, Y (1))}, and logit{φ(X, Y (1))} = 1/[1 + exp{0.5 −
X1 − X2 − 0.1Y (1)}]. Thus, X3 is the shadow variable. We construct three different evaluation
decision rules as mixtures of a deterministic decision rule πd(X) = I(2X1 −X2

1 −X2 +X2
3 > 0)

and the uniform random decision rule πu(X) by changing a mixture parameter α, i.e., π(X) =
απd(X) + (1− α)πu(X). The candidates of the mixture parameter α are {0.6, 0.3, 0.0}.
Case 2: The potential outcome Y (1) follows a Bernoulli distribution with probability of success
1/{1 + exp(X1 +X2 +X3)}. The action A is generated from A ∼ Bernoulli{φ(X, Y (1))}, and
logit{φ(X, Y (1))} = 1/[1 + exp{−X1 + 0.5X2 − 0.7Y (1)}]. Thus, X3 is the shadow variable.
We construct three different evaluation decision rules as mixtures of a deterministic decision rule
πd(X) = I(X1+X2+X3 < 0) and the uniform random decision rule πu(X) by changing a mixture
parameter α, i.e., π(X) = απd(X)+ (1−α)πu(X). The candidates of the mixture parameter α are
{0.7, 0.4, 0.0}.
For both cases, the true value function for each evaluation decision rule is obtained by generating
a large sample {Xi, Yi(1)}Ni=1 with size N = 105 and applying the empirical version of V (π) =
E[Y (1)π(X)]. We consider a correctly specified logistic regression model for φ(η). We obtain
η̂naive using g(x; η) = (1, x1, x2, x3)

T . We obtain the efficient estimators η̂eff and V̂eff(π) using the
approach introduced in Section 5. Specifically, in case 1, all the regressions with pseudo-outcomes
are using random forest (RF) models. In case 2, we estimate P(Y = 1 | X, A = 1) using a
generalized additive model (GAM). For the DR estimator, we estimate w(x) using GAM in both
cases. We estimate E(y | x) using RF in case 1 and using GAM in case 2.

We consider samples with size n = 1000, 2000. For each case, we conduct 500 replications. The
root-mean-square error (RMSE), the standard deviation (SD), and the bias results for cases 1 and 2
are reported in Table 1 and Table 2.

Table 1: Simulation results for case 1: (a) 0.0πd + 1.0πu, (b) 0.3πd + 0.7πu, (c) 0.6πd + 0.4πu.
(a) (b) (c)

RMSE SD Bias RMSE SD Bias RMSE SD Bias
n = 1000

V̂eff 0.3512 0.3480 0.0468 0.5509 0.5483 0.0530 0.7999 0.7977 0.0591
V̂IPW−naive 0.7893 0.7890 -0.0229 0.8279 0.8278 -0.0127 0.8740 0.8740 -0.0024
V̂IPW−eff 0.6172 0.6119 0.0807 0.8426 0.8387 0.0809 1.0852 1.0822 0.0810
V̂DR 0.4421 0.1559 0.4138 0.4371 0.1842 0.3964 0.4364 0.2162 0.3790

n = 2000

V̂eff 0.2003 0.1985 0.0274 0.2016 0.2005 0.0209 0.2169 0.2165 0.0143
V̂IPW−naive 0.7057 0.7026 -0.0662 0.7363 0.7341 -0.0575 0.7733 0.7718 -0.0489
V̂IPW−eff 0.2563 0.2539 0.0353 0.2771 0.2761 0.0228 0.3121 0.3119 0.0103
V̂DR 0.3647 0.1077 0.3485 0.3538 0.1245 0.3312 0.3455 0.1444 0.3139

We have the following observations. V̂eff , V̂IPW−naive, and V̂IPW−eff are nearly unbiased with sam-
ple size n = 1000, 2000. However, V̂DR has a significantly larger bias when compared to other
estimators. This is because the NUC assumption is violated in this setting. Among three consis-
tent estimators V̂eff ,V̂IPW−naive, and V̂IPW−eff , V̂eff has the smallest standard deviation and RMSE,
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Table 2: Simulation results for case 2. (a) 0.0πd + 1.0πu, (b) 0.4πd + 0.6πu, (c) 0.7πd + 0.3πu.
(a) (b) (c)

RMSE SD Bias RMSE SD Bias RMSE SD Bias
n = 1000

V̂eff 0.0172 0.0172 -0.0005 0.0207 0.0207 -0.0008 0.0239 0.0239 -0.0011
V̂nv1 0.0204 0.0204 -0.0001 0.0246 0.0246 -0.0003 0.0282 0.0282 -0.0005
V̂nv2 0.0179 0.0179 -0.0006 0.0219 0.0219 -0.0009 0.0254 0.0253 -0.0012
V̂nv3 0.0196 0.0097 0.0170 0.0223 0.0124 0.0185 0.0248 0.0152 0.0196

n = 2000

V̂eff 0.0119 0.0119 -0.0005 0.0142 0.0142 -0.0009 0.0163 0.0163 -0.0013
V̂nv1 0.0141 0.0141 -0.0003 0.0167 0.0167 -0.0006 0.0190 0.0190 -0.0009
V̂nv2 0.0122 0.0122 -0.0004 0.0148 0.0147 -0.0007 0.0171 0.0170 -0.0009
V̂nv3 0.0179 0.0069 0.0166 0.0198 0.0087 0.0178 0.0215 0.0106 0.0187

which is expected. One interesting observation is that for case 1, when sample size n = 1000,
the standard deviations of V̂IPW−naive with decision rules (b) and (c) are smaller than those of
V̂IPW−eff . One possible reason is that when the sample size is small, the performance of nonpara-
metric regressions with pseudo-outcomes may have larger variation. As the sample size increases,
the standard deviations and RMSEs of three consistent estimators V̂eff ,V̂IPW−naive, and V̂IPW−eff

become smaller.

Decision Learning: We consider the same covariates as those used in decision evaluation. The
potential outcome is generated by Y (1) = 8X1 − 6X2

1 − 4X2 + 2X2
3 + ϵ, where ϵ is generated

from a normal distribution with mean 0 and standard deviation 0.25. The action A is generated from
A ∼ Bernoulliφ(X, Y (1)) = 1/[1+exp{0.5−X1−X2−0.15Y (1)}]. We construct four estimators
following the same procedure as in decision evaluation. We use a tree-based classification algorithm
introduced in Zhou et al. (2023). To evaluate and compare the performance of estimated optimal
decision rules obtained by different methods, we compute the corresponding value functions and
percentages of making correct decisions (PCD). Again, we generate a large sample {Xi, Yi(1)}Ni=1
with size N = 105. For a fixed decision rule π, its value function is computed using the empirical
version of V (π) = E[Y (1)π(X)]. We then maximize the value function and obtain the oracle
optimal decision rule within the same class of rules, denoted as π∗. For each estimated optimal
decision rule π̂, its associated value function is computed using the generated large sample and the
PCD is computed by N−1

∑N
i=1 |π̂(Xi) − π∗(Xi)|. We report the value and PCD results for the

decision rules obtained by different methods in Figure 1. We observe that the decision rule obtained
by our proposed method has best performance compared with other methods, in terms of values and
PCDs. For our proposed method, as the sample size increases, the means of values become larger,
PCDs get close to 1, and the standard deviations of values and PCDs become smaller.

Figure 1: The values and PCDs of estimated optimal decision rules.
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6.2 REAL DATA APPLICATION

In this section, we apply our method to a loan application dataset from a fintech company. A sim-
ulated dataset based on the real data is available upon request. The fintech lender aims to provide
short-term credit to young salaried professionals by using their mobile and social footprints to deter-
mine their credit-worthiness. To get a loan, a customer needs to download the lending app, submit
all the requisite details and documentation, and give permission to the lender to gather additional
information from the smartphone, such as the number of apps and SMSs. We obtained data from
the lending firm for all loans granted from February 2016 to November 2018. There are 42,777
customers in total. We select 8 covariates and they are applicants’ age, salary, loan amount, CIBIL
credit score, number of apps, number of SMSs, number of contacts, and number of social connec-
tions. The action A are whether or not the lender approves the loan applications. The outcome Y is
defined as 1 if the loan is repaid, and -1 if the applicant defaults on the loan. We conduct hypoth-
esis testing, and our analysis reveals no significant evidence suggesting that the number of social
connections violates Assumption 4.1. Therefore, we consider it as a SV.

We randomly sample the training data with a size 3000 and 5000. We compare the four estimators
introduced in Section 6.1. Since Y is binary, we estimate E(Y | X) for DR and P(Y | X, A = 1) for
the proposed method using GAM. For DR method, we estimate w(X) using GAM as well. We use
the same classification algorithm as in the synthetic scenarios to estimate the optimal decision rule.
The proposed efficient estimator over the entire dataset is used as the testing value. The training-
testing procedure is repeated 100 times. We report the results of testing values in Figure 2. We
observe that the average value of proposed method is much larger than those of other three methods,
while the variability of proposed method is smaller. This implies the proposed method has better
performance than other three methods.

Figure 2: The boxplots of testing values under estimated optimal decision rules by different methods.

7 CONCLUSION

In this paper, we propose a novel framework for causal decision making under the one-sided feed-
back setting. Specifically, we define a new value function for this task and provide identification
leveraging SVs, without assuming NUC. We develop efficient evaluation and learning methods mo-
tivated by semiparametric theory. Numerical experiments and a real-world data application demon-
strate the empirical performance of our proposed methods. Although this work focuses on the con-
textual bandits setting, our method has significant potential for extension to many semi-supervised
learning tasks (Hu et al., 2022; Sportisse et al., 2023) and generative models (Ma & Zhang, 2021;
Ipsen et al., 2021) with non-random missing data.
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A TECHNICAL PROOFS

A.1 PROOF OF THEOREM 4.3

Proof.
E{Y (1) | X = x}

=E{Y (1) | X = x,A = 1}w(x) + E{Y (1) | X = x,A = 0}{1− w(x)}

=w(x)

{∫
yf(y | x, 1)dy

}
+ {1− w(x)}

{∫
yf(y | x, 0)dy

}
=w(x)

{∫
yf(y | x, 1)dy

}
+

{∫
y{1− w(x)}f(y | x, 0)dy

}
=w(x)

{∫
yf(y | x, 1)dy

}
+

{∫
yf(y | x, 1)

[
f(y | x, 0){1− w(x)}

f(y | x, 1)

]
dy

}
=w(x)

{∫
yf(y | x, 1)dy

}
+

{∫
yf(y | x, 1)

[
w(x)

{
1

φ(x, y)
− 1

}]
dy

}
=w(x)

{∫
yf(y | x, 1)dy

}
+ w(x)

{∫
yf(y | x, 1)

[{
1

φ(x, y)
− 1

}]
dy

}
=w(x)

∫
y
f(y | x, 1)
φ(x, y)

dy.

Therefore,
V1(π) = E{Y (1)π(X)}

=E (E[{Y (1)π(X)} | X])

=

∫
f(x)π(x)E{Y (1) | X = x}dx

=

∫
f(x)w(x)

{∫
y
f(y | x, 1)
φ(x, y)

dy

}
π(x)dx.

To identify V (π), we need to identify f(x), w(x), f(y|x, 1), and φ(x, y). The likelihood function
for a single observation is

f(x)w(x)a{1− w(x)}1−af(y | x, 1)a.
A key observation is that

w(x)
−1

=

∫
f(y|x, 1)
φ(x, y)

dy.

Under Assumption 4.1, φ(x, y) = P{A = 1 | X = x, Y (1) = y} = P{A = 1 | U = u, Y (1) =
y} = φ(u, y), and the likelihood function becomes

f(x)

{∫
f(y|x, 1)
φ(u, y)

dy

}−a
[
1−

{∫
f(y|x, 1)
φ(u, y)

dy

}−1
]1−a

f(y|x, 1)a.

Assume we have two different sets of models f(x), f(y | x, 1), φ(u, y), and f̃(x), f̃(y | x, 1),
φ̃(u, y), such that

f(x)

{∫
f(y|x, 1)
φ(u, y)

dy

}−a
[
1−

{∫
f(y|x, 1)
φ(u, y)

dy

}−1
]1−a

f(y|x, 1)a

=f̃(x)

{∫
f̃(y|x, 1)
φ̃(u, y)

dy

}−a
1−{∫ f̃(y|x, 1)

φ̃(u, y)
dy

}−1
1−a

f̃(y|x, 1)a. (10)

Taking a = 0 in (10), we have

f(x)

[
1−

{∫
f(y|x, 1)
φ(u, y)

dy

}−1
]
= f̃(x)

1−{∫ f̃(y|x, 1)
φ̃(u, y)

dy

}−1
 . (11)
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Taking a = 1 and taking integration with respect to Y (1) on both sides of the above equation, we
have

f(x)

{∫
f(y|x, 1)
φ(u, y)

dy

}−1

= f̃(x)

{∫
f̃(y|x, 1)
φ̃(u, y)

dy

}−1

. (12)

By Equations (11) and (12), we have

f(x) = f̃(x) and
∫
f(y|x, 1)
φ(u, y)

dy =

∫
f̃(y|x, 1)
φ̃(u, y)

dy.

Taking a = 1 in (10), we have

f(x)

{∫
f(y|x, 1)
φ(u, y)

dy

}−1

f(y|x, 1) = f̃(x)

{∫
f̃(y|x, 1)
φ̃(u, y)

dy

}−1

f̃(y|x, 1).

Thus, we have
f(y|x, 1) = f̃(y|x, 1).

Finally, from ∫
f(y|x, 1)
φ(u, y)

dy =

∫
f(y|x, 1)
φ̃(u, y)

dy,

and Assumption 4.2, we have
φ(u, y) = φ̃(u, y).

Thus, f(x), w(x), f(y|x, 1), and φ(x, y) are all identified. The value function V1(π) is then identi-
fied. □

A.2 PROOF OF THEOREM 4.4

Proof. Let O = {AY,A,X} summarize the vector of observed variables with the likelihood factor-
ized as

f(O) = f(X)w(X)A{1− w(X)}1−Af(Y | X,A = 1)A.

We consider a one-dimensional parametric submodel fθ1(X) for f(X), and a one-dimensional
parametric submodel fθ2(Y | X,A = 1) for f(Y | X,A = 1), respectively. The submodel
fθ1(X) contains the true model f(X) at θ1 = 0, i.e., fθ1(X) |θ1=0= f(X). Similarly, the
submodel fθ2(Y | X,A = 1) contains the true model f(Y | X,A = 1) at θ2 = 0, i.e.,
fθ2(Y | X,A = 1) |θ2=0= f(Y | X,A = 1). The submodel for the likelihood can be repre-
sented as

fθ1,θ2(O) = fθ1(X)wθ2(X)A{1− wθ2(X)}1−Afθ2(Y | X,A = 1)A.

∂ log fθ1,θ2(O)

∂θ1
=
∂ log fθ1(X)

∂θ1
,

∂ log fθ1,θ2(O)

∂θ2
= A

∂ log fθ2(Y | X,A = 1)

∂θ2
+
wθ2(X)−A
1− wθ2(X)

E
{
∂ log fθ2(Y | X,A = 1)

∂θ2
| X
}
.

By the semiparametric theory (Bickel et al., 1993; Tsiatis, 2006), we have the nuisance tangent
spaces

Λ1 = [h1(X) : E{h1(X) = 0}] ,

Λ2 =

[
Ah2(X,Y (1)) +

w(X)−A
1− w(X)

E{h2(X,Y (1)) | X} : E{h2(X,Y (1)) | X,A = 1} = 0

]
.

It is easy to verify that Λ1 ⊥ Λ2. Consider a generic mean zero element in Λ⊥, Ag1(X,Y (1)) +
(1−A)g2(X). Since Λ1 ⊥ Λ⊥, for any measurable mean zero function h1(X), we have

E[{Ag1(X,Y (1)) + (1−A)g2(X)}h1(X)]

=E(E[{Ag1(X,Y (1)) + (1−A)g2(X)}h1(X) | X])

=E([w(X)E{g1(X,Y (1)) | X,A = 1}+ {1− w(X)}g2(X)]h1(X))

=0.
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Therefore, w(X)E{g1(X,Y (1)) | X,A = 1} + {1 − w(X)}g2(X) is a constant and we denote it
as c. Since Ag1(X,Y (1)) + (1−A)g2(X) is mean zero, we have

E{Ag1(X,Y (1)) + (1−A)g2(X)}
=E[w(X)E{g1(X,Y (1)) | X,A = 1}+ {1− w(X)}g2(X)]

=E(c) = 0.

Therefore, we have

w(X)E{g1(X,Y (1)) | X,A = 1}+ {1− w(X)}g2(X) = 0. (13)

Since Λ2 ⊥ Λ⊥, we have

E
(
{Ag1(X,Y (1)) + (1−A)g2(X)}

[
Ah2(X,Y (1)) +

w(X)−A
1− w(X)

E{h2(X,Y (1)) | X}
])

=E [w(X)E{g1(X,Y (1))h2(X,Y (1)) | X,A = 1}+ g2(X)E{h2(X,Y (1)) | X}]

=E
[
w(X)E{g1(X,Y (1))h2(X,Y (1)) | X,A = 1}+ w(X)g2(X)E

{
h2(X,Y (1))

φ(η)
| X,A = 1

}]
=E

(
E
[
w(X)

{
g1(X,Y (1)) +

g2(X)

φ(η)

}
h2(X,Y (1)) | X,A = 1

])
=0.

Therefore, g1(X,Y (1)) + g2(X)
φ(η) is a function of X and we denote it as k(X):

k(X) = g1(X,Y (1)) +
g2(X)

φ(η)
.

Taking the conditional expectation on both sides, and by (13), we have

k(X) = E{g1(X,Y (1)) | X,A = 1}+ g2(X)

w(X)
= g2(X).

Therefore, we have

g2(X) = g1(X,Y (1)) +
g2(X)

φ(η)
.

Thus,

Ag1(X,Y (1)) + (1−A)g2(X) =
φ(η)−A
φ(η)

g1(X),

and Λ⊥ =
{

φ(η)−A
φ(η) g1(X)

}
. This completes the proof. □

A.3 PROOF OF THEOREM 4.5

Proof. The score function for η is

Sη =
A− w(X)

1− w(X)
E
{
φ̇(η)

φ(η)
| X
}
.

The efficient score for η is the projection of the score function Sη onto the space Λ⊥. Notice that
Sη ⊥ Λ1. Therefore, we can write

A− w(X)

1− w(X)
E
{
φ̇(η)

φ(η)
| X
}

= Ab(X,Y (1)) +
w(X)−A
1− w(X)

E{b(X,Y (1)) | X}︸ ︷︷ ︸
∈Λ2

+
φ(η)−A
φ(η)

c(X)︸ ︷︷ ︸
Λ⊥

,

(14)

where E{b(X,Y (1)) | X,A = 1} = 0. Let A = 1 in (14), we have

E
{
φ̇(η)

φ(η)
| X
}

= b(X,Y (1))− E{b(X,Y (1)) | X}+ φ(η)− 1

φ(η)
c(X).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

By taking E(· | X) on both sides, we have

c(X) =
E
{

φ̇(η)
φ(η) | X

}
1− E

{
1

φ(η) | X
} =

E
{

φ̇(η)
φ(η)2 | X,A = 1

}
E
{

φ(η)−1
φ(η)2 | X,A = 1

} .
Therefore,

Sη,eff =
φ(η)−A
φ(η)

E
{

φ̇(η)
φ(η)2 | X,A = 1

}
E
{

φ(η)−1
φ(η)2 | X,A = 1

} .
Let A = 0 in (14), we can further derive that

b(X,Y (1)) =

{
1

φ(η)
− 1

w(X)

}
c(X).

□

A.4 PROOF OF THEOREM 4.6

Proof. We consider a one-dimensional parametric submodel fα(X) for f(X), and a one-
dimensional parametric submodel fβ(Y | X,A = 1) for f(Y | X,A = 1), respectively. The
submodel fα(X) contains the true model f(X) at α = α0, i.e., fα0

(X) = f(X). Similarly,
the submodel fβ(Y | X,A = 1) contains the true model f(Y | X,A = 1) at β = β0, i.e.,
fβ0

(Y | X,A = 1) = f(Y | X,A = 1). Let θ = (α, β). The submodel for the likelihood can be
represented as

fθ,η(O) = fα(X){wβ,η(X)}Afβ(Y |X,A = 1){1− wβ,η(X)}1−A,

which contains the true model at θ0 = (α0, β0). For the ease of exposition, we write V1(π) as V (π).
We use θ in the subscript to denote the quantity with respect to the submodel, e.g., Vθ(π) is the value
of V (π) in the submodel.

Let

Sα0
=
∂ log fθ(O)

∂α

∣∣∣∣
θ=θ0

=
∂ log fα(X)

∂α

∣∣∣∣
α=α0

,

Sβ0 =
∂ log fθ(O)

∂β

∣∣∣∣
θ=θ0

= A
∂ log fβ(Y |X,A = 1)

∂β

∣∣∣∣
β=β0

+
w(X)−A
1− w(X)

E

{
∂ log fβ(Y |X,A = 1)

∂β

∣∣∣∣
β=β0

| X

}
,

Sη =
∂ log fθ(O)

∂η

∣∣∣∣
θ=θ0

=
A− w(X)

1− w(X)
E
{
∂ logφ(η)

∂η
| X
}
.

Let sβ0 =
∂ log fβ(Y |X,A=1)

∂β

∣∣∣∣
β=β0

and sη = ∂ logφ(η)
∂η .

By the semiparametric theory, the EIF for V (π) must have the form

ϕeff =h∗1(X)︸ ︷︷ ︸
∈Λ1

+Ah∗2(X) +
w(X)−A
1− w(X)

E{h∗2(X,Y (1)) | X}︸ ︷︷ ︸
∈Λ2

+DTSη,eff︸ ︷︷ ︸
∈Λ⊥

,

where E{h∗1(X) = 0},E{h∗2(X,Y (1)) | X,A = 1} = 0, and D is a vector with the same dimen-
sion as η. The EIF ϕeff for V (π) must satisfy

∂Vθ(π)/∂α|θ=θ0 = E(ϕeffSα0
),

∂Vθ(π)/∂β|θ=θ0 = E(ϕeffSβ0),

∂Vθ(π)/∂η|θ=θ0 = E(ϕeffSη).
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(I)

∂Vθ(π)/∂α |θ=θ0 = E
[
π(X)w(X)E

{
Y

φ(η)
| X,A = 1

}
Sα0

]
,

E(ϕeffSα0
) = E{h∗1(X)Sα0

}.

We have

h∗1(X) = π(X)w(X)E
{

Y

φ(η)
| X,A = 1

}
− V (π).

(II)

∂Vθ(π)/∂β |θ=θ0= E [π(X){Y (1)− E(Y (1)|X)}sβ0 ] ,

E(ϕeffSβ0
) = E

([
φ(η)h∗2(X,Y (1)) +

w(X)

1− w(X)
E{h∗2(X,Y (1)) | X}

]
sβ0

)
.

∂Vθ(π)/∂β |θ=θ0 −E(ϕeffSβ0
)

=E
([
φ(η)h∗2(X,Y (1)) +

w(X)

1− w(X)
E{h∗2(X,Y (1)) | X} − π(X){Y (1)− E{Y (1)|X}

]
sβ0

)
=E

{
E
([
h∗2(X,Y (1)) +

w(X)

1− w(X)

E{h∗2(X,Y (1))} | X}
φ(η)

− π(X)
Y (1)− E{Y (1)|X}

φ(η)

]
φ(η)sβ0

)
| X
}
.

Since E{φ(η)sβ0 | X} = 0, h∗2(X,Y (1))+ w(X)
1−w(X)

E{h∗
2(X,Y (1))}|X}

φ(η) −π(X)Y (1)−E{Y (1)|X}
φ(η) must

be a function of X and we denote it as m(X):

m(X) = h∗2(X,Y (1)) +
w(X)

1− w(X)

E{h∗2(X,Y (1))} | X}
φ(η)

− π(X)
Y (1)− E{Y (1)|X}

φ(η)
. (15)

Taking the conditional expectation on both sides, we have

m(X) =
E{h∗2(X,Y (1)) | X}

1− w(X)
.

Therefore, we have

E{h∗2(X,Y (1)) | X}
1− w(X)

= h∗2(X,Y (1))+
w(X)

1− w(X)

E{h∗2(X,Y (1))} | X}
φ(η)

−π(X)
Y (1)− E{Y (1)|X}

φ(η)
.

Taking E(· | X) on both sides,

E{h∗2(X,Y (1)) | X}
1− w(X)

=E{h∗2(X,Y (1)) | X}+ w(X)

1− w(X)
E{h∗2(X,Y (1)) | X}E{1/φ(η) | X}

− π(X) [E{Y (1)/φ(η) | X} − E{Y (1) | X}E{1/φ(η) | X}] .

We have

E{h∗2(X,Y (1)) | X} = π(X)
1− w(X)

w(X)

E {Y (1)/φ(η) | X} − E{Y (1) | X}E{1/φ(η) | X}
E{1/φ(η) | X} − 1

.

(16)

By Equations (15) and (16),

h∗2(X,Y (1)) = π(X)

{ 1

w(X)
− 1

φ(η)

} E
{

Y (1)
φ(η) | X

}
− E{Y (1) | X}E

{
1

φ(η) | X
}

E{1/φ(η) | X} − 1
+
Y (1)− E{Y (1) | X}

φ(η)

 .
18
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(III)

∂Vθ(π)/∂η|θ=θ0 = E

π(X)
E
{
Y (1) 1−φ(η)

φ(η) | X
}

E
{

1−φ(η)
φ(η) | X

} φ̇(η)

φ(η)

− E
{
π(X)Y (1)

φ̇(η)

φ(η)

}
.

E(ϕeffSη) = DTE{Seff(η)Seff(η)
T }.

By ∂Vθ(π)/∂η|θ=θ0 = E(ϕeffSη),

D =

E

π(X)
E
{

1−φ(η)
φ(η)2 Y | X,A = 1

}
E
{

1−φ(η)
φ(η)2 | X,A = 1

} φ̇(η)

φ(η)

− E
[
π(X)E

{
φ̇(η)

φ(η)2
Y | X,A = 1

}]T

{Var(Sη,eff)}−1.

By (I),(II), and (III), we complete the proof. □

A.5 PROOF OF THEOREM 5.2

Proof.

E

π(X)

 A

φ(η)
Y +

{
1− A

φ(η)

} E
{

1−φ(η)
φ(η)2 Y | x, 1

}
E
{

1−φ(η)
φ(η)2 | x, 1

}


=E
{
π(X)

A

φ(η)
Y

}
=E

{
π(X)

A

φ(η)
AY (1)

}
=E

[
E
{
π(X)

A

φ(η)
Y (1) | X,Y (1)

}]
=E

[
π(X)

Y (1)

φ(η)
E {A | X,Y (1)}

]
=E {π(X)Y (1)} = V1(π).

Since a solution to Equation (7) is a root-n estimator of η, by the strong law of large numbers and
uniform consistency, we have V̂eff(π) = V1(π) + op(1).

By Assumption 5.1 and the empirical process theory, we have

Pn

φ(η̂eff)− a
φ(η̂eff)

Ê
{

φ̇(η)
φ(η)2 | x, 1

}
Ê
{

φ(η)−1
φ(η)2 | x, 1

}
− Pn

φ(η̂eff)− a
φ(η̂eff)

E
{

φ̇(η)
φ(η)2 | x, 1

}
E
{

φ(η)−1
φ(η)2 | x, 1

}


=P

φ(η̂eff)− a
φ(η̂eff)

Ê
{

φ̇(η)
φ(η)2 | x, 1

}
Ê
{

φ(η)−1
φ(η)2 | x, 1

}
− P

φ(η̂eff)− a
φ(η̂eff)

E
{

φ̇(η)
φ(η)2 | x, 1

}
E
{

φ(η)−1
φ(η)2 | x, 1

}
+ op(n

−1/2). (17)
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For the ease of exposition, let E1 = E
{

φ̇(η)
φ(η)2 | x, 1

}
and E2 = E

{
φ(η)−1
φ(η)2 | x, 1

}
. By Assumptions

5.1, for some constant l1 > 0, we have

∣∣∣∣∣P
{
φ(η̂eff)− a
φ(η̂eff)

Ê1

Ê2

}
− P

{
φ(η̂eff)− a
φ(η̂eff)

E1

E2

}∣∣∣∣∣
=

∣∣∣∣∣P
[
φ(η̂eff)− a
φ(η̂eff)

{
Ê1

Ê2

− E1

E2

}]∣∣∣∣∣
=

∣∣∣∣∣P
[
φ(η̂eff)− a
φ(η̂eff)

{
Ê1

Ê2

− E1

Ê2

+
E1

Ê2

− E1

E2

}]∣∣∣∣∣
=

∣∣∣∣∣P
[
φ(η̂eff)− a
φ(η̂eff)

{
Ê1 − E1

Ê2

+
E1(E2 − Ê2)

E2Ê2

}]∣∣∣∣∣
≤Op(n

−1/2)× op(1)
=op(n

−1/2). (18)

By Equations (17) and (18), we have

Pn

φ(η̂eff)− a
φ(η̂eff)

Ê
{

φ̇(η)
φ(η)2 | x, 1

}
Ê
{

φ(η)−1
φ(η)2 | x, 1

}
 = Pn

φ(η̂eff)− a
φ(η̂eff)

E
{

φ̇(η)
φ(η)2 | x, 1

}
E
{

φ(η)−1
φ(η)2 | x, 1

}
+ op(n

−1/2).

By taking Taylor expansion, we have

Pn

φ(η̂eff)− a
φ(η̂eff)

E
{

φ̇(η)
φ(η)2 | x, 1

}
E
{

φ(η)−1
φ(η)2 | x, 1

}


=Pn(Sη,eff) + P

aφ̇(η)
φ2(η)

E
{

φ̇(η)
φ(η)2 | x, 1

}
E
{

φ(η)−1
φ(η)2 | x, 1

}
T

(η̂ − η) + op(n
−1/2)

=Pn(Sη,eff)− Var(Sη,eff)(η̂ − η) + op(n
−1/2). (19)

By Assumption 5.1 and the empirical process theory, we have

V̂eff(π) =Pn

π(x)
 a

φ(η̂eff)
y +

{
1− a

φ(η̂eff)

} E
{

1−φ(η)
φ(η)2 Y | x, 1

}
E
{

1−φ(η)
φ(η)2 | x, 1

}


+ P

{1− a

φ(η̂eff)

} Ê
{

1−φ(η)
φ(η)2 Y | x, 1

}
Ê
{

1−φ(η)
φ(η)2 | x, 1

}
− P

{1− a

φ(η̂eff)

} E
{

1−φ(η)
φ(η)2 Y | x, 1

}
E
{

1−φ(η)
φ(η)2 | x, 1

}
+ op(n

−1/2).

(20)
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For the ease of exposition, let E3 = E
{

1−φ(η)Y
φ(η)2 | x, 1

}
. By Assumptions 5.1, for some constant

l2 > 0, we have ∣∣∣∣∣P
{
−φ(η̂eff)− a

φ(η̂eff)

Ê3

Ê2

}
+ P

{
φ(η̂eff)− a
φ(η̂eff)

E3

E2

}∣∣∣∣∣
=

∣∣∣∣∣P
[
φ(η̂eff)− a
φ(η̂eff)

{
− Ê3

Ê2

+
E3

E2

}]∣∣∣∣∣
=

∣∣∣∣∣P
[
φ(η̂eff)− a
φ(η̂eff)

{
− Ê3

Ê2

+
E3

Ê2

− E3

Ê2

+
E3

E2

}]∣∣∣∣∣
=

∣∣∣∣∣P
[
φ(η̂eff)− a
φ(η̂eff)

{
E3 − Ê3

Ê2

+
E3(Ê2 − E2)

E2Ê2

}]∣∣∣∣∣
≤Op(n

−1/2)× op(1)
=op(n

−1/2). (21)

By Equations (20) and (21), we have

V̂eff(π) = Pn

π(x)
 a

φ(η̂eff)
y +

{
1− a

φ(η̂eff)

} E
{

1−φ(η)
φ(η)2 Y | x, 1

}
E
{

1−φ(η)
φ(η)2 | x, 1

}
+ op(n

−1/2).

By taking Taylor expansion, we have

V̂eff(π) =Pn

π(x)
 a

φ(η)
y +

{
1− a

φ(η)

} E
{

1−φ(η)
φ(η)2 Y | x, 1

}
E
{

1−φ(η)
φ(η)2 | x, 1

}


+ P

π(x)
−aφ̇(η)

φ2(η)
y +

aφ̇(η)

φ2(η)

E
{

1−φ(η)
φ(η)2 Y | x, 1

}
E
{

1−φ(η)
φ(η)2 | x, 1

}
T

(η̂ − η) + op(n
−1/2).

(22)

By Equations (19) and (22), we have

V̂eff(π)− V1(π)

=Pn

π(x)
 a

φ(η)
y +

{
1− a

φ(η)

} E
{

1−φ(η)
φ(η)2 Y | x, 1

}
E
{

1−φ(η)
φ(η)2 | x, 1

}


+ P

π(x)
−aφ̇(η)

φ2(η)
y +

aφ̇(η)

φ2(η)

E
{

1−φ(η)
φ(η)2 Y | x, 1

}
E
{

1−φ(η)
φ(η)2 | x, 1

}
T

{Var(Sη,eff)}−1Pn(Sη,eff)− V1(π) + op(n
−1/2)

=Pn

π(x)
 a

φ(η)
y +

{
1− a

φ(η)

} E
{

1−φ(η)
φ(η)2 Y | x, 1

}
E
{

1−φ(η)
φ(η)2 | x, 1

}
+DPn(Sη,eff)− V1(π) + op(n

−1/2)

=Pn

π(x)
 a

φ(η)
y +

{
1− a

φ(η)

} E
{

1−φ(η)
φ(η)2 Y | x, 1

}
E
{

1−φ(η)
φ(η)2 | x, 1

}
+DSη,eff − V1(π)

+ op(n
−1/2)

=Pn {ϕeff(π)}+ op(n
−1/2).

This completes the proof. □
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A.6 PROOF OF PROPOSITION 5.3

argmax
π∈Π

V̂eff(π)

= argmax
π∈Π

n∑
i=1

π(xi)ψ̂(xi, yi, ai)

= argmax
π∈Π

n∑
i=1

π(xi)|ψ̂(xi, yi, ai)|[I{ψ̂(xi, yi, ai) > 0} − I{ψ̂(xi, yi, ai) ≤ 0}]

= argmax
π∈Π

n∑
i=1

|ψ̂(xi, yi, ai)|I{ψ̂(xi, yi, ai) > 0}

− |ψ̂(xi, yi, ai)|[{1− π(xi)}I{ψ̂(xi, yi, ai) > 0}+ π(xi)I{ψ̂(xi, yi, ai) ≤ 0}]

= argmax
π∈Π

n∑
i=1

|ψ̂(xi, yi, ai)|I{ψ̂(xi, yi, ai) > 0}

− |ψ̂(xi, yi, ai)|[π(xi) + I{ψ̂(xi, yi, ai) > 0} − 2π(xi)I{ψ̂(xi, yi, ai) > 0}]

= argmax
π∈Π

n∑
i=1

|ψ̂(xi, yi, ai)|I{ψ̂(xi, yi, ai) > 0}

− |ψ̂(xi, yi, ai)|[π2(x) + I2{ψ̂(xi, yi, ai) > 0} − 2π(xi)I{ψ̂(xi, yi, ai) > 0}]

= argmax
π∈Π

n∑
i=1

|ψ̂(xi, yi, ai)|I{ψ̂(xi, yi, ai) > 0} − |ψ̂(xi, yi, ai)|[π(xi)− I{ψ̂(xi, yi, ai) > 0}]2

=argmax
π∈Π

n∑
i=1

−|ψ̂(xi, yi, ai)|[π(xi)− I{ψ̂(xi, yi, ai) > 0}]2

=argmin
π∈Π

n∑
i=1

|ψ̂(xi, yi, ai)|[π(xi)− I{ψ̂(xi, yi, ai) > 0}]2

=argmin
π∈Π

n∑
i=1

|ψ̂(xi, yi, ai)|I[π(xi) ̸= I{ψ̂(xi, yi, ai) > 0}].

Therefore, the OPL is equivalent to a weighted classification problem, where for subject i with
features xi, the true label is I{ψ̂(xi, yi, ai) > 0} and the sample weight is |ψ̂(xi, yi, ai)|. □

B ADDITIONAL EXPERIMENT RESULTS

B.1 ADDITIONAL DECISION LEARNING RESULTS

When the decision rule class Π has a finite Vapnik-Chervonenkis dimension and is countable, we
provide additional theoretical results.

Assumption B.1 There exist some constants γ, λ > 0 such that P[0 < |E{Y (1) | X}| ≤ ξ] =
O(ξλ), where the big-O term is uniform in 0 < ξ ≤ λ.

Assumption B.1 is known as the margin condition, which is often adopted to derive a sharp con-
vergence rate for the value function under the estimated optimal policy Luedtke & Van Der Laan
(2016); Kitagawa & Tetenov (2018).

Theorem B.2 Under Assumptions 4.1, 4.2, 5.1, and B.1, if the decision rule class Π has a
finite Vapnik-Chervonenkis dimension and is countable, we have

√
n
{
V̂eff(π̂)− V (π∗)

}
d−→

N (0,Υ(π∗)).
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We study the inference results of V̂eff(π̂) for the decision learning experiment in Section 6. The
standard errors (SE) are obtained by estimating the EIF. The conditional expectations in EIF are
estimated through a similar nonparametric regression technique, employing pseudo-outcome, as
utilized in value estimation. We report the mean and standard deviation of V̂eff(π̂), the mean of
estimated standard errors, and the empirical coverage probability (CP) of 95% Wald-type confidence
intervals for the oracle optimal value function V (π∗) = 4.49. The results are summarized in Table
3. We can see that the mean of estimated standard errors is close to the standard deviation of the
estimators, and the empirical CP of 95% confidence intervals is close to the nominal level.

Table 3: Inference results of V̂eff(π̂).

n Mean SD SE CP
1000 4.63 0.33 0.36 97.0
2000 4.63 0.28 0.26 95.7

B.2 CODE

The code to reproduce experiment result is available at https://anonymous.4open.
science/r/policy_shadow_variable-8EB7/. The experiments are conducted on Mac-
Book Air M1 512 GB with an Apple M1 chip, 8 GB of RAM, and 512 GB of SSD storage.
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