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ABSTRACT

Nearest Neighbor Search (NNS) is a fundamental problem in data structures with wide-ranging
applications, such as web search, recommendation systems, and, more recently, retrieval-
augmented generations (RAG). In such recent applications, in addition to the relevance (simi-
larity) of the returned neighbors, diversity among the neighbors is a central requirement. In this
paper, we develop principled welfare-based formulations in NNS for realizing diversity across
attributes. Our formulations are based on welfare functions—from mathematical economics—
that satisfy central diversity (fairness) and relevance (economic efficiency) axioms. With a
particular focus on Nash social welfare, we note that our welfare-based formulations provide
objective functions that adaptively balance relevance and diversity in a query-dependent man-
ner. Notably, such a balance was not present in the prior constraint-based approach, which
forced a fixed level of diversity and optimized for relevance. In addition, our formulation
provides a parametric way to control the trade-off between relevance and diversity, providing
practitioners with flexibility to tailor search results to task-specific requirements. We develop
efficient nearest neighbor algorithms with provable guarantees for the welfare-based objectives.
Notably, our algorithm can be applied on top of any standard ANN method (i.e., use standard
ANN method as a subroutine) to efficiently find neighbors that approximately maximize our
welfare-based objectives. Experimental results demonstrate that our approach is practical and
substantially improves diversity while maintaining high relevance of the retrieved neighbors.

1 INTRODUCTION

Nearest Neighbor Search (NNS) is a fundamental problem in computer science with wide-
ranging applications in diverse domains, including computer vision (Wang et al., 2012), data min-
ing (Camerra et al., 2010), information retrieval (Manning et al., 2008), classification (Fix & Hodges,
1989), and recommendation systems (Dahiya et al., 2021). The relevance of NNS has grown further
in recent years with the advent of retrieval-augmented generation (RAG); see, e.g., (Manohar et al.,
2024), (Wu et al., 2024), and references therein. Formally, given vectors P ⊂ Rd (in ambient di-
mension d) and a query vector q ∈ Rd, the objective in NNS is to identify a subset S of k (input)
vectors from P that are most similar to q under a similarity function σ : Rd × Rd → R+. That is,
NNS corresponds to the optimization problem argmaxS⊆P :|S|=k

∑
v∈S σ(q, v). Note that, while

most prior works in neighbor search express the problem in terms of minimizing distances, we work
with the symmetric version of maximizing similarity.1

In practice, the input vectors are high dimensional; in many of the above-mentioned applications the
ambient dimension d is close to a thousand. This scale makes exact NNS computationally expensive,
since applications require, for real-time queries q, NNS solutions in time (sub)linear in the number of
input vectors |P |. To address this challenge, the widely studied framework of Approximate Nearest
Neighbor (ANN) search relaxes the requirement of exactness and instead seeks neighbors whose
similarities are approximately close to the optimal ones.

ANN search has received substantial attention over the past three decades. Early techniques relied
on space-partitioning methods, including Locality-Sensitive Hashing (LSH) (Indyk & Motwani,
1998; Andoni & Indyk, 2008), k-d trees (Arya et al., 1998), and cover trees (Beygelzimer et al.,
2006). More recent industry-scale systems adopt clustering-based (Johnson et al., 2017; Baranchuk
et al., 2018) and graph-based (Malkov & Yashunin, 2016; Fu et al., 2019; Sugawara et al., 2016;

1This enables us to directly apply welfare functions.
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Subramanya et al., 2019) approaches, along with other practically-efficient methods (Sun et al.,
2023; Simhadri et al., 2024).

While relevance—measured in terms of a similarity function σ(·, ·)—is a primary objective in NNS,
prior work has shown that diversity in the retrieved set of vectors is equally important for user
experience, fairness, and reducing redundancy (Carbonell & Goldstein, 1998). For instance, in 2019
Google announced a policy update to limit the number of results from a single domain, thereby
reducing redundancy (Liaison, 2019). Similarly, Microsoft recently introduced diversity constraints
in ad recommendation systems to ensure that advertisements from a single seller do not dominate
the results (Anand et al., 2025). Such an adjustment was crucial for improving user experience and
promoting fairness for advertisers. These examples highlight how diversity, in addition to enhancing
fairness and reducing redundancy, directly contributes to improved search quality for end users.

A natural way to formalize diversity in these settings is to associate each input vector with one or
more attributes. Diversity can then be measured with respect to these attributes, complementing the
similarity-based relevance. Building on this idea, the current work develops a principled framework
for diversity in neighbor search by drawing on the theory of collective welfare from mathemati-
cal economics (Moulin, 2004). This perspective enables the design of performance metrics (i.e.,
optimization criteria) that balance similarity-based relevance and attribute-based diversity in a theo-
retically grounded manner.

This formulation is based on the perspective that algorithms can be viewed as economic policies.
Indeed, analogous to economic policies, numerous deployed algorithms induce utility (monetary or
otherwise) among the participating agents. For instance, an ANN algorithm—deployed to select
display advertisements for search queries—impacts the exposure and, hence, the sales of the partic-
ipating advertisers. Notably, there are numerous other application domains wherein the outputs of
the underlying algorithms impact the utilities of individuals; see Angwin et al. (2022) and Kearns
& Roth (2019) for multiple examples. Hence, in contexts where fairness (diversity) and welfare
are important considerations, it is pertinent to evaluate algorithms analogous to how one evaluates
economic policies that induce welfare.

In mathematical economics, welfare functions, f : Rc 7→ R, provide a principled approach to aggre-
gate the utilities of c ∈ Z+ agents into a single measure. Specifically, if an algorithm induces utilities
u1, u2, . . . , uc among a population of c agents, then the collective welfare is f(u1, u2, . . . , uc). A
utilitarian way of aggregation is by considering the arithmetic mean (average) of the utilities uℓs.
However, note that the arithmetic mean is not an ideal criterion if we are required to be fair among
the c agents: the utilitarian welfare (arithmetic mean) can be high even if the utility of only one
agent, say u1, is large and all the remaining utilities, u2, . . . , uc, are zero. The theory of collective
welfare develops meaningful alternatives to the arithmetic mean by identifying welfare functions,
fs, that satisfy fairness and efficiency axioms.

Among such alternatives, Nash social welfare (NSW) is an exemplar that upholds multiple fairness
axioms, including symmetry, independence of unconcerned agents, scale invariance, and the Pigou-
Dalton transfer principle (Moulin, 2004). Nash social welfare is defined by setting f as the geometric
mean, NSW(u1, . . . , uc) :=

(∏c
ℓ=1 uℓ

)1/c
. The fact that NSW strikes a balance between fairness

and economic efficiency is supported by the observation that it sits between egalitarian and utilitarian
welfare: the geometric mean is at least as large as the minimum value, min1≤ℓ≤c uℓ, and it is also
at most the arithmetic mean 1

c

∑c
ℓ=1 uℓ (the AM-GM inequality).

The overarching goal of this work is to realize diversity (fairness) across attributes in nearest neigh-
bor search while maintaining relevance of the returned k vectors. Our modeling insight here is to
equate attributes with agents and apply Nash social welfare.

In particular, consider a setting where we have c ∈ Z+ different attributes (across the input vectors),
and let S be any subset of k vectors (neighbors) among the input set P . In our model, each included
vector v ∈ S, with attribute ℓ ∈ [c], contributes to the utility uℓ (see Section 2.1), and the Nash
social welfare (NSW) induced by S is the geometric mean of these utilities, u1, u2, . . . , uc. Our
objective is to find a size-k subset, S∗ ⊆ P , of input vectors with as large NSW as possible.

The following two instantiations highlight the applicability of our model in NNS applications: In
a display-advertising context with c sellers, each selected advertisement v ∈ S of a seller ℓ ∈ [c]
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Figure 1: Neighbor search results (k = 9) on the Amazon dataset. From left: First and Second
images - ANN and Nash-based results for query “shirts”, respectively. Third and Fourth images -
ANN and Nash-based results for query “blue shirt”, respectively. Note that the Nash-based method
selects diverse colors for the query “shirts” but conforms to the blue color for the query “blue shirt”.

contributes to ℓ’s exposure (utility) uℓ. Similarly, in an apparel-search setup with c colors in total,
each displayed product v ∈ S with color ℓ ∈ [c] contributes to the utility uℓ.

Prior work (Anand et al., 2025) imposed constraints for achieving diversity in NNS. These con-
straints enforced that, for each ℓ ∈ [c] and among the k returned vectors, at most k′ many can have
attribute ℓ. Such rigid constraints rely on a fixed ad hoc quota parameter k′ and fail to adapt to the
intent expressed in the query. In contrast, our NSW-based approach balances relevance and diversity
in a query-dependent manner. For example, in the apparel-search setup, if the search query is “blue
shirt,” then a constraint on the color attribute ‘blue’ (i.e., when ℓ stands for ‘blue’) would limit the
relevance by excluding valid vectors. NSW, however, for the “blue shirt” query, is free to select all
the k vectors with attribute ‘blue’ upholding relevance; see Figure 1 for supporting empirical results.
On the other hand, if the apparel-search query is just “shirts,” then NSW criterion is inclined to se-
lect vectors with different color attributes. These features of NSW are substantiated by the stylized
instances given in Examples 1 and 2 (Section 2.1).

We reiterate that our formulation does not require a quota parameter k′ to force diversity. For NSW,
diversity (fairness) across attributes is obtained via normative properties of Nash social welfare.
Hence, with axiomatic support, NSW stands as a meaningful criterion in neighbor search, as it is in
the context of economic and allocation policies.

Our welfarist formulation extends further to control the trade-off between relevance and diversity.
Specifically, we also consider p-mean welfare. Formally, for exponent parameter p ∈ (−∞, 1],
the pth mean Mp(·), of c utilities u1, u2, . . . , uc ∈ R+, is defined as Mp(u1, . . . , uc) :=(
1
c

∑c
ℓ=1 u

p
ℓ

)1/p
. The p-mean welfare, Mp(·), captures a range of objectives with different values

of p: it corresponds to the utilitarian welfare (arithmetic mean) when p = 1, the NSW (geometric
mean) with p → 0, and the egalitarian welfare when p → −∞. Notably, setting p = 1, we get
back the standard nearest neighbor objective, i.e., maximizing M1(·) corresponds to finding the k
nearest neighbors and this objective is not concerned with diversity across attributes. At the other
extreme, p → −∞ aims to find as attribute-diverse a set of k vectors as possible (while paying
scarce attention to relevance).

We study, both theoretically and experimentally, two diversity settings: (i) single-attribute setting
and (ii) multi-attribute setting. In the single-attribute setting, each input vector v ∈ P is associated
with exactly one attribute ℓ ∈ [c] – this captures, for instance, the display-advertisement setup,
wherein each advertisement v belongs to exactly one seller ℓ. In the more general multi-attribute
setting, each input vector v ∈ P can have more than one attribute; in apparel-search, for instance,
the products can be associated with multiple attributes, such as color, brand, and price.

We note that the constraint-based formulation for diversity considered in Anand et al. (2025) primar-
ily addresses single-attribute setting. In fact, generalizing such constraints to the multi-attribute con-
text leads to a formulation wherein it is NP-hard even to determine whether there exist k vectors that
satisfy the constraints, i.e., it would be computationally hard to find any size-k constraint-feasible
subset S, let alone an optimal one.2

By contrast, our NSW formulation does not run into such a feasibility barrier. Here, for any candi-
date subset S of k vectors, each included vector v ∈ S contributes to the utility uℓ of every attribute

2This hardness result follows via a reduction from the Maximum Independent Set problem.
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ℓ associated with v. As before, the NSW induced by S is the geometric mean of the induced utilities,
u1, u2, . . . , uc, and the objective is to find a subset of k vectors with as large NSW as possible.

We view the NSW formulation for diversity, in both single-attribute and multi-attribute settings, as a
key contribution of the current paper. Another relevant contribution of this work is the generalization
to p-mean welfare, which provides a systematic way to trade off relevance and diversity.

We also develop efficient algorithms, with provable guarantees, for the NSW and p-mean welfare
formulations. For the single-attribute setting, we develop an efficient greedy algorithm for finding
k vectors that optimize the Nash social welfare among the c attributes (Theorem 1). In addition,
this algorithm can be provably combined with any sublinear ANN method (as a subroutine) to find
near-optimal solutions for the Nash objective in sublinear time (Corollary 2).

For the multi-attribute setting, we first show that finding the set of k vectors that maximize the
Nash social welfare is NP-hard (Theorem 3). We complement this hardness result, by developing a
polynomial-time approximation algorithm that achieves an approximation ratio of (1− 1/e) ≈ 0.63
for maximizing the logarithm of the Nash social welfare (Theorem 4).

We complement our theoretical results with experiments on both real-world and semi-synthetic
datasets. These experiments demonstrate that the NSW objective effectively captures the trade-
off between diversity and relevance in a query-dependent manner. We further analyze the behavior
of the p-mean welfare objective across different values of p ∈ (−∞, 1], observing that it interpo-
lates smoothly between prioritizing for diversity, when p is small, and focusing on relevance, when
p is large. Finally, we benchmark the solution quality and running times of various algorithms for
solving the NSW and p-mean formulations proposed in this work.

2 PROBLEM FORMULATION AND MAIN RESULTS

We are interested in neighbor search algorithms that not only achieve a high approximation ratio,
but also find a diverse set of vectors for each query. To quantify diversity we work with a model
wherein each input vector v ∈ P is assigned one or more attributes from the set [c] = {1, 2, . . . , c}.
In particular, write atb(v) ⊆ [c] to denote the attributes assigned to vector v ∈ P . Also, let Dℓ ⊆ P
denote the subset of vectors that are assigned attribute ℓ ∈ [c], i.e., Dℓ := {v ∈ P | ℓ ∈ atb(v)}.
This model captures important real-world scenarios; for instance, in a display-advertising context
with c sellers, the set Dℓ would denote all the vectors (advertisements) that include seller ℓ.

2.1 OUR RESULTS

An insight of this work is to equate these c attributes with c distinct agents. Here, the output of a
neighbor search algorithm—i.e., the selected subset S ⊆ P—induces utility among these agents.
With this perspective, we define the Nash Nearest Neighbor Search problem (NaNNS) below. This
novel formulation for diversity is a key contribution of this work. For any query q ∈ Rd and subset
S ⊆ P , we define utility uℓ(S) :=

∑
v∈S∩Dℓ

σ(q, v), for each ℓ ∈ [c]. That is, uℓ(S) is equal
to the cumulative similarity between q and the vectors in S that belong to the attribute class Dℓ.
Equivalently, uℓ(S) is the cumulative similarity of the vectors in S that have attribute ℓ.3

We employ Nash social welfare to identify size-k subsets S that are both relevant (with respect to
similarity) and support diversity among the c attribute classes. The Nash social welfare among c
agents is defined as the geometric mean of the agents’ utilities. Specifically, in the above-mentioned
utility model and with a smoothening parameter η > 0, the Nash social welfare (NSW) induced

by any subset S ⊆ P among the c attributes is defined as NSW(S) :=
(∏c

ℓ=1 (uℓ(S) + η)
)1/c

.
Throughout, η > 0 will be a fixed smoothing constant that ensures that NSW remains nonzero.

Definition 1 (NaNNS). Nash nearest neighbor search (NaNNS) corresponds to the following the
optimization problem argmaxS⊆P :|S|=k NSW(S), or, equivalently,

argmax
S⊆P :|S|=k

log NSW(S) (1)

3Note that in the above-mentioned display-advertising example, uℓ(·) is the cumulative similarity between
the (search) query and the selected advertisements that are from seller ℓ.
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Here, we have log NSW(S) = 1
c

∑
ℓ∈[c] log(uℓ(S) + η).

To further appreciate the welfarist approach, note that one recovers the standard nearest neigh-
bor problem, NNS, in the single-attribute setting, if—instead of the geometric mean—we
maximize the arithmetic mean. That is, maximizing the utilitarian social welfare gives us
maxS⊆P :|S|=k

∑c
ℓ=1 uℓ(S) = maxS⊆P :|S|=k

∑
v∈S σ(q, v). As stated in the introduction, among

the welfare functions, Nash social welfare is an exemplar that upholds multiple fairness axioms,
including symmetry, independence of unconcerned agents, scale invariance, and the Pigou-Dalton
transfer principle. Moreover, depending on the query and the problem instance, solutions obtained
via NaNNS can adjust between the ones obtained through NNS and those obtained via hard con-
straints. This feature is illustrated in the following stylized examples; see Appendix A.1 for proofs.

The first example shows that if all vectors have same similarity, then an optimal solution, S∗, for
NaNNS is completely diverse, i.e., all the vectors in S∗ have different attributes.
Example 1 (Complete Diversity via NaNNS). Consider an instance in which, for a given query
q ∈ Rd, all vectors in P are equally similar with the query: σ(q, v) = 1 for all v ∈ P . Also, let
|atb(v)| = 1 for all v ∈ P and write S∗ ∈ argmaxS⊆P : |S|=k NSW(S). If c ≥ k, then here it
holds that |S∗ ∩Dℓ| ≤ 1 for all ℓ ∈ [c].

The second example shows that if the vectors of only one attribute have high similarity with the
given query, then a Nash optimal solution S∗ contains only vectors with that attribute.
Example 2 (Complete Relevance via NaNNS). Consider an instance in which for a given query
q ∈ Rd and for a particular ℓ∗ ∈ [c], only vectors v ∈ Dℓ∗ have similarity σ(q, v) = 1 and all other
vectors p′ ∈ P \Dℓ∗ have similarity σ(q, p′) = 0. Also, suppose that |atb(p)| = 1 for each p ∈ P ,
along with |Dℓ∗ | ≥ k. Then, for a Nash optimal solution S∗ ∈ argmaxS⊆P,|S|=k NSW(S) it holds
that |S∗ ∩Dℓ∗ | = k. That is, for all other ℓ ∈ [c] \ {ℓ∗} we have |S∗ ∩Dℓ| = 0.

With the above-mentioned utility model for the c attributes, we also identify an extended formu-
lation based on generalized p-means. Specifically, for exponent parameter p ∈ (−∞, 1], the pth
mean Mp(·), of c nonnegative numbers w1, w2, . . . , wc ∈ R+, is defined as Mp(w1, . . . , wc) :=(
1
c

∑c
ℓ=1 w

p
ℓ

)1/p
. Note that M1(w1, . . . , wc) is the arithmetic mean 1

c

∑c
ℓ=1 wℓ. Here, when p→ 0,

we obtain the geometric mean (Nash social welfare): M0(w1, . . . , wc) = (
∏c

ℓ=1 wℓ)
1/c. Further,

p→ −∞ gives us egalitarian welfare, M−∞(w1, . . . , wℓ) = min1≤ℓ≤c wℓ.

Hence, generalizing both NNS and NaNNS, we have the p-mean nearest neighbor
search (p-NNS) problem defined, for exponent parameters p ∈ (−∞, 1], as follows:
maxS⊆P : |S|=k Mp

(
u1(S), . . . , uc(S)

)
.

Diversity in Single- and Multi-Attribute Settings. The current work addresses two diversity set-
tings: the single-attribute setup and, the more general, the multi-attribute one. The single-attribute
setting refers to case wherein |atb(v)| = 1 for each input vector v ∈ P and, hence, the attribute
classes Dℓs are pairwise disjoint. In the more general multi-attribute setting, we have |atb(v)| ≥ 1;
here, the sets Dℓ-s intersect.4 Notably, the NaNNS seamlessly applies to both these settings.

Algorithmic Results for Single-Attribute NaNNS and p-NNS. In addition to introducing the
NaNNS and p-NNS formulations for capturing diversity, we develop algorithmic results for these
problems, thereby demonstrating the practicality of our approach in neighbor search. In particular,
in the single-attribute setting, we show that both NaNNS and p-NNS admit efficient algorithms.
Theorem 1. In the single-attribute setting, given any query q ∈ Rd and an (exact) oracle ENN
for k most similar vectors from any set, Algorithm 1 (Nash-ANN) returns an optimal solution for
NaNNS, i.e., it returns a size-k subset ALG ⊆ P that satisfies ALG ∈ argmaxS⊆P :|S|=k NSW(S).
Furthermore, the algorithm runs in time O(kc) +

∑c
ℓ=1 ENN(Dℓ, q), where ENN(Dℓ, q) is the time

required by the exact oracle to find k most similar vectors to q in Dℓ.

Further, to establish the practicality of our formulations, we present an approximate algorithm for
NaNNS that leverages any standard ANN algorithm as an oracle (subroutine), i.e., works with any
α-approximate ANN oracle (α ∈ (0, 1)) which returns a subset S containing k vectors satisfying

4For a motivating instantiation for multi-attributes, note that, in the apparel-search context, it is possible for
a product (input vector) v to have multiple attributes based on v’s seller and its color(s).
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Algorithm 1 Nash-ANN: Algorithm for NaNNS in the single-attribute setting

Require: Query q ∈ Rd and, for each attribute ℓ ∈ [c], the set of input vectors Dℓ ⊂ Rd.
1: For each ℓ ∈ [c], fetch the k (exact or approximate) nearest neighbors of q ∈ Rd from Dℓ. Write

D̂ℓ ⊆ Dℓ to denote these sets.
2: For every ℓ ∈ [c] and each index i ∈ [k], let vℓ(i) denote the ith most similar vector to q in D̂ℓ.
3: Initialize subset ALG = ∅, along with count kℓ = 0 and utility wℓ = 0, for each ℓ ∈ [c].
4: while |ALG| < k do
5: Let a = argmax

ℓ∈[c]

(
log
(
wℓ + η + σ(q, vℓ(kℓ+1))

)
− log(wℓ + η)

)
. {Ties broken arbitrarily.}

6: Update ALG ← ALG ∪
{
va(ka+1)

}
, along with wa ← wa + σ(q, va(ka+1)) and ka ← ka +1.

7: Return ALG.

σ(q, v(i)) ≥ α σ(q, v∗(i)), for all i ∈ [k], where v(i) and v∗(i) are the i-th most similar vectors to q in
S and P , respectively. Formally,
Corollary 2. In the single-attribute setting, given any query q ∈ Rd and an α-approximate
oracle ANN for k most similar vectors from any set, Algorithm 1 (Nash-ANN) returns an α-
approximate solution for NaNNS, i.e., it returns a size-k subset ALG ⊆ P with NSW(ALG) ≥
αmaxS⊆P : |S|=k NSW(S). The algorithm runs in time O(kc) +

∑c
ℓ=1 ANN(Dℓ, q), with

ANN(Dℓ, q) denoting the time required by the oracle to find k similar vectors to q in Dℓ.

Furthermore, both Theorem 1 and Corollary 2 generalize to p-NNS problem with slight modification
in Algorithm 1. Specifically, there exists exact, efficient algorithm (Algorithm 3) for the p-NNS
problem (Theorem 11 and Corollary 12). Due to space constraints, the algorithm and the analysis
for p-NNS are deferred to Appendix D.

Algorithmic Results for Multi-Attribute NaNNS. Next, we address the multi-attribute setting.
While the optimization problem (1) in the single attribute setting can be solved efficiently, the prob-
lem is NP-Hard in the the multi-attribute setup (see Appendix B for the proof).
Theorem 3. In the multi-attribute setting, with parameter η = 1, NaNNS is NP-hard.

Complementing this hardness result, we show that, considering the logarithm of the objective,
NaNNS in the multi-attribute setting admits a polynomial-time

(
1− 1

e

)
-approximation algorithm.

This result in established in Appendix C.
Theorem 4. In the multi-attribute setting, there exists a polynomial-time algorithm (Algorithm 2)
that, given any query q ∈ Rd, finds a size-k subset ALG ⊆ P with log NSW(ALG) ≥(
1− 1

e

)
log NSW(OPT); here, OPT denotes an optimal solution of (1).

Experimental Validation of our Formulation and Algorithms. We complement our theoretical
results with several experiments on real-world datasets. Our findings highlight that the Nash-based
formulation strikes a balance between diversity and relevance.

3 ALGORITHM FOR NANNS

This section provides our exact, efficient algorithm (Algorithm 1) for NaNNS in the single-attribute
setting. The algorithm has two parts: a preprocessing step and a greedy, iterative selection.

Recall that in the single-attribute setting, the input vectors P are partitioned into subsets D1, . . . , Dc,
where Dℓ denotes the subset of input vectors with attribute ℓ ∈ [c]. In the preprocessing step, for
each attribute ℓ ∈ [c], we populate k vectors from within Dℓ that are most similar to the given
query q ∈ Rd. Such a size-k subset, for each ℓ ∈ [c], can be obtained by executing any nearest
neighbor search algorithm within Dℓ and with respect to query q. Alternatively, we can execute any
standard ANN algorithm as a subroutine and find sufficiently good approximations for the k nearest
neighbors (of q) within each Dℓ.

Write D̂ℓ ⊆ Dℓ to denote the k—exact or approximate—nearest neighbors of q ∈ Rd in Dℓ. We note
that our algorithm is robust to the choice of the search algorithm (subroutine) used for finding D̂ℓs:

6
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Dataset # Input Vectors # Query Vectors Dimension Attributes
Amazon 92, 092 8, 956 768 product color
ArXiv 200, 000 50, 000 1536 year, paper category
Sift1m 1, 000, 000 10, 000 128 synthetic
Deep1b 9, 990, 000 10, 000 96 synthetic

Table 1: Summary of considered datasets. For synthetic attributes, we use two strategies: clustering-
based (suffixed by Clus) and distribution-based (suffixed by Prob), see Appendix E.2 for details.

If D̂ℓs are exact nearest neighbors, then Algorithm 1 optimally solves NaNNS in the single-attribute
setting (Theorem 1). Otherwise, if D̂ℓs are obtained via an ANN algorithm with approximation
guarantee α ∈ (0, 1), then Algorithm 1 achieves an approximation ratio of α (Corollary 2).

The algorithm then considers the vectors with each D̂ℓ in decreasing order of their similarity with q.
Confining to this order, the algorithm populates the k desired vectors iteratively. In each iteration,
the algorithm greedily selects a new vector based on the marginal increase in log NSW(·); see Lines
5 and 6 in Algorithm 1. Theorem 1 and Corollary 2 (stated previously) provide our main results for
Algorithm 1; the proofs of these results are deferred to Appendix A.

4 EXPERIMENTAL EVALUATIONS

In this section, we validate the welfare-based formulations and the performance of our proposed
algorithms against existing methods on a variety of real and semi-synthetic datasets. We per-
form three different kinds of experiments. In the first set of experiments (Figure 2), we compare
Nash-ANN (Algorithm 1) with prior work on hard-constrained based diversity (Anand et al., 2025).
Here, we show that Nash-ANN strikes a balance between relevance and diversity both in the single-
and multi-attribute settings. In the second set of experiments, we study p-mean-ANN (Algorithm 3
in Appendix D), and obtain the trade-off between relevance and diversity, with a change in the
exponent parameter p ∈ [−∞, 1]. In the final set of experiments, we compare our algorithm,
Nash-ANN (with provable guarantees), and a heuristic that improves the runtime of Nash-ANN.
The heuristic directly utilizes a standard ANN algorithm to fetch a sufficiently large candidate set of
vectors (irrespective of their attributes). Then, it applies the Nash (or p-mean) selection only within
this set. Due to space constraints, we defer the details of the third set of experiments to Appendix
E.5. Also, additional plots for the first two experiments appear in Appendices E.3 and E.4.

Below, we outline the metrics, experimental setup, datasets, and algorithms used in our experiments.

Relevance and Diversity Metrics. To quantify relevance of an algorithm we consider the ratio
of the sum of the similarity scores. Formally, for a query q, if A is the set of neighbors returned
by an algorithm and O is the output of any (standard) ANN algorithm, then the approximation
ratio achieved by the algorithm is

(∑
v∈A σ(v, q)

)
/
(∑

v∈O σ(v, q)
)
. Note that O, up to some

approximation, contains the most similar input vectors to query q. Hence, this ratio typically lies
in [0, 1], and a higher value of this approximation ratio captures higher relevance. We also report
results in terms of recall, which is another metric for relevance; see Appendix E.1 for further details.

To quantify diversity, we use entropy that measures how uniformly an algorithm distributes its se-
lected vectors across the attributes. A higher value of entropy indicates more attribute-level diversity
in the algorithm’s output. We also experimentally validate the findings under other diversity metrics,
namely the inverse Simpson index and distinct attribute counts; see Appendix E.1.

Experimental Setup and Datasets. All the experiments were performed in memory on an Intel(R)
Xeon(R) Silver 4314 CPU (64 cores, 2.40GHz) with 128 RAM. We set the number of threads to 32.
We report results on both semi-synthetic and real-world datasets consistent with prior works (Anand
et al., 2025) and are summarized in Table 1 and detailed in Appendix E.2.

Algorithms. Next, we describe the algorithms executed in the experiments.

1. ANN: We use the graph based DiskANN method of Subramanya et al. (2019) as the ANN algorithm.
We deploy DiskANN with candidate list size L = 2000 and the maximum graph degree to 128.
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2. Div-ANN: Div-ANN refers to the implementation of Anand et al. (2025) that captured diversity
in the single attribute setting through hard constraints. This work uses a quota parameter k′, where
for each ℓ ∈ [c], among the k returned vectors, at most k′ can have attribute ℓ. We executed
Div-ANN with different values k′, ranging from extremely tight, k′ = 1, to more relaxed choices,
such as k′ ∈ {2, 5} for k = 10, along with k′ ∈ {2, 5, 10} for k = 50.

3. Nash-ANN and p-mean-ANN: Nash-ANN refers to Algorithm 1; we implement this algorithm
extending the codebase of Anand et al. (2025). Recall that Algorithm 1 optimally solves the NaNNS
problem in the single-attribute setting. Also, p-mean, Mp(·), reduces to Nash social welfare (ge-
ometric mean) with p = 0. Moreover, as mentioned previously p-mean-ANN (Algorithm 3 in
Appendix D) optimally solves the p-NNS problem (Theorem 11 and Corollary 12 in Appendix D).
For readability and at required places, we will write p = 0 to denote Nash-ANN. We conduct ex-
periments that bring out the relevance-diversity trade-offs across p ∈ {−10,−1,−0.5, 0, 0.5, 1}. In
these experiments, we set the smoothing parameter, η, depending on the dataset (Appendix E.2).

4. Multi Nash-ANN and Multi Div-ANN: In the multi-attribute setting, there are no prior
methods to address diversity. Hence, for comparisons, we first pre-fetch L = 10000 candidates of
each query q, using the standard ANN method, and then apply greedy selection to obtain k neigh-
bors for both the NSW objective (Multi Nash-ANN) and the hard-constrained objective (Multi
Div-ANN). For the latter, we adapt the approach of Anand et al. (2025) by imposing a uniform quota
k′ on each attribute.5 The Multi Nash-ANN method proceeds iteratively, selecting at each step
the vector (from the pre-fetched ones) that provides the largest marginal gain to the NSW objective.
On the other hand, Multi Div-ANN ranks the vectors in decreasing order of similarity to q and
includes the next vector only if doing so does not violate any attribute constraint. In both cases, the
process yields k neighbors (with k > k′). We compare Multi Nash-ANN (p = 0) against Multi
Div-ANN under different choices of k′.

4.1 BALANCING RELEVANCE AND DIVERSITY

We first compare, in the single-attribute setting, the performance of our Nash-ANN with ANN and
Div-ANN (under different values of k′). The results for the Amazon and Deep1b-(Clus)
datasets with k = 50 are shown in Figure 2 (first row - columns one and two). Here, ANN finds
the most relevant set of neighbors,6 albeit with the lowest entropy (diversity). Moreover, as can be
seen in the plots, the most diverse (highest entropy) solution is obtained when we set, in Div-ANN,
k′ = 1; this restricts each ℓ ∈ [c] to contribute at most one vector in the output of Div-ANN. Also,
note that one can increase the approximation ratio (i.e., increase relevance) while incurring a loss
in entropy (diversity) by increasing the constraint (quota) parameter k′ in Div-ANN. However, se-
lecting a ‘right’ value for k′ is non-obvious, since this choice needs to be tailored to the dataset and,
even within it, to queries (recall the “blue shirt” query in Figure 1).

By contrast, Nash-ANN does not require such ad hoc adjustments and, by design, finds a balance
between relevance and diversity. Nash-ANN (p = 0) outperforms Div-ANN with k′ = 2 for
Amazon dataset and k′ = 5 for Deep1b-(Clus) dataset highlighting the Pareto dominance of
Nash-ANN on the fronts of approximation ratio and entropy. The results for other datasets and
metrics follow similar trends and are given in Appendix E.3.

In the multi-attribute setting, we report results for Multi Nash-ANN and Multi Div-ANN on
the Sift1m-(Clus) dataset (Figure 2 - second row) for k = 50 and c = 80. These eighty at-
tributes are partitioned into four sets, {Ci}4i=1, with each set of size |Ci| = 20, i.e., [c] = ∪4i=1Ci.
Further, each input vector v is associated with four attributes (|atb(v)| = 4), one from each Ci; see
Appendix E.2 for further details. Here, to quantify diversity we consider the entropy across each Ci.
Entropy, with approximation ratio, plots for the four sets {Ci}4i=1 are given in Figure 2 (second row).
We observe that Multi Nash-ANN maintains a high approximation ratio (relevance) while simul-
taneously achieving higher entropy (higher diversity) than ANN. By contrast, in the constraint-based
method Multi Div-ANN, low values of k′ leads to a notable drop in the approximation ratio,
whereas increasing k′ reduces entropy. For example, for k′ below 15, one obtains approximation
ratio less than 0.8. To reach an approximation ratio comparable to Multi Nash-ANN, one needs
k′ as high as 30. Additional results for the ArXiv dataset in the multi-attribute setting are provided

5Indeed, the issue of identifying an appropriate k′ is exacerbated on moving to the multi-attribute setting.
6By definition, the approximation ratio of the output of ANN is one.
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Figure 2: First Row: Columns 1 and 2 - Approximation ratio (relevance) versus Entropy (di-
versity) for k = 50 in the single-attribute setting. First Row: Columns 3 and 4 - Performance of
p-mean-ANN for various p values, for k = 50 in the single-attribute setting. Second Row - Approx-
imation ratio versus Entropy on Sift1m-(Clus) dataset in the multi-attribute setting.

in Appendix E.4 and they exhibit trends similar to the ones in Figure 2. These findings demonstrate
that Multi Nash-ANN achieves a balance between relevance and diversity. In summary,

Across datasets, and in both single- and multi-attribute settings, the Nash formulation consis-
tently improves entropy (diversity) over ANN, while maintaining an approximation ratio (rele-
vance) of roughly above 0.9. By contrast, the hard-constrained formulation is highly sensitive
to the choice of the quota parameter k′, and in some cases incurs a substantial drop in approx-
imation ratio (even lower than 0.2).

Results for p-NNS. As mentioned previously, p-mean-ANN (Algorithm 3 in Appendix D) effi-
ciently solves the p-mean nearest neighbor search (p-NNS) problem in the single-attribute setting.
Also, recall that, selecting the exponent parameter p ∈ (−∞, 1] enables us to interpolate p-NNS
between the standard NNS problem (p = 1), NaNNS (p = 0), and optimizing solely for diversity
(p→ −∞). We execute p-mean-ANN for p ∈ {−10,−1,−0.5, 0, 0.5, 1} and show that a trade-off
between relevance (approximation ratio) and diversity (entropy) can be achieved by tuning p.

For the single-attribute setting, Figure 2 (first row - columns 3 and 4) capture this feature: For lower
values of p we have higher entropy, while p = 1 matches ANN. Analogous results are obtained for
other datasets and metrics; see Appendix E.3. Empirical results provided in Appendix E.4 (e.g.,
Figure 29) highlight that the trade-off via p is also achieved in the multi-attribute setting.

5 CONCLUSION

In this work, we formulated diversity in neighbor search with a welfarist perspective, using Nash
social welfare (NSW) and p-mean welfare as objectives. Our NSW formulation balances diversity
and relevance in a query-dependent manner, satisfies several desirable axiomatic properties, and
is naturally applicable in both single-attribute and multi-attribute settings. With these properties,
our formulation overcomes key limitations of the prior hard-constrained approach (Anand et al.,
2025). Furthermore, the more general p-mean welfare interpolates between complete relevance
(p = 1) and complete diversity (p = −∞), offering practitioners a tunable parameter for real-
world needs. Our formulations also admit provable and practical algorithms suited for low-latency
scenarios. Experiments on real-world and semi-synthetic datasets validate their effectiveness in
balancing diversity and relevance against existing baselines.

An important direction for future work is the design of sublinear-time approximation algorithms, in
both single- and multi-attribute settings, that directly optimize our welfare objectives as part of ANN
algorithms, thereby further improving efficiency. Another promising avenue is to extend welfare-
based diversity objectives to settings without explicit attributes.
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A PROOF OF THEOREM 1

As in Algorithm 1, write D̂ℓ to denote the k nearest neighbors of the given query q in the set Dℓ.
Recall that in the single-attribute setting the sets Dℓs are disjoint across ℓ ∈ [c]. Also, vℓ(j) ∈ D̂ℓ

denotes the jth most similar vector to q in D̂ℓ, for each index j ∈ [k]. We define function fℓ(·) to
denote the cumulative similarity of prefixes of these vectors; in particular,

fℓ(i) :=

i∑
j=1

σ(q, vℓ(j)) for each 1 ≤ i ≤ k. (2)

Note that fℓ(i) is equal to the cumulative similarity of the i most similar (to q) vectors in Dℓ. The
lemma below shows that fℓ(·) satisfies a useful decreasing marginals property.
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Lemma 5 (Decreasing Marginals). For all attributes ℓ ∈ [c] and indices i′, i ∈ [k], with i′ < i, it
holds that

log
(
fℓ(i) + η

)
− log

(
fℓ(i− 1) + η

)
≤ log

(
fℓ(i

′) + η
)
− log

(
fℓ(i

′ − 1) + η
)
.

Proof. Note that

fℓ(i) + η

fℓ(i− 1) + η
=

fℓ(i− 1) + σ(q, vℓ(i)) + η

fℓ(i− 1) + η
= 1 +

σ(q, vℓ(i))

fℓ(i− 1) + η
.

Similarly, we have fℓ(i
′)+η

fℓ(i′−1)+η = 1 +
σ(q,vℓ

(i′))

fℓ(i′−1)+η .

In addition, the indexing of the vectors vℓ(j) ensures that σ(q, vℓ(i′)) ≥ σ(q, vℓ(i)) for i′ < i. Given
that fℓ(i) the sum of the similarities (which are non-negative) of the vectors vℓ1, . . . , v

ℓ
i , we have

fℓ(i
′ − 1) ≤ fℓ(i− 1) for i′ < i. Combining these bounds, we obtain

σ(q, vℓ(i′))

fℓ(i′ − 1) + η
≥

σ(q, vℓ(i))

fℓ(i− 1) + η
.

Adding 1 to both sides of the last equation and taking log (which is an increasing function and,
hence, preserves the inequality) gives us the desired inequality. The lemma stands proved.

The following lemma asserts the Nash optimality of the subset returned by Algorithm 1, ALG, within
a relevant class of solutions.
Lemma 6. In the single-attribute setting, let ALG be the subset of vectors returned by Algorithm 1
and S be any subset of input vectors with the property that |S ∩Dℓ| = |ALG∩Dℓ|, for each ℓ ∈ [c].
Then, NSW(ALG) ≥ NSW(S).

Proof. Assume, towards a contradiction, that there exists a subset of input vectors S that satisfies
|S ∩Dℓ| = |ALG ∩Dℓ|, for each ℓ ∈ [c], and still induces NSW strictly greater than that of ALG.
This strict inequality implies that there exists an attribute a ∈ [c] with the property that the utility
ua(S) > ua(ALG).7 That is, ∑

t∈S∩Da

σ(q, t) >
∑

v∈ALG∩Da

σ(q, v) (3)

On the other hand, note that the construction of Algorithm 1 and the definition of D̂a ensure that the
vectors in ALG ∩Da are in fact the most similar to q among all the vectors in Da. This observation
and the fact that |S ∩ Da| = |ALG ∩ Da| gives us

∑
v∈ALG∩Da

σ(q, v) ≥
∑

t∈S∩Da
σ(q, t). This

equation, however, contradicts the strict inequality (3).

Therefore, by way of contradiction, we obtain that there does not exist a subset S such that |S∩Dℓ| =
|ALG ∩Dℓ|, for each ℓ ∈ [c], and NSW(ALG) < NSW(S). The lemma stands proved.

We next restate and prove Theorem 1.
Theorem 1. In the single-attribute setting, given any query q ∈ Rd and an (exact) oracle ENN
for k most similar vectors from any set, Algorithm 1 (Nash-ANN) returns an optimal solution for
NaNNS, i.e., it returns a size-k subset ALG ⊆ P that satisfies ALG ∈ argmaxS⊆P :|S|=k NSW(S).
Furthermore, the algorithm runs in time O(kc) +

∑c
ℓ=1 ENN(Dℓ, q), where ENN(Dℓ, q) is the time

required by the exact oracle to find k most similar vectors to q in Dℓ.

Proof. The runtime analysis of Algorithm 1 is direct. Line 1 of the algorithm requires∑c
ℓ=1 ENN(Dℓ, q) time to populate the subsets D̂ℓs (of the k most similar points within each

Dℓ, respectively). The while-loop in the algorithm iterates k times and each iteration (specif-
ically, Line 5) runs in O(c) time. Hence, as stated, the time complexity of the algorithm is
O(kc) +

∑c
ℓ=1 ENN(Dℓ, q).

7Recall the utility model specified in Section 2.1.
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We next establish the optimality of the returned solution ALG. Write OPT ∈
argmaxS⊆P :|S|=k NSW(S) to denote an optimal solution with attribute counts |OPT∩Dℓ| as close
to |ALG ∩Dℓ| as possible. That is, among the optimal solutions, argmaxS⊆P :|S|=k NSW(S), it is
one that minimizes

∑c
ℓ=1 |k∗ℓ − kℓ|, where k∗ℓ = |OPT∩Dℓ| and kℓ = |ALG∩Dℓ|, for each ℓ ∈ [c].

We will prove that OPT satisfies k∗ℓ = kℓ for each ℓ ∈ [c]. This guarantee along with Lemma 6
imply that, as desired, ALG is a Nash optimal solution.

Assume, towards a contradiction, that k∗ℓ ̸= kℓ for some ℓ ∈ [c]. Since |OPT| = |ALG| = k, there
exists attributes x, y ∈ [c] with the property that

k∗x < kx and k∗y > ky (4)

For ease of exposition, write function Fℓ(i) := log
(
fℓ(i) + η

)
, for indices 1 ≤ i ≤ k. Lemma 5,

for any pair of indices i′ < i, gives us

Fℓ(i
′)− Fℓ(i

′ − 1) ≥ Fℓ(i)− Fℓ(i− 1) (5)

Next, note that for any attribute ℓ ∈ [c], if Algorithm 1, at any point during its execution, has included
k′ℓ vectors of attribute ℓ in ALG, then at that point the maintained utility wℓ = fℓ(k

′
ℓ). Hence, at

the beginning of any iteration of the algorithm, if the k′ℓ denotes the number of selected vectors of
each attribute ℓ ∈ [c], then the marginals considered in Line 5 are Fℓ (k

′
ℓ + 1) − Fℓ (k

′
ℓ). These

observations and the selection criterion in Line 5 of the algorithm give us the following inequality
for the counts kx = |ALG ∩Dx| and ky = |ALG ∩Dy| of the returned solution ALG:

Fx(kx)− Fx(kx − 1) ≥ Fy(ky + 1)− Fy(ky) (6)

Specifically, equation (6) follows by considering the iteration in which kth
x (last) vertex of attribute

x was selected by the algorithm. Before that iteration the algorithm had selected (kx− 1) vectors of
attribute x, and let k′y denote the number of vectors with attribute y that have been selected till that
point. Note that k′y ≤ ky . The fact that the kth

x vector was (greedily) selected in Line 5, instead of
including an additional vertex of attribute y, gives Fx(kx)−Fx(kx− 1) ≥ Fy(k

′
y +1)−Fy(k

′
y) ≥

Fy(ky +1)−Fy(ky); here, the last inequality follows from equation (5). Hence, equation (6) holds.

Moreover,

Fx(k
∗
x + 1)− Fx(k

∗
x) ≥ Fx(kx)− Fx(kx − 1) (via eqns. (4) and (5))
≥ Fy(ky + 1)− Fy(ky) (via eqn. (6))
≥ Fy(k

∗
y)− Fy(k

∗
y − 1) (7)

The last inequality follows from equations (4) and (5).

Recall that vℓ(i) denotes the ith most similar (to q) vector in the set D̂ℓ. The definition of D̂ℓ ensures
that vℓ(i) is in fact the ith most similar (to q) vector among the ones that have attribute ℓ, i.e., ith most
similar in all of Dℓ. Since OPT is an optimal solution, the k∗ℓ = |OPT ∩ Dℓ| vectors of attribute ℓ

in OPT are the most similar k∗ℓ vectors from Dℓ. That is, OPT ∩Dℓ =
{
vℓ(1), . . . , v

ℓ
(k∗

ℓ )

}
, for each

ℓ ∈ [c]. This observation and the definition of Fℓ(·) imply that the logarithm of OPT’s NSW satisfies

log NSW(OPT) =
1

c

c∑
ℓ=1

Fℓ(k
∗
ℓ ). (8)

Now, consider a subset of vectors S obtained from OPT by including vector vx(k∗
x+1) and removing

vy(k∗
y)

, i.e., S =
(

OPT ∪
{
vx(k∗

x+1)

})
\
{
vy(k∗

y)

}
. Note that

log NSW(S)− log NSW(OPT) =
1

c

(
Fx(k

∗
x + 1)− Fx(k

∗
x)
)
+

1

c

(
Fy(k

∗
y − 1)− Fy(k

∗
y)
)

≥ 0 (via eqn. (7))

Hence, NSW(S) ≥ NSW(OPT). Given that OPT is a Nash optimal allocation, the last inequality
must hold with an equality, NSW(S) = NSW(OPT), i.e., S is an optimal solution as well. This,
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however, contradicts the choice of OPT as an optimal solution that minimizes
∑c

ℓ=1 |k∗ℓ −kℓ| – note

that
∑c

ℓ=1

∣∣∣k̂ℓ − kℓ

∣∣∣ <∑c
ℓ=1 |k∗ℓ − kℓ|, where k̂ℓ := |S ∩Dℓ|.

Therefore, by way of contradiction, we obtain that |OPT ∩ Dℓ| = |ALG ∩ Dℓ| for each ℓ ∈ [c].
As mentioned previously, this guarantee along with Lemma 6 imply that ALG is a Nash optimal
solution. This completes the proof of the theorem.

Next, we prove Corollary 2.

Corollary 2. In the single-attribute setting, given any query q ∈ Rd and an α-approximate
oracle ANN for k most similar vectors from any set, Algorithm 1 (Nash-ANN) returns an α-
approximate solution for NaNNS, i.e., it returns a size-k subset ALG ⊆ P with NSW(ALG) ≥
αmaxS⊆P : |S|=k NSW(S). The algorithm runs in time O(kc) +

∑c
ℓ=1 ANN(Dℓ, q), with

ANN(Dℓ, q) denoting the time required by the oracle to find k similar vectors to q in Dℓ.

Proof. The running time of the algorithm is established by an argument similar to that in proof
of Theorem 1. Therefore, we only argue correctness.

For every ℓ ∈ [c], let the α-approximate oracle return D̂ℓ. Recall that vℓ(i), i ∈ [k], denotes the ith

most similar point to q in the set D̂ℓ. Further, for every ℓ ∈ [c], let D∗
ℓ be the set of k most similar

points to q within Dℓ and define v∗ℓ(i), i ∈ [k], to be the ith most similar point to q in D∗
ℓ . Recall that

by the guarantee of the α-approximate NNS oracle, we have σ(q, vℓ(i)) ≥ α ·σ(q, v∗ℓ(i)) for all i ∈ [k].
Let ALG∗ be the solution obtained by running Nash-ANN with an exact NNS oracle, and let ALG∗

contain k∗ℓ most similar points of attribute ℓ for every ℓ ∈ [c]. Moreover, let OPT be the optimal
solution to the NaNNS problem. Note that we have by Theorem 1, NSW(ALG∗) = NSW(OPT).

Finally, let ÔPT be the optimal solution to the NaNNS problem when the set of vectors to search
over is P = ∪ℓ∈[c]D̂ℓ.

By an argument similar to the proof of Theorem 1, we have NSW(ALG) = NSW(ÔPT). Therefore,
we can write,

NSW(ALG) = NSW(ÔPT)

≥

∏
ℓ∈[c]

 k∗
ℓ∑

i=1

σ(q, vℓ(i)) + η

 1
c

(∪ℓ∈[c]:k∗
ℓ≥1{vℓ(1), . . . , v

ℓ
(k∗

ℓ )
} is a feasible solution)

≥

∏
ℓ∈[c]

 k∗
ℓ∑

i=1

ασ(q, v∗ℓ(i)) + η

 1
c

(by α-approximate guarantee of the oracle)

≥

∏
ℓ∈[c]

α

 k∗
ℓ∑

i=1

σ(q, v∗ℓ(i)) + η

 1
c

(α ∈ (0, 1))

= α NSW(ALG∗)

= α NSW(OPT) (by Theorem 1)

Hence, the corollary stands proved.

A.1 PROOFS FOR EXAMPLES 1 AND 2

In this section, we give the proof of Example 1 and Example 2 which describe the two extreme
scenarios that can be realized by the NaNNS objective under different circumstances.

Example 1 (Complete Diversity via NaNNS). Consider an instance in which, for a given query
q ∈ Rd, all vectors in P are equally similar with the query: σ(q, v) = 1 for all v ∈ P . Also, let
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|atb(v)| = 1 for all v ∈ P and write S∗ ∈ argmaxS⊆P : |S|=k NSW(S). If c ≥ k, then here it
holds that |S∗ ∩Dℓ| ≤ 1 for all ℓ ∈ [c].

Proof. Towards a contradiction, suppose there exists T ∈ argmaxS⊆P :|S|=k NSW(S) such that
|T ∩ Dℓ∗ | > 1 for some ℓ∗ ∈ [c]. Note that according to the setting specified in the example,
uℓ(T ) = |T ∩Dℓ|+ η for all ℓ ∈ [c].

Since c ≥ k and |T ∩Dℓ∗ | > 1, there exists ℓ′ ∈ [c] such that |T ∩Dℓ′ | = 0. Let v∗ ∈ T ∩Dℓ∗ and
v′ ∈ Dℓ′ be two vectors. Consider the set T ′ = (T \ {v∗}) ∪ {v′}. We have,

NSW(T ′)

NSW(T )
=

 (uℓ′(T
′) + η)

(uℓ′(T ) + η)
· (uℓ∗(T

′) + η)

(uℓ∗(T ) + η)

∏
ℓ∈[c]\{ℓ∗,ℓ′}

(uℓ(T
′) + η)

(uℓ(T ) + η)

 1
c

=

 (1 + η)

η
· (uℓ∗(T )− 1 + η)

(uℓ∗(T ) + η)

∏
ℓ∈[c]\{ℓ∗,ℓ′}

(uℓ(T ) + η)

(uℓ(T ) + η)

 1
c

=

(
(1 + η)

η
· (uℓ∗(T )− 1 + η)

(uℓ∗(T ) + η)

) 1
c

=

(
uℓ∗(T )− 1 + ηuℓ∗(T ) + η2

ηuℓ∗(T ) + η2

) 1
c

> 1 (uℓ∗(T ) ≥ 2)

Therefore, we have NSW(T ′) > NSW(T ), which contradicts the optimality of T . Hence, we must
have |T ∩Dℓ| ≤ 1 for all ℓ ∈ [c], which proves the claim.

Example 2 (Complete Relevance via NaNNS). Consider an instance in which for a given query
q ∈ Rd and for a particular ℓ∗ ∈ [c], only vectors v ∈ Dℓ∗ have similarity σ(q, v) = 1 and all other
vectors p′ ∈ P \Dℓ∗ have similarity σ(q, p′) = 0. Also, suppose that |atb(p)| = 1 for each p ∈ P ,
along with |Dℓ∗ | ≥ k. Then, for a Nash optimal solution S∗ ∈ argmaxS⊆P,|S|=k NSW(S) it holds
that |S∗ ∩Dℓ∗ | = k. That is, for all other ℓ ∈ [c] \ {ℓ∗} we have |S∗ ∩Dℓ| = 0.

Proof. Towards a contradiction, suppose there exists T ∈ argmaxS⊆P :|S|=k NSW(S) such that
|T ∩Dℓ∗ | < k. Therefore, there exists ℓ′ ∈ [c] \ {ℓ∗} such that |T ∩Dℓ′ | ≥ 1. Let v∗ ∈ Dℓ∗ \ T
and let v′ ∈ T ∩Dℓ′ . Note that uℓ∗(T ) = 0 since σ(q, v) = 0 for all v ∈ Dℓ for any ℓ ∈ [c] \ {ℓ∗}.
Moreover, we also have uℓ∗(T ) = |T ∩Dℓ∗ |.
Consider the set T ′ = (T \ {v′}) ∪ {v∗}. We have,

NSW(T ′)

NSW(T )
=

 (uℓ′(T
′) + η)

(uℓ′(T ) + η)
· (uℓ∗(T

′) + η)

(uℓ∗(T ) + η)

∏
ℓ∈[c]\{ℓ∗,ℓ′}

(uℓ(T
′) + η)

(uℓ(T ) + η)

 1
c

=

 (uℓ′(T )− σ(q, v′) + η)

(uℓ′(T ) + η)
· (uℓ∗(T ) + σ(q, v∗) + η)

(uℓ∗(T ) + η)

∏
ℓ∈[c]\{ℓ∗,ℓ′}

(uℓ(T ) + η)

(uℓ(T ) + η)

 1
c

=

(
(0− 0 + η)

0 + η
· (|T ∩Dℓ∗ |+ 1 + η)

(|T ∩Dℓ∗ |+ η)

) 1
c

=

(
1 +

1

|T ∩Dℓ∗ |+ η

) 1
c

> 1 .

Therefore, we have obtained NSW(T ′) > NSW(T ), which contradicts the optimality of T . There-
fore, it must be the case that |T ∩Dℓ∗ | = k, which proves the claim.

B PROOF OF THEOREM 3

This section restates and proves Theorem 3. Recall that in the multi-attribute setting, input vectors
v ∈ P are associated one or more attributes, |atb(v)| ≥ 1.
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Theorem 3. In the multi-attribute setting, with parameter η = 1, NaNNS is NP-hard.

Proof. Consider the decision version of the optimization problem: given a real W , decide whether
there exists S ⊆ P , |S| = k such that log NSW(S) ≥W . We will refer to this problem as NaNNS.
Note that the input to a NaNNS instance is the following: a set of vectors P ⊂ Rd, |P | = n,
similarity function σ : Rd × Rd → R+, integer k ∈ N, the sets Dℓ = {p ∈ P : ℓ ∈ atb(p)} for
every color ℓ ∈ [c], a query point q ∈ Rd and a real W . We will show that NaNNS is NP-Complete
by reducing EXACT REGULAR SET PACKING (ERSP)8 to NaNNS.

In ERSP, we are given a universe of n elements that we denote by U = {1, 2, . . . , n}, a collection
of subsets S = {S1, . . . , Sm} where Si ⊆ U , |Si| = τ , for all i ∈ [m] and an integer k ∈ N. The
problem is to decide if there is a sub-collection I ⊆ S, |I| = k, such that for all distinct S, S′ ∈ I
S ∩ S′ = ∅.
To reduce ERSP to an instance of NaNNS, we view U as the set of attributes, i.e., c = n. The set of
vectors P is embedded in Rn and is given by P = { 1τ · 1S | S ∈ S} and the query vector is q = 1.
Here, 1 is the all ones vector in Rn, and 1S is the vector in Rn whose i-th coordinate is 1{i ∈ S}
for all i ∈ [n]. Therefore, the set of vectors P is of size m. Moreover, the set of vectors having
attribute ℓ ∈ [n] is denoted by Dℓ = { 1τ · 1S | S ∈ S, ℓ ∈ S}. The size of the solution set of the
NaNNS is equal to the k of the ERSP instance. Finally, the similarity function σ : Rn × Rn → R is
taken to be the usual dot-product. Finally, we set W = τk log 2. Note that the reduction takes time
polynomial in n and m.

Also note that for any v ∈ P , σ(q, v) = ⟨ 1τ · 1S ,1⟩ = 1 where v = 1
τ · 1S for some S ∈ S.

Now we prove the correctness of the reduction.

“⇒”: Suppose I∗ ⊂ S , |I∗| = k is a solution to ERSP instance. Consider the set N∗ := { 1τ · 1S :
S ∈ I∗}. Clearly, N∗ ⊆ P and |N∗| = k, hence N∗ is a feasible set of the NaNNS problem. Now,
since I∗ is a solution to the ERSP instance, for distinct S, S′ ∈ I∗ we have S ∩S′ = ∅. Particularly,
if for an attribute ℓ ∈ [c], we have ℓ ∈ S for some S ∈ I∗, then ℓ /∈ S′ for all S′ ∈ I∗ \ {S}.
Therefore, |N∗ ∩ Dℓ| ≤ 1 for all ℓ ∈ [c] which in turn implies that uℓ(N

∗) is either 1 or 0 for all
ℓ ∈ [c]. Finally, note that any point v ∈ P belongs to exactly τ attributes, i.e., |atb(v)| = τ . Hence,

log NSW(N∗) =
1

c

c∑
ℓ=1

log(1 + uℓ(N
∗)) =

1

c

∑
v∈N∗

∑
ℓ∈atb(v)

log(1 + 1) =
τk log 2

c
.

Therefore, if there is a solution to the ERSP instance, then the corresponding NaNNS instance also
has a solution.

“⇐”: Suppose N∗ ⊆ P , |N∗| = k, is a solution to the NaNNS instance (i.e., log NSW(N∗) ≥W )
corresponding to the ERSP instance. Define I∗ := {S | 1τ · 1S ∈ N∗}. Note that |I∗| = k. We will
show that I∗ is a solution to the ERSP instance. First observe that,∑

ℓ∈[c]

uℓ(N
∗) =

∑
ℓ∈[c]

∑
v∈N∗∩Dℓ

σ(q, v) =
∑
v∈N∗

∑
ℓ∈atb(v)

σ(q, v) = τk .

We also have the set of attributes with non-zero utility is given by A = ∪S∈I∗S. Clearly, 1 ≤
|A| ≤ τk via Union Bound. Hence,

W =
τk log 2

c
≤ log NSW(N∗) =

1

c

∑
ℓ∈[c]

log(1 + uℓ(N
∗))

=
1

c

∑
ℓ∈A

log(1 + uℓ(N
∗))

=
|A|
c
· 1

|A|
∑
ℓ∈A

log(1 + uℓ(N
∗))

≤ |A|
c
· log

(
1

|A|
∑
ℓ∈A

1 + uℓ(N
∗)

)
(concavity of log)

8ERSP is known to be NP-Complete due to Karp (1972) and W[1] hard with respect to solution size due
to Ausiello et al. (1980); see also Garey & Johnson (1990)
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=
|A|
c
· log

(
1 +

∑
ℓ∈A uℓ(N

∗)

|A|

)
=
|A|
c
· log

(
1 +

τk

|A|

)
≤ τk log 2

c

Here, the last inequality follows from Lemma 7 (stated and proved below). Hence, all the inequali-
ties in the derivation above must hold with equality. Particularly, we must have |A| = τk by equality
condition of Lemma 7. Hence, for distinct sets S, S′ ∈ I∗, we must have S ∩ S′ = ∅. Therefore, I∗
is a solution of the ERSP instance.

Lemma 7. For any a > 0 and for all x ∈ (0, a], x log(1 + a
x ) ≤ a log 2. Moreover, the equality

holds when x = a.

Proof. Let f(x) := x log(1 + a
x ). We have f(a) = a log(2) and,

lim
x→0+

f(x) = lim
x→0+

x log(a+ x)− x log x = lim
x→0+

x log(a+ x)− lim
x→0+

x log(x) = 0− 0 = 0 .

Note that f ′(x) = log(1 + a
x ) −

a
a+x . We will show that f ′(x) > 0 for all x ∈ (0, a] which will

conclude the proof.

Case 1: x ∈ (0, a
2 ]. We have log(1+ a

x ) ≥ log(1+ a
a/2 ) = log(3) > 1. On the other hand, a

a+x ≤ 1.

Case 2: x ∈ (a2 , a]. In this case, log(1 + a
x ) ≥ log(1 + a

a ) = log(2) > 0.693. However, a
a+x <

a
a+ a

2
= 2

3 ≤ 0.667.

Therefore, f ′(x) = log(1 + a
x )−

a
a+x > 0 for all x ∈ (0, a] which concludes the proof.

C PROOF OF THEOREM 4

This section details Algorithm 2, based on which we obtain Theorem 4. We establish this theorem
by showing that the log NSW(·) objective is submodular. Hence, we obtain the stated

(
1− 1

e

)
-

approximation by applying the approximation algorithm for cardinality-constrained submodular
maximization (Nemhauser et al., 1978).

Algorithm 2 MultiNashANN: Algorithm for approximate solution in the multi-attribute case

Require: Query q ∈ Rd.
1: Initialize ALG = ∅.
2: for i = 1, . . . , k do
3: v̂ = argmaxv∈P\ALG log NSW(ALG ∪ {v}).
4: ALG ← ALG ∪ {v̂}.
5: Return ALG.

Theorem 4. In the multi-attribute setting, there exists a polynomial-time algorithm (Algorithm 2)
that, given any query q ∈ Rd, finds a size-k subset ALG ⊆ P with log NSW(ALG) ≥(
1− 1

e

)
log NSW(OPT); here, OPT denotes an optimal solution of (1).

Proof. We will show that function f : 2P → R+, f(S) = log NSW(S), S ⊆ P , is monotone
submodular. Observe that for S ⊆ T ⊆ P , Dℓ ∩ S ⊆ Dℓ ∩ T , hence uℓ(S) ≤ uℓ(T ) for all ℓ ∈ [c].
Moreover, since log is an increasing function, log(uℓ(S) + 1) ≤ log(uℓ(T ) + 1) for all ℓ ∈ [c].
Therefore, we can conclude that f(S) ≤ f(T ), hence f is monotone.
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For submodularity, let S ⊆ T ⊆ P be two subsets and let w ∈ P \ T . We will denote by S +w and
T + w the sets S ∪ {w} and T ∪ {w}. Now, we have

f(S + w)− f(S)− f(T + w) + f(T )

=
1

c

∑
ℓ∈[c]

log

(
1 +

∑
v∈Dℓ∩(S+w) σ(q, v)

1 +
∑

v∈Dℓ∩S σ(q, v)
·

1 +
∑

v∈Dℓ∩T σ(q, v)

1 +
∑

v∈Dℓ∩(T+w) σ(q, v)

)

=
1

c

∑
ℓ∈atb(w)

log

(1 + σ(q, w)

1 +
∑

v∈Dℓ∩S σ(q, v)

)
·

(
1 +

σ(q, w)

1 +
∑

v∈Dℓ∩T σ(q, v)

)−1


=
1

c

∑
ℓ∈atb(w)

log

((
1 +

σ(q, w)

1 + uℓ(S)

)
·
(
1 +

σ(q, w)

1 + uℓ(T )

)−1
)

≥ 0 (uℓ(S) ≤ uℓ(T ) since S ⊆ T )

Therefore, upon rearranging, we have f(S +w)− f(S) ≥ f(T +w)− f(T ) which is a character-
ization of submodularity.

Hence, Algorithm 2, which, in every iteration, greedily picks the element with maximum marginal
contribution, achieves a (1− 1

e )-approximation (Nemhauser et al., 1978).

D EXTENSIONS FOR p-NNS

In this section, we discuss the extension of results for NaNNS to the p-NNS problem. We state
an algorithm (Algorithm 3) and present its guarantee (Theorem 11 and Corollary 12) in finding the
exact optimal solution for the p-NNS problem. Recall that p-mean welfare of c agents with utilities

(w1, . . . , wc) is given by Mp(w1, . . . , wc) =
(
1
c

∑c
ℓ=1 w

p
ℓ

) 1
p for p ∈ (−∞, 1]. The p-NNS problem

is stated as follows:

max
S⊆P :|S|=k

Mp (u1(S), . . . , uc(S))

Here, as in Section 2.1, the utility uℓ(S) =
∑

v∈S∩Dℓ
σ(q, v), for any subset of vectors S and

attribute ℓ ∈ [c]. Also, we will write Mp(S) := Mp (u1(S), . . . , uc(S)).

Algorithm 3 p-Mean-ANN: Algorithm for p-NNS in the single-attribute setting

Require: Query q ∈ Rd and, for each attribute ℓ ∈ [c], the set of input vectors Dℓ ⊂ Rd and
p ∈ (−∞, 1] \ {0}.

1: For each ℓ ∈ [c], fetch the k (exact or approximate) nearest neighbors of q ∈ Rd from Dℓ. Write
D̂ℓ ⊆ Dℓ to denote these sets.

2: For every ℓ ∈ [c] and each index i ∈ [k], let vℓ(i) denote the ith most similar vector to q in D̂ℓ.
3: Initialize subset ALG = ∅, along with count kℓ = 0 and utility wℓ = 0, for each ℓ ∈ [c].
4: while |ALG| < k do
5: if p ∈ (0, 1] then
6: Let a = argmax

ℓ∈[c]

(
(wℓ + η + σ(q, vℓ(kℓ+1)))

p − (wℓ + η)p
)

. {Ties broken arbitrarily.}

7: else if p < 0 then
8: Let a = argmin

ℓ∈[c]

(
(wℓ + η + σ(q, vℓ(kℓ+1)))

p − (wℓ + η)p
)

. {Ties broken arbitrarily.}

9: Update ALG ← ALG ∪
{
va(ka+1)

}
, along with wa ← wa + σ(q, va(ka+1)) and ka ← ka +1.

10: Return ALG.

Lemma 8 (Decreasing Marginal for p > 0). Fix a p ∈ (0, 1] and attribute ℓ ∈ [c]. Let fℓ(i) be the
same as defined in Equation (2) and let Fℓ(i) = (fℓ(i) + η)p. Then, for 1 ≤ i′ < i ≤ k, we have

Fℓ(i
′)− Fℓ(i

′ − 1) ≥ Fℓ(i)− Fℓ(i− 1) .
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Proof. Let G(j) := Fℓ(j) − Fℓ(j − 1) for all j ∈ [k]. We will show that G(j) is decreasing in j.
Towards this, we have the following inequalities for j ≥ 2:

G(j − 1)−G(j)

= Fℓ(j − 1)− Fℓ(j − 2)− Fℓ(j) + Fℓ(j − 1)

= 2Fℓ(j − 1)− (Fℓ(j) + Fℓ(j − 1))

= 2(fℓ(j − 1) + η)p − ((fℓ(j) + η)p + (fℓ(j − 2) + η)p)

= 2(fℓ(j − 2) + η)p

((
1 +

σ(q, vℓ(j−1))

fℓ(j − 2) + η

)p

− 1

2

(
1 +

(
1 +

σ(q, vℓ(j−1)) + σ(q, vℓ(j))

fℓ(j − 2) + η

)p))

≥ 2(fℓ(j − 2) + η)p

((
1 +

σ(q, vℓ(j−1))

fℓ(j − 2) + η

)p

− 1

2

(
1 +

(
1 +

2σ(q, vℓ(j−1))

fℓ(j − 2) + η

)p))
(σ(q, vℓ(j−1)) ≥ σ(q, vℓ(j)); x 7→ xp is increasing for p ∈ (0, 1] and x ≥ 0)

≥ 2(fℓ(j − 2) + η)p

((
1 +

σ(q, vℓ(j−1))

fℓ(j − 2) + η

)p

−

(
1

2
· 1 + 1

2
·

(
1 +

2σ(q, vℓ(j−1))

fℓ(j − 2) + η

))p)
(x 7→ xp is concave for p ∈ (0, 1] and x ≥ 0)

= 0 .

Therefore, we have G(j) ≤ G(j − 1) for all 2 ≤ j ≤ k. Particularly, for 1 ≤ i′ < i ≤ k, we have
G(i′) ≥ G(i), which is the claimed inequality.

Lemma 9 (Increasing Marginals for p < 0). Fix a p ∈ (−∞, 0) and attribute ℓ ∈ [c]. Let fℓ(i) be
the same as defined in Equation (2) and let Fℓ(i) = (fℓ(i)+ η)p. Then, for 1 ≤ i′ < i ≤ k, we have

Fℓ(i
′)− Fℓ(i

′ − 1) ≤ Fℓ(i)− Fℓ(i− 1) .

Proof. The proof proceeds similarly to the proof of Lemma 8, except that we now seek the reverse
inequality. More precisely, with G(j) same as defined in proof of Lemma 8, we wish to show that
G(j) ≥ G(j − 1) for all 2 ≤ j ≤ k. Towards this, we have,

G(j − 1)−G(j)

= 2(fℓ(j − 2) + η)p

((
1 +

σ(q, vℓ(j−1))

fℓ(j − 2) + η

)p

− 1

2

(
1 +

(
1 +

σ(q, vℓ(j−1)) + σ(q, vℓ(j))

fℓ(j − 2) + η

)p))

≤ 2(fℓ(j − 2) + η)p

((
1 +

σ(q, vℓ(j−1))

fℓ(j − 2) + η

)p

− 1

2

(
1 +

(
1 +

2σ(q, vℓ(j−1))

fℓ(j − 2) + η

)p))
(σ(q, vℓ(j−1)) ≥ σ(q, vℓ(j)); x 7→ xp is decreasing for p ∈ (−∞, 0) and x ≥ 0)

≤ 2(fℓ(j − 2) + η)p

((
1 +

σ(q, vℓ(j−1))

fℓ(j − 2) + η

)p

−

(
1

2
· 1 + 1

2
·

(
1 +

2σ(q, vℓ(j−1))

fℓ(j − 2) + η

))p)
(x 7→ xp is convex for p ∈ (−∞, 0) and x ≥ 0)

= 0 .

Lemma 10. In the single-attribute setting, let ALG be the subset of vectors returned by Algorithm 3
and S be any subset of input vectors with the property that |S ∩Dℓ| = |ALG∩Dℓ|, for each ℓ ∈ [c].
Then, Mp(ALG) ≥Mp(S).

Proof. Assume, towards a contradiction, that there exists a subset of input vectors S that satisfies
|S∩Dℓ| = |ALG∩Dℓ|, for each ℓ ∈ [c], and still induces p-mean welfare strictly greater than that of
ALG. This strict inequality combined with the fact that Mp(w1, . . . , wc) is an increasing function of
wis implies that there exists an attribute a ∈ [c] with the property that the utility ua(S) > ua(ALG).9

9Recall the utility model specified in Section 2.1.
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That is, ∑
t∈S∩Da

σ(q, t) >
∑

v∈ALG∩Da

σ(q, v) (9)

On the other hand, note that the construction of Algorithm 3 and the definition of D̂a ensure that the
vectors in ALG ∩Da are in fact the most similar to q among all the vectors in Da. This observation
and the fact that |S ∩ Da| = |ALG ∩ Da| gives us

∑
v∈ALG∩Da

σ(q, v) ≥
∑

t∈S∩Da
σ(q, t). This

equation, however, contradicts the strict inequality (9).

Therefore, by way of contradiction, we obtain that there does not exist a subset S such that |S∩Dℓ| =
|ALG ∩Dℓ|, for each ℓ ∈ [c], and Mp(ALG) < Mp(S). The lemma stands proved.

Theorem 11. In the single-attribute setting, given any query q ∈ Rd and an (exact) oracle ENN for
k most similar vectors from any set, Algorithm 3 (p-mean-ANN) returns an optimal solution for
p-NNS, i.e., it returns a size-k subset ALG ⊆ P that satisfies ALG ∈ argmaxS⊆P :|S|=k Mp(S).
Furthermore, the algorithm runs in time O(kc) +

∑c
ℓ=1 ENN(Dℓ, q), where ENN(Dℓ, q) is the time

required by the exact oracle to find k most similar vectors to q in Dℓ.

Proof. The running time of the algorithm is established by the same arguments as in the running
time analysis of Theorem 1.

For the correctness analysis, we divide the proof into two cases: p < 0 and p ∈ (0, 1].

Case 1: p ∈ (0, 1]. Note that x 7→ xp is an increasing function for x ≥ 0. Hence, the prob-
lem maxS⊆P,|S|=k Mp(S) is equivalent to the problem maxS⊆P,|S|=k Mp(S)

p or in other words,
maxS⊆P,|S|=k

1
c

∑c
ℓ=1 uℓ(S)

p. The proof hereafter proceeds essentially similar to the proof of The-
orem 1. Let kℓ = |ALG ∩Dℓ| for all ℓ ∈ [c]. Further, let OPT ∈ argmaxS⊆P,|S|=k

1
c

∑c
ℓ=1 uℓ(S)

p

and k∗ℓ = |OPT ∩Dℓ| for all ℓ ∈ [c], where OPT is chosen such that
∑c

ℓ=1|k∗ℓ − kℓ| is minimized.

We will prove that OPT satisfies k∗ℓ = kℓ for each ℓ ∈ [c]. This guarantee along with Lemma 6
imply that, as desired, ALG is a p-mean welfare optimal solution.

Assume, towards a contradiction, that k∗ℓ ̸= kℓ for some ℓ ∈ [c]. Since |OPT| = |ALG| = k, there
exists attributes x, y ∈ [c] with the property that

k∗x < kx and k∗y > ky (10)

With Fℓ(i) as defined in Lemma 8, we have for any pair of indices 1 ≤ i′ < i ≤ k,

Fℓ(i
′)− Fℓ(i

′ − 1) ≥ Fℓ(i)− Fℓ(i− 1) (11)

Next, note that for any attribute ℓ ∈ [c], if Algorithm 3, at any point during its execution, has included
k′ℓ vectors of attribute ℓ in ALG, then at that point the maintained utility wℓ = fℓ(k

′
ℓ). Hence, at

the beginning of any iteration of the algorithm, if the k′ℓ denotes the number of selected vectors of
each attribute ℓ ∈ [c], then the marginals considered in Line 6 are Fℓ (k

′
ℓ + 1) − Fℓ (k

′
ℓ). These

observations and the selection criterion in Line 6 of the algorithm give us the following inequality
for the counts kx = |ALG ∩Dx| and ky = |ALG ∩Dy| of the returned solution ALG:

Fx(kx)− Fx(kx − 1) ≥ Fy(ky + 1)− Fy(ky) (12)

Specifically, equation (12) follows by considering the iteration in which kth
x (last) vector of attribute

x was selected by the algorithm. Before that iteration the algorithm had selected (kx− 1) vectors of
attribute x, and let k′y denote the number of vectors with attribute y that have been selected till that
point. Note that k′y ≤ ky . The fact that the kth

x vector was (greedily) selected in Line 6, instead of
including an additional vector of attribute y, gives Fx(kx)−Fx(kx− 1) ≥ Fy(k

′
y +1)−Fy(k

′
y) ≥

Fy(ky + 1) − Fy(ky); here, the last inequality follows from equation (11). Hence, equation (12)
holds.

Moreover,

Fx(k
∗
x + 1)− Fx(k

∗
x) ≥ Fx(kx)− Fx(kx − 1) (via eqns. (10) and (11))
≥ Fy(ky + 1)− Fy(ky) (via eqn. (12))
≥ Fy(k

∗
y)− Fy(k

∗
y − 1) (13)
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The last inequality follows from equations (10) and (11).

Recall that vℓ(i) denotes the ith most similar (to q) vector in the set D̂ℓ. The definition of D̂ℓ ensures
that vℓ(i) is in fact the ith most similar (to q) vector among the ones that have attribute ℓ, i.e., ith most
similar in all of Dℓ. Since OPT is an optimal solution, the k∗ℓ = |OPT ∩ Dℓ| vectors of attribute ℓ

in OPT are the most similar k∗ℓ vectors from Dℓ. That is, OPT ∩Dℓ =
{
vℓ(1), . . . , v

ℓ
(k∗

ℓ )

}
, for each

ℓ ∈ [c]. This observation and the definition of Fℓ(·) imply that the p-th power of OPT’s p-mean
welfare satisfies

Mp(OPT)p =
1

c

c∑
ℓ=1

Fℓ(k
∗
ℓ ). (14)

Now, consider a subset of vectors S obtained from OPT by including vector vx(k∗
x+1) and removing

vy(k∗
y)

, i.e., S =
(

OPT ∪
{
vx(k∗

x+1)

})
\
{
vy(k∗

y)

}
. Note that

Mp(S)
p −Mp(OPT)p =

1

c

(
Fx(k

∗
x + 1)− Fx(k

∗
x)
)
+

1

c

(
Fy(k

∗
y − 1)− Fy(k

∗
y)
)

≥ 0 (via eqn. (13))

Hence, Mp(S) ≥ Mp(OPT). Given that OPT is a p-mean welfare optimal allocation, the last
inequality must hold with an equality, Mp(S) = Mp(OPT), i.e., S is an optimal solution as well.
This, however, contradicts the choice of OPT as an optimal solution that minimizes

∑c
ℓ=1 |k∗ℓ − kℓ|

– note that
∑c

ℓ=1

∣∣∣k̂ℓ − kℓ

∣∣∣ <∑c
ℓ=1 |k∗ℓ − kℓ|, where k̂ℓ := |S ∩Dℓ|.

Therefore, by way of contradiction, we obtain that |OPT ∩ Dℓ| = |ALG ∩ Dℓ| for each ℓ ∈ [c].
As mentioned previously, this guarantee along with Lemma 10 imply that ALG is a p-mean welfare
optimal solution. This completes the proof of the theorem for the case p ∈ (0, 1].

Case 2: p < 0. In this case, the proof follows a similar argument as the previous case. However,
due to p being negative, the key inequalities are reversed. We present the proof formally below for
the sake of completeness.

Note that x 7→ xp is a decreasing function for x ≥ 0. Hence, the problem maxS⊆P,|S|=k Mp(S) is
equivalent to the problem minS⊆P,|S|=k Mp(S)

p or in other words, minS⊆P,|S|=k
1
c

∑c
ℓ=1 uℓ(S)

p.
Let kℓ = |ALG ∩ Dℓ| for all ℓ ∈ [c]. Further, let OPT ∈ argminS⊆P,|S|=k

1
c

∑c
ℓ=1 uℓ(S)

p and
k∗ℓ = |OPT ∩Dℓ| for all ℓ ∈ [c], where OPT is chosen such that

∑c
ℓ=1|k∗ℓ − kℓ| is minimized.

We will prove that OPT satisfies k∗ℓ = kℓ for each ℓ ∈ [c]. This guarantee along with Lemma 10
imply that, as desired, ALG is a p-mean welfare optimal solution.

Assume, towards a contradiction, that k∗ℓ ̸= kℓ for some ℓ ∈ [c]. Since |OPT| = |ALG| = k, there
exists attributes x, y ∈ [c] with the property that

k∗x < kx and k∗y > ky (15)

With Fℓ(i) as defined in Lemma 9, we have for any pair of indices 1 ≤ i′ < i ≤ k,

Fℓ(i
′)− Fℓ(i

′ − 1) ≤ Fℓ(i)− Fℓ(i− 1) (16)

Next, note that for any attribute ℓ ∈ [c], if Algorithm 3, at any point during its execution, has included
k′ℓ vectors of attribute ℓ in ALG, then at that point the maintained utility wℓ = fℓ(k

′
ℓ). Hence, at

the beginning of any iteration of the algorithm, if the k′ℓ denotes the number of selected vectors of
each attribute ℓ ∈ [c], then the marginals considered in Line 8 are Fℓ (k

′
ℓ + 1) − Fℓ (k

′
ℓ). These

observations and the selection criterion in Line 8 of the algorithm give us the following inequality
for the counts kx = |ALG ∩Dx| and ky = |ALG ∩Dy| of the returned solution ALG:

Fx(kx)− Fx(kx − 1) ≤ Fy(ky + 1)− Fy(ky) (17)

Specifically, equation (17) follows by considering the iteration in which kth
x (last) vector of attribute

x was selected by the algorithm. Before that iteration the algorithm had selected (kx− 1) vectors of
attribute x, and let k′y denote the number of vectors with attribute y that have been selected till that
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point. Note that k′y ≤ ky . The fact that the kth
x vector was (greedily) selected in Line 8, instead of

including an additional vector of attribute y, gives Fx(kx)−Fx(kx− 1) ≤ Fy(k
′
y +1)−Fy(k

′
y) ≤

Fy(ky + 1) − Fy(ky); here, the last inequality follows from equation (16). Hence, equation (17)
holds.

Moreover,

Fx(k
∗
x + 1)− Fx(k

∗
x) ≤ Fx(kx)− Fx(kx − 1) (via eqns. (15) and (16))
≤ Fy(ky + 1)− Fy(ky) (via eqn. (17))
≤ Fy(k

∗
y)− Fy(k

∗
y − 1) (18)

The last inequality follows from equations (15) and (16).

Recall that vℓ(i) denotes the ith most similar (to q) vector in the set D̂ℓ. The definition of D̂ℓ ensures
that vℓ(i) is in fact the ith most similar (to q) vector among the ones that have attribute ℓ, i.e., ith most
similar in all of Dℓ. Since OPT is an optimal solution, the k∗ℓ = |OPT ∩ Dℓ| vectors of attribute ℓ

in OPT are the most similar k∗ℓ vectors from Dℓ. That is, OPT ∩Dℓ =
{
vℓ(1), . . . , v

ℓ
(k∗

ℓ )

}
, for each

ℓ ∈ [c]. This observation and the definition of Fℓ(·) imply that the p-th power of OPT’s p-mean
welfare satisfies

Mp(OPT)p =
1

c

c∑
ℓ=1

Fℓ(k
∗
ℓ ). (19)

Now, consider a subset of vectors S obtained from OPT by including vector vx(k∗
x+1) and removing

vy(k∗
y)

, i.e., S =
(

OPT ∪
{
vx(k∗

x+1)

})
\
{
vy(k∗

y)

}
. Note that

Mp(S)
p −Mp(OPT)p =

1

c

(
Fx(k

∗
x + 1)− Fx(k

∗
x)
)
+

1

c

(
Fy(k

∗
y − 1)− Fy(k

∗
y)
)

≤ 0 (via eqn. (18))

Hence, Mp(S) ≥ Mp(OPT). Given that OPT is a p-mean welfare optimal allocation, the last
inequality must hold with an equality, Mp(S) = Mp(OPT), i.e., S is an optimal solution as well.
This, however, contradicts the choice of OPT as an optimal solution that minimizes

∑c
ℓ=1 |k∗ℓ − kℓ|

– note that
∑c

ℓ=1

∣∣∣k̂ℓ − kℓ

∣∣∣ <∑c
ℓ=1 |k∗ℓ − kℓ|, where k̂ℓ := |S ∩Dℓ|.

Therefore, by way of contradiction, we obtain that |OPT ∩ Dℓ| = |ALG ∩ Dℓ| for each ℓ ∈ [c].
As mentioned previously, this guarantee along with Lemma 10 imply that ALG is a p-mean welfare
optimal solution. This completes the proof of the theorem for the case p < 0.

Combining the two cases we have the proof of the theorem for all p ∈ (−∞, 1] \ {0}.

Corollary 12. In the single-attribute setting, given any query q ∈ Rd and an α-approximate or-
acle ANN for k most similar vectors from any set, Algorithm 3 (p-mean-ANN) returns an α-
approximate solution for p-NNS, i.e., it returns a size-k subset ALG ⊆ P with Mp(ALG) ≥

αmaxS⊆P : |S|=k Mp(S). The algorithm runs in time O(kc) +
c∑

ℓ=1

ANN(Dℓ, q), with ANN(Dℓ, q)

being the time required by the approximate oracle to find k similar vectors to q in Dℓ.

Proof. The running time of the algorithm is established by an argument similar to that in proof
of Theorem 11. Therefore, we only argue correctness.

For every ℓ ∈ [c], let the α-approximate oracle return D̂ℓ. Recall that vℓ(i), i ∈ [k], denotes the ith

most similar point to q in the set D̂ℓ. Further, for every ℓ ∈ [c], let D∗
ℓ be the set of k most similar

points to q within Dℓ and define v∗ℓ(i), i ∈ [k], to be the ith most similar point to q in D∗
ℓ . Recall that by

the guarantee of the α-approximate NNS oracle, we have σ(q, vℓ(i)) ≥ α·σ(q, v∗ℓ(i)) for all i ∈ [k]. Let
ALG∗ be the solution obtained by running p-mean-ANN with an exact NNS oracle, and let ALG∗

contain k∗ℓ most similar points of attribute ℓ for every ℓ ∈ [c]. Moreover, let OPT be the optimal
solution to the p-NNS problem. Note that we have by Theorem 11, Mp(ALG∗) = Mp(OPT).
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Finally, let ÔPT be the optimal solution to the p-NNS problem when the set of vectors to search over
is P = ∪ℓ∈[c]D̂ℓ.

By an argument similar to the proof of Theorem 11, we have Mp(ALG) = Mp(ÔPT). Therefore,
we can write,

Mp(ALG) = Mp(ÔPT)

≥

1

c

∑
ℓ∈[c]

 k∗
ℓ∑

i=1

σ(q, vℓ(i)) + η

p
1
p

(∪ℓ∈[c]:k∗
ℓ≥1{vℓ(1), . . . , v

ℓ
(k∗

ℓ )
} is a feasible solution)

≥

1

c

∑
ℓ∈[c]

 k∗
ℓ∑

i=1

ασ(q, v∗ℓ(i)) + η

p
1
p

(by α-approximate guarantee of the oracle, and Mp is increasing in its argument)

≥

1

c

∑
ℓ∈[c]

αp

 k∗
ℓ∑

i=1

σ(q, v∗ℓ(i)) + η

p
1
p

(α ∈ (0, 1))

= α Mp(ALG∗)

= α Mp(OPT) (by Theorem 11)

Hence, the corollary stands proved.

E EXPERIMENTAL EVALUATION AND ANALYSIS

In this section, we present additional experimental results to further validate the performance of
Nash-ANN in comparison with the existing methods. We begin with a detailed discussion of the
evaluation metrics (Appendix E.1), followed by a description of the datasets used in our study (Ap-
pendix E.2). Next, we report results for the single-attribute setting (Appendix E.3), where we com-
pare the approximation ratio alongside all diversity metrics for k = 10 and k = 50. We also include
recall values for both k = 10 and k = 50 (Appendix E.3.5). The key observation in all these plots is
that the NSW objective effectively strikes a balance between relevance and diversity without having
to specify any ad hoc constraints like quotas. Furthermore, we report experimental results for the
multi-attribute setting on both a synthetic dataset (Sift1m) and a real-world dataset (ArXiv). Fi-
nally, we experimentally validate the performance-efficiency trade-offs of a faster heuristic variant
of p-mean-ANN that can be used in addition to any existing (standard) ANN algorithm.

E.1 EVALUATION METRICS

We evaluate the performance of our proposed methods against baseline algorithms using the follow-
ing metrics:

Relevance Metrics:

1. Approximation Ratio: For a given query q, let an algorithm of choice return the set S1

and let a (standard) ANN algorithm return the set S2. Then the approximation ratio of

the algorithm is defined as the ratio
∑

p∈S1
σ(q,p)∑

p∈S2
σ(q,p) . Therefore, a higher approximation ratio

indicates a more relevant solution.
2. Recall: For a given query q, let S∗ be the set of exact nearest neighbors of q and let S1

be the output of an algorithm. Then the recall of the algorithm is the quantity |S1∩S∗|
|S∗| .

Therefore, a higher recall indicates a more relevant solution.

It is important to note that recall is a fragile metric when the objective is to retrieve a relevant-cum-
diverse set of vectors for a given query. This can be illustrated with the following stylized example
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in the single-attribute setting. Suppose for a given query q, all the vectors in the set of exact nearest
neighbors S∗ have similarity 1, i.e., for all p ∈ S∗, σ(q, p) = 1. However, let all vectors p ∈ S∗

be associated with the same attribute ℓ∗ ∈ [c], i.e., atb(p) = ℓ∗ for all p ∈ S∗. Therefore, the set
of exact nearest neighbors is not at all diverse. However, it may be the case that there is a set S′

of k vectors, all having different attributes (i.e. atb(p) ̸= atb(p′) and atb(p) ̸= ℓ∗ for p, p′ ∈ S′,
p ̸= p′), such that σ(q, p′) = 0.99 for all p′ ∈ S′. In other words, there is a highly relevant set
of vectors that is also completely diverse. Note that for the set S′, the recall is actually 0 but the
approximation ratio is 0.99. Hence, in the context of diverse neighbor search problem, instead of
recall, approximation ratio may be a more meaningful relevance metric.

Diversity Metrics:

• Entropy: Let S ⊆ P , |S| = k, be the output of an algorithm. Then the entropy of the set
of S in the single-attribute setting is given by the quantity

∑
ℓ∈[c]:pℓ>0−pℓ log(pℓ) where

pℓ =
|S∩Dℓ|

|S| . Note that a higher entropy value indicates greater diversity.

• Inverse Simpson Index: For a given set S ⊆ P , |S| = k in the single-attribute setting, the
inverse Simpson index index is defined as 1∑c

ℓ=1 p2
ℓ

where pℓ is as defined in the definition
of entropy above. A higher value indicates greater diversity.

• Distinct Attribute Count: In the single-attribute setting, the distinct attribute count of a
set S ⊆ P , |S| = k is the number |{ℓ ∈ [c] : |S ∩Dℓ| > 0}|.

In the multi-attribute setting, in this work, we focus on settings where the attribute set [c] is parti-
tioned into m sets {Ci}mi=1 (i.e., [c] = ⊔mi=1Ci) and every input vector v ∈ P is associated with
one attribute from each Ci, i.e., |atb(v)| = m and |atb(v) ∩ Ci| = 1. To measure diversity in the
multi-attribute setting, we consider the aforementioned diversity metrics like entropy and inverse
Simpson index restricted to a Ci. More precisely, the entropy a set S ⊆ P restricted to a particular
Ci is given by

∑
ℓ∈Ci
−pℓ log(pℓ) where pℓ =

|S∩Dℓ|
|S| . Similarly, the inverse Simpson index of a set

S ⊆ P restricted to Ci is given by 1∑
ℓ∈Ci

p2
ℓ

where pℓ is as defined before.

E.2 DATASETS

1. Amazon Products Dataset (Amazon): The dataset also known as the Shopping Queries
Image Dataset (SQID) (Ghossein et al., 2024), is based on the Amazon Shopping Queries
dataset (Reddy et al., 2022) that is publicly available on the KDD Cup 2022 Challenge
website10. The SQID includes image embeddings for about 190, 000 products listed in the
Amazon Shopping Queries dataset along with the text embeddings of user queries present
in the same dataset. The image and text embeddings are obtained via the use of OpenAI’s
CLIP model (Radford et al., 2021) which maps both images and texts into a shared vector
space. The task is to retrieve product images relevant to a given text query. The SQID also
contains metadata such as product image url, product id, product description, product title,
product color, etc. The dataset is publicly available on Hugging Face platform.11

We directly use the embeddings from the Hugging Face repository and map product id-s
to retrieve additional metadata from the Amazon KDD dataset. We use σ(u, v) = 1 +

u⊤v
∥u∥·∥v∥ as the similarity function between two vectors u and v. Note that the image and
text embeddings in the dataset were generated using the cosine similarity metric in the loss
function (see (Ghossein et al., 2024), Section 4.2) hence the similarity function defined in
this work is a natural choice. We choose the set of product colors as our set of attributes
[c]. To obtain a clean label for the product color of a given product in the dataset, we
apply majority voting among the colors listed in the product color, description, and title
of the product. In the event of a tie, we assign the item to a separate color class labeled
‘color mix’ (e.g., if the title says ‘blue’ but the color column says ‘red’). Product entries in
the dataset whose metadata does not contain any valid color names are removed. The pre-
processing script will be shared with reviewers as an anonymous repository during the open

10https://amazonkddcup.github.io
11https://huggingface.co/datasets/crossingminds/shopping-queries-image-dataset
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Figure 3: Distribution of product colors in the processed (cleaned) Amazon dataset.

discussion phase and will be publicly released in the camera-ready version. The processed
dataset contains approximately 92, 092 vector embeddings of products. Note that we do
not apply any pre-processing to the query set which contains 8, 956 vector. The vector
embeddings of both images and queries are 768 dimensional. Note that the dataset exhibits
a skewed color distribution, shown in Figure 3), with some dominant colors such as black
and white.

2. ArXiv OpenAI Embedding (ArXiv): The dataset published by Cornell University con-
sists of vector embeddings for approximately 250, 000 machine learning papers available
through the arXiv search engine (Wester, 2022). The embedding of a given paper was gen-
erated using OpenAI’s text-embedding-ada-002 model on the augmented abstract
of the paper that combined the paper’s title, authors, year, and abstract. The dataset is
publicly available on Kaggle12 (Wester, 2022).
We consider the year in which a paper was last updated as the attribute in the single-attribute
setting, and additionally consider the arXiv category the paper belongs to as a second at-
tribute in the multi-attribute setting. Note that this dataset does not contain a predefined
query set; hence, we randomly split 20% of the total vector embeddings to serve as queries.
Such queries simulate the task of finding papers similar to a given query paper. The simi-
larity function used for this dataset is the reciprocal of the Euclidean distance between two
vectors, i.e, for two vectors u and v, σ(u, v) = 1

∥u−v∥+µ , where µ is a small constant to
avoid issues for the case when ∥u − v∥ = 0. Typically, we set µ = η (recall that η is the
smoothening parameter in the definition of NSW(·)). The distribution of the input vectors
across update-year and arXiv category are shown in Figure 4.
For our experiments, we only consider papers with update-year between 2012 and 2025
(both inclusive) and belonging to one or more of the following arXiv categories: cs.ai,
math.oc, cs.lg, cs.cv, stat.ml, cs.ro, cs.cl, cs.ne, cs.ir, cs.sy,
cs.hc, cs.cr, cs.cy, cs.sd, eess.as, and eess.iv. The pre-processing script
will be shared with reviewers as an anonymous repository during the open discussion phase
and will be publicly released in the camera-ready version.

3. SIFT Embeddings: It is a popular benchmarking dataset for approximate nearest neighbor
search using the Euclidean distance (TensorFlow, 2025). The dataset consists of pre-trained
SIFT embeddings, with 1, 000, 000 vectors for indexing and a separate set of 10, 000 vec-
tors as the query set, both in a 128 dimensional space. The embeddings are publicly avail-
able13 (TensorFlow, 2025). Note that this dataset does not contain any metadata that can
be naturally adapted as attributes to model diversity. Therefore, we adopt two strategies for
synthetic attribute generation:

• Clustering-based (Sift1m-(Clus)): Since attributes such as color often occupy
distinct regions in the embedding space, we follow a similar idea and apply k-means

12https://www.kaggle.com/datasets/awester/arxiv-embeddings
13https://www.tensorflow.org/datasets/catalog/sift1m
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(a) (b)

Figure 4: Distribution of (a) paper categories (b) last update year in the ArXiv dataset.

clustering to identify 20 clusters. Each cluster is then assigned a unique color, which
serves as our synthetic attribute. Therefore, in this case c = 20.

• Probability distribution-based (Sift1m-(Prob)): To remain consistent with the
prior work (Anand et al., 2025), we also adopt a randomized approach to color (at-
tribute) assignment. For each vector, we assign one of three majority colors uniformly
at random with probability 0.9, and with the remaining probability 0.1, one of the
remaining 17 colors is assigned. This results in a skewed distribution over colors
that mimics real-world settings (e.g., market dominance by a few sellers). The pre-
processing script will be shared with reviewers as an anonymous repository during the
open discussion phase and will be publicly released in the camera-ready version.

Multi-attribute setting: We extend the clustering-based attribute generation strategy to the
multi-attribute setting as follows. We divide each 128 dimensional input vector v into four
equal segments of 32 dimensions {vi}4i=1, i.e., v1 = v[1, . . . , 32], v2 = v[33, . . . , 64] etc.
We then separately apply k-means clustering to compute 20 clusters on each segment, i.e.,
on the set of vectors {vi : v ∈ P} for each i ∈ [4]. Let the set of cluster ids be Ci for the
set of vectors {vi : v ∈ P}, i ∈ [4]. Note that |Ci| = 20. Thereafter, the set of attributes
assigned to the original input vector v is the union of the cluster ids of vis. In other words,
atb(v) = ⊔4i=1{Ci(v

i)} where Ci(v
i) is the cluster id of vi.

4. Deep Descriptor Embeddings: It is another benchmarking dataset for nearest neighbor
search, evaluated using cosine distance (TensorFlow, 2025). The version used in this study
contains approximately 9, 990, 000 vectors for indexing and 10, 000 separate query vectors,
both residing in a 96 dimensional space. These embeddings are publicly available14 (Ten-
sorFlow, 2025), and we adopt the same synthetic attribute generation procedure as in the
SIFT dataset to produce Deep1b-(Clus) and Deep1b-(Prob) variants.

Choice of Parameter η: For our methods, we tune and set the smoothing parameter, η, to 0.01
for the ArXiv, Sift1m-(Clus) and Sift1m-(Prob) datasets in comparing relevance with
diversity, and set it to 0.0001 to analyze performance at different values p. For other datasets,
namely Amazon, Deep1b-(Clus) and Deep1b-(Prob), we set η to 50 for both experiments.

E.3 BALANCING RELEVANCE AND DIVERSITY: SINGLE-ATTRIBUTE SETTING

In this experiment, we evaluate the performance of p-mean-ANN (and the special case of p = 0,
Nash-ANN) in its ability to balance relevance and diversity in the p-NNS (and NaNNS) problem
in the single-attribute setting. We begin by examining the tradeoff between approximation ratio and
entropy achieved by our algorithms on additional datasets beyond those used in the main paper.
Moreover, we also report results for other diversity metrics such as the inverse Simpson index (Ap-
pendix E.3.3) and the number of distinct attributes appearing in the k neighbors (Appendix E.3.4)
retrieved by our algorithms. These experiments corroborate the findings in the main paper, namely,
Nash-ANN and p-mean-ANN are able to strike a balance between relevance and diversity whereas

14https://www.tensorflow.org/datasets/catalog/deep1b
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Figure 5: The plots show results on approximation ratio and entropy for (Left) k = 10; (Right) k =
50 in single-attribute setting on Sift1m-(Clus) dataset.

Figure 6: The plots show results on approximation ratio and entropy for (Left) k = 10; (Right) k =
50 in single-attribute setting on Sift1m-(Prob) dataset.

ANN only optimizes for relevance (hence low diversity) and Div-ANN only optimizes for diversity
(hence low relevance).

E.3.1 APPROXIMATION RATIO VERSUS ENTROPY

We report the results for different datasets in Figures 5, 6, 7, and 8. On the Sift1m-(Clus)
dataset (Figure 5), Nash-ANN achieves entropy close to that of the most diverse solution (Div-ANN
with k′ = 1) in both k = 10 and k = 50 cases. Moreover, Nash-ANN achieves significantly
higher approximation ratio than Div-ANN in both k = 10 and k = 50 cases when k′ = 1. For
k = 10 case, Nash-ANN Pareto dominates Div-ANN even with the relaxed constraint of k′ = 5
for k = 10. When the number of required neighbors is increased to k = 50, no other method
Pareto dominates Nash-ANN. Similar observations hold for the Sift1m-(Prob) (Figure 6) and
Deep1b-(Prob) (Figure 7) datasets. In the results on the ArXiv dataset (Figure 8) with k = 10,
we observe that Div-ANN already achieves a high approximation ratio. However, Nash-ANN
matches the entropy of Div-ANN with k′ = 1 while improving on the approximation ratio. For
k = 50, Nash-ANN nearly matches the entropy of Div-ANN with k′ = 1, 2 whereas it significantly
improves on the approximation ratio. In summary, the experimental results clearly demonstrate the
ability of Nash-ANN to adapt to the varying nature of queries and consistently strike a balance
between relevance and diversity.

E.3.2 PERFORMANCE ON p-MEAN-ANN

In this set of experiments, we study the effect on trade-off between approximation ratio and en-
tropy when the parameter p in the p-NNS objective is varied over a range. Recall that the p-NNS
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Figure 7: The plots show results on approximation ratio and entropy for (Left) k = 10; (Right) k =
50 in single-attribute setting on Deep1b-(Prob) dataset.

Figure 8: The plots show results on approximation ratio and entropy for (Left) k = 10; (Right) k =
50 in single-attribute setting on ArXiv dataset.

problem with p → 0 corresponds to the NaNNS problem and with p = 1 corresponds to the NNS
problem. We experiment with values of p ∈ {−10,−1,−0.5, 0, 0.5, 1} by running our algorithm
p-mean-ANN (Algorithm 3) on the various datasets. The results are shown in Figures 9, 10, 11,
and 12. We observe across all datasets for both k = 10 and k = 50 that as p decreases from 1, the
entropy increases but approximation ratio decreases. This highlights the key intuition that as p de-
creases, the behavior changes from utilitarian welfare (p = 1 aligns exactly with ANN) to egalitarian
welfare (more attribute-diverse). In other words, the parameter p allows us to smoothly interpolate
between complete relevance (the standard NNS with p = 1) and complete diversity (p→ −∞).

E.3.3 APPROXIMATION RATIO VERSUS INVERSE SIMPSON INDEX

We also report results (Figures 13, 14, 15 and 16) on approximation ratio versus inverse Simpson in-
dex for all the aforementioned datasets, comparing Nash-ANNwith Div-ANNwith various choices
of quota parameter k′. The trends are similar to those for approximation ratio vs. entropy.

E.3.4 APPROXIMATION RATIO VERSUS DISTINCT ATTRIBUTE COUNT

We also report the number of distinct attributes appearing in the set of neighbors returned by dif-
ferent algorithms. Note that Div-ANN by design always returns a set where the number of distinct
attributes is at least (k/k′). We plot approximation ratio versus number of distinct attributes and the
results are shown in Figures 17, 18, 19, and 20. The results show that while Div-ANN with k′ = 1
has high number of distinct attributes (by design) its approximation ratio is quite low. On the other
hand, Nash-ANN has almost equal or slightly lower number of distinct attributes but achieves very
high approximation ratio.
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Figure 9: The plot reports the performance of p-mean-ANN with varying p values for (Left) k = 10;
(Right) k = 50 on Sift1m-(Clus) dataset in the single-attribute setting.

Figure 10: The plot reports the performance of p-mean-ANN with varying p values for (Left) k
= 10; (Right) k = 50 on Sift1m-(Prob) dataset in single-attribute setting. Note that for all
other p ∈ {−1,−0.5, 0.5, 1} the approximation ratio and entropy were extremely close to ones of
p=−10, 0. To avoid clutter in plot we only show p = −10, 0.

Figure 11: The plot reports the performance of p-mean-ANN with varying p values for (Left) k
= 10; (Right) k = 50 on Deep1b-(Prob) dataset in single-attribute setting. Note that for all
other p ∈ {−1,−0.5, 0, 0.5, 1} the approximation ratio and entropy were extremely close to ones of
p=−10 in k = 50. To avoid clutter in plot we only show p = −10. Due to same reasons we omit p =
−1,−0.5 for k = 10.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Figure 12: The plot reports the performance of p-mean-ANN with varying p values for (Left) k
= 10; (Right) k = 50 on ArXiv dataset in single-attribute setting. Note that for all other p ∈
{−1,−0.5, 0, 0.5} the approximation ratio and entropy were extremely close to ones of p=−10. To
avoid clutter in plot we only show p = 0.

Figure 13: The plots show results on approximation ratio and inverse Simpson index for (Left) k =
10; (Right) k = 50 in single-attribute setting on Sift1m-(Clus) dataset.

Figure 14: The plots show results on approximation ratio and inverse Simpson index for (Left) k =
10; (Right) k = 50 in single-attribute setting on Sift1m-(Prob) dataset.

E.3.5 RECALL VERSUS ENTROPY

We also report results for another popular relevance metric in the nearest neighbor search literature,
namely, recall. The results for different datasets are shown in Figures 21, 22, 23, 24, 25, and 26. Note
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Figure 15: The plots show results on approximation ratio and inverse Simpson index for (Left) k =
10; (Right) k = 50 in single-attribute setting on Deep1b-(Prob) dataset.

Figure 16: The plots show results on approximation ratio and inverse Simpson index for (Left) k =
10; (Right) k = 50 in single-attribute setting on ArXiv dataset.

Figure 17: The plots show results on approximation ratio and distinct counts for (Left) k = 10;
(Right) k = 50 in single-attribute setting on Sift1m-(Clus) dataset.

that as discussed earlier (Appendix E.1), recall can be a fragile metric when the goal is to balance
between diversity and relevance. However, we still report recall to be consistent with prior literature
and to demonstrate that Nash-ANN does not perform poorly. In fact, it is evident from the plots
that Nash-ANN’s recall value (relevance) surpasses that of Div-ANN with k′ = 1 (most attribute
diverse solution) while achieving almost similar entropy. As already noted, the approximation ratio
for Nash-ANN remains sufficiently high, indicating that the retrieved set of neighbors lies within a
reasonably good neighborhood of the true nearest neighbors of a given query.
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Figure 18: The plots show results on approximation ratio and distinct counts for (Left) k = 10;
(Right) k = 50 in single-attribute setting on Sift1m-(Prob) dataset.

Figure 19: The plots show results on approximation ratio and distinct counts for (Left) k = 10;
(Right) k = 50 in single-attribute setting on Deep1b-(Prob) dataset.

Figure 20: The plots show results on approximation ratio and distinct counts for (Left) k = 10;
(Right) k = 50 in single-attribute setting on ArXiv dataset.

E.4 BALANCING RELEVANCE AND DIVERSITY: MULTI-ATTRIBUTE SETTING

Recall that our welfarist formulation seamlessly extends to the multi-attribute setting. In Sec-
tion 4, we discussed the performance of Multi Nash-ANN and Multi Div-ANN on
Sift1m-(Clus), where each input vector was associated with four attributes. In this section,
we repeat the same set of experiments on one of the real-world dataset, namely ArXiv, which nat-
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Figure 21: The plots show results on recall and entropy for (Left) k = 10 ; (Right) k = 50 in single-
attribute setting on Amazon dataset.

Figure 22: The plots show results on recall and entropy for (Left) k = 10 ; (Right) k = 50 in single-
attribute setting on Deep1b-(Clus) dataset.

Figure 23: The plots show results on recall and entropy for (Left) k = 10 ; (Right) k = 50 in single-
attribute setting on Sift1m-(Clus) dataset.

urally contains two partition sets of the attributes (m = 2; see Appendix E.1, Diversity Metrics):
update year (|C1| = 14) and paper category (|C2| = 16). Therefore, c = |C1| + |C2| = 30. The
results for k = 50 are presented in Figure 27. Note that in each plot we restrict the entropy to one
of the attribute partitions (C1 and C2) so that the diversity within a partition set can be understood
from these plots. The results indicate that Multi Nash-ANN achieves an approximation ratio very
close to one while maintaining entropy levels comparable to Multi Div-ANNwith k′ = 1 or 2 for
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Figure 24: The plots show results on recall and entropy for (Left) k = 10 ; (Right) k = 50 in single-
attribute setting on Sift1m-(Prob) dataset.

Figure 25: The plots show results on recall and entropy for (Left) k = 10 ; (Right) k = 50 in single-
attribute setting on Deep1b-(Prob) dataset.

Figure 26: The plots show results on recall and entropy for (Left) k = 10; (Right) k = 50 in single-
attribute setting on ArXiv dataset.

both the attribute partition sets. In fact Multi Nash-ANN Pareto dominates Multi Div-ANN
with k′ = 5.

We also study the effect of varying p in p-NNS problem in the multi-attribute setting. The re-
sults for performance of Multi p-mean-ANN (an analogue of Multi Nash-ANN) for p ∈
{−10,−1,−0.5, 0, 0.5, 1} are shown in Figures 28 and 29. Interestingly, we observe that with de-
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Figure 27: The plot shows approximation ratio and entropy trade-off on ArXiv dataset in multi-
attribute setting.

Figure 28: The plot reports the performance of p-mean-ANN with varying p values for k = 50 in
multi-attribute setting on ArXiv dataset.

creasing p, the entropy (across C1 or C2) increases but the approximation ratio remains nearly the
same and very close to 1. On the other hand, Multi Div-ANN with k′ = 1 has very low ap-
proximation ratio. In fact, Multi p-mean-ANN with p = −1 and −10 Pareto dominates Multi
Div-ANN with k′ = 1.

E.5 A FASTER HEURISTIC FOR THE SINGLE ATTRIBUTE SETTING: p-FETCHUNION-ANN

In this section, we empirically study a faster heuristic algorithm for NSW and p-mean welfare for-
mulations. Specifically, the heuristic—called p-FetchUnion-ANN—first fetches a sufficiently
large candidate set of vectors (irrespective of their attributes) using the ANN algorithm. Then, it ap-
plies the Nash (or p-mean) selection (similar to Line 5 in Algorithm 1 or Lines 6-8 in Algorithm 3)
within this set. That is, instead of starting out with k neighbors for each ℓ ∈ [c] (as in Line 1 of
Algorithm 1), the alternative here is to work with sufficiently many neighbors from the set ∪cℓ=1Dℓ.

We empirically show (in Tables 2 to 7) that this heuristic consistently achieves performance
comparable to p-FetchColor-ANN across nearly all datasets and evaluation metrics. Since
p-FetchUnion-ANN retrieves a larger pool of vectors with high similarity, it leaves room for
improving the approximation ratio. This trend is evident in two datasets, namely Deep1b-(Clus)
and Sift1m-(Clus), although it comes at the cost of reduced entropy. Another important as-
pect of p-FetchUnion-ANN is that, because it retrieves all neighbors from the union at once,
the heuristic delivers substantially higher throughput (measured as queries per second, QPS) and
therefore lower latency. The results validating these findings are reported in Tables 8 and 9 for the
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Figure 29: The plot reports the performance of p-mean-ANN with varying p values for k = 50 in
multi-attribute setting on Sift1m-(Clus) dataset.

Sift1m-(Clus) and Amazon datasets, respectively. In particular, it serves almost 10× more
queries on Sift1m-(Clus) and 3× more queries on Amazon dataset. The latency values exhibit
a similar trend with reductions of similar magnitude. In summary, these observations position the
heuristic as a notably fast method for NaNNS and p-NNS, particularly when c is large.

Metric Algorithm p = −10 p = −1 p = −0.5 p = 0 p = 0.5 p = 1

Approx. Ratio

p-FetchColor-ANN 0.865±0.045 0.909±0.029 0.922±0.027 0.938±0.023 0.961±0.018 1.000±0.000
p-FetchUnion-ANN 0.907±0.033 0.912±0.030 0.921±0.027 0.935±0.024 0.958±0.019 1.000±0.000
ANN 1.000±0.000
Div-ANN (k′=1) 0.813±0.053

Entropy

p-FetchColor-ANN 5.644±0.000 5.382±0.135 5.252±0.153 5.058±0.178 4.687±0.227 2.782±0.684
p-FetchUnion-ANN 5.364±0.156 5.333±0.149 5.261±0.150 5.099±0.171 4.736±0.221 2.782±0.684
ANN 2.782±0.684
Div-ANN (k′=1) 5.594±0.049

Table 2: Comparison of performance across p values for Amazon at k = 50.
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Metric Algorithm p = −10 p = −1 p = −0.5 p = 0 p = 0.5 p = 1

Approx. Ratio

p-FetchColor-ANN 0.985±0.010 0.985±0.010 0.985±0.010 0.986±0.009 0.989±0.008 1.000±0.001
p-FetchUnion-ANN 0.989±0.007 0.989±0.007 0.989±0.007 0.990±0.006 0.991±0.006 1.000±0.001
ANN 1.000±0.001
Div-ANN (k′=1) 0.293±0.007

Entropy

p-FetchColor-ANN 3.793±0.002 3.793±0.002 3.793±0.002 3.793±0.002 3.793±0.002 2.790±0.510
p-FetchUnion-ANN 3.704±0.167 3.704±0.166 3.704±0.166 3.704±0.166 3.704±0.166 2.790±0.510
ANN 2.790±0.510
Div-ANN (k′=1) 3.799±0.029

Table 3: Comparison of performance across p values for ArXiv at k = 50.

Metric Algorithm p = −10 p = −1 p = −0.5 p = 0 p = 0.5 p = 1

Approx. Ratio

p-FetchColor-ANN 0.784±0.071 0.815±0.065 0.831±0.063 0.858±0.060 0.904±0.049 1.000±0.000
p-FetchUnion-ANN 0.958±0.033 0.961±0.030 0.962±0.029 0.963±0.028 0.968±0.024 1.000±0.000
ANN 1.000±0.000
Div-ANN (k′=1) 0.286±0.041

Entropy

p-FetchColor-ANN 4.293±0.000 4.200±0.052 4.105±0.091 3.887±0.155 3.349±0.267 0.746±0.717
p-FetchUnion-ANN 2.101±1.214 2.101±1.214 2.099±1.212 2.095±1.207 2.068±1.179 0.746±0.717
ANN 0.746±0.717
Div-ANN (k′=1) 4.191±0.234

Table 4: Comparison of performance across p values for Deep1b-(Clus) at k = 50.

Metric Algorithm p = −10 p = −1 p = −0.5 p = 0 p = 0.5 p = 1

Approx. Ratio

p-FetchColor-ANN 0.958±0.019 0.960±0.017 0.961±0.016 0.963±0.014 0.969±0.010 1.000±0.000
p-FetchUnion-ANN 0.958±0.019 0.960±0.017 0.961±0.016 0.963±0.014 0.969±0.010 1.000±0.000
ANN 1.000±0.000
Div-ANN (k′=1) 0.395±0.010

Entropy

p-FetchColor-ANN 4.293±0.000 4.292±0.005 4.288±0.010 4.275±0.020 4.217±0.068 2.070±0.208
p-FetchUnion-ANN 4.293±0.001 4.292±0.005 4.288±0.010 4.275±0.020 4.217±0.068 2.070±0.207
ANN 2.070±0.207
Div-ANN (k′=1) 4.322±0.002

Table 5: Comparison of performance across p values for Deep1b-(Prob) at k = 50.

Metric Algorithm p = −10 p = −1 p = −0.5 p = 0 p = 0.5 p = 1

Approx. Ratio

p-FetchColor-ANN 0.749±0.051 0.810±0.045 0.812±0.043 0.846±0.036 0.932±0.028 1.000±0.000
p-FetchUnion-ANN 0.979±0.014 0.980±0.013 0.980±0.013 0.981±0.012 0.983±0.011 1.000±0.000
ANN 1.000±0.000
Div-ANN (k′=1) 0.315±0.021

Entropy

p-FetchColor-ANN 4.285±0.012 4.293±0.002 4.293±0.001 4.197±0.045 3.506±0.275 0.892±0.663
p-FetchUnion-ANN 2.235±0.802 2.238±0.802 2.239±0.802 2.239±0.802 2.231±0.800 0.892±0.663
ANN 0.892±0.663
Div-ANN (k′=1) 4.289±0.053

Table 6: Comparison of performance across p values for Sift1m-(Clus) at k = 50.

Metric Algorithm p = −10 p = −1 p = −0.5 p = 0 p = 0.5 p = 1

Approx. Ratio

p-FetchColor-ANN 0.975±0.010 0.977±0.008 0.979±0.008 0.980±0.008 0.982±0.006 1.000±0.000
p-FetchUnion-ANN 0.975±0.010 0.977±0.008 0.979±0.008 0.980±0.008 0.982±0.006 1.000±0.000
ANN 1.000±0.000
Div-ANN (k′=1) 0.404±0.004

Entropy

p-FetchColor-ANN 4.292±0.006 4.292±0.003 4.293±0.002 4.293±0.002 4.269±0.020 2.068±0.205
p-FetchUnion-ANN 4.292±0.006 4.292±0.003 4.293±0.002 4.293±0.003 4.269±0.020 2.068±0.205
ANN 2.068±0.205
Div-ANN (k′=1) 4.322±0.005

Table 7: Comparison of performance across p values for Sift1m-(Prob) at k = 50.
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Metric Algorithm p = −10 p = −1 p = −0.5 p = 0 p = 0.5 p = 1

Query per Second
p-FetchColor-ANN 120.86 115.78 107.01 135.98 122.59 122.59
p-FetchUnion-ANN 1324.53 1324.62 1337.28 1442.03 1443.38 1327.03

Latency (µs)
p-FetchColor-ANN 264566.00 276129.00 298804.00 230318.00 235144.00 260800.00
p-FetchUnion-ANN 24133.80 24134.00 23907.00 22170.20 22149.30 28990.40

99.9th percentile of Latency
p-FetchColor-ANN 484601.00 513036.00 478821.00 477925.00 482777.00 479132.00
p-FetchUnion-ANN 52943.40 53474.70 54283.40 56128.70 53082.20 24088.70

Table 8: Comparison of performance on Queries per second and Latency across p values on
Sift1m-(Clus) dataset for k = 50.

Metric Algorithm p = −10 p = −1 p = −0.5 p = 0 p = 0.5 p = 1

Query per Second
p-FetchColor-ANN 198.08 195.97 199.08 179.03 171.22 189.31
p-FetchUnion-ANN 620.27 610.62 551.02 608.76 572.57 591.76

Latency (µs)
p-FetchColor-ANN 161385.00 163121.00 160503.00 178555.00 186780.00 168856.00
p-FetchUnion-ANN 51539.90 52362.30 58028.60 52521.60 55843.70 54030.80

99.9th percentile of Latency
p-FetchColor-ANN 433434.00 407151.00 418147.00 421725.00 475474.00 404477.00
p-FetchUnion-ANN 146632.00 144989.00 145620.00 145657.00 143627.00 146464.00

Table 9: Comparison of performance on Queries per second and Latency across p values on Amazon
dataset for k = 50.
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