Under review as a conference paper at ICLR 2026

WELFARIST FORMULATIONS FOR
DIVERSE SIMILARITY SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Nearest Neighbor Search (NNS) is a fundamental problem in data structures with wide-ranging
applications, such as web search, recommendation systems, and, more recently, retrieval-
augmented generations (RAG). In such recent applications, in addition to the relevance (simi-
larity) of the returned neighbors, diversity among the neighbors is a central requirement. In this
paper, we develop principled welfare-based formulations in NNS for realizing diversity across
attributes. Our formulations are based on welfare functions—from mathematical economics—
that satisfy central diversity (fairness) and relevance (economic efficiency) axioms. With a
particular focus on Nash social welfare, we note that our welfare-based formulations provide
objective functions that adaptively balance relevance and diversity in a query-dependent man-
ner. Notably, such a balance was not present in the prior constraint-based approach, which
forced a fixed level of diversity and optimized for relevance. In addition, our formulation
provides a parametric way to control the trade-off between relevance and diversity, providing
practitioners with flexibility to tailor search results to task-specific requirements. We develop
efficient nearest neighbor algorithms with provable guarantees for the welfare-based objectives.
Notably, our algorithm can be applied on top of any standard ANN method (i.e., use standard
ANN method as a subroutine) to efficiently find neighbors that approximately maximize our
welfare-based objectives. Experimental results demonstrate that our approach is practical and
substantially improves diversity while maintaining high relevance of the retrieved neighbors.

1 INTRODUCTION

Nearest Neighbor Search (NNS) is a fundamental problem in computer science with wide-
ranging applications in diverse domains, including computer vision (Wang et al., 2012), data min-
ing (Camerra et al., 2010), information retrieval (Manning et al., 2008), classification (Fix & Hodges,
1989), and recommendation systems (Dahiya et al., 2021). The relevance of NNS has grown further
in recent years with the advent of retrieval-augmented generation (RAG); see, e.g., (Manohar et al.,
2024), (Wu et al., 2024), and references therein. Formally, given vectors P C R? (in ambient di-
mension d) and a query vector ¢ € RY, the objective in NNS is to identify a subset .S of k (input)
vectors from P that are most similar to ¢ under a similarity function o : R? x R? — R,. That is,
NNS corresponds to the optimization problem arg maxgc p;|sj= 2_,e5 (¢ v). Note that, while
most prior works in neighbor search express the problem in terms of minimizing distances, we work
with the symmetric version of maximizing similarity.'

In practice, the input vectors are high dimensional; in many of the above-mentioned applications the
ambient dimension d is close to a thousand. This scale makes exact NNS computationally expensive,
since applications require, for real-time queries g, NNS solutions in time (sub)linear in the number of
input vectors | P|. To address this challenge, the widely studied framework of Approximate Nearest
Neighbor (ANN) search relaxes the requirement of exactness and instead seeks neighbors whose
similarities are approximately close to the optimal ones.

ANN search has received substantial attention over the past three decades. Early techniques relied
on space-partitioning methods, including Locality-Sensitive Hashing (LSH) (Indyk & Motwani,
1998; Andoni & Indyk, 2008), k-d trees (Arya et al., 1998), and cover trees (Beygelzimer et al.,
2006). More recent industry-scale systems adopt clustering-based (Johnson et al., 2017; Baranchuk
et al., 2018) and graph-based (Malkov & Yashunin, 2016; Fu et al., 2019; Sugawara et al., 2016;

"This enables us to directly apply welfare functions.

Under review as a conference paper at ICLR 2026

Subramanya et al., 2019) approaches, along with other practically-efficient methods (Sun et al.,
2023; Simhadri et al., 2024).

While relevance—measured in terms of a similarity function o (-, -)—is a primary objective in NNS,
prior work has shown that diversity in the retrieved set of vectors is equally important for user
experience, fairness, and reducing redundancy (Carbonell & Goldstein, 1998). For instance, in 2019
Google announced a policy update to limit the number of results from a single domain, thereby
reducing redundancy (Liaison, 2019). Similarly, Microsoft recently introduced diversity constraints
in ad recommendation systems to ensure that advertisements from a single seller do not dominate
the results (Anand et al., 2025). Such an adjustment was crucial for improving user experience and
promoting fairness for advertisers. These examples highlight how diversity, in addition to enhancing
fairness and reducing redundancy, directly contributes to improved search quality for end users.

A natural way to formalize diversity in these settings is to associate each input vector with one or
more attributes. Diversity can then be measured with respect to these attributes, complementing the
similarity-based relevance. Building on this idea, the current work develops a principled framework
for diversity in neighbor search by drawing on the theory of collective welfare from mathemati-
cal economics (Moulin, 2004). This perspective enables the design of performance metrics (i.e.,
optimization criteria) that balance similarity-based relevance and attribute-based diversity in a theo-
retically grounded manner.

This formulation is based on the perspective that algorithms can be viewed as economic policies.
Indeed, analogous to economic policies, numerous deployed algorithms induce utility (monetary or
otherwise) among the participating agents. For instance, an ANN algorithm—deployed to select
display advertisements for search queries—impacts the exposure and, hence, the sales of the partic-
ipating advertisers. Notably, there are numerous other application domains wherein the outputs of
the underlying algorithms impact the utilities of individuals; see Angwin et al. (2022) and Kearns
& Roth (2019) for multiple examples. Hence, in contexts where fairness (diversity) and welfare
are important considerations, it is pertinent to evaluate algorithms analogous to how one evaluates
economic policies that induce welfare.

In mathematical economics, welfare functions, f : R® — R, provide a principled approach to aggre-
gate the utilities of ¢ € Z agents into a single measure. Specifically, if an algorithm induces utilities
u1,us, ..., u. among a population of ¢ agents, then the collective welfare is f(u1,ug,...,u.). A
utilitarian way of aggregation is by considering the arithmetic mean (average) of the utilities u,s.
However, note that the arithmetic mean is not an ideal criterion if we are required to be fair among
the c agents: the utilitarian welfare (arithmetic mean) can be high even if the utility of only one
agent, say uq, is large and all the remaining utilities, uo, . . ., u., are zero. The theory of collective
welfare develops meaningful alternatives to the arithmetic mean by identifying welfare functions,
f's, that satisfy fairness and efficiency axioms.

Among such alternatives, Nash social welfare (NSW) is an exemplar that upholds multiple fairness
axioms, including symmetry, independence of unconcerned agents, scale invariance, and the Pigou-
Dalton transfer principle (Moulin, 2004). Nash social welfare is defined by setting f as the geometric

mean, NSW(uy, ..., u.) == (szl Ug)l/ ©. The fact that NSW strikes a balance between fairness
and economic efficiency is supported by the observation that it sits between egalitarian and utilitarian
welfare: the geometric mean is at least as large as the minimum value, minj<¢<. u, and it is also
at most the arithmetic mean 1 37, u, (the AM-GM inequality).

The overarching goal of this work is to realize diversity (fairness) across attributes in nearest neigh-
bor search while maintaining relevance of the returned % vectors. Our modeling insight here is to
equate attributes with agents and apply Nash social welfare.

In particular, consider a setting where we have ¢ € Z different attributes (across the input vectors),
and let S be any subset of k vectors (neighbors) among the input set P. In our model, each included
vector v € S, with attribute ¢ € [c], contributes to the utility uy (see Section 2.1), and the Nash
social welfare (NSW) induced by S is the geometric mean of these utilities, uy, ug, ..., u.. Our
objective is to find a size-k subset, S* C P, of input vectors with as large NSW as possible.

The following two instantiations highlight the applicability of our model in NNS applications: In
a display-advertising context with ¢ sellers, each selected advertisement v € S of a seller £ € [

Under review as a conference paper at ICLR 2026

Figure 1: Neighbor search results (¢ = 9) on the Amazon dataset. From left: First and Second
images - ANN and Nash-based results for query “shirts”, respectively. Third and Fourth images -
ANN and Nash-based results for query “blue shirt”, respectively. Note that the Nash-based method
selects diverse colors for the query “shirts” but conforms to the blue color for the query “blue shirt”.

contributes to £’s exposure (utility) u,. Similarly, in an apparel-search setup with ¢ colors in total,
each displayed product v € S with color ¢ € [¢] contributes to the utility u,.

Prior work (Anand et al., 2025) imposed constraints for achieving diversity in NNS. These con-
straints enforced that, for each ¢ € [¢] and among the k returned vectors, at most &’ many can have
attribute £. Such rigid constraints rely on a fixed ad hoc quota parameter k" and fail to adapt to the
intent expressed in the query. In contrast, our NSW-based approach balances relevance and diversity
in a query-dependent manner. For example, in the apparel-search setup, if the search query is “blue
shirt,” then a constraint on the color attribute ‘blue’ (i.e., when ¢ stands for ‘blue’) would limit the
relevance by excluding valid vectors. NSW, however, for the “blue shirt” query, is free to select all
the k vectors with attribute ‘blue’ upholding relevance; see Figure 1 for supporting empirical results.
On the other hand, if the apparel-search query is just “shirts,” then NSW criterion is inclined to se-
lect vectors with different color attributes. These features of NSW are substantiated by the stylized
instances given in Examples 1 and 2 (Section 2.1).

WEe reiterate that our formulation does not require a quota parameter &’ to force diversity. For NSW,
diversity (fairness) across attributes is obtained via normative properties of Nash social welfare.
Hence, with axiomatic support, NSW stands as a meaningful criterion in neighbor search, as it is in
the context of economic and allocation policies.

Our welfarist formulation extends further to control the trade-off between relevance and diversity.
Specifically, we also consider p-mean welfare. Formally, for exponent parameter p € (—oo, 1],
the pth mean M,(-), of c utilities u1,us,...,u. € Ry, is defined as M,(u1,...,u;) =

(I uf)1/ ”_ The p-mean welfare, M, (-), captures a range of objectives with different values
of p: it corresponds to the utilitarian welfare (arithmetic mean) when p = 1, the NSW (geometric
mean) with p — 0, and the egalitarian welfare when p — —oo. Notably, setting p = 1, we get
back the standard nearest neighbor objective, i.e., maximizing M (-) corresponds to finding the &
nearest neighbors and this objective is not concerned with diversity across attributes. At the other
extreme, p — —oo aims to find as attribute-diverse a set of k vectors as possible (while paying
scarce attention to relevance).

We study, both theoretically and experimentally, two diversity settings: (i) single-attribute setting
and (ii) multi-attribute setting. In the single-attribute setting, each input vector v € P is associated
with exactly one attribute ¢ € [c] — this captures, for instance, the display-advertisement setup,
wherein each advertisement v belongs to exactly one seller ¢. In the more general multi-attribute
setting, each input vector v € P can have more than one attribute; in apparel-search, for instance,
the products can be associated with multiple attributes, such as color, brand, and price.

We note that the constraint-based formulation for diversity considered in Anand et al. (2025) primar-
ily addresses single-attribute setting. In fact, generalizing such constraints to the multi-attribute con-
text leads to a formulation wherein it is NP-hard even to determine whether there exist k£ vectors that
satisfy the constraints, i.e., it would be computationally hard to find any size-k constraint-feasible
subset .S, let alone an optimal one.?

By contrast, our NSW formulation does not run into such a feasibility barrier. Here, for any candi-
date subset S of k vectors, each included vector v € S contributes to the utility u, of every attribute

2This hardness result follows via a reduction from the Maximum Independent Set problem.

Under review as a conference paper at ICLR 2026

¢ associated with v. As before, the NSW induced by S is the geometric mean of the induced utilities,
u1, U, - . ., Ue, and the objective is to find a subset of k vectors with as large NSW as possible.

We view the NSW formulation for diversity, in both single-attribute and multi-attribute settings, as a
key contribution of the current paper. Another relevant contribution of this work is the generalization
to p-mean welfare, which provides a systematic way to trade off relevance and diversity.

We also develop efficient algorithms, with provable guarantees, for the NSW and p-mean welfare
formulations. For the single-attribute setting, we develop an efficient greedy algorithm for finding
k vectors that optimize the Nash social welfare among the c attributes (Theorem 1). In addition,
this algorithm can be provably combined with any sublinear ANN method (as a subroutine) to find
near-optimal solutions for the Nash objective in sublinear time (Corollary 2).

For the multi-attribute setting, we first show that finding the set of k vectors that maximize the
Nash social welfare is NP-hard (Theorem 3). We complement this hardness result, by developing a
polynomial-time approximation algorithm that achieves an approximation ratio of (1 — 1/e) ~ 0.63
for maximizing the logarithm of the Nash social welfare (Theorem 4).

We complement our theoretical results with experiments on both real-world and semi-synthetic
datasets. These experiments demonstrate that the NSW objective effectively captures the trade-
off between diversity and relevance in a query-dependent manner. We further analyze the behavior
of the p-mean welfare objective across different values of p € (—o0, 1], observing that it interpo-
lates smoothly between prioritizing for diversity, when p is small, and focusing on relevance, when
p is large. Finally, we benchmark the solution quality and running times of various algorithms for
solving the NSW and p-mean formulations proposed in this work.

2 PROBLEM FORMULATION AND MAIN RESULTS

We are interested in neighbor search algorithms that not only achieve a high approximation ratio,
but also find a diverse set of vectors for each query. To quantify diversity we work with a model
wherein each input vector v € P is assigned one or more attributes from the set [c] = {1,2,...,c}.
In particular, write ath(v) C [¢] to denote the attributes assigned to vector v € P. Also, let D, C P
denote the subset of vectors that are assigned attribute ¢ € [c], i.e., Dy :== {v € P | £ € atb(v)}.
This model captures important real-world scenarios; for instance, in a display-advertising context
with ¢ sellers, the set D, would denote all the vectors (advertisements) that include seller £.

2.1 OUR RESULTS

An insight of this work is to equate these c attributes with ¢ distinct agents. Here, the output of a
neighbor search algorithm—i.e., the selected subset S C P—induces utility among these agents.
With this perspective, we define the Nash Nearest Neighbor Search problem (NaNNS) below. This
novel formulation for diversity is a key contribution of this work. For any query ¢ € R¢ and subset
S C P, we define utility u¢(S) = 3, cgnp, o(q,v), for each £ € [c|. That is, ue(S) is equal
to the cumulative similarity between ¢ and the vectors in S that belong to the attribute class D,.
Equivalently, u,(S) is the cumulative similarity of the vectors in S that have attribute £.*

We employ Nash social welfare to identify size-k subsets .S that are both relevant (with respect to
similarity) and support diversity among the c attribute classes. The Nash social welfare among c
agents is defined as the geometric mean of the agents’ utilities. Specifically, in the above-mentioned
utility model and with a smoothening parameter 7 > 0, the Nash social welfare (NSW) induced

1/c
by any subset S C P among the c attributes is defined as NSW(S) := (H;f:l (ue(S) + 1))
Throughout, 7 > 0 will be a fixed smoothing constant that ensures that NSW remains nonzero.
Definition 1 (NaNNS). Nash nearest neighbor search (NaNNS) corresponds to the following the

optimization problem arg maxgc p, sj= NSW(S), or, equivalently,

argmax log NSW(S) (1
SCP:|S|=k

3Note that in the above-mentioned display-advertising example, wu,(-) is the cumulative similarity between
the (search) query and the selected advertisements that are from seller £.

Under review as a conference paper at ICLR 2026

Here, we have log NSW(S5) = 1 > refq log(we(S) +n).

To further appreciate the welfarist approach, note that one recovers the standard nearest neigh-
bor problem, NNS, in the single-attribute setting, if—instead of the geometric mean—we
maximize the arithmetic mean. That is, maximizing the utilitarian social welfare gives us
MaxXgc p:|s|=k 2pq Ue(S) = Maxgscp.sj=k 2 pes 0 (¢ v). As stated in the introduction, among
the welfare functions, Nash social welfare is an exemplar that upholds multiple fairness axioms,
including symmetry, independence of unconcerned agents, scale invariance, and the Pigou-Dalton
transfer principle. Moreover, depending on the query and the problem instance, solutions obtained
via NaNNS can adjust between the ones obtained through NNS and those obtained via hard con-
straints. This feature is illustrated in the following stylized examples; see Appendix A.1 for proofs.

The first example shows that if all vectors have same similarity, then an optimal solution, S*, for
NaNNS is completely diverse, i.e., all the vectors in S* have different attributes.

Example 1 (Complete Diversity via NaNNS). Consider an instance in which, for a given query
q € R, all vectors in P are equally similar with the query: o(g,v) = 1 for all v € P. Also, let
latb(v)| = 1 for all v € P and write S* € argmaxgc p, |sj= NSW(S). If ¢ > k, then here it
holds that |S* N Dy| < 1 forall £ € [¢].

The second example shows that if the vectors of only one attribute have high similarity with the
given query, then a Nash optimal solution S* contains only vectors with that attribute.

Example 2 (Complete Relevance via NaNNS). Consider an instance in which for a given query
q € RY and for a particular ¢* € [c], only vectors v € Dy« have similarity o(¢,v) = 1 and all other
vectors p’ € P\ Dy« have similarity o(q,p’) = 0. Also, suppose that |atb(p)| = 1 for each p € P,
along with [Dy«| > k. Then, for a Nash optimal solution S* € arg maxgc p, /= NSW(S) it holds
that |S* N Dy« | = k. That is, for all other £ € [¢] \ {¢*} we have |S* N Dy| = 0.

With the above-mentioned utility model for the c attributes, we also identify an extended formu-
lation based on generalized p-means. Specifically, for exponent parameter p € (—oo, 1], the pth
mean M, (-), of ¢ nonnegative numbers wy, wa, ..., w, € Ry, is defined as My (w1, ..., w.) =

(13 wh) /P Note that My (wy . . ., w,) is the arithmetic mean 1 3y_1 we. Here, whenp — 0,

we obtain the geometric mean (Nash social welfare): My (wr, ..., w.) = ([T;_; wg)l/ °. Further,
p — —oo gives us egalitarian welfare, M_ (w1, ..., wp) = minj<s<. we.

Hence, generalizing both NNS and NaNNS, we have the p-mean nearest neighbor
search (p-NNS) problem defined, for exponent parameters p € (—oo,1], as follows:

maxgscp: |sj=k Mp(u1(9), ..., uc(9)).

Diversity in Single- and Multi-Attribute Settings. The current work addresses two diversity set-
tings: the single-attribute setup and, the more general, the multi-attribute one. The single-attribute
setting refers to case wherein |atb(v)| = 1 for each input vector v € P and, hence, the attribute
classes Dys are pairwise disjoint. In the more general multi-attribute setting, we have |atb(v)| > 1;
here, the sets D,-s intersect.* Notably, the NaNNS seamlessly applies to both these settings.

Algorithmic Results for Single-Attribute NaNNS and p-NNS. In addition to introducing the
NaNNS and p-NNS formulations for capturing diversity, we develop algorithmic results for these
problems, thereby demonstrating the practicality of our approach in neighbor search. In particular,
in the single-attribute setting, we show that both NaNNS and p-NNS admit efficient algorithms.

Theorem 1. In the single-attribute setting, given any query q € R% and an (exact) oracle ENN
for k most similar vectors from any set, Algorithm 1 (Nash—ANN) returns an optimal solution for
NaNNS, i.e., it returns a size-k subset ALG C P that satisfies ALG € arg maxgc p.|sj=r NSW(95).

Furthermore, the algorithm runs in time O(kc) + Y ,_, ENN(Dy, q), where ENN(Dy, q) is the time
required by the exact oracle to find k most similar vectors to q in Dy.

Further, to establish the practicality of our formulations, we present an approximate algorithm for
NaNNS that leverages any standard ANN algorithm as an oracle (subroutine), i.e., works with any
a-approximate ANN oracle (o € (0, 1)) which returns a subset S containing k vectors satisfying

“For a motivating instantiation for multi-attributes, note that, in the apparel-search context, it is possible for
a product (input vector) v to have multiple attributes based on v’s seller and its color(s).

Under review as a conference paper at ICLR 2026

Algorithm 1 Nash—-ANN: Algorithm for NaNNS in the single-attribute setting

Require: Query ¢ € R? and, for each attribute ¢ € [c], the set of input vectors D, C R%.
1: For each £ € [¢], fetch the k (exact or approximate) nearest neighbors of ¢ € R¢ from D,. Write

Dg C Dy to denote these sets.

For every ¢ € [c] and each index i € [k], let vfi) denote the ith most similar vector to ¢ in Dj.
Initialize subset ALG = (), along with count k; = 0 and utility w, = 0, for each £ € [¢].
while [ALG| < k do

Let a = arg max (log (we + 1+ o(q, v(k +1))) — log(we + 77)) {Ties broken arbitrarily. }
Lelc]

Update ALG <+ ALGU {v?kaﬂ) }, along with w, < w, + o(q, U?ka+1)) and k., < k, + 1.
7: Return ALG.

o(q,v)) > ao(q, va)), for all i € [k], where v(;) and v(*i) are the i-th most similar vectors to g in
S and P, respectively. Formally,

Corollary 2. In the single-attribute setting, given any query q¢ € R and an a-approximate
oracle ANN for k most similar vectors from any set, Algorithm 1 (Nash—ANN) returns an «-
approximate solution for NaNNS, i.e., it returns a size-k subset ALG C P with NSW(ALG) >
amaxgcp; |s|=k NSW(S). The algorithm runs in time O(kc) + > ;_, ANN(Dy,q), with
ANN(Dy, q) denoting the time required by the oracle to find k similar vectors to q in D.

Furthermore, both Theorem 1 and Corollary 2 generalize to p-NNS problem with slight modification
in Algorithm 1. Specifically, there exists exact, efficient algorithm (Algorithm 3) for the p-NNS
problem (Theorem 11 and Corollary 12). Due to space constraints, the algorithm and the analysis
for p-NNS are deferred to Appendix D.

Algorithmic Results for Multi-Attribute NaNNS. Next, we address the multi-attribute setting.
While the optimization problem (1) in the single attribute setting can be solved efficiently, the prob-
lem is NP-Hard in the the multi-attribute setup (see Appendix B for the proof).

Theorem 3. In the multi-attribute setting, with parameter 11 = 1, NaNNS is NP-hard.

Complementing this hardness result, we show that, considering the logarithm of the objective,
NaNNS in the multi-attribute setting admits a polynomial-time (1 — 7) -approximation algorithm.
This result in established in Appendix C.

Theorem 4. In the multi-attribute setting, there exists a polynomial-time algorithm (Algorithm 2)
that, given any query q € RY, finds a size-k subset ALG C P with log NSW(ALG) >
(1- 7) log NSW(OPT); here, OPT denotes an optimal solution of (1).

Experimental Validation of our Formulation and Algorithms. We complement our theoretical
results with several experiments on real-world datasets. Our findings highlight that the Nash-based
formulation strikes a balance between diversity and relevance.

3 ALGORITHM FOR NANNS

This section provides our exact, efficient algorithm (Algorithm 1) for NaNNS in the single-attribute
setting. The algorithm has two parts: a preprocessing step and a greedy, iterative selection.

Recall that in the single-attribute setting, the input vectors P are partitioned into subsets D1, ..., D,
where D, denotes the subset of input vectors with attribute ¢ € [c]. In the preprocessing step, for
each attribute ¢ € [c], we populate k vectors from within D, that are most similar to the given
query ¢ € RY. Such a size-k subset, for each ¢ € [c], can be obtained by executing any nearest
neighbor search algorithm within D, and with respect to query ¢q. Alternatively, we can execute any
standard ANN algorithm as a subroutine and find sufficiently good approximations for the &k nearest
neighbors (of ¢q) within each D,.

Write ﬁ[C Dy to denote the k—exact or approximate—nearest neighbors of ¢ € R? in D,. We note
that our algorithm is robust to the choice of the search algorithm (subroutine) used for finding Ds:

Under review as a conference paper at ICLR 2026

Dataset | # Input Vectors | # Query Vectors | Dimension Attributes
Amazon 92,092 8,956 768 product color
ArXiv 200, 000 50,000 1536 year, paper category
Siftlm 1,000,000 10,000 128 synthetic
Deeplb 9,990, 000 10,000 96 synthetic

Table 1: Summary of considered datasets. For synthetic attributes, we use two strategies: clustering-
based (suffixed by C1lus) and distribution-based (suffixed by Prob), see Appendix E.2 for details.

If ﬁgs are exact nearest neighbors, then Algorithm 1 optimally solves NaNNS in the single-attribute

setting (Theorem 1). Otherwise, if Dys are obtained via an ANN algorithm with approximation
guarantee o € (0, 1), then Algorithm 1 achieves an approximation ratio of « (Corollary 2).

The algorithm then considers the vectors with each ﬁg in decreasing order of their similarity with g.
Confining to this order, the algorithm populates the k& desired vectors iteratively. In each iteration,
the algorithm greedily selects a new vector based on the marginal increase in log NSW (-); see Lines
5 and 6 in Algorithm 1. Theorem 1 and Corollary 2 (stated previously) provide our main results for
Algorithm 1; the proofs of these results are deferred to Appendix A.

4 EXPERIMENTAL EVALUATIONS

In this section, we validate the welfare-based formulations and the performance of our proposed
algorithms against existing methods on a variety of real and semi-synthetic datasets. We per-
form three different kinds of experiments. In the first set of experiments (Figure 2), we compare
Nash-ANN (Algorithm 1) with prior work on hard-constrained based diversity (Anand et al., 2025).
Here, we show that Nash—ANN strikes a balance between relevance and diversity both in the single-
and multi-attribute settings. In the second set of experiments, we study p—mean—ANN (Algorithm 3
in Appendix D), and obtain the trade-off between relevance and diversity, with a change in the
exponent parameter p € [—oo,1]. In the final set of experiments, we compare our algorithm,
Nash—-ANN (with provable guarantees), and a heuristic that improves the runtime of Nash—-ANN.
The heuristic directly utilizes a standard ANN algorithm to fetch a sufficiently large candidate set of
vectors (irrespective of their attributes). Then, it applies the Nash (or p-mean) selection only within
this set. Due to space constraints, we defer the details of the third set of experiments to Appendix
E.5. Also, additional plots for the first two experiments appear in Appendices E.3 and E.4.

Below, we outline the metrics, experimental setup, datasets, and algorithms used in our experiments.

Relevance and Diversity Metrics. To quantify relevance of an algorithm we consider the ratio
of the sum of the similarity scores. Formally, for a query ¢, if A is the set of neighbors returned
by an algorithm and O is the output of any (standard) ANN algorithm, then the approximation
ratio achieved by the algorithm is (}°, .4 0(v,q)) / (3 ,c0 (v, q)). Note that O, up to some
approximation, contains the most similar input vectors to query q. Hence, this ratio typically lies
in [0, 1], and a higher value of this approximation ratio captures higher relevance. We also report
results in terms of recall, which is another metric for relevance; see Appendix E.1 for further details.

To quantify diversity, we use entropy that measures how uniformly an algorithm distributes its se-
lected vectors across the attributes. A higher value of entropy indicates more attribute-level diversity
in the algorithm’s output. We also experimentally validate the findings under other diversity metrics,
namely the inverse Simpson index and distinct attribute counts; see Appendix E.1.

Experimental Setup and Datasets. All the experiments were performed in memory on an Intel(R)
Xeon(R) Silver 4314 CPU (64 cores, 2.40GHz) with 128 RAM. We set the number of threads to 32.
We report results on both semi-synthetic and real-world datasets consistent with prior works (Anand
et al., 2025) and are summarized in Table 1 and detailed in Appendix E.2.

Algorithms. Next, we describe the algorithms executed in the experiments.

1. ANN: We use the graph based Disk ANN method of Subramanya et al. (2019) as the ANN algorithm.
We deploy DiskANN with candidate list size L = 2000 and the maximum graph degree to 128.

Under review as a conference paper at ICLR 2026

2. Div—ANN: Div-ANN refers to the implementation of Anand et al. (2025) that captured diversity
in the single attribute setting through hard constraints. This work uses a quota parameter k', where
for each ¢ € [c], among the k returned vectors, at most k' can have attribute . We executed
Div—-ANN with different values &', ranging from extremely tight, &’ = 1, to more relaxed choices,
such as k' € {2,5} for k = 10, along with &’ € {2, 5,10} for k = 50.

3. Nash—-ANN and p—mean—ANN: Nash-ANN refers to Algorithm 1; we implement this algorithm
extending the codebase of Anand et al. (2025). Recall that Algorithm 1 optimally solves the NaNNS
problem in the single-attribute setting. Also, p-mean, M, (-), reduces to Nash social welfare (ge-
ometric mean) with p = 0. Moreover, as mentioned previously p—-mean—ANN (Algorithm 3 in
Appendix D) optimally solves the p-NNS problem (Theorem 11 and Corollary 12 in Appendix D).
For readability and at required places, we will write p = 0 to denote Nash—ANN. We conduct ex-
periments that bring out the relevance-diversity trade-offs across p € {—10,—1,—0.5,0,0.5,1}. In
these experiments, we set the smoothing parameter, 1, depending on the dataset (Appendix E.2).

4. Multi Nash-ANN and Multi Div-ANN: In the multi-attribute setting, there are no prior
methods to address diversity. Hence, for comparisons, we first pre-fetch L = 10000 candidates of
each query ¢, using the standard ANN method, and then apply greedy selection to obtain k£ neigh-
bors for both the NSW objective (Multi Nash-ANN) and the hard-constrained objective (Mult i
Div—ANN). For the latter, we adapt the approach of Anand et al. (2025) by imposing a uniform quota
k' on each attribute.> The Multi Nash-ANN method proceeds iteratively, selecting at each step
the vector (from the pre-fetched ones) that provides the largest marginal gain to the NSW objective.
On the other hand, Multi Div—ANN ranks the vectors in decreasing order of similarity to g and
includes the next vector only if doing so does not violate any attribute constraint. In both cases, the
process yields k neighbors (with k& > k). We compare Multi Nash-ANN (p = 0) against Multi
Div—-ANN under different choices of k’.

4.1 BALANCING RELEVANCE AND DIVERSITY

We first compare, in the single-attribute setting, the performance of our Nash-ANN with ANN and
Div—ANN (under different values of &’). The results for the Amazon and Deeplb-(Clus)
datasets with k& = 50 are shown in Figure 2 (first row - columns one and two). Here, ANN finds
the most relevant set of neighbors,® albeit with the lowest entropy (diversity). Moreover, as can be
seen in the plots, the most diverse (highest entropy) solution is obtained when we set, in Div—ANN,
k' = 1; this restricts each ¢ € [c] to contribute at most one vector in the output of Div—ANN. Also,
note that one can increase the approximation ratio (i.e., increase relevance) while incurring a loss
in entropy (diversity) by increasing the constraint (quota) parameter k¥’ in Div—ANN. However, se-
lecting a ‘right’ value for &’ is non-obvious, since this choice needs to be tailored to the dataset and,
even within it, to queries (recall the “blue shirt” query in Figure 1).

By contrast, Nash—ANN does not require such ad hoc adjustments and, by design, finds a balance
between relevance and diversity. Nash—ANN (p = 0) outperforms Div—ANN with ¥’ = 2 for
Amazon dataset and k' = 5 for Deeplb—(Clus) dataset highlighting the Pareto dominance of
Nash-ANN on the fronts of approximation ratio and entropy. The results for other datasets and
metrics follow similar trends and are given in Appendix E.3.

In the multi-attribute setting, we report results for Multi Nash—-ANN and Multi Div-ANN on
the Sift1m-(Clus) dataset (Figure 2 - second row) for £ = 50 and ¢ = 80. These eighty at-
tributes are partitioned into four sets, {C;}7_;, with each set of size |C;| = 20, i.e., [c] = U}, C:.
Further, each input vector v is associated with four attributes (|atb(v)| = 4), one from each C;; see
Appendix E.2 for further details. Here, to quantify diversity we consider the entropy across each C;.
Entropy, with approximation ratio, plots for the four sets {C; }?_; are given in Figure 2 (second row).
We observe that Multi Nash-ANN maintains a high approximation ratio (relevance) while simul-
taneously achieving higher entropy (higher diversity) than ANN. By contrast, in the constraint-based
method Multi Div-ANN, low values of k' leads to a notable drop in the approximation ratio,
whereas increasing &’ reduces entropy. For example, for &’ below 15, one obtains approximation
ratio less than 0.8. To reach an approximation ratio comparable to Multi Nash-ANN, one needs
k' as high as 30. Additional results for the Arxiv dataset in the multi-attribute setting are provided

SIndeed, the issue of identifying an appropriate & is exacerbated on moving to the multi-attribute setting.
By definition, the approximation ratio of the output of ANN is one.

Under review as a conference paper at ICLR 2026

Amazon Deeplb-(Clus) Amazon Deeplb-(Clus)
= K=T ki= K=T = K=1 =-10
ss|* [+ * 55|+ Ap=10 o APTo.5
4 ‘ AP=0 AP:'p1=_o.5 Ap=0
s R 35 ‘ =3 5 Ap=0 35 ip=05s
4 =
AP=0.5
31 > > 3
245 2 ‘ w=10| 245 g
2 225, * 2 Las
£ 4 ak=s £ € 4 £
w w29 Il o o2
35 ANN o ,,51 ANN 35 ANN 15 ANN
4 Nash-ANN | 4 Nash-ann 4 p-mean-ANN 4 p-mean-ANN
3] + Dpiv-ANN Y|+ oiv-ann 3| + Div-ANN ad-1 11 + Div-ANN an-1
0.85 [X) 0.95 1 03 04 05 06 07 08 09 1 085 0.9 0.95 1 03 04 05 06 07 08 09 1
Approximation Ratio Approximation Ratio Approximation Ratio Approximation Ratio
SIFT1m-(Clus) SIFT1m-(Clus) SIFT1m-(Clus) SIFT1m-(Clus)
= k=10 2.41 =2) k=57 S(c=10) 2.4 =2) k=5) (k=10) W(K=5Y SK=10)
241 wlk=2) 24 alk=2)
- " _ 22 gk=1) _22{ (c=1) ~
3 el ey ok=15) 3 S(k=15) 3 olk=15) 3 al o Slic=15)
5 22| alk= 20/ 20 ' 22| glk=1)
14 o= ° k'=20) e k'=20) e -
4 alk=20) 4 ol 4 o 2 k'=20)
S0 o Sus Sue §20 l‘p=‘,
> > > - 2
a 216 L 216 L2 -3
£ k=300 ¢ Hemz0) 3 ;& 0 g o(k'=230)
& &
& W Multi Div-ANN G§14] W Multi Div-ANN Jk=a0) &1 m MultiDiv-ANN \=a0) G = Multi Div-ANN
16| e Multi Nash-ANN k=40 ® Multi Nash-ANN © Multi Nash-ANN of 161 o Multi Nash-ANN w(k=40)
A ANN AANN 121 A ANN AANN 121 o ANN AA‘ N A ANN AANN
020 o040 o060 080 100 020 o040 060 080 100 020 o040 o060 080 100 020 o040 o060 0o 100
Approximation Ratio Approximation Ratio Approximation Ratio Approximation Ratio

Figure 2: First Row: Columns 1 and 2 - Approximation ratio (relevance) versus Entropy (di-
versity) for k£ = 50 in the single-attribute setting. First Row: Columns 3 and 4 - Performance of
p-mean-ANN for various p values, for k = 50 in the single-attribute setting. Second Row - Approx-
imation ratio versus Entropy on Sift1m-(Clus) dataset in the multi-attribute setting.

in Appendix E.4 and they exhibit trends similar to the ones in Figure 2. These findings demonstrate
that Multi Nash-ANN achieves a balance between relevance and diversity. In summary,

Across datasets, and in both single- and multi-attribute settings, the Nash formulation consis-
tently improves entropy (diversity) over ANN, while maintaining an approximation ratio (rele-
vance) of roughly above 0.9. By contrast, the hard-constrained formulation is highly sensitive
to the choice of the quota parameter k', and in some cases incurs a substantial drop in approx-
imation ratio (even lower than 0.2).

Results for p-NNS. As mentioned previously, p—-mean—ANN (Algorithm 3 in Appendix D) effi-
ciently solves the p-mean nearest neighbor search (p-NNS) problem in the single-attribute setting.
Also, recall that, selecting the exponent parameter p € (—o0, 1] enables us to interpolate p-NNS
between the standard NNS problem (p = 1), NaNNS (p = 0), and optimizing solely for diversity
(p — —00). We execute p-mean—ANN forp € {—10,—1,—0.5,0,0.5, 1} and show that a trade-off
between relevance (approximation ratio) and diversity (entropy) can be achieved by tuning p.

For the single-attribute setting, Figure 2 (first row - columns 3 and 4) capture this feature: For lower
values of p we have higher entropy, while p = 1 matches ANN. Analogous results are obtained for
other datasets and metrics; see Appendix E.3. Empirical results provided in Appendix E.4 (e.g.,
Figure 29) highlight that the trade-off via p is also achieved in the multi-attribute setting.

5 CONCLUSION

In this work, we formulated diversity in neighbor search with a welfarist perspective, using Nash
social welfare (NSW) and p-mean welfare as objectives. Our NSW formulation balances diversity
and relevance in a query-dependent manner, satisfies several desirable axiomatic properties, and
is naturally applicable in both single-attribute and multi-attribute settings. With these properties,
our formulation overcomes key limitations of the prior hard-constrained approach (Anand et al.,
2025). Furthermore, the more general p-mean welfare interpolates between complete relevance
(p = 1) and complete diversity (p = —o0), offering practitioners a tunable parameter for real-
world needs. Our formulations also admit provable and practical algorithms suited for low-latency
scenarios. Experiments on real-world and semi-synthetic datasets validate their effectiveness in
balancing diversity and relevance against existing baselines.

An important direction for future work is the design of sublinear-time approximation algorithms, in
both single- and multi-attribute settings, that directly optimize our welfare objectives as part of ANN
algorithms, thereby further improving efficiency. Another promising avenue is to extend welfare-
based diversity objectives to settings without explicit attributes.

Under review as a conference paper at ICLR 2026

REFERENCES

Piyush Anand, Piotr Indyk, Ravishankar Krishnaswamy, Sepideh Mahabadi, Vikas C. Raykar, Ki-
rankumar Shiragur, and Haike Xu. Graph-based algorithms for diverse similarity search. In Forzy-
second International Conference on Machine Learning, 2025. URL

Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest neigh-
bor in high dimensions. Communications of the ACM, 51(1):117-122, 2008.

Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias. In Ethics of data and
analytics, pp. 254-264. Auerbach Publications, 2022.

Sunil Arya, David M Mount, Nathan S Netanyahu, Ruth Silverman, and Angela Y Wu. An optimal
algorithm for approximate nearest neighbor searching fixed dimensions. Journal of the ACM
(JACM), 45(6):891-923, 1998.

G. Ausiello, A. D’Atri, and M. Protasi. Structure preserving reductions among convex opti-
mization problems. Journal of Computer and System Sciences, 21(1):136—153, 1980. ISSN
0022-0000. doi: https://doi.org/10.1016/0022-0000(80)90046-X. URL

Dmitry Baranchuk, Artem Babenko, and Yury Malkov. Revisiting the inverted indices for billion-
scale approximate nearest neighbors. In Computer Vision — ECCV 2018: 15th European Confer-
ence, Munich, Germany, September 8—14, 2018, Proceedings, Part XII, pp. 209—-224, Berlin, Hei-
delberg, 2018. Springer-Verlag. ISBN 978-3-030-01257-1. doi: 10.1007/978-3-030-01258-8_13.
URL .

Alina Beygelzimer, Sham Kakade, and John Langford. Cover trees for nearest neighbor. In Pro-
ceedings of the 23rd International Conference on Machine Learning, ICML °06, pp. 97-104,
New York, NY, USA, 2006. Association for Computing Machinery. ISBN 1595933832. doi:
10.1145/1143844.1143857. URL .

A. Camerra, E. Keogh, T. Palpanas, and J. Shieh. isax 2.0: Indexing and mining one billion time
series. In 2013 IEEE 13th International Conference on Data Mining, pp. 58—67, Los Alamitos,
CA, USA, dec 2010. IEEE Computer Society. doi: 10.1109/ICDM.2010.124. URL

Jaime Carbonell and Jade Goldstein. The use of mmr, diversity-based reranking for reordering
documents and producing summaries. In Proceedings of the 21st annual international ACM
SIGIR conference on Research and development in information retrieval, pp. 335-336, 1998.

Kunal Dahiya, Deepak Saini, Anshul Mittal, Ankush Shaw, Kushal Dave, Akshay Soni, Himanshu
Jain, Sumeet Agarwal, and Manik Varma. Deepxml: A deep extreme multi-label learning frame-
work applied to short text documents. In Proceedings of the 14th International Conference on Web
Search and Data Mining, WSDM ’21, New York, NY, USA, 2021. Association for Computing
Machinery.

Evelyn Fix and J. L. Hodges. Discriminatory analysis. nonparametric discrimination: Consistency
properties. International Statistical Review / Revue Internationale de Statistique, 57(3):238-247,
1989. ISSN 03067734, 17515823. URL .

Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. Fast approximate nearest neighbor search
with the navigating spreading-out graphs. PVLDB, 12(5):461 — 474, 2019. doi: 10.14778/
3303753.3303754. URL .

Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., USA, 1990. ISBN 0716710455.

Marie Al Ghossein, Ching-Wei Chen, and Jason Tang. Shopping queries image dataset (sqid): An

image-enriched esci dataset for exploring multimodal learning in product search. arXiv preprint
arXiv:2405.15190, 2024.

10

https://openreview.net/forum?id=dmN2fQ3woH
https://openreview.net/forum?id=dmN2fQ3woH
https://www.sciencedirect.com/science/article/pii/002200008090046X
https://www.sciencedirect.com/science/article/pii/002200008090046X
https://doi.org/10.1007/978-3-030-01258-8_13
https://doi.org/10.1145/1143844.1143857
https://doi.ieeecomputersociety.org/10.1109/ICDM.2010.124
https://doi.ieeecomputersociety.org/10.1109/ICDM.2010.124
http://www.jstor.org/stable/1403797
http://www.vldb.org/pvldb/vol12/p461-fu.pdf

Under review as a conference paper at ICLR 2026

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse of
dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of computing,
pp. 604-613, 1998.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. arXiv
preprint arXiv:1702.08734, 2017.

Richard M. Karp. Reducibility among Combinatorial Problems, pp. 85-103. Springer US, Boston,
MA, 1972. ISBN 978-1-4684-2001-2. doi: 10.1007/978-1-4684-2001-2_9. URL

Michael Kearns and Aaron Roth. The ethical algorithm: The science of socially aware algorithm
design. Oxford University Press, 2019.

Search Liaison. Google announces site diversity change to search results, 2019. URL

Yury A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs. CoRR, abs/1603.09320, 2016. URL

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schiitze. Introduction to Information
Retrieval. Cambridge University Press, USA, 2008. ISBN 0521865719.

Magdalen Dobson Manohar, Zheqi Shen, Guy Blelloch, Laxman Dhulipala, Yan Gu, Harsha Vard-
han Simhadri, and Yihan Sun. Parlayann: Scalable and deterministic parallel graph-based ap-
proximate nearest neighbor search algorithms. In Proceedings of the 29th ACM SIGPLAN Annual
Symposium on Principles and Practice of Parallel Programming, pp. 270-285, 2024.

Hervé Moulin. Fair division and collective welfare. MIT press, 2004.

G. L. Nembhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing
submodular set functions—i. Math. Program., 14(1):265-294, December 1978. ISSN 0025-5610.
doi: 10.1007/BF01588971. URL .

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. In Marina
Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pp. 8748-8763. PMLR,
18-24 Jul 2021. URL

Chandan K Reddy, Lluis Marquez, Fran Valero, Nikhil Rao, Hugo Zaragoza, Sambaran Bandyopad-
hyay, Arnab Biswas, Anlu Xing, and Karthik Subbian. Shopping queries dataset: A large-scale
esci benchmark for improving product search. arXiv preprint arXiv:2206.06588, 2022.

Harsha Vardhan Simhadri, Martin Aumiiller, Amir Ingber, Matthijs Douze, George Williams, Mag-
dalen Dobson Manohar, Dmitry Baranchuk, Edo Liberty, Frank Liu, Ben Landrum, et al. Results
of the big ann: Neurips’23 competition. arXiv preprint arXiv:2409.17424, 2024.

Suhas Jayaram Subramanya, Fnu Devvrit, Rohan Kadekodi, Ravishankar Krishnawamy, and Har-
sha Vardhan Simhadri. Diskann: Fast accurate billion-point nearest neighbor search on a sin-
gle node. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’ Alché-Buc,
Emily B. Fox, and Roman Garnett (eds.), Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 8-14
December 2019, Vancouver, BC, Canada, pp. 13748-13758, 2019.

Kohei Sugawara, Hayato Kobayashi, and Masajiro Iwasaki. On approximately searching for similar
word embeddings. pp. 2265-2275, 01 2016. doi: 10.18653/v1/P16-1214.

11

https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://www.searchenginejournal.com/google-site-diversity-change/311557/
https://www.searchenginejournal.com/google-site-diversity-change/311557/
https://www.searchenginejournal.com/google-site-diversity-change/311557/
http://arxiv.org/abs/1603.09320
http://arxiv.org/abs/1603.09320
https://doi.org/10.1007/BF01588971
https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v139/radford21a.html

Under review as a conference paper at ICLR 2026

Philip Sun, David Simcha, Dave Dopson, Ruiqi Guo, and Sanjiv Kumar. Soar: Improved indexing
for approximate nearest neighbor search. In Neural Information Processing Systems, 2023. URL

TensorFlow. Tensorflow datasets.
, 2025. Accessed: 2025-07-10.

J. Wang, J. Wang, G. Zeng, Z. Tu, R. Gan, and S. Li. Scalable k-nn graph construction for visual
descriptors. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1106—
1113, June 2012. doi: 10.1109/CVPR.2012.6247790.

August Wester. arxiv openai embeddings.
,2022. Accessed: 2025-07-10.

Shangyu Wu, Ying Xiong, Yufei Cui, Haolun Wu, Can Chen, Ye Yuan, Lianming Huang, Xue Liu,
Tei-Wei Kuo, Nan Guan, et al. Retrieval-augmented generation for natural language processing:
A survey. arXiv preprint arXiv:2407.13193, 2024.

12

https://arxiv.org/abs/2404.00774
https://www.tensorflow.org/datasets/catalog/
https://www.tensorflow.org/datasets/catalog/
https://www.kaggle.com/datasets/awester/arxiv-embeddings
https://www.kaggle.com/datasets/awester/arxiv-embeddings

APPENDIX: WELFARIST FORMULATIONS FOR
DIVERSE SIMILARITY SEARCH

Table of Contents
1 Introduction 1
2 Problem Formulation and Main Results 4
2.1 OurResults e 4
3 Algorithm for NaNNS 6
4 Experimental Evaluations 7
4.1 Balancing Relevance and Diversity 8
5 Conclusion 9
A Proof of Theorem 1 13
A.l Proofs for Examples land2 16
B Proof of Theorem 3 17
C Proof of Theorem 4 19
D Extensions for p-NNS 20
E Experimental Evaluation and Analysis 25
E.1 Evaluation Metrics e 25
E2 Datasets e e 26
E.3 Balancing Relevance and Diversity: Single-attribute Setting 28
E.3.1 Approximation Ratio Versus Entropy 29
E.3.2 Performance on p—mean—-ANN 29
E.3.3 Approximation Ratio Versus Inverse Simpson Index 30
E.3.4 Approximation Ratio Versus Distinct Attribute Count 30
E.3.5 Recall VersusEntropy o L. 32
E.4 Balancing Relevance and Diversity: Multi-attribute Setting 34
E.5 A Faster Heuristic for the Single Attribute Setting: p-FetchUnion-ANN 37

A PROOF OF THEOREM 1

As in Algorithm 1, write ﬁg to denote the k nearest neighbors of the given query g in the set Dy.
Recall that in the single-attribute setting the sets Dys are disjoint across £ € [c]. Also, vfj) € Dy
denotes the j most similar vector to ¢ in Dy, for each index j € [k]. We define function f;(-) to
denote the cumulative similarity of prefixes of these vectors; in particular,

fo(d) = Za(q,vfj)) foreach1 <i < k. (2)

=1

Note that f,(4) is equal to the cumulative similarity of the ¢ most similar (to ¢) vectors in Dy. The
lemma below shows that f,(-) satisfies a useful decreasing marginals property.

13

Under review as a conference paper at ICLR 2026

Lemma 5 (Decreasing Marginals). For all attributes £ € [c] and indices i’ ,i € [k], with i’ < i, it
holds that

log (fe(i) +n) —log (fe(i — 1) +n) <log (fe(i') +n) — log (fo(i' — 1) +n).
Proof. Note that

fe(@) +n _ fe(i — 1) +U(Qa7}€i)) +n 14 U(Q»'Ufi))

fe@=1)+n fe(i—=1)+n fe(i—=1)+n

L fe@)n _ 1 o@vn)
Similarly, we have +&—7% = 1+ w15

In addition, the indexing of the vectors vfj) ensures that o(q, Ufi,)) > o(q, vfi)) for i/ < i. Given

that f;(¢) the sum of the similarities (which are non-negative) of the vectors vﬁ ..., vf, we have

fe(@" — 1) < fo(i — 1) for ' < i. Combining these bounds, we obtain '
O-(qa Ufi’)) O-(qa Ufi)) '
fe@ =1 +n ~ fulli—1)+n

Adding 1 to both sides of the last equation and taking log (which is an increasing function and,
hence, preserves the inequality) gives us the desired inequality. The lemma stands proved. O

The following lemma asserts the Nash optimality of the subset returned by Algorithm 1, ALG, within
a relevant class of solutions.

Lemma 6. In the single-attribute setting, let ALG be the subset of vectors returned by Algorithm 1
and S be any subset of input vectors with the property that |\S N Dy| = |ALG N Dy|, for each £ € [c].
Then, NSW(ALG) > NSW(S).

Proof. Assume, towards a contradiction, that there exists a subset of input vectors S that satisfies
|S N Dyl = |ALG N Dy|, for each £ € [c], and still induces NSW strictly greater than that of ALG.
This strict inequality implies that there exists an attribute a € [c] with the property that the utility

uq(S) > u,(ALG).” That is,
Y ale)> D olgv) (3)

teSND, vEALGND,

On the other hand, note that the construction of Algorithm 1 and the definition of D, ensure that the
vectors in ALG N D, are in fact the most similar to ¢ among all the vectors in D,. This observation
and the fact that [S' N Dq| = [ALG N D, gives us Y-, cx16np, 7(2,V) > > conp, o(q,t). This
equation, however, contradicts the strict inequality (3).

Therefore, by way of contradiction, we obtain that there does not exist a subset S such that | SNDy| =
|ALG N Dy, for each ¢ € [c], and NSW(ALG) < NSW(SS). The lemma stands proved. O

We next restate and prove Theorem 1.

Theorem 1. In the single-attribute setting, given any query q € R?% and an (exact) oracle ENN
for k most similar vectors from any set, Algorithm I (Nash—-ANN) returns an optimal solution for
NaNNS, i.e., it returns a size-k subset ALG C P that satisfies ALG € arg maxgc p.|gj=x NSW(9).
Furthermore, the algorithm runs in time O(kc) + Y_,_, ENN(Dy, q), where ENN(Dy, q) is the time
required by the exact oracle to find k most similar vectors to q in Dy.

Proof. The runtime analysis of Algorithm 1 is direct. Line 1 of the algorithm requires
> y_, ENN(Dy, q) time to populate the subsets Dys (of the k most similar points within each
Dy, respectively). The while-loop in the algorithm iterates k times and each iteration (specif-
ically, Line 5) runs in O(c) time. Hence, as stated, the time complexity of the algorithm is
O(kc) + > y_, ENN(Dy, q).

"Recall the utility model specified in Section 2.1.

14

Under review as a conference paper at ICLR 2026

We next establish the optimality of the returned solution ALG. Write OPT €
arg maxgc p;sj— NSW(S) to denote an optimal solution with attribute counts |OPT N D| as close

to |ALG N Dy| as possible. That is, among the optimal solutions, arg maxgc p.|gj=x NSW(S5), it is
one that minimizes »,_, |k} — k¢|, where k} = |OPTN Dy| and ky = |ALG N Dy, [c].

We will prove that OPT satisfies k; = k, for each £ € [¢|. This guarantee along with Lemma 6
imply that, as desired, ALG is a Nash optimal solution.

Assume, towards a contradiction, that k} # k, for some ¢ € [c]. Since |OPT| = |ALG| = k, there
exists attributes x, y € [¢] with the property that

ky < kg and ky, >k, ()

For ease of exposition, write function Fy(i) := log (fe(d) + 77), for indices 1 < ¢ < k. Lemma 5,
for any pair of indices ¢’ < i, gives us

Fy(i') = Fo(i' = 1) > Fy(i) — Fo(i — 1) S

Next, note that for any attribute ¢ € [c], if Algorithm 1, at any point during its execution, has included
Ky, vectors of attribute ¢ in ALG, then at that point the maintained utility w, = f;(k;). Hence, at
the beginning of any iteration of the algorithm, if the &} denotes the number of selected vectors of
each attribute ¢ € [c], then the marginals considered in Line 5 are Fy (kj, + 1) — F (k}). These
observations and the selection criterion in Line 5 of the algorithm give us the following inequality
for the counts k, = |[ALG N D,| and k,, = |[ALG N D,;| of the returned solution ALG:

Fo(ke) = Fo(ke — 1) ZFy(ky"‘l)_Fy(ky) (6)

Specifically, equation (6) follows by considering the iteration in which £ (last) vertex of attribute
x was selected by the algorithm. Before that iteration the algorithm had selected (k, — 1) vectors of
attribute x, and let k; denote the number of vectors with attribute y that have been selected till that
point. Note that k’y < ky. The fact that the k' vector was (greedily) selected in Line 5, instead of
including an additional vertex of attribute y, gives Fi(ky) — Fi(kz — 1) > Fy(ky + 1) — Fy (k) >
F,(ky+1)— F,(k,); here, the last inequality follows from equation (5). Hence, equation (6) holds.

Moreover,
Fo(k;+1)— Fy(ky) > Fy(ky) — Fyp(ky — 1) (via eqns. (4) and (5))
> Fy(ky +1) — Fy(ky) (via eqn. (6))
> Fy(k2) — Fy(ky — 1) ™

The last inequality follows from equations (4) and (5).

Recall that v() denotes the i most similar (to ¢) vector in the set ﬁg. The definition of l/jg ensures
that v(i) is in fact the i most similar (to ¢) vector among the ones that have attribute /, i.e., ™" most
similar in all of D,. Since OPT is an optimal solution, the k; = |OPT N Dy| vectors of attribute ¢

in OPT are the most similar kj vectors from D,. That is, OPT N D, = {vfl), - ,vfk*) } for each
4
¢ € [c]. This observation and the definition of Fy(-) imply that the logarithm of OPT’s NSW satisfies

log NSW(OPT) ZFg kp). (8)

Now, consider a subset of vectors S obtained from OPT by including vector vfk*

*+1
v%’k;), ie., S = (OPT U {Uzbk;-kl)}) \ { Ul)} Note that
1

log NSW(S) — log NSW(OPT) = - (F$(l<:;‘§ +1)— Fr(k_i';)) +- (Fy(k:; 1) - Fy(k;))
>0 (via eqn. (7))

) and removing

1

Hence, NSW(S) > NSW(OPT). Given that OPT is a Nash optimal allocation, the last inequality
must hold with an equality, NSW(S) = NSW(OPT), i.e., S is an optimal solution as well. This,

15

Under review as a conference paper at ICLR 2026

however, contradicts the choice of OPT as an optimal solution that minimizes > _,_, |k} — k¢| — note
that ,_, ‘Eg - kg‘ <S35 |kp — kyl, where &y == |S 0 D).

Therefore, by way of contradiction, we obtain that |OPT N Dy| = |ALG N Dy| for each ¢ € [c].
As mentioned previously, this guarantee along with Lemma 6 imply that ALG is a Nash optimal
solution. This completes the proof of the theorem. O

Next, we prove Corollary 2.

Corollary 2. In the single-attribute setting, given any query q € R? and an o-approximate
oracle ANN for k most similar vectors from any set, Algorithm I (Nash—-ANN) returns an o-
approximate solution for NaNNS, i.e., it returns a size-k subset ALG C P with NSW(ALG) >
amaxgcp: |sj=k NSW(S). The algorithm runs in time O(kc) + > ;_, ANN(Dy,q), with
ANN(Dy, q) denoting the time required by the oracle to find k similar vectors to q in Dj.

Proof. The running time of the algorithm is established by an argument similar to that in proof
of Theorem 1. Therefore, we only argue correctness.

For every £ €], let the a-approximate oracle return Dy. Recall that vfi), i € [k], denotes the i

most similar point to g in the set ﬁg. Further, for every ¢ € [c], let D} be the set of k& most similar
points to g within D, and define vff), i € [K], to be the i™ most similar point to g in Dj. Recall that
by the guarantee of the -approximate NNS oracle, we have o(q, vfi)) > «a-o(q, vz‘f)) foralli € [K].

Let ALG™ be the solution obtained by running Nash—ANN with an exact NNS oracle, and let ALG"
contain k; most similar points of attribute ¢ for every ¢ € [c]. Moreover, let OPT be the optimal
solution to the NaNNS problem. Note that we have by Theorem 1, NSW(ALG") = NSW(OPT).

Finally, let OPT be the optimal solution to the NaNNS problem when the set of vectors to search
over is P = Uy Dy

By an argument similar to the proof of Theorem 1, we have NSW(ALG) = NSW(CTP\T). Therefore,
we can write,

NSW(ALG) = NSW(OPT)

o=

ky
> 11 | 2 eta vt +n
teld \i=1
(Uee[c]:k521{v€1), e ,vsz)} is a feasible solution)
’ :
> H Z ao(q, vff)) +7 (by a-approximate guarantee of the oracle)
teld \i=1
1
k; c
> LD o) +n (a € (0,1))
€[d] i=1
= a NSW(ALG")
= a NSW(OPT) (by Theorem 1)
Hence, the corollary stands proved. O

A.1 PROOFS FOR EXAMPLES 1 AND 2

In this section, we give the proof of Example 1 and Example 2 which describe the two extreme
scenarios that can be realized by the NaNNS objective under different circumstances.

Example 1 (Complete Diversity via NaNNS). Consider an instance in which, for a given query
q € R, all vectors in P are equally similar with the query: o(g,v) = 1 for all v € P. Also, let

16

Under review as a conference paper at ICLR 2026

latb(v)| = 1 for all v € P and write S* € argmaxgcp, |gj=x NSW(S). If ¢ > k, then here it
holds that |S* N Dy| < 1 forall £ € [¢].

Proof. Towards a contradiction, suppose there exists 7' € argmaxgc p.|s|— NSW(S) such that

|T'N Dy«| > 1 for some ¢* € [¢]. Note that according to the setting specified in the example,
ue(T) = |T N Dy| +nforall £ € [c].

> € [c] such that [T'N Dy/| = 0. Letv* € T'N Dy and
v’ € Dy be two vectors. Consider the set 77 = (T \ {v*}) U {v'}. We have,

NSW(T") [(ue(T") +n) (w-(T") +n) 11 (we(T") +n)
NSW(T') (e (T) +m) (ue=(T) + 1) teleh(er.o) (ue(T) + 1)

_ 1+77 w*(T)*Hn) 11 (ue(T) +)

(e (T)+10) e pvioe oy (e(T) +0)
_ (1+1) ue*(T) - 1+77)>“
(we«(T') + 1)
1
. -1 AT 2\ ¢
(W +”“” ””) 1 (up- (T) > 2)
nug=(T) + n?
Therefore, we have NSW(T") > NSW(T'), which contradicts the optimality of 7. Hence, we must
have |[T'N Dy| < 1 for all E € [¢], which proves the claim. O

Example 2 (Complete Relevance via NaNNS). Consider an instance in which for a given query
q € RY and for a particular ¢* € [c], only vectors v € Dy« have similarity o(¢,v) = 1 and all other
vectors p’ € P\ Dy~ have similarity o(q, p’) = 0. Also, suppose that |atb(p)| = 1 for each p € P,
along with | D+ | > k. Then, for a Nash optimal solution S* € arg maxgc p|g/—x NSW(S) it holds

that |[S* N Dy« | = k. That is, for all other £ € [¢] \ {¢*} we have |S* N Dy| = 0.

Proof. Towards a contradiction, suppose there exists 7' € argmaxgc p.|s|— NSW(S) such that

|T"N Dy | < k. Therefore, there exists £ € [c] \ {¢*} such that |T'N Dy| > 1. Let v* € Dp« \ T
and let v' € T'N Dy . Note that ug+ (7)) = 0 since o(g,v) = 0 forall v € D, forany ¢ € [c] \ {¢*}.
Moreover, we also have wg« (1) = |T'N Dyx|.

Consider the set 77 = (T \ {v'}) U {v*}. We have,

NSW(T") _ [(we(T") +n) (ue-(T") + 1) 11 (ue(T") +m)

NSWT) T\ w0 @+, AL

(ue(T) —o(g,v') +n) (ue=(T) + 0(g,v") + 1) 11 (we(T) +n)
(ue (T) +m) (ue«(T) +)

B ((o—o+n) (TN D +1+n)>i

Lefe\{er, e}

) =t
+1

Therefore, we have obtained NSW (7") > NSW(T'), which contradicts the optimality of 7. There-
fore, it must be the case that | 7" N Dy« | = k, which proves the claim. O

1
=]_ -
(* ‘TﬂDe*

B PROOF OF THEOREM 3

This section restates and proves Theorem 3. Recall that in the multi-attribute setting, input vectors
v € P are associated one or more attributes, |atb(v)| > 1.

17

Under review as a conference paper at ICLR 2026

Theorem 3. In the multi-attribute setting, with parameter 11 = 1, NaNNS is NP-hard.

Proof. Consider the decision version of the optimization problem: given a real W, decide whether
there exists S C P, |S| = k such that log NSW(.S) > W. We will refer to this problem as NaNNS.
Note that the input to a NaNNS instance is the following: a set of vectors P C RY, |P| = n,
similarity function o : R x R? — R, integer k € N, the sets Dy = {p € P : £ € atb(p)} for
every color £ € [¢], a query point ¢ € R? and a real W. We will show that NaNNS is NP-Complete
by reducing EXACT REGULAR SET PACKING (ERSP)® to NaNNS.

In ERSP, we are given a universe of n elements that we denote by U = {1,2,...,n}, a collection
of subsets S = {S1,...,Sn,} where S; C U, |S;| = 7, for all i € [m] and an integer k¥ € N. The
problem is to decide if there is a sub-collection I C S, |I| = k, such that for all distinct S, S" € I
Sns =0.

To reduce ERSP to an instance of NaNNS, we view U/ as the set of attributes, i.e., ¢ = n. The set of
vectors P is embedded in R" and is given by P = {1 - 15 | S € S} and the query vector is ¢ = 1.
Here, 1 is the all ones vector in R™, and 1g is the vector in R” whose i-th coordinate is 1{i € S}
for all ¢ € [n]. Therefore, the set of vectors P is of size m. Moreover, the set of vectors having
attribute ¢ € [n] is denoted by Dy = {1 - 15| S € S,¢ € S}. The size of the solution set of the
NaNNSs is equal to the k& of the ERSP instance. Finally, the similarity function ¢ : R” x R™ — R is
taken to be the usual dot-product. Finally, we set W = 7k log 2. Note that the reduction takes time
polynomial in n and m.

Also note that for any v € P, o(q,v) = (+ - 1g,1) = 1 where v = % - 1 for some S € S.
Now we prove the correctness of the reduction.

“=": Suppose I* C S, |I*| = k is a solution to ERSP instance. Consider the set N* := {% “1g:
S € I*}. Clearly, N* C P and |[N*| = k, hence N* is a feasible set of the NaNNS problem. Now,
since I* is a solution to the ERSP instance, for distinct S, S’ € I* we have SN.S’ = (). Particularly,
if for an attribute ¢ € [c], we have ¢ € S for some S € I*, then £ ¢ S’ forall S’ € I*\ {S}.
Therefore, |N* N Dy| < 1 for all £ € [c] which in turn implies that u,(N*) is either 1 or 0 for all
¢ € [c]. Finally, note that any point v € P belongs to exactly T attributes, i.e., (v)| = 7. Hence,

klog2
log NSW(N Zlog 1+ ug(N Z Y log(l41) =%
UEN* Leatb(v)

Therefore, if there is a solution to the ERSP instance, then the corresponding NaNNS instance also
has a solution.

“«<": Suppose N* C P, |N*| = k, is a solution to the NaNNS instance (i.e., log NSW(N*) > W)
corresponding to the ERSP instance. Define I* := {S | 1 - 15 € N*}. Note that |I*| = k. We will
show that /™" is a solution to the ERSP instance. First observe that,

D ue(N") Z >, olav)=3 > olgv)=Th.
Le(c] c]vEN*ND, vEN* Leatb(v)

We also have the set of attrlbutes with non-zero utility is given by A = Uger+S. Clearly, 1 <
|A| < 7k via Union Bound. Hence,

Tklog 2 1
—="<log N N*) = - log(1 N*
o Sl NSWINY) = {5 los(l + w(\")

W:

:fZIOg + up(N™))

le A

_ AL ﬁ Z log(1 + ue(N™))

C
le A

< |A‘ Z 1+ ug(N*) (concavity of log)
Ml iz

8ERSP is known to be NP-Complete due to Karp (1972) and W[1] hard with respect to solution size due
to Ausiello et al. (1980); see also Garey & Johnson (1990)

18

Under review as a conference paper at ICLR 2026

ﬂ . log (1 + ZéeAuf(N))
c | A

|A| Tk
=M g (14 8
c U
Tklog2
c

<

Here, the last inequality follows from Lemma 7 (stated and proved below). Hence, all the inequali-
ties in the derivation above must hold with equality. Particularly, we must have | A| = 7k by equality
condition of Lemma 7. Hence, for distinct sets S, S’ € I*, we must have S NS’ =). Therefore, I*
is a solution of the ERSP instance.

O

Lemma 7. For any a > 0 and for all x € (0,a], xlog(1 + %) < alog2. Moreover, the equality
holds when x = a.

Proof. Let f(z) = xlog(1+ %). We have f(a) = alog(2) and,

lim f(z) = lim xlog(a+z) —zlogx = lim zlog(a+ x) — hrglJraclog(z)=0—-0=0.

z—0t1 z—01 z—0t

Note that f'(z) = log(1 + £) — 2%5. We will show that f'(z) > 0 for all x € (0, a] which will
conclude the proof.

Case 1: z € (0, §]. We have log(1+%) > log(l—f—a%‘/lz) = log(3) > 1. On the other hand, —¢- < 1.

Case 2: = € (§,a]. In this case, log(1 + %) > log(1 + 2) = log(2) > 0.693. However, —— <

0 ’ a+z
4T =3 S 0.667.
Therefore, f'(z) = log(1 + %) — ;45 > 0 forall z € (0, a] which concludes the proof. O

C PROOF OF THEOREM 4

This section details Algorithm 2, based on which we obtain Theorem 4. We establish this theorem
by showing that the log NSW(-) objective is submodular. Hence, we obtain the stated (1 — %)-
approximation by applying the approximation algorithm for cardinality-constrained submodular
maximization (Nemhauser et al., 1978).

Algorithm 2 Mult iNashANN: Algorithm for approximate solution in the multi-attribute case

Require: Query g € R?.
1: Initialize ALG = ().
2: fori=1,...,kdo
3: U= argmax,ep\ac log NSW(ALG U {v}).
4: ALG « ALG U {v}.
5: Return ALG.

Theorem 4. In the multi-attribute setting, there exists a polynomial-time algorithm (Algorithm 2)
that, given any query q € RY, finds a size-k subset ALG C P with log NSW(ALG) >
(1 — %) log NSW(OPT); here, OPT denotes an optimal solution of (1).

Proof. We will show that function f : 2 — R, f(S) = log NSW(S), S C P, is monotone
submodular. Observe that for S C T C P, D, NS C D, N T, hence uy(S) < u,(T) for all £ € [c].
Moreover, since log is an increasing function, log(us(S) + 1) < log(ue(T) + 1) for all £ € [d].
Therefore, we can conclude that f(S) < f(7T), hence f is monotone.

19

Under review as a conference paper at ICLR 2026

For submodularity, let S C 7" C P be two subsets and let w € P\ T'. We will denote by S + w and
T + w the sets S U {w} and T'U {w}. Now, we have

f(S+w) = f(S) = f(T'+w) + f(T)
<]‘ + ZUED@Q(S—FH}) U(q7 ,U) 1+ ZveD@mT U(Q7 7)))

1+ ZvEDzﬁS o(g,v) 1+ ZveDm(Ter) o(q,v)

Il
Qlr
—
o
0]

Le]c]
-1

1 o(q,w) (g, w)
=- log 14 {1+

c Ze;b(w) (1+ ZvEDZF‘IS J(q’ U)) (1+ ZvEDZF‘IT J(qV U)

1 (g, w) olgw) \ '
= - Z log<(1+>-(1+

c teibin) 14+ ue(S) 1+ ue(T)
>0 (ue(S) < uy(T) since S C T)

Therefore, upon rearranging, we have f(S 4+ w) — f(S) > f(T 4+ w) — f(T') which is a character-
ization of submodularity.

Hence, Algorithm 2, which, in every iteration, greedily picks the element with maximum marginal
contribution, achieves a (1 — %)-approximation (Nembhauser et al., 1978). O

D EXTENSIONS FOR p-NNS

In this section, we discuss the extension of results for NaNNS to the p-NNS problem. We state
an algorithm (Algorithm 3) and present its guarantee (Theorem 11 and Corollary 12) in finding the
exact optimal solution for the p-NNS problem. Recall that p-mean welfare of ¢ agents with utilities
1
(w1, ..., we) is given by My (w1, ..., w.) = (L 37 , w))? forp € (—o00,1]. The p-NNS problem
is stated as follows:
M S), .. uc(S
sopax My (u(S),. - ue(S))

Here, as in Section 2.1, the utility u,(S) = >, c5np, o(q,v), for any subset of vectors S and
attribute ¢ € [c]. Also, we will write M,(S) :== M, (u1(S), ..., uc(5)).

Algorithm 3 p—Mean—-ANN: Algorithm for p-NNS in the single-attribute setting

Require: Query ¢ € R and, for each attribute £ € [c], the set of input vectors D, C R and
pe (—OO, 1] \ {0}
1: For each ¢ € [c], fetch the k (exact or approximate) nearest neighbors of ¢ € R< from D,. Write
Dy C D, to denote these sets.

2: For every ¢ € [c] and each index i € [k], let vfi) denote the ith most similar vector to g in Dy.
3: Initialize subset ALG = (}, along with count k, = 0 and utility w, = 0, for each £ € [c].

4: while |ALG| < k do

5. ifp € (0,1] then

6: Leta = areger[n]ax ((we +n+0o(g, vfkﬁl)))p — (we + 77)1’). {Ties broken arbitrarily. }
7. elseif p < O then

8: Let a = arg min ((wz +n+0o(g, Ufkeﬂ)))l’ — (we + 77)1’). {Ties broken arbitrarily. }

Le[c]
9: Update ALG +— ALGU {U(akaﬂ) }, along with w, < w, + o(q, U?kaﬂ)) and k, + k., + 1.
10: Return ALG.

Lemma 8 (Decreasing Marginal for p > 0). Fix a p € (0,1] and attribute ¢ € [c]. Let f;(i) be the
same as defined in Equation (2) and let Fy(i) = (fi(i) + n)P. Then, for 1 < i’ < i <k, we have

Fg(i/) - Fg(i/ - 1) Z Fg(l) - Fg(i - 1) .

20

Under review as a conference paper at ICLR 2026

Proof. Let G(j) == Fy(j) — Fu(j — 1) for all j € [k]. We will show that G(j) is decreasing in j.
Towards this, we have the following inequalities for j > 2:
G -1 -G0)
=F(G-1)—-F((G—-2)-F()+F(—-1)
=2F,(j = 1) = (Fe(j) + Fe(j — 1))
=2(feG =1 +n)" — ((fe(4) + 77)” + (felG -
+ (

o . p U(q>v€j71))+o(%vfj)) ?
=2(fe(j —2)+n) <1 <1+ <1+ Je(G—2)+n
14

- olgvg)\ 1 20(2, V(1))
=2 =20y ((feJ—2)+n> 2<1+<1+fe(j—2)+77

Q7 J— 1))

o
G

p)
(o(q,v (] 1)) > o(q,v 6) x +— P is increasing for p € (0,1] and = > 0)
) P
(fe i 2 +17 J 1)) 1 14 20’((]7”@,1))
3—2 +1n feG—=2)+n
(x — xP is concave for p € (0,1] and x > 0)
=0.

Therefore, we have G(j) < G(j — 1) for all 2 < j < k. Particularly, for 1 < i’ < ¢ < k, we have
G(i') > G(i), which is the claimed inequality. O

Lemma 9 (Increasing Marginals for p < 0). Fixap € (—00,0) and attribute £ € [c]. Let fo(i) be
the same as defined in Equation (2) and let Fy(i) = (f¢(i) +n)P. Then, for 1 < i’ < i <k, we have

Fy(i') — Fo(i' = 1) < Fp(i) — Fe(i — 1) .
Proof. The proof proceeds similarly to the proof of Lemma 8, except that we now seek the reverse

inequality. More precisely, with G(j) same as defined in proof of Lemma 8, we wish to show that
G(j) > G(j — 1) forall 2 < j < k. Towards this, we have,

G -1 -G0)

_ - p (g, v(1) ,,_ 1 (g v(;_n) +o(a.9())
=2(fe(j—2)+n) <<1+f£(3—2)+77> 2<1+<1+ G -2 0
o 0

: o (1 2@¥-n) ! 20(a,v; 1) \"
s ((ff(f—‘")“?) _2<1+<1+fe(j—2)+77

(o(q, v _1) 2 a(qu])) x +— aP is decreasing for p € (—o0,0) and = > 0)
(

. » Uq,vj 1)) P_ 1 1 20((]7@(3'_1)) ?
=2 =2 ((G-+) <2 't <1+fe(j—2)+n

(x > P is convex for p € (—00,0) and x > 0)

=0.
O

Lemma 10. In the single-attribute setting, let ALG be the subset of vectors returned by Algorithm 3
and S be any subset of input vectors with the property that |S N Dy| = [c].
Then, Mp,(ALG) > M,(S).

Proof. Assume, towards a contradiction, that there exists a subset of input vectors S that satisfies
|SNDe| = |ALGN Dy, for each £ € [c], and still induces p-mean welfare strictly greater than that of
ALG. This strict inequality combined with the fact that M, (w1, ..., w.) is an increasing function of
w;s implies that there exists an attribute a € [c] with the property that the utility u,(S) > u,(ALG).”

“Recall the utility model specified in Section 2.1.

21

Under review as a conference paper at ICLR 2026

That is,

> oolgty> > algv) ©)

teSND, vEALGND,

On the other hand, note that the construction of Algorithm 3 and the definition of ﬁa ensure that the
vectors in ALG N D, are in fact the most similar to ¢ among all the vectors in D,. This observation
and the fact that [S N D,| = |ALG N Dg| gives us > a1 6np, 7(2:v) = X icsnp, 0(g,t). This
equation, however, contradicts the strict inequality (9).

Therefore, by way of contradiction, we obtain that there does not exist a subset S such that | SNDy| =
|ALG N Dy, for each ¢ € [c], and M,(ALG) < M,(S). The lemma stands proved.

Theorem 11. In the single-attribute setting, given any query q € R® and an (exact) oracle ENN for
k most similar vectors from any set, Algorithm 3 (p—mean—ANN) returns an optimal solution for
p-NNS, i.e., it returns a size-k subset ALG C P that satisfies ALG € argmaxgc p,|s|=r Mp(9).

Furthermore, the algorithm runs in time O(kc) + Y ,_, ENN(Dy, q), where ENN(Dy, q) is the time
required by the exact oracle to find k most similar vectors to q in D,.

Proof. The running time of the algorithm is established by the same arguments as in the running
time analysis of Theorem 1.

For the correctness analysis, we divide the proof into two cases: p < 0 and p € (0, 1].

Case 1: p € (0,1]. Note that — z? is an increasing function for z > 0. Hence, the prob-
lem maxgc p 5=k Mp(S) is equivalent to the problem maxgc p|5j=r M (S)? or in other words,
maxgc p,|S|=k % >-7_1 ue(S)P. The proof hereafter proceeds essentially similar to the proof of The-
orem 1. Let k, = [ALG N Dy| for all £ € [c]. Further, let OPT € arg maxgc p|s|= LS ue(S)P
and kj = |OPT N Dy| for all £ € [c], where OPT is chosen such that _;,_, |k; — k| is minimized.

We will prove that OPT satisfies k; = k; for each ¢ € [c]. This guarantee along with Lemma 6
imply that, as desired, ALG is a p-mean welfare optimal solution.

Assume, towards a contradiction, that k; # k, for some ¢ € [c]. Since |OPT| = |ALG| = k, there
exists attributes z, y € [¢] with the property that

ky < ky and ky >k, (10)
With Fy (i) as defined in Lemma 8, we have for any pair of indices 1 < ¢/ < i <k,
Fy(i') = Fo(i' = 1) > Fy(i) — Fo(i — 1) (11

Next, note that for any attribute ¢ € [c], if Algorithm 3, at any point during its execution, has included
kj, vectors of attribute ¢ in ALG, then at that point the maintained utility w, = fo(k}). Hence, at
the beginning of any iteration of the algorithm, if the &} denotes the number of selected vectors of
each attribute ¢ € [c], then the marginals considered in Line 6 are Fy (kj, + 1) — F (k}). These
observations and the selection criterion in Line 6 of the algorithm give us the following inequality
for the counts k, = |[ALG N D | and k,, = |ALG N D,| of the returned solution ALG:

Fx(kz)_Fx(kr_l) ZFy(ky"‘l)_Fy(ky) (12)

Specifically, equation (12) follows by considering the iteration in which k% (last) vector of attribute
x was selected by the algorithm. Before that iteration the algorithm had selected (k. — 1) vectors of
attribute x, and let k; denote the number of vectors with attribute y that have been selected till that
point. Note that k; < k. The fact that the kg.‘ vector was (greedily) selected in Line 6, instead of
including an additional vector of attribute y, gives Fi.(ky) — Fi(ky — 1) > Fy(ky + 1) — Fy (k) >
Fy(ky + 1) — F,(ky); here, the last inequality follows from equation (11). Hence, equation (12)
holds.

Moreover,
Fo(k +1) = Fo(k2) > Fylks) — Fo(ky — 1) (via eqns. (10) and (11))
> Fy(ky +1) — Fy(ky) (via eqn. (12))
> Fy(ky) — Fy(ky — 1) (13)

22

Under review as a conference paper at ICLR 2026

The last inequality follows from equations (10) and (11).

Recall that vfi) denotes the i™ most similar (to g) vector in the set ﬁg. The definition of ﬁg ensures
that vfi) is in fact the ¢ most similar (to) vector among the ones that have attribute /, i.e., it most
similar in all of D,. Since OPT is an optimal solution, the k; = |OPT N Dy| vectors of attribute ¢
in OPT are the most similar kj vectors from D,. Thatis, OPT N D, = {vfl), - ,vsz) }, for each

¢ € [c]. This observation and the definition of Fy(-) imply that the p-th power of OPT’s p-mean
welfare satisfies

,(OPT)P Z Fy(kp). (14)

Now, consider a subset of vectors .S obtained from OPT by including vector v(s
(k*) ie, S = (OPT U {”(k*+1)}) \ { (k*)}. Note that

My~ My(Op1 = < (Fulhs +1) = Fa(k) + - (Fy by — 1)~ By (k)

c
>0 (via eqn. (13))

Hence, M,(S) > M,(OPT). Given that OPT is a p-mean welfare optimal allocation, the last
inequality must hold with an equality, M, (S) = M,(OPT), i.e., S is an optimal solution as well.
This, however, contradicts the choice of OPT as an optimal solution that minimizes Y ,_, |k} — k|

—note that y_,_, ‘76\@ — k@‘ < 5 |k; — kel, where kg == |S N Dy|.

+1) and removing

Therefore, by way of contradiction, we obtain that |OPT N Dy| = |ALG N Dy| for each ¢ € [c].
As mentioned previously, this guarantee along with Lemma 10 imply that ALG is a p-mean welfare
optimal solution. This completes the proof of the theorem for the case p € (0, 1].

Case 2: p < 0. In this case, the proof follows a similar argument as the previous case. However,
due to p being negative, the key inequalities are reversed. We present the proof formally below for
the sake of completeness.

Note that z — z* is a decreasing function for z > 0. Hence, the problem maxgcp |5k M, (S) is

equivalent to the problem mingc p,|sj= M, (S)? or in other words, mingc p,|s|=k = > p_q we(S)P.

Let k¢ = |ALG N Dy| for all £ € [c]. Further, let OPT € argmingc p i = > ¢—; e(S)? and
= |OPT N Dy| for all £ € [c], where OPT is chosen such that Y _,_, |k} — k| is minimized.

We will prove that OPT satisfies k; = k; for each £ € [c]. This guarantee along with Lemma 10
imply that, as desired, ALG is a p-mean welfare optimal solution.

Assume, towards a contradiction, that kj # k, for some ¢ € [c]. Since |OPT| = |ALG| = k, there
exists attributes z, y € [¢] with the property that

kr < ky and k; > ky (15)
With Fy (i) as defined in Lemma 9, we have for any pair of indices 1 < ¢/ < i < k,
Fy(i') = Fo(i' = 1) < Fy(i) — Fo(i — 1) (16)

Next, note that for any attribute ¢ € [¢], if Algorithm 3, at any point during its execution, has included
kj, vectors of attribute ¢ in ALG, then at that point the maintained utility w, = fo(k}). Hence, at
the beginning of any iteration of the algorithm, if the &} denotes the number of selected vectors of
each attribute ¢ € [c], then the marginals considered in Line 8 are Fy (kj, + 1) — F} (k}). These
observations and the selection criterion in Line 8 of the algorithm give us the following inequality
for the counts k, = |ALG N D,| and k,, = |ALG N D, of the returned solution ALG:

Specifically, equation (17) follows by considering the iteration in which k% (last) vector of attribute
x was selected by the algorithm. Before that iteration the algorithm had selected (k, — 1) vectors of
attribute x, and let k; denote the number of vectors with attribute y that have been selected till that

23

Under review as a conference paper at ICLR 2026

point. Note that k;j < ky. The fact that the k' vector was (greedily) selected in Line 8, instead of

including an additional vector of attribute y, gives Fi; (k) — Fp(k, — 1) < F,(kj +1) — Fy (k) <

llj'yl(dky + 1) — F,(ky); here, the last inequality follows from equation (16). Hence, equation (17)
olds.

Moreover,
Fo(ky+1)— Fy(k}) < Fy(ky) — Fy(ky — 1) (via eqns. (15) and (16))
< Fy(ky +1) — F,(ky) (via eqn. (17))
< F, (k) — (k‘* -1) (18)

The last inequality follows from equations (15) and (16).

Recall that Ufi) denotes the i™ most similar (to g) vector in the set ﬁg. The definition of ﬁg ensures

th

that vfi) is in fact the i most similar (to q) vector among the ones that have attribute /, i.e., i most

similar in all of D,. Since OPT is an optimal solution, the k; = |OPT N Dy| vectors of attribute ¢
in OPT are the most similar & vectors from Dy. That is, OPT N D; = {vfl)7 . ,vfk*) }, for each
B £

¢ € [c]. This observation and the definition of Fy(-) imply that the p-th power of OPT’s p-mean
welfare satisfies

,(OPT)? Z Fy(k}). (19)

Now, consider a subset of vectors .S obtained from OPT by including vector vfk*

atl
v%’k;), ie., S = (OPT U {Uzbk;-kl)}) \ {vé’k;)}. Note that
1
M

W(S) — M0 = (Eulhs +1) = Fulk) + = (Fy () — 1) = By()))

c
<0 (via eqn. (18))

Hence, M,(S) > M,(OPT). Given that OPT is a p-mean welfare optimal allocation, the last
inequality must hold with an equality, M, (S) = M,(OPT), i.e., S is an optimal solution as well.
This, however, contradicts the choice of OPT as an optimal solution that minimizes Y ,_, |k} — k|

—note that Y ,_, ‘7{7\[- kg‘ < 320, |kp — kel, where kg = |S 0 Dy|.

) and removing

Therefore, by way of contradiction, we obtain that |OPT N Dy| = |ALG N Dy| for each ¢ € [¢].
As mentioned previously, this guarantee along with Lemma 10 imply that ALG is a p-mean welfare
optimal solution. This completes the proof of the theorem for the case p < 0.

Combining the two cases we have the proof of the theorem for all p € (—o0, 1] \ {0}. O

Corollary 12. In the single-attribute setting, given any query q € R® and an o-approximate or-
acle ANN for k most similar vectors from any set, Algorithm 3 (p—mean—ANN) returns an -
approximate solution for p-NNS, i.e., it returns a size-k subset ALG C P with M,(ALG) >

(&
amaxgcp: |s|=k Mp(S). The algorithm runs in time O(kc) + > ANN(Dy, q), with ANN(Dy, q)
=1
being the time required by the approximate oracle to find k similar vectors to q in Dy.

Proof. The running time of the algorithm is established by an argument similar to that in proof
of Theorem 11. Therefore, we only argue correctness.

For every / € [c], let the a-approximate oracle return Dj. Recall that vfi), i € [k], denotes the i
most similar point to ¢ in the set ﬁz Further, for every £ € [c], let D7 be the set of & most similar
points to g within D, and define v(o € [k], to be the i'™ most similar point to ¢ in D} . Recall that by

the guarantee of the a-approximate NNS oracle, we have o (g, v,)) > a-o(q, v)) foralli € [k]. Let

ALG™ be the solution obtained by running p—mean—ANN with an exact NNS oracle, and let ALG™
contain k; most similar points of attribute ¢ for every ¢ € [c]. Moreover, let OPT be the optimal
solution to the p-NNS problem. Note that we have by Theorem 11, M, (ALG") = M,(OPT).

24

Under review as a conference paper at ICLR 2026

Finally, let OPT be the optimal solution to the p-NNS problem when the set of vectors to search over
is P = Uge[C]Dg.

By an argument similar to the proof of Theorem 11, we have M,(ALG) = Mp((SP\T). Therefore,
we can write,

M, (ALG) = M, (OPT)

\

| —
N
g
2

)
=
<

3

tele \i=1
(UZG[C]:ICZ‘ZI{Uéy ... ,vsz)} is a feasible solution)
k; P\ ¥
1 *f
> Cez[:] Zlaa(q,v(i)) +1n
€lc 1=

(by c-approximate guarantee of the oracle, and M), is increasing in its argument)

k; P\ »

1
> | - P e
> (=) a Za(q, i) 1 (€ (0,1))
Le(c] i=1
= a M,(ALG")
= o M,(OPT) (by Theorem 11)
Hence, the corollary stands proved. O

E EXPERIMENTAL EVALUATION AND ANALYSIS

In this section, we present additional experimental results to further validate the performance of
Nash-ANN in comparison with the existing methods. We begin with a detailed discussion of the
evaluation metrics (Appendix E.1), followed by a description of the datasets used in our study (Ap-
pendix E.2). Next, we report results for the single-attribute setting (Appendix E.3), where we com-
pare the approximation ratio alongside all diversity metrics for £ = 10 and & = 50. We also include
recall values for both £ = 10 and k¥ = 50 (Appendix E.3.5). The key observation in all these plots is
that the NSW objective effectively strikes a balance between relevance and diversity without having
to specify any ad hoc constraints like quotas. Furthermore, we report experimental results for the
multi-attribute setting on both a synthetic dataset (S1ft1m) and a real-world dataset (ArXiv). Fi-
nally, we experimentally validate the performance-efficiency trade-offs of a faster heuristic variant
of p—-mean—ANN that can be used in addition to any existing (standard) ANN algorithm.

E.1 EVALUATION METRICS

We evaluate the performance of our proposed methods against baseline algorithms using the follow-
ing metrics:

Relevance Metrics:

1. Approximation Ratio: For a given query ¢, let an algorithm of choice return the set S;
and let a (standard) ANN algorithm return the set S3. Then the approximation ratio of
Epesl a(q,p)

the algorithm is defined as the ratio e @R

Therefore, a higher approximation ratio
indicates a more relevant solution.

2. Recall: For a given query g, let S* be the set of exact nearest neighbors of ¢ and let S;
be the output of an algorithm. Then the recall of the algorithm is the quantity ‘Sllg*sl*‘
Therefore, a higher recall indicates a more relevant solution.

It is important to note that recall is a fragile metric when the objective is to retrieve a relevant-cum-
diverse set of vectors for a given query. This can be illustrated with the following stylized example

25

Under review as a conference paper at ICLR 2026

in the single-attribute setting. Suppose for a given query g, all the vectors in the set of exact nearest
neighbors S* have similarity 1, i.e., for all p € S*, o(q,p) = 1. However, let all vectors p € S*
be associated with the same attribute £* € [c], i.e., atb(p) = ¢* for all p € S*. Therefore, the set
of exact nearest neighbors is not at all diverse. However, it may be the case that there is a set S’
of k vectors, all having different attributes (i.e. atb(p) # atb(p’) and atb(p) # £* for p,p’ € 5’,
p # p'), such that o(g,p’) = 0.99 for all p’ € S’. In other words, there is a highly relevant set
of vectors that is also completely diverse. Note that for the set S/, the recall is actually 0 but the
approximation ratio is 0.99. Hence, in the context of diverse neighbor search problem, instead of
recall, approximation ratio may be a more meaningful relevance metric.

Diversity Metrics:

* Entropy: Let S C P, |S| = k, be the output of an algorithm. Then the entropy of the set
of S in the single-attribute setting is given by the quantity), €lc]:pe>0 —Pe log(ps) where

e = El PSI‘D“ . Note that a higher entropy value indicates greater diversity.

* Inverse Simpson Index: For a given set S C P, |S| = k in the single-attribute setting, the

inverse Simpson index index is defined as ﬁ where py is as defined in the definition
£=1Fy¢

of entropy above. A higher value indicates greater diversity.

* Distinct Attribute Count: In the single-attribute setting, the distinct attribute count of a
set S C P, |S| = k is the number [{¢ € [¢] : |S N Dy| > 0}|.

In the multi-attribute setting, in this work, we focus on settings where the attribute set [¢] is parti-
tioned into m sets {C;}/2, (i.e., [c] = U2, C;) and every input vector v € P is associated with
one attribute from each C;, i.e., |atb(v)| = m and |atb(v) N C;| = 1. To measure diversity in the
multi-attribute setting, we consider the aforementioned diversity metrics like entropy and inverse

Simpson index restricted to a C;. More precisely, the entropy a set S C P restricted to a particular

C;is givenby 3, . —pelog(pe) where p, = ‘SFS?A . Similarly, the inverse Simpson index of a set

S C P restricted to C; is given by where py is as defined before.

1
S .2
> e c; Pe

E.2 DATASETS

1. Amazon Products Dataset (Amazon): The dataset also known as the Shopping Queries
Image Dataset (SQID) (Ghossein et al., 2024), is based on the Amazon Shopping Queries
dataset (Reddy et al., 2022) that is publicly available on the KDD Cup 2022 Challenge
website!?. The SQID includes image embeddings for about 190, 000 products listed in the
Amazon Shopping Queries dataset along with the text embeddings of user queries present
in the same dataset. The image and text embeddings are obtained via the use of OpenAl’s
CLIP model (Radford et al., 2021) which maps both images and texts into a shared vector
space. The task is to retrieve product images relevant to a given text query. The SQID also
contains metadata such as product image url, product id, product description, product title,
product color, etc. The dataset is publicly available on Hugging Face platform.'!

We directly use the embeddings from the Hugging Face repository and map product id-s
to retrieve additional metadata from the Amazon KDD dataset. We use o(u,v) = 1+

P T/
m as the similarity function between two vectors v and v. Note that the image and

text embeddings in the dataset were generated using the cosine similarity metric in the loss
function (see (Ghossein et al., 2024), Section 4.2) hence the similarity function defined in
this work is a natural choice. We choose the set of product colors as our set of attributes
[c]. To obtain a clean label for the product color of a given product in the dataset, we
apply majority voting among the colors listed in the product color, description, and title
of the product. In the event of a tie, we assign the item to a separate color class labeled
‘color_mix’ (e.g., if the title says ‘blue’ but the color column says ‘red’). Product entries in
the dataset whose metadata does not contain any valid color names are removed. The pre-
processing script will be shared with reviewers as an anonymous repository during the open

11

26

https://amazonkddcup.github.io
https://huggingface.co/datasets/crossingminds/shopping-queries-image-dataset

Under review as a conference paper at ICLR 2026

Figure 3: Distribution of product colors in the processed (cleaned) Amazon dataset.

discussion phase and will be publicly released in the camera-ready version. The processed
dataset contains approximately 92,092 vector embeddings of products. Note that we do
not apply any pre-processing to the query set which contains 8,956 vector. The vector
embeddings of both images and queries are 768 dimensional. Note that the dataset exhibits
a skewed color distribution, shown in Figure 3), with some dominant colors such as black
and white.

2. ArXiv OpenAl Embedding (ArxXiv): The dataset published by Cornell University con-
sists of vector embeddings for approximately 250, 000 machine learning papers available
through the arXiv search engine (Wester, 2022). The embedding of a given paper was gen-
erated using OpenAl’s text-embedding-ada-002 model on the augmented abstract
of the paper that combined the paper’s title, authors, year, and abstract. The dataset is
publicly available on Kaggle'? (Wester, 2022).

We consider the year in which a paper was last updated as the attribute in the single-attribute
setting, and additionally consider the arXiv category the paper belongs to as a second at-
tribute in the multi-attribute setting. Note that this dataset does not contain a predefined
query set; hence, we randomly split 20% of the total vector embeddings to serve as queries.
Such queries simulate the task of finding papers similar to a given query paper. The simi-
larity function used for this dataset is the reciprocal of the Euclidean distance between two
vectors, i.e, for two vectors u and v, o(u,v) = m, where p is a small constant to
avoid issues for the case when ||u — v|| = 0. Typically, we set u = n (recall that 7 is the
smoothening parameter in the definition of NSW(-)). The distribution of the input vectors

across update-year and arXiv category are shown in Figure 4.

For our experiments, we only consider papers with update-year between 2012 and 2025

(both inclusive) and belonging to one or more of the following arXiv categories: cs.ai,

math.oc, ¢s.1lg, cs.cv, stat.ml, cs.ro, cs.cl, cs.ne, cs.ir, cs.sy,

cs.he, cs.cr, cs.cy, cs.sd, eess.as, and eess.iv. The pre-processing script
will be shared with reviewers as an anonymous repository during the open discussion phase
and will be publicly released in the camera-ready version.

3. SIFT Embeddings: It is a popular benchmarking dataset for approximate nearest neighbor
search using the Euclidean distance (TensorFlow, 2025). The dataset consists of pre-trained
SIFT embeddings, with 1,000, 000 vectors for indexing and a separate set of 10,000 vec-
tors as the query set, both in a 128 dimensional space. The embeddings are publicly avail-
able!? (TensorFlow, 2025). Note that this dataset does not contain any metadata that can
be naturally adapted as attributes to model diversity. Therefore, we adopt two strategies for
synthetic attribute generation:

* Clustering-based (Sift1lm—(Clus)): Since attributes such as color often occupy
distinct regions in the embedding space, we follow a similar idea and apply k-means

Phttps://www.kaggle.com/datasets/awester/arxiv-embeddings
Bhttps://www.tensorflow.org/datasets/catalog/sift1m

27

https://www.kaggle.com/datasets/awester/arxiv-embeddings
https://www.tensorflow.org/datasets/catalog/sift1m

Under review as a conference paper at ICLR 2026

A\
by

Figure 4: Distribution of (a) paper categories (b) last update year in the ArXiv dataset.

(a)

clustering to identify 20 clusters. Each cluster is then assigned a unique color, which
serves as our synthetic attribute. Therefore, in this case ¢ = 20.

* Probability distribution-based (Sift1lm—(Prob)): To remain consistent with the
prior work (Anand et al., 2025), we also adopt a randomized approach to color (at-
tribute) assignment. For each vector, we assign one of three majority colors uniformly
at random with probability 0.9, and with the remaining probability 0.1, one of the
remaining 17 colors is assigned. This results in a skewed distribution over colors
that mimics real-world settings (e.g., market dominance by a few sellers). The pre-
processing script will be shared with reviewers as an anonymous repository during the
open discussion phase and will be publicly released in the camera-ready version.

Multi-attribute setting: We extend the clustering-based attribute generation strategy to the
multi-attribute setting as follows. We divide each 128 dimensional input vector v into four
equal segments of 32 dimensions {v'}}_;,ie., v} = v[l,...,32],v* = v[33,...,64] etc.
We then separately apply k-means clustering to compute 20 clusters on each segment, i.e.,
on the set of vectors {v' : v € P} for each i € [4]. Let the set of cluster ids be C; for the
set of vectors {v’ : v € P}, i € [4]. Note that |C;| = 20. Thereafter, the set of attributes
assigned to the original input vector v is the union of the cluster ids of v’s. In other words,
atb(v) = UL, {C;(v")} where C;(v?) is the cluster id of v'.

4. Deep Descriptor Embeddings: It is another benchmarking dataset for nearest neighbor
search, evaluated using cosine distance (TensorFlow, 2025). The version used in this study
contains approximately 9, 990, 000 vectors for indexing and 10, 000 separate query vectors,
both residing in a 96 dimensional space. These embeddings are publicly available'* (Ten-
sorFlow, 2025), and we adopt the same synthetic attribute generation procedure as in the
SIFT dataset to produce Deeplb—(Clus) and Deeplb—(Prob) variants.

Choice of Parameter 7: For our methods, we tune and set the smoothing parameter, 7, to 0.01
for the ArXiv, Siftlm—(Clus) and Siftlm—(Prob) datasets in comparing relevance with
diversity, and set it to 0.0001 to analyze performance at different values p. For other datasets,
namely Amazon, Deeplb—(Clus) and Deeplb-(Prob), we set 77 to 50 for both experiments.

E.3 BALANCING RELEVANCE AND DIVERSITY: SINGLE-ATTRIBUTE SETTING

In this experiment, we evaluate the performance of p-mean—ANN (and the special case of p = 0,
Nash-ANN) in its ability to balance relevance and diversity in the p-NNS (and NaNNS) problem
in the single-attribute setting. We begin by examining the tradeoff between approximation ratio and
entropy achieved by our algorithms on additional datasets beyond those used in the main paper.
Moreover, we also report results for other diversity metrics such as the inverse Simpson index (Ap-
pendix E.3.3) and the number of distinct attributes appearing in the k£ neighbors (Appendix E.3.4)
retrieved by our algorithms. These experiments corroborate the findings in the main paper, namely,
Nash-ANN and p—-mean—ANN are able to strike a balance between relevance and diversity whereas

Yhttps://www.tensorflow.org/datasets/catalog/deep1b

28

https://www.tensorflow.org/datasets/catalog/deep1b

Under review as a conference paper at ICLR 2026

. SIFT1m-(Clus) SIFT1m-(Clus)
K=1 k=1 K=2
+ + + ApP=0
3 Ap=0 4
3.5 K'=5
2.5 k'=2 *
> + > 3
S S
5 7 52.5] $K=10
c c
w w
1.51 K'=5 2
ANN + s ANN
11 A Nash-ANN) A Nash-ANN
Div-ANN 11 + Div-ANN
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 03 04 05 06 07 0.8 09 1
Approximation Ratio Approximation Ratio

Figure 5: The plots show results on approximation ratio and entropy for (Left) £ = 10; (Right) k =
50 in single-attribute setting on SiftI1m-(Clus) dataset.

SIFT1m-(Prob) SIFT1m-(Prob)
3.4 k=t - k=t k=2
+* Ap=0 + * AP=0
3.2
k'=5
al
3 +
32.87 =2 a%s kj=10
0 2.6 o |
5 5
c 2.4 c 3
w w
2.2
ANN ANN
24 2.5
A Nash-ANN A Nash-ANN
1.8{ + Div-ANN +K=3 + Div-ANN
5]
0.88 0.9 092 0.94 0.96 0.98 1 04 05 06 07 0.8 0.9 1
Approximation Ratio Approximation Ratio

Figure 6: The plots show results on approximation ratio and entropy for (Left) £ = 10; (Right) k =
50 in single-attribute setting on Sift1lm-(Prob) dataset.

ANN only optimizes for relevance (hence low diversity) and Div—ANN only optimizes for diversity
(hence low relevance).

E.3.1 APPROXIMATION RATIO VERSUS ENTROPY

We report the results for different datasets in Figures 5, 6, 7, and 8. On the SiftIlm—(Clus)
dataset (Figure 5), Nash—ANN achieves entropy close to that of the most diverse solution (Div—ANN
with ¥/ = 1) in both k¥ = 10 and k = 50 cases. Moreover, Nash—ANN achieves significantly
higher approximation ratio than Div—-ANN in both & = 10 and ¥ = 50 cases when k' = 1. For
k = 10 case, Nash—ANN Pareto dominates Div—-ANN even with the relaxed constraint of &/ = 5
for £ = 10. When the number of required neighbors is increased to ¥ = 50, no other method
Pareto dominates Nash—ANN. Similar observations hold for the Sift1m-(Prob) (Figure 6) and
Deeplb-(Prob) (Figure 7) datasets. In the results on the ArXiv dataset (Figure 8) with & = 10,
we observe that Div—-ANN already achieves a high approximation ratio. However, Nash—-ANN
matches the entropy of Div—-ANN with &’ = 1 while improving on the approximation ratio. For
k = 50, Nash—ANN nearly matches the entropy of Div—ANN with &’ = 1, 2 whereas it significantly
improves on the approximation ratio. In summary, the experimental results clearly demonstrate the
ability of Nash—ANN to adapt to the varying nature of queries and consistently strike a balance
between relevance and diversity.

E.3.2 PERFORMANCE ON p—MEAN—-ANN

In this set of experiments, we study the effect on trade-off between approximation ratio and en-
tropy when the parameter p in the p-NNS objective is varied over a range. Recall that the p-NNS

29

Under review as a conference paper at ICLR 2026

Deeplb-(Prob) Deeplb-(Prob)
3.47—Kk'=1 k'=1 k'=2
+ + + Ap=(
3.21 Ap=0 s
4 =
3 +
32.87 <=2 a3 k=10
0 2.6 o |
5 5
c 2.4 c 3
w w
2.2
ANN ANN
2 2.5
A Nash-ANN A Nash-ANN
1.81 + Div-ANN +K73 + Div-ANN
0.965 0.97 0.975 0.98 0.985 0.99 0.995 1 04 05 06 0.7 08 0.9 1
Approximation Ratio Approximation Ratio

Figure 7: The plots show results on approximation ratio and entropy for (Left) £ = 10; (Right) k =
50 in single-attribute setting on Deeplb—(Prob) dataset.

o ArXiv ArXiv
K=1 — K=X K=2 N
+ Ap=0 ANN 3.8 * + AP0
3.2 A Nash-ANN
+ Div-ANN 3.61
3 lllk =5
2 23.4]
028 o
5 5
c k'=2 c 3.2
w26 + w
ANN k'=10
2.4 3 +
A Nash-ANN
k=5 iv-
2.2 4 2.8{ * Div-ANN
0.99 0.992 0.994 0.996 0.998 1 03 04 05 0.6 07 08 09 1
Approximation Ratio Approximation Ratio

Figure 8: The plots show results on approximation ratio and entropy for (Left) £ = 10; (Right) k =
50 in single-attribute setting on ArXiv dataset.

problem with p — 0 corresponds to the NaNNS problem and with p = 1 corresponds to the NNS
problem. We experiment with values of p € {—10,—1,—0.5,0,0.5, 1} by running our algorithm
p-mean-ANN (Algorithm 3) on the various datasets. The results are shown in Figures 9, 10, 11,
and 12. We observe across all datasets for both £ = 10 and £ = 50 that as p decreases from 1, the
entropy increases but approximation ratio decreases. This highlights the key intuition that as p de-
creases, the behavior changes from utilitarian welfare (p = 1 aligns exactly with ANN) to egalitarian
welfare (more attribute-diverse). In other words, the parameter p allows us to smoothly interpolate
between complete relevance (the standard NNS with p = 1) and complete diversity (p — —c0).

E.3.3 APPROXIMATION RATIO VERSUS INVERSE SIMPSON INDEX

We also report results (Figures 13, 14, 15 and 16) on approximation ratio versus inverse Simpson in-
dex for all the aforementioned datasets, comparing Nash—ANN with Div—ANN with various choices
of quota parameter &’. The trends are similar to those for approximation ratio vs. entropy.

E.3.4 APPROXIMATION RATIO VERSUS DISTINCT ATTRIBUTE COUNT

We also report the number of distinct attributes appearing in the set of neighbors returned by dif-
ferent algorithms. Note that Div—-ANN by design always returns a set where the number of distinct
attributes is at least (k/k"). We plot approximation ratio versus number of distinct attributes and the
results are shown in Figures 17, 18, 19, and 20. The results show that while Div—ANN with &' = 1
has high number of distinct attributes (by design) its approximation ratio is quite low. On the other
hand, Nash-ANN has almost equal or slightly lower number of distinct attributes but achieves very
high approximation ratio.

30

Under review as a conference paper at ICLR 2026

Entropy

SIFT1m-(Clus)

+<ab=-10
3
Ap=-1
2.5 Ap=-0.5
AP=0
21
Ap=0.5
1.54 P
ANN
1{ A p-mean-ANN
* iv-
Div-ANN ap
0.6 0.7 0.8 0.9 1

Approximation Ratio

SIFT1m-(Clus)

+ "Ap=-10
4
Ap=-1
3.51 AP=-0.5
> 2 ApP=0
z 3
e =0.5
525 ApP=0.
c
w |
L5 ANN
: A p-mean-ANN
1/ + Div-ANN sp=1
0.3 04 05 0.6 0.7 0.8 0.9 1

Approximation Ratio

Figure 9: The plot reports the performance of p-mean-ANN with varying p values for (Left) £ = 10;
(Right) £ =50 on Sift1m—(Clus) dataset in the single-attribute setting.

SIFT1m-(Prob)

3.4 +K—J.Ap=_10
3.2
3 AP=0
>‘2.8’
226
-
€24
w
2.2
ANN
21, p-mean-ANN
1.8 +* iv-
Div-ANN ap
0.88 0.9 0.92 0.94 0.96 0.98 1

Approximation Ratio

SIFT1m-(Prob)

+ AP=33%0
4
3.5
[-3
o
b
c 34
w
2.51 ANN
A p-mean-ANN
, + Div-ANN ap=1
0.4 0.5 0.6 0.7 0.8 0.9 1

Approximation Ratio

Figure 10: The plot reports the performance of p-mean-ANN with varying p values for (Left) &
= 10; (Right) kK = 50 on Siftlm—-(Prob) dataset in single-attribute setting. Note that for all
other p € {—1,-0.5,0.5,1} the approximation ratio and entropy were extremely close to ones of

p=—10, 0. To avoid clutter in plot we only show p = —10, 0.

Deeplb-(Prob) Deeplb-(Prob)

3.4 +k'—1. Ap=-10 .|.kl_ =-10
Ap=0 AP
3.21 =
3 4
Ap=0.5
=28/ >3.5
S26 g
5 5
€ 2.4 £ 3]
w w
2.2
ANN 2.51 ANN
2 A p-mean-ANN A p-mean-ANN
1.8 + iv- + iv-
Div-ANN ap=1 5 Div-ANN ap=1
1 0.4 0.5 0.6 0.7 0.8 0.9 1

0.965 0.97 0.975 0.98 0.985 0.99 0.995

Approximation Ratio Approximation Ratio

Figure 11: The plot reports the performance of p-mean-ANN with varying p values for (Left) k
= 10; (Right) £ = 50 on Deeplb-(Prob) dataset in single-attribute setting. Note that for all
otherp € {—1,-0.5,0,0.5, 1} the approximation ratio and entropy were extremely close to ones of
p=—10 in k£ = 50. To avoid clutter in plot we only show p = —10. Due to same reasons we omit p =

—1,-0.5 for k = 10.

31

Under review as a conference paper at ICLR 2026

ArXiv . ArXiv
AP=-10 + AP=0 3.8+ ApP=-10
3.2
3.6
3
2 3.4/
© 2.8 o
1 1
- -
c c 3.2
W 2.6 w
ANN 3] ANN
241, p-mean-ANN A p-mean-ANN
* P LY iv-
22 Div-ANN ap=1 2.81 Div-ANN
0.975 0.98 0.985 0.99 0.995 1 0.3 04 05 06 07 08 09 1
Approximation Ratio Approximation Ratio

Figure 12: The plot reports the performance of p-mean-ANN with varying p values for (Left) &
= 10; (Right) £ = 50 on ArxXiv dataset in single-attribute setting. Note that for all other p €
{—1,-0.5,0,0.5} the approximation ratio and entropy were extremely close to ones of p=—10. To
avoid clutter in plot we only show p = 0.

, SIFT1m-(Clus) SIFT1m-(Clus)
K=1 207 k'=1 +K =4

=
)
4

17.51 ApP=0

Ap=0 151
12.51
10 +

7.5

H

ANN
A Nash-ANN k'=5
+ Div-ANN

ANN _!_k'= 10
A Nash-ANN
+ Div-ANN

Inverse Simpson Index
(-]
x
1l
N
Inverse Simpson Index
[
1l
W

5 1
2.5

N

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 03 04 05 06 07 08 09 1
Approximation Ratio Approximation Ratio

Figure 13: The plots show results on approximation ratio and inverse Simpson index for (Left) k =
10; (Right) k& = 50 in single-attribute setting on Sift1m—(Clus) dataset.

SIFT1m-(Prob) . SIFT1m-(Prob) _
20 + Pl

-
o
*
»
°
I
o

17.51
151 K5
12.51
101
7.5 ANN =10

A Nash-ANN
+ Div-ANN

ANN
4 A Nash-ANN
+ Div-ANN k|=5

Inverse Simpson Index
=
1i
N

Inverse Simpson Index

0.88 0.9 0.92 0.94 0.96 0.98 1 0.4 05 06 07 08 09 1
Approximation Ratio Approximation Ratio

Figure 14: The plots show results on approximation ratio and inverse Simpson index for (Left) k =
10; (Right) k£ = 50 in single-attribute setting on Sift1lm-(Prob) dataset.

E.3.5 RECALL VERSUS ENTROPY

We also report results for another popular relevance metric in the nearest neighbor search literature,
namely, recall. The results for different datasets are shown in Figures 21, 22, 23, 24, 25, and 26. Note

32

Under review as a conference paper at ICLR 2026

Deeplb-(Prob)

Deeplb-(Prob)
*K =z

10] + 20{ #
x x C
g Ap=0 g ap=t
T 9 T 17.51
£ £
c 89 c 151 =
2 2 +P
E_ 7 2.12.5-

k=2

» * » 10
o o

5 =
4 ANN 754 ANN +<F10
€ 4{ 4 Nash-ANN g 5| 4 Nash-ANN
£ 5/ * Div-ANN JF5 £ + Div-ANN

0.965 0.97 0.975 0.98 0.985 0.99 0.995 1 0.4 05 06 07 08 09 1

Figure 15: The plots show results on approximation ratio and inverse Simpson index for (Left) k =

Approximation Ratio

Approximation Ratio

10; (Right) k& = 50 in single-attribute setting on Deeplb—(Prob) dataset.

e a ArXiv ArXiv
K=1 = K=2

o] # 77 ap=0 T 18] #°T0 + AP0

3 A Nash-ANN 3 13

£ 9] + Div-ANN =]

c c

2 ® @ 111 +K[=5

o o

£ 7 £,

n o

v 6! =2 (]

g 9 8] ANN

g 5 g A Nash-ANN SK=10

5 =5 £ 71 &+ Dpiv-ANN

0.99 0.992 0.994 0.996 0.998 1 03 04 05 0.6 07 08 09 1

Figure 16: The plots show results on approximation ratio and inverse Simpson index for (Left) k =

Approximation Ratio

Approximation Ratio

10; (Right) k£ = 50 in single-attribute setting on ArXiv dataset.

SIFT1m-(Clus)

SIFT1m-(Clus)

K=2

101 + 204 Gk'=1 + ApP=0
0n g 0
o 9 @ 17.51
5 ;] Ap=0 | %5
2 2 15/
T, 2
I] < K
- k'=2 - +* 3
v + U 104
c 51 c
=] £ .5
a4 ANN a 7 ANN k'510
[=) i K'=5 [=) i *
% 31 A Nash-ANN * * 51 4 Nash-ANN
+ Div-ANN + Div-ANN
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.3 04 05 06 07 08 09 1

Approximation Ratio

Approximation Ratio

Figure 17: The plots show results on approximation ratio and distinct counts for (Left) & = 10;
(Right) k£ = 50 in single-attribute setting on Sift1m—(Clus) dataset.

that as discussed earlier (Appendix E.1), recall can be a fragile metric when the goal is to balance
between diversity and relevance. However, we still report recall to be consistent with prior literature
and to demonstrate that Nash—ANN does not perform poorly. In fact, it is evident from the plots
that Nash—ANN’s recall value (relevance) surpasses that of Div—ANN with &/ = 1 (most attribute
diverse solution) while achieving almost similar entropy. As already noted, the approximation ratio
for Nash—ANN remains sufficiently high, indicating that the retrieved set of neighbors lies within a
reasonably good neighborhood of the true nearest neighbors of a given query.

33

Under review as a conference paper at ICLR 2026

SIFT1m-(Prob) o SIFT1m-(Prob) _
AP=0 P AP0

-
1)
L]
= N
-] o
i
i+

=
o

k|=10

[
N

ANN
A Nash-ANN

al * Div-ANN =5

0.88 0.9 0.92 0.94 0.96 0.98 1 0.4 05 06 07 08 09 1
Approximation Ratio Approximation Ratio

ANN
A Nash-ANN
Div-ANN

#Distinct Attributes
~
~
1l
N
#Distinct Attributes
[-
o)

-]
+*

Figure 18: The plots show results on approximation ratio and distinct counts for (Left) & = 10;
(Right) k£ = 50 in single-attribute setting on Sift1lm—(Prob) dataset.

Deeplb-(Prob) . Deeplb-(Prob)
L. Ap=0

-
°
+*
N
©
*

AP=0

©
=
©
L]

[
o

k'=10

=]
N

ANN
A Nash-ANN

4/ * Div-ANN K73

0.965 0.97 0.975 0.98 0.985 0.99 0.995 1 04 05 06 0.7 038 0.9 1
Approximation Ratio Approximation Ratio

ANN
A Nash-ANN
Div-ANN

#Distinct Attributes
~
al
]
N
#Distinct Attributes
= -
(-] A

-]
+*

Figure 19: The plots show results on approximation ratio and distinct counts for (Left) k£ = 10;
(Right) k£ = 50 in single-attribute setting on Deeplb—(Prob) dataset.

. ArXiv ArXiv
K=1 = [k=1 K=2 +
101 Ap=0 ANN 141 4 & ApF0
9 A Nash-ANN o
5 o + Div-ANN 513
2 2
= - k|=5
E g B 124 +
< <
]]
£ 7 £H
+= = +=
2 <=2 2 0l ANN
g 61 g A Nash-ANN SK=10
k=5 + Div-ANN
9_
0.99 0.992 0.994 0.996 0.998 1 03 04 05 06 0.7 0.8 09 1
Approximation Ratio Approximation Ratio

Figure 20: The plots show results on approximation ratio and distinct counts for (Left) & = 10;
(Right) k£ = 50 in single-attribute setting on ArXiv dataset.

E.4 BALANCING RELEVANCE AND DIVERSITY: MULTI-ATTRIBUTE SETTING

Recall that our welfarist formulation seamlessly extends to the multi-attribute setting. In Sec-
tion 4, we discussed the performance of Multi Nash—-ANN and Multi Div-ANN on
Siftlm—(Clus), where each input vector was associated with four attributes. In this section,
we repeat the same set of experiments on one of the real-world dataset, namely ArXiv, which nat-

34

Under review as a conference paper at ICLR 2026

s Amazon s Amazon
K=1 K=1
+ -~ ANN ssi ¥ ANN
3.2 A Nash-ANN A Nash-ANN
3 + Div-ANN 5 (AR0 + Div-ANN
*
>] — >
>2.8 Lk=2 a5
P.6 p
- L 4 —
2 E 4 LK=5
w4 w
3.5 K'=10
2.2 LK=5 *
2] 37
05 06 07 0.8 0.9 1 02 03 04 05 06 0.7 08 09 1
Recall Recall

Figure 21: The plots show results on recall and entropy for (Left) £ = 10 ; (Right) &£ = 50 in single-
attribute setting on Amazon dataset.

Deeplb-(Clus)

Deeplb-(Clus)

K'=1 K2
* ANN al + ANN
3 A Nash-ANN ApZ0 A Nash-ANN
k=3 + Div-ANN 3.5 e + Div-ANN
2.5 &= =0
> AP > 3
2 2 Lk=10
g 2 O25
Lo L
& & 2
1.51 ‘= 1
LK=5
1.5
1
1
0.5 ‘ ‘ | | : | | | | ,
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
Recall Recall

Figure 22: The plots show results on recall and entropy for (Left) £ = 10 ; (Right) &£ = 50 in single-
attribute setting on Deeplb—(Clus) dataset.

SIFT1m-(Clus)

SIFT1m-(Clus)

k'=1
+ ANN +F T Lp=0 ANN
3 ADP=0 4 Nash-ANN 4 4 Nash-ANN
+ Div-ANN 3.5 k'=5 + Div-ANN
e +
2.5 k'=2
> + > 3
S S
k'=10
5 2 5251 +
€ €
W s wo,
. k=
1.5]
1
1
0.2 0.3 04 05 06 0.7 0.8 09 1 0.2 0.4 0.6 0.8 1
Recall

Recall

Figure 23: The plots show results on recall and entropy for (Left) £ = 10 ; (Right) &£ = 50 in single-
attribute setting on Sift1lm—(Clus) dataset.

urally contains two partition sets of the attributes (m = 2; see Appendix E.1, Diversity Metrics):
update year (|Cy| = 14) and paper category (|Cs| = 16). Therefore, ¢ = |C1| + |C3| = 30. The
results for £ = 50 are presented in Figure 27. Note that in each plot we restrict the entropy to one
of the attribute partitions (C; and C2) so that the diversity within a partition set can be understood
from these plots. The results indicate that Multi Nash—-ANN achieves an approximation ratio very
close to one while maintaining entropy levels comparable toMulti Div-ANN with &’ = 1 or 2 for

35

Under review as a conference paper at ICLR 2026

SIFT1m-(Prob)

3.41—k'=1
32) +4p=0 ANN
) A Nash-ANN
34 + Div-ANN
2.81
2 +=2
0 2.6
-
€24
w
2.2
2
1.8 LK
04 05 06 07 08 09 1
Recall

+ =0 ANN
al SK=5 A Nash-ANN
+ Div-ANN
233 k'=10
) *
5
£ 3
w
2.5
2 : ; : ; :
0.2 0.4 0.6 0.8 1
Recall

Figure 24: The plots show results on recall and entropy for (Left) £ = 10 ; (Right) &£ = 50 in single-
attribute setting on Sift1lm—(Prob) dataset.

Deeplb-(Prob)

Deeplb-(Prob)

3.47—k'=1 K'=%k'=2
3.2 * AP=0 ANN #F =0 ANN
' A Nash-ANN 4 +k'=5 A Nash-ANN
31 + Div-ANN + Div-ANN
32.87 +<=2 233 K'=10
0 2.6 o) P
= =
€ 2.4 c 31
w w
2.2
21 2.54
1.8 #K=3
04 05 06 07 0.8 0.9 1 0.2 0.4 0.6 0.8 1
Recall Recall

Figure 25: The plots show results on recall and entropy for (Left) £ = 10 ; (Right) £ = 50 in single-
attribute setting on Deeplb—(Prob) dataset.

. ArXiv o ArXiv
+° Ap=0 ANN 3.8 #5 T 4 - Ap=0
3.2 A Nash-ANN
+ Div-ANN 3.6 s
> o > o
a a 3.4
028 o
] i)
c k'=2 c 3.2
W 2.6 + w
| ANN k'=10
2.4 3 *
A Nash-ANN
K'=5 -
221 +* 2.81 + Div-ANN
0.5 0.6 0.7 0.8 0.9 1 0.2 0.4 0.6 0.8 1
Recall Recall

Figure 26: The plots show results on recall and entropy for (Left) k£ = 10; (Right) k£ = 50 in single-
attribute setting on ArXiv dataset.

both the attribute partition sets. In fact Multi Nash-ANN Pareto dominates Multi Div—-ANN
with &/ = 5.
We also study the effect of varying p in p-NNS problem in the multi-attribute setting. The re-

sults for performance of Multi p-mean—ANN (an analogue of Multi Nash-ANN) for p €
{-10,-1,-0.5,0,0.5,1} are shown in Figures 28 and 29. Interestingly, we observe that with de-

36

Under review as a conference paper at ICLR 2026

arXiv arXiv
K=2 K=2
plk=1) Chi 381 (=1) W= p=p
3.7 wlk= k=5
p=‘) .(=)
36 3.6
(Shhey . O
" .(k =5) "
935 334
t> -
v v
834 s 32
> >
S33 s #k'=10)
= =
b} 5 3.0
& 32| m Multi Div-ANN = B Multi Div-ANN
311 @ Multi Nash-ANN .(I"=10) 2.8{ ® Multi Nash-ANN
A ANN AANN A ANN AANN
0.40 0.60 0.80 1.00 0.40 0.60 0.80 1.00
Approximation Ratio Approximation Ratio

Figure 27: The plot shows approximation ratio and entropy trade-off on ArXiwv dataset in multi-
attribute setting.

arXiv arXiv

w
-]
|
(1l
i
(=
[=]
»
o
|
(1l
U
(=

w o ow ow
v e N
I o
“
o
woooww
0
~
I
-
k-]
Il

w

W
w
N

w
)

Entropy (across C;)
w WL ¢
N »

Entropy (across C)

B Multi Div-ANN B Multi Div-ANN
® Multi p-mean-ANN ® Multi p-mean-ANN
A ANN p=.‘|. ANN A ANN p=.‘|. ANN

w
-
N
®

0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Approximation Ratio Approximation Ratio

Figure 28: The plot reports the performance of p-mean-ANN with varying p values for k£ = 50 in
multi-attribute setting on ArXiv dataset.

creasing p, the entropy (across C or C5) increases but the approximation ratio remains nearly the
same and very close to 1. On the other hand, Multi Div—ANN with k¥’ = 1 has very low ap-

proximation ratio. In fact, Multi p-mean—-ANN with p = —1 and —10 Pareto dominates Mult i
Div-ANN with £’ = 1.

E.5 A FASTER HEURISTIC FOR THE SINGLE ATTRIBUTE SETTING: p—FETCHUNION—-ANN

In this section, we empirically study a faster heuristic algorithm for NSW and p-mean welfare for-
mulations. Specifically, the heuristic—called p—FetchUnion—-ANN—first fetches a sufficiently
large candidate set of vectors (irrespective of their attributes) using the ANN algorithm. Then, it ap-
plies the Nash (or p-mean) selection (similar to Line 5 in Algorithm 1 or Lines 6-8 in Algorithm 3)
within this set. That is, instead of starting out with & neighbors for each ¢ € [c] (as in Line 1 of
Algorithm 1), the alternative here is to work with sufficiently many neighbors from the set Uj_, D,.

We empirically show (in Tables 2 to 7) that this heuristic consistently achieves performance
comparable to p—-FetchColor-ANN across nearly all datasets and evaluation metrics. Since
p—-FetchUnion-ANN retrieves a larger pool of vectors with high similarity, it leaves room for
improving the approximation ratio. This trend is evident in two datasets, namely Deeplb—(Clus)
and Siftlm-(Clus), although it comes at the cost of reduced entropy. Another important as-
pect of p-FetchUnion—-ANN is that, because it retrieves all neighbors from the union at once,
the heuristic delivers substantially higher throughput (measured as queries per second, QPS) and
therefore lower latency. The results validating these findings are reported in Tables 8 and 9 for the

37

Under review as a conference paper at ICLR 2026

SIFT1M-(Clus) SIFT1M-(Clus)
p=:10 2.8 p=:10
321 @ Multi Div-ANN L4 ® Multi Div-ANN L4
3.0 ® Multi p-mean-ANN 2.6 ® Multi p-mean-ANN
= A ANN N A ANN
O Q 2.4
@ 2.8 @ mt
8. g 2.2 gk=
E p=:1 E 2.0 P=.-1
2.2 - = =-
E .k—1 p—.-0.5 El_g p .0.5
o _ o =
'E 2.0 pP=0 E 1.6 g
Wis p=0.5 Wia P=0-5
1.5 p=d. ANN 1.2 p=d. ANN
0.20 0.40 0.60 0.80 1.00 0.20 0.40 0.60 0.80 1.00
Approximation Ratio Approximation Ratio
SIFT1M-(Clus) SIFT1M-(Clus)
2.8 — P10 3.2 — p=;10
W Multi Div-ANN) B Multi Div-ANN
2.61 @ Multi p-mean-ANN 30| @ Multi p-mean-ANN
I A ANN < A ANN
O 2.4 Q
@ 22| k=1 g >
8229 gk= b4
5 525
8 2.0 p=.-1 8 p=.-1
p=:0.5 2.2 K=1 =-0.
§1.8) § - p=30.5
E 1.6 P=0 E 2.0 p=0
W4 P=‘)-5 Wis P=‘)-5
1.2 p=1 |ANN 1.5 p=1 |ANN
0.20 0.40 0.60 0.80 1.00 0.20 0.40 0.60 0.80 1.00

Approximation Ratio

Approximation Ratio

Figure 29: The plot reports the performance of p-mean-ANN with varying p values for k£ = 50 in
multi-attribute setting on Sift1m-(Clus) dataset.

Siftlm—(Clus) and Amazon datasets, respectively. In particular, it serves almost 10x more
queries on Siftlm-(Clus) and 3x more queries on Amazon dataset. The latency values exhibit
a similar trend with reductions of similar magnitude. In summary, these observations position the
heuristic as a notably fast method for NaNNS and p-NNS, particularly when c is large.

Metric Algorithm p=—10 p=-1 p=-05 p=0 p=05 p=1

p-FetchColor-ANN 0.865+0.045 0.909+0.029 0.922+0.027 0.938+0.023 0.9614+0.018 1.000+0.000

. p-FetchUnion-ANN 0.907+0.033 0.9124+0.030 0.921+0.027 0.935+0.024 0.9584+0.019 1.000+0.000

Approx. Ratio

ANN 1.000£0.000

Div-ANN (k'=1) 0.813+0.053

p-FetchColor-ANN 5.644+0.000 5.382+0.135 5.2524+0.153 5.058+0.178 4.6874+0.227 2.782+0.684
Entropy p-FetchUnion-ANN 5.364+0.156 5.333+£0.149 5.261+0.150 5.099+0.171 4.7364+0.221 2.782+0.684

ANN 2.782+0.684

Div-ANN (k'=1) 5.5944-0.049

Table 2: Comparison of performance across p values for Amazon at k = 50.

38

Under review as a conference paper at ICLR 2026

Metric Algorithm p=-10 p=-—1 p=-05 p=0 p=05 p=1
p-FetchColor-ANN 0.98540.010 0.985+0.010 0.985+0.010 0.986:0.009 0.989+0.008 1.000-£0.001
. p-FetchUnion-ANN 0.98940.007 0.98940.007 0.98940.007 0.99040.006 0.99140.006 1.00040.001
Approx. Ratio
ANN 1.000-£0.001
Div-ANN (K'=1) 0.293+0.007
p-FetchColor-ANN 3.79340.002 3.793£0.002 3.79340.002 3.79340.002 3.79340.002 2.790+0.510
Entro p-FetchUnion-ANN 3.70440.167 3.704+0.166 3.70420.166 3.70420.166 3.70420.166 2.790+0.510
by ANN 2.790£0.510
Div-ANN (K'=1) 3.799+0.029
Table 3: Comparison of performance across p values for ArXiv at k = 50.
Metric Algorithm p=-—10 p=-1 p=-05 p=0 p=05 p=1
p-FetchColor-ANN 0.784+0.071 0.815+0.065 0.831£0.063 0.858+0.060 0.9044+0.049 1.000+0.000
. p-FetchUnion-ANN 0.9584+0.033 0.961+0.030 0.962+0.029 0.963+0.028 0.968+0.024 1.000+0.000
Approx. Ratio
ANN 1.000-£0.000
Div-ANN (k' =1) 0.286+0.041
p-FetchColor-ANN 4.293+0.000 4.200+0.052 4.105£0.091 3.887+0.155 3.3494+0.267 0.746+0.717
Entro p-FetchUnion-ANN 210141214 2.101£1.214 2.099+1.212 2.0954+1.207 2.068+1.179 0.746+0.717
Py ANN 0.746+0.717
Div-ANN (k' =1) 4.191+0.234
Table 4: Comparison of performance across p values for Deeplb—(Clus) at k = 50.
Metric Algorithm p=-10 p=-—1 p=—-0.5 p=20 p=0.5 p=1
p-FetchColor-ANN 0.9584+0.019 0.960+0.017 0.961+0.016 0.963+0.014 0.969+£0.010 1.000£0.000
. p-FetchUnion-ANN 0.9584+0.019 0.960+0.017 0.961+£0.016 0.963+0.014 0.969+0.010 1.000£0.000
Approx. Ratio
ANN 1.000+0.000
Div-ANN (k'=1) 0.395+0.010
p-FetchColor-ANN 4.29340.000 4.29240.005 4.288+0.010 4.27540.020 4.217+0.068 2.070+0.208
Entro p-FetchUnion-ANN 4.2934+0.001 4.292+0.005 4.288+0.010 4.275+0.020 4.217£0.068 2.070+0.207
Py ANN 2.070£0.207
Div-ANN (k'=1) 4.32240.002
Table 5: Comparison of performance across p values for Deeplb—(Prob) at k = 50.
Metric Algorithm p=—10 p=-1 p=-05 p=0 p=05 p=1
p-FetchColor-ANN 0.74940.051 0.81040.045 0.81240.043 0.84640.036 0.93240.028 1.0000.000
. p-FetchUnion-ANN 0.97940.014 0.980+0.013 0.980+0.013 0.98140.012 0.98320.011 1.000-0.000
Approx. Ratio
ANN 1.000-£0.000
Div-ANN (K'=1) 0.315+0.021
p-FetchColor-ANN 4.28540.012 4.29340.002 4.293+0.001 4.19740.045 3.506+0.275 0.892-+0.663
Entro p-FetchUnion-ANN 223540.802 2238+0.802 2239+0.802 2239+0.802 2231+0.800 0.892-+0.663
by ANN 0.8920.663
Div-ANN (K'=1) 4.289+0.053
Table 6: Comparison of performance across p values for Sift1lm—(Clus) at k = 50.
p p p
Metric Algorithm p=-—10 p=-1 p=-05 p=0 p=05 p=1
p-FetchColor-ANN 0.9754+0.010 0.9774+0.008 0.979+0.008 0.980+0.008 0.982+0.006 1.000£0.000
Approx. Ratio p-FetchUnion-ANN 0.9754+0.010 0.977+0.008 0.979+£0.008 0.980+0.008 0.9824+0.006 1.000+0.000
PPIOX. ANN 1.000-£0.000
Div-ANN (k' =1) 0.404£0.004
p-FetchColor-ANN 4.2924+0.006 4.292+0.003 4.293+0.002 4.293+0.002 4.269+0.020 2.068+0.205
Entro p-FetchUnion-ANN 4.2924+0.006 4.292+0.003 4.293+£0.002 4.293+0.003 4.2694+0.020 2.068+0.205
Py ANN 2.068+0.205
Div-ANN (k' =1) 4.322:40.005
Table 7: Comparison of performance across p values for Sift lm—(Prob) at k = 50.
p

39

Under review as a conference paper at ICLR 2026

Metric Algorithm p=—10 p=-—1 p=—-0.5 p=0 p=05 p=1
Ouery per Second p-FetchColor-ANN 120.86 115.78 107.01 135.98 122.59 122.59
yP p-FetchUnion-ANN 132453 132462 133728 144203 144338 1327.03

Latency (us)

p-FetchColor—ANN
p-FetchUnion—ANN

264566.00 276129.00 298804.00 230318.00 235144.00 260800.00

24133.80 24134.00 23907.00

2217020 22149.30 28990.40

99.9th percentile of Latency

p-FetchColor-ANN
p-FetchUnion—-ANN

484601.00 513036.00 478821.00 477925.00 482777.00 479132.00

5294340 5347470 54283.40

56128.70 53082.20 24088.70

Table 8: Comparison of performance on Queries per second and Latency across p values on
Siftlm-(Clus) dataset for & = 50.

Metric Algorithm p=-10 p=-—-1 p=-0.5 p=0 p=05 p=1
p-FetchColor-ANN 198.08 195.97 199.08 179.03 171.22 189.31
Query per Second)
p-FetchUnion-ANN 620.27 610.62 551.02 608.76 572.57 591.76
Latency (1i5) p-FetchColor-ANN 161385.00 163121.00 160503.00 178555.00 186780.00 168856.00
v p-FetchUnion-ANN 5153990 52362.30 58028.60 52521.60 55843.70 54030.80
. p-FetchColor-ANN 433434.00 407151.00 418147.00 421725.00 475474.00 404477.00
99.9th percentile of Latency)
p-FetchUnion-ANN 146632.00 144989.00 145620.00 145657.00 143627.00 146464.00

Table 9: Comparison of performance on Queries per second and Latency across p values on Amazon

dataset for k = 50.

40

	Introduction
	Problem Formulation and Main Results
	Our Results

	Algorithm for NaNNS
	Experimental Evaluations
	Balancing Relevance and Diversity

	Conclusion
	Proof of Theorem 1
	Proofs for Examples 1 and 2

	Proof of theorem:multi-attribute-hardness
	Proof of theorem:multi-attribute-greedy-guarantee
	Extensions for p-NNS
	Experimental Evaluation and Analysis
	Evaluation Metrics
	Datasets
	Balancing Relevance and Diversity: Single-attribute Setting
	Approximation Ratio Versus Entropy
	Performance on p-mean-ANN
	Approximation Ratio Versus Inverse Simpson Index
	Approximation Ratio Versus Distinct Attribute Count
	Recall Versus Entropy

	Balancing Relevance and Diversity: Multi-attribute Setting
	A Faster Heuristic for the Single Attribute Setting: p-FetchUnion-ANN

