
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WELFARIST FORMULATIONS FOR
DIVERSE SIMILARITY SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Nearest Neighbor Search (NNS) is a fundamental problem in data structures with wide-ranging
applications, such as web search, recommendation systems, and, more recently, retrieval-
augmented generations (RAG). In such recent applications, in addition to the relevance (simi-
larity) of the returned neighbors, diversity among the neighbors is a central requirement. In this
paper, we develop principled welfare-based formulations in NNS for realizing diversity across
attributes. Our formulations are based on welfare functions—from mathematical economics—
that satisfy central diversity (fairness) and relevance (economic efficiency) axioms. With a
particular focus on Nash social welfare, we note that our welfare-based formulations provide
objective functions that adaptively balance relevance and diversity in a query-dependent man-
ner. Notably, such a balance was not present in the prior constraint-based approach, which
forced a fixed level of diversity and optimized for relevance. In addition, our formulation
provides a parametric way to control the trade-off between relevance and diversity, providing
practitioners with flexibility to tailor search results to task-specific requirements. We develop
efficient nearest neighbor algorithms with provable guarantees for the welfare-based objectives.
Notably, our algorithm can be applied on top of any standard ANN method (i.e., use standard
ANN method as a subroutine) to efficiently find neighbors that approximately maximize our
welfare-based objectives. Experimental results demonstrate that our approach is practical and
substantially improves diversity while maintaining high relevance of the retrieved neighbors.

1 INTRODUCTION

Nearest Neighbor Search (NNS) is a fundamental problem in computer science with wide-
ranging applications in diverse domains, including computer vision (Wang et al., 2012), data min-
ing (Camerra et al., 2010), information retrieval (Manning et al., 2008), classification (Fix & Hodges,
1989), and recommendation systems (Dahiya et al., 2021). The relevance of NNS has grown further
in recent years with the advent of retrieval-augmented generation (RAG); see, e.g., (Manohar et al.,
2024), (Wu et al., 2024), and references therein. Formally, given vectors P ⊂ Rd (in ambient di-
mension d) and a query vector q ∈ Rd, the objective in NNS is to identify a subset S of k (input)
vectors from P that are most similar to q under a similarity function σ : Rd × Rd → R+. That is,
NNS corresponds to the optimization problem argmaxS⊆P :|S|=k

∑
v∈S σ(q, v). Note that, while

most prior works in neighbor search express the problem in terms of minimizing distances, we work
with the symmetric version of maximizing similarity.1

In practice, the input vectors are high dimensional; in many of the above-mentioned applications the
ambient dimension d is close to a thousand. This scale makes exact NNS computationally expensive,
since applications require, for real-time queries q, NNS solutions in time (sub)linear in the number of
input vectors |P |. To address this challenge, the widely studied framework of Approximate Nearest
Neighbor (ANN) search relaxes the requirement of exactness and instead seeks neighbors whose
similarities are approximately close to the optimal ones.

ANN search has received substantial attention over the past three decades. Early techniques relied
on space-partitioning methods, including Locality-Sensitive Hashing (LSH) (Indyk & Motwani,
1998; Andoni & Indyk, 2008), k-d trees (Arya et al., 1998), and cover trees (Beygelzimer et al.,
2006). More recent industry-scale systems adopt clustering-based (Johnson et al., 2017; Baranchuk
et al., 2018) and graph-based (Malkov & Yashunin, 2016; Fu et al., 2019; Sugawara et al., 2016;

1This enables us to directly apply welfare functions.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Subramanya et al., 2019) approaches, along with other practically-efficient methods (Sun et al.,
2023; Simhadri et al., 2024).

While relevance—measured in terms of a similarity function σ(·, ·)—is a primary objective in NNS,
prior work has shown that diversity in the retrieved set of vectors is equally important for user
experience, fairness, and reducing redundancy (Carbonell & Goldstein, 1998). For instance, in 2019
Google announced a policy update to limit the number of results from a single domain, thereby
reducing redundancy (Liaison, 2019). Similarly, Microsoft recently introduced diversity constraints
in ad recommendation systems to ensure that advertisements from a single seller do not dominate
the results (Anand et al., 2025). Such an adjustment was crucial for improving user experience and
promoting fairness for advertisers. These examples highlight how diversity, in addition to enhancing
fairness and reducing redundancy, directly contributes to improved search quality for end users.

A natural way to formalize diversity in these settings is to associate each input vector with one or
more attributes. Diversity can then be measured with respect to these attributes, complementing the
similarity-based relevance. Building on this idea, the current work develops a principled framework
for diversity in neighbor search by drawing on the theory of collective welfare from mathemati-
cal economics (Moulin, 2004). This perspective enables the design of performance metrics (i.e.,
optimization criteria) that balance similarity-based relevance and attribute-based diversity in a theo-
retically grounded manner.

This formulation is based on the perspective that algorithms can be viewed as economic policies.
Indeed, analogous to economic policies, numerous deployed algorithms induce utility (monetary or
otherwise) among the participating agents. For instance, an ANN algorithm—deployed to select
display advertisements for search queries—impacts the exposure and, hence, the sales of the partic-
ipating advertisers. Notably, there are numerous other application domains wherein the outputs of
the underlying algorithms impact the utilities of individuals; see Angwin et al. (2022) and Kearns
& Roth (2019) for multiple examples. Hence, in contexts where fairness (diversity) and welfare
are important considerations, it is pertinent to evaluate algorithms analogous to how one evaluates
economic policies that induce welfare.

In mathematical economics, welfare functions, f : Rc 7→ R, provide a principled approach to aggre-
gate the utilities of c ∈ Z+ agents into a single measure. Specifically, if an algorithm induces utilities
u1, u2, . . . , uc among a population of c agents, then the collective welfare is f(u1, u2, . . . , uc). A
utilitarian way of aggregation is by considering the arithmetic mean (average) of the utilities uℓs.
However, note that the arithmetic mean is not an ideal criterion if we are required to be fair among
the c agents: the utilitarian welfare (arithmetic mean) can be high even if the utility of only one
agent, say u1, is large and all the remaining utilities, u2, . . . , uc, are zero. The theory of collective
welfare develops meaningful alternatives to the arithmetic mean by identifying welfare functions,
fs, that satisfy fairness and efficiency axioms.

Among such alternatives, Nash social welfare (NSW) is an exemplar that upholds multiple fairness
axioms, including symmetry, independence of unconcerned agents, scale invariance, and the Pigou-
Dalton transfer principle (Moulin, 2004). Nash social welfare is defined by setting f as the geometric
mean, NSW(u1, . . . , uc) :=

(∏c
ℓ=1 uℓ

)1/c
. The fact that NSW strikes a balance between fairness

and economic efficiency is supported by the observation that it sits between egalitarian and utilitarian
welfare: the geometric mean is at least as large as the minimum value, min1≤ℓ≤c uℓ, and it is also
at most the arithmetic mean 1

c

∑c
ℓ=1 uℓ (the AM-GM inequality).

The overarching goal of this work is to realize diversity (fairness) across attributes in nearest neigh-
bor search while maintaining relevance of the returned k vectors. Our modeling insight here is to
equate attributes with agents and apply Nash social welfare.

In particular, consider a setting where we have c ∈ Z+ different attributes (across the input vectors),
and let S be any subset of k vectors (neighbors) among the input set P . In our model, each included
vector v ∈ S, with attribute ℓ ∈ [c], contributes to the utility uℓ (see Section 2.1), and the Nash
social welfare (NSW) induced by S is the geometric mean of these utilities, u1, u2, . . . , uc. Our
objective is to find a size-k subset, S∗ ⊆ P , of input vectors with as large NSW as possible.

The following two instantiations highlight the applicability of our model in NNS applications: In
a display-advertising context with c sellers, each selected advertisement v ∈ S of a seller ℓ ∈ [c]

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Neighbor search results (k = 9) on the Amazon dataset. From left: First and Second
images - ANN and Nash-based results for query “shirts”, respectively. Third and Fourth images -
ANN and Nash-based results for query “blue shirt”, respectively. Note that the Nash-based method
selects diverse colors for the query “shirts” but conforms to the blue color for the query “blue shirt”.

contributes to ℓ’s exposure (utility) uℓ. Similarly, in an apparel-search setup with c colors in total,
each displayed product v ∈ S with color ℓ ∈ [c] contributes to the utility uℓ.

Prior work (Anand et al., 2025) imposed constraints for achieving diversity in NNS. These con-
straints enforced that, for each ℓ ∈ [c] and among the k returned vectors, at most k′ many can have
attribute ℓ. Such rigid constraints rely on a fixed ad hoc quota parameter k′ and fail to adapt to the
intent expressed in the query. In contrast, our NSW-based approach balances relevance and diversity
in a query-dependent manner. For example, in the apparel-search setup, if the search query is “blue
shirt,” then a constraint on the color attribute ‘blue’ (i.e., when ℓ stands for ‘blue’) would limit the
relevance by excluding valid vectors. NSW, however, for the “blue shirt” query, is free to select all
the k vectors with attribute ‘blue’ upholding relevance; see Figure 1 for supporting empirical results.
On the other hand, if the apparel-search query is just “shirts,” then NSW criterion is inclined to se-
lect vectors with different color attributes. These features of NSW are substantiated by the stylized
instances given in Examples 1 and 2 (Section 2.1).

We reiterate that our formulation does not require a quota parameter k′ to force diversity. For NSW,
diversity (fairness) across attributes is obtained via normative properties of Nash social welfare.
Hence, with axiomatic support, NSW stands as a meaningful criterion in neighbor search, as it is in
the context of economic and allocation policies.

Our welfarist formulation extends further to control the trade-off between relevance and diversity.
Specifically, we also consider p-mean welfare. Formally, for exponent parameter p ∈ (−∞, 1],
the pth mean Mp(·), of c utilities u1, u2, . . . , uc ∈ R+, is defined as Mp(u1, . . . , uc) :=(
1
c

∑c
ℓ=1 u

p
ℓ

)1/p
. The p-mean welfare, Mp(·), captures a range of objectives with different values

of p: it corresponds to the utilitarian welfare (arithmetic mean) when p = 1, the NSW (geometric
mean) with p → 0, and the egalitarian welfare when p → −∞. Notably, setting p = 1, we get
back the standard nearest neighbor objective, i.e., maximizing M1(·) corresponds to finding the k
nearest neighbors and this objective is not concerned with diversity across attributes. At the other
extreme, p → −∞ aims to find as attribute-diverse a set of k vectors as possible (while paying
scarce attention to relevance).

We study, both theoretically and experimentally, two diversity settings: (i) single-attribute setting
and (ii) multi-attribute setting. In the single-attribute setting, each input vector v ∈ P is associated
with exactly one attribute ℓ ∈ [c] – this captures, for instance, the display-advertisement setup,
wherein each advertisement v belongs to exactly one seller ℓ. In the more general multi-attribute
setting, each input vector v ∈ P can have more than one attribute; in apparel-search, for instance,
the products can be associated with multiple attributes, such as color, brand, and price.

We note that the constraint-based formulation for diversity considered in Anand et al. (2025) primar-
ily addresses single-attribute setting. In fact, generalizing such constraints to the multi-attribute con-
text leads to a formulation wherein it is NP-hard even to determine whether there exist k vectors that
satisfy the constraints, i.e., it would be computationally hard to find any size-k constraint-feasible
subset S, let alone an optimal one.2

By contrast, our NSW formulation does not run into such a feasibility barrier. Here, for any candi-
date subset S of k vectors, each included vector v ∈ S contributes to the utility uℓ of every attribute

2This hardness result follows via a reduction from the Maximum Independent Set problem.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

ℓ associated with v. As before, the NSW induced by S is the geometric mean of the induced utilities,
u1, u2, . . . , uc, and the objective is to find a subset of k vectors with as large NSW as possible.

We view the NSW formulation for diversity, in both single-attribute and multi-attribute settings, as a
key contribution of the current paper. Another relevant contribution of this work is the generalization
to p-mean welfare, which provides a systematic way to trade off relevance and diversity.

We also develop efficient algorithms, with provable guarantees, for the NSW and p-mean welfare
formulations. For the single-attribute setting, we develop an efficient greedy algorithm for finding
k vectors that optimize the Nash social welfare among the c attributes (Theorem 1). In addition,
this algorithm can be provably combined with any sublinear ANN method (as a subroutine) to find
near-optimal solutions for the Nash objective in sublinear time (Corollary 2).

For the multi-attribute setting, we first show that finding the set of k vectors that maximize the
Nash social welfare is NP-hard (Theorem 3). We complement this hardness result, by developing a
polynomial-time approximation algorithm that achieves an approximation ratio of (1− 1/e) ≈ 0.63
for maximizing the logarithm of the Nash social welfare (Theorem 4).

We complement our theoretical results with experiments on both real-world and semi-synthetic
datasets. These experiments demonstrate that the NSW objective effectively captures the trade-
off between diversity and relevance in a query-dependent manner. We further analyze the behavior
of the p-mean welfare objective across different values of p ∈ (−∞, 1], observing that it interpo-
lates smoothly between prioritizing for diversity, when p is small, and focusing on relevance, when
p is large. Finally, we benchmark the solution quality and running times of various algorithms for
solving the NSW and p-mean formulations proposed in this work.

2 PROBLEM FORMULATION AND MAIN RESULTS

We are interested in neighbor search algorithms that not only achieve a high approximation ratio,
but also find a diverse set of vectors for each query. To quantify diversity we work with a model
wherein each input vector v ∈ P is assigned one or more attributes from the set [c] = {1, 2, . . . , c}.
In particular, write atb(v) ⊆ [c] to denote the attributes assigned to vector v ∈ P . Also, let Dℓ ⊆ P
denote the subset of vectors that are assigned attribute ℓ ∈ [c], i.e., Dℓ := {v ∈ P | ℓ ∈ atb(v)}.
This model captures important real-world scenarios; for instance, in a display-advertising context
with c sellers, the set Dℓ would denote all the vectors (advertisements) that include seller ℓ.

2.1 OUR RESULTS

An insight of this work is to equate these c attributes with c distinct agents. Here, the output of a
neighbor search algorithm—i.e., the selected subset S ⊆ P—induces utility among these agents.
With this perspective, we define the Nash Nearest Neighbor Search problem (NaNNS) below. This
novel formulation for diversity is a key contribution of this work. For any query q ∈ Rd and subset
S ⊆ P , we define utility uℓ(S) :=

∑
v∈S∩Dℓ

σ(q, v), for each ℓ ∈ [c]. That is, uℓ(S) is equal
to the cumulative similarity between q and the vectors in S that belong to the attribute class Dℓ.
Equivalently, uℓ(S) is the cumulative similarity of the vectors in S that have attribute ℓ.3

We employ Nash social welfare to identify size-k subsets S that are both relevant (with respect to
similarity) and support diversity among the c attribute classes. The Nash social welfare among c
agents is defined as the geometric mean of the agents’ utilities. Specifically, in the above-mentioned
utility model and with a smoothening parameter η > 0, the Nash social welfare (NSW) induced

by any subset S ⊆ P among the c attributes is defined as NSW(S) :=
(∏c

ℓ=1 (uℓ(S) + η)
)1/c

.
Throughout, η > 0 will be a fixed smoothing constant that ensures that NSW remains nonzero.

Definition 1 (NaNNS). Nash nearest neighbor search (NaNNS) corresponds to the following the
optimization problem argmaxS⊆P :|S|=k NSW(S), or, equivalently,

argmax
S⊆P :|S|=k

log NSW(S) (1)

3Note that in the above-mentioned display-advertising example, uℓ(·) is the cumulative similarity between
the (search) query and the selected advertisements that are from seller ℓ.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Here, we have log NSW(S) = 1
c

∑
ℓ∈[c] log(uℓ(S) + η).

To further appreciate the welfarist approach, note that one recovers the standard nearest neigh-
bor problem, NNS, in the single-attribute setting, if—instead of the geometric mean—we
maximize the arithmetic mean. That is, maximizing the utilitarian social welfare gives us
maxS⊆P :|S|=k

∑c
ℓ=1 uℓ(S) = maxS⊆P :|S|=k

∑
v∈S σ(q, v). As stated in the introduction, among

the welfare functions, Nash social welfare is an exemplar that upholds multiple fairness axioms,
including symmetry, independence of unconcerned agents, scale invariance, and the Pigou-Dalton
transfer principle. Moreover, depending on the query and the problem instance, solutions obtained
via NaNNS can adjust between the ones obtained through NNS and those obtained via hard con-
straints. This feature is illustrated in the following stylized examples; see Appendix A.1 for proofs.

The first example shows that if all vectors have same similarity, then an optimal solution, S∗, for
NaNNS is completely diverse, i.e., all the vectors in S∗ have different attributes.
Example 1 (Complete Diversity via NaNNS). Consider an instance in which, for a given query
q ∈ Rd, all vectors in P are equally similar with the query: σ(q, v) = 1 for all v ∈ P . Also, let
|atb(v)| = 1 for all v ∈ P and write S∗ ∈ argmaxS⊆P : |S|=k NSW(S). If c ≥ k, then here it
holds that |S∗ ∩Dℓ| ≤ 1 for all ℓ ∈ [c].

The second example shows that if the vectors of only one attribute have high similarity with the
given query, then a Nash optimal solution S∗ contains only vectors with that attribute.
Example 2 (Complete Relevance via NaNNS). Consider an instance in which for a given query
q ∈ Rd and for a particular ℓ∗ ∈ [c], only vectors v ∈ Dℓ∗ have similarity σ(q, v) = 1 and all other
vectors p′ ∈ P \Dℓ∗ have similarity σ(q, p′) = 0. Also, suppose that |atb(p)| = 1 for each p ∈ P ,
along with |Dℓ∗ | ≥ k. Then, for a Nash optimal solution S∗ ∈ argmaxS⊆P,|S|=k NSW(S) it holds
that |S∗ ∩Dℓ∗ | = k. That is, for all other ℓ ∈ [c] \ {ℓ∗} we have |S∗ ∩Dℓ| = 0.

With the above-mentioned utility model for the c attributes, we also identify an extended formu-
lation based on generalized p-means. Specifically, for exponent parameter p ∈ (−∞, 1], the pth
mean Mp(·), of c nonnegative numbers w1, w2, . . . , wc ∈ R+, is defined as Mp(w1, . . . , wc) :=(
1
c

∑c
ℓ=1 w

p
ℓ

)1/p
. Note that M1(w1, . . . , wc) is the arithmetic mean 1

c

∑c
ℓ=1 wℓ. Here, when p→ 0,

we obtain the geometric mean (Nash social welfare): M0(w1, . . . , wc) = (
∏c

ℓ=1 wℓ)
1/c. Further,

p→ −∞ gives us egalitarian welfare, M−∞(w1, . . . , wℓ) = min1≤ℓ≤c wℓ.

Hence, generalizing both NNS and NaNNS, we have the p-mean nearest neighbor
search (p-NNS) problem defined, for exponent parameters p ∈ (−∞, 1], as follows:
maxS⊆P : |S|=k Mp

(
u1(S), . . . , uc(S)

)
.

Diversity in Single- and Multi-Attribute Settings. The current work addresses two diversity set-
tings: the single-attribute setup and, the more general, the multi-attribute one. The single-attribute
setting refers to case wherein |atb(v)| = 1 for each input vector v ∈ P and, hence, the attribute
classes Dℓs are pairwise disjoint. In the more general multi-attribute setting, we have |atb(v)| ≥ 1;
here, the sets Dℓ-s intersect.4 Notably, the NaNNS seamlessly applies to both these settings.

Algorithmic Results for Single-Attribute NaNNS and p-NNS. In addition to introducing the
NaNNS and p-NNS formulations for capturing diversity, we develop algorithmic results for these
problems, thereby demonstrating the practicality of our approach in neighbor search. In particular,
in the single-attribute setting, we show that both NaNNS and p-NNS admit efficient algorithms.
Theorem 1. In the single-attribute setting, given any query q ∈ Rd and an (exact) oracle ENN
for k most similar vectors from any set, Algorithm 1 (Nash-ANN) returns an optimal solution for
NaNNS, i.e., it returns a size-k subset ALG ⊆ P that satisfies ALG ∈ argmaxS⊆P :|S|=k NSW(S).
Furthermore, the algorithm runs in time O(kc) +

∑c
ℓ=1 ENN(Dℓ, q), where ENN(Dℓ, q) is the time

required by the exact oracle to find k most similar vectors to q in Dℓ.

Further, to establish the practicality of our formulations, we present an approximate algorithm for
NaNNS that leverages any standard ANN algorithm as an oracle (subroutine), i.e., works with any
α-approximate ANN oracle (α ∈ (0, 1)) which returns a subset S containing k vectors satisfying

4For a motivating instantiation for multi-attributes, note that, in the apparel-search context, it is possible for
a product (input vector) v to have multiple attributes based on v’s seller and its color(s).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Nash-ANN: Algorithm for NaNNS in the single-attribute setting

Require: Query q ∈ Rd and, for each attribute ℓ ∈ [c], the set of input vectors Dℓ ⊂ Rd.
1: For each ℓ ∈ [c], fetch the k (exact or approximate) nearest neighbors of q ∈ Rd from Dℓ. Write

D̂ℓ ⊆ Dℓ to denote these sets.
2: For every ℓ ∈ [c] and each index i ∈ [k], let vℓ(i) denote the ith most similar vector to q in D̂ℓ.
3: Initialize subset ALG = ∅, along with count kℓ = 0 and utility wℓ = 0, for each ℓ ∈ [c].
4: while |ALG| < k do
5: Let a = argmax

ℓ∈[c]

(
log
(
wℓ + η + σ(q, vℓ(kℓ+1))

)
− log(wℓ + η)

)
. {Ties broken arbitrarily.}

6: Update ALG ← ALG ∪
{
va(ka+1)

}
, along with wa ← wa + σ(q, va(ka+1)) and ka ← ka +1.

7: Return ALG.

σ(q, v(i)) ≥ α σ(q, v∗(i)), for all i ∈ [k], where v(i) and v∗(i) are the i-th most similar vectors to q in
S and P , respectively. Formally,
Corollary 2. In the single-attribute setting, given any query q ∈ Rd and an α-approximate
oracle ANN for k most similar vectors from any set, Algorithm 1 (Nash-ANN) returns an α-
approximate solution for NaNNS, i.e., it returns a size-k subset ALG ⊆ P with NSW(ALG) ≥
αmaxS⊆P : |S|=k NSW(S). The algorithm runs in time O(kc) +

∑c
ℓ=1 ANN(Dℓ, q), with

ANN(Dℓ, q) denoting the time required by the oracle to find k similar vectors to q in Dℓ.

Furthermore, both Theorem 1 and Corollary 2 generalize to p-NNS problem with slight modification
in Algorithm 1. Specifically, there exists exact, efficient algorithm (Algorithm 3) for the p-NNS
problem (Theorem 11 and Corollary 12). Due to space constraints, the algorithm and the analysis
for p-NNS are deferred to Appendix D.

Algorithmic Results for Multi-Attribute NaNNS. Next, we address the multi-attribute setting.
While the optimization problem (1) in the single attribute setting can be solved efficiently, the prob-
lem is NP-Hard in the the multi-attribute setup (see Appendix B for the proof).
Theorem 3. In the multi-attribute setting, with parameter η = 1, NaNNS is NP-hard.

Complementing this hardness result, we show that, considering the logarithm of the objective,
NaNNS in the multi-attribute setting admits a polynomial-time

(
1− 1

e

)
-approximation algorithm.

This result in established in Appendix C.
Theorem 4. In the multi-attribute setting, there exists a polynomial-time algorithm (Algorithm 2)
that, given any query q ∈ Rd, finds a size-k subset ALG ⊆ P with log NSW(ALG) ≥(
1− 1

e

)
log NSW(OPT); here, OPT denotes an optimal solution of (1).

Experimental Validation of our Formulation and Algorithms. We complement our theoretical
results with several experiments on real-world datasets. Our findings highlight that the Nash-based
formulation strikes a balance between diversity and relevance.

3 ALGORITHM FOR NANNS

This section provides our exact, efficient algorithm (Algorithm 1) for NaNNS in the single-attribute
setting. The algorithm has two parts: a preprocessing step and a greedy, iterative selection.

Recall that in the single-attribute setting, the input vectors P are partitioned into subsets D1, . . . , Dc,
where Dℓ denotes the subset of input vectors with attribute ℓ ∈ [c]. In the preprocessing step, for
each attribute ℓ ∈ [c], we populate k vectors from within Dℓ that are most similar to the given
query q ∈ Rd. Such a size-k subset, for each ℓ ∈ [c], can be obtained by executing any nearest
neighbor search algorithm within Dℓ and with respect to query q. Alternatively, we can execute any
standard ANN algorithm as a subroutine and find sufficiently good approximations for the k nearest
neighbors (of q) within each Dℓ.

Write D̂ℓ ⊆ Dℓ to denote the k—exact or approximate—nearest neighbors of q ∈ Rd in Dℓ. We note
that our algorithm is robust to the choice of the search algorithm (subroutine) used for finding D̂ℓs:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Dataset # Input Vectors # Query Vectors Dimension Attributes
Amazon 92, 092 8, 956 768 product color
ArXiv 200, 000 50, 000 1536 year, paper category
Sift1m 1, 000, 000 10, 000 128 synthetic
Deep1b 9, 990, 000 10, 000 96 synthetic

Table 1: Summary of considered datasets. For synthetic attributes, we use two strategies: clustering-
based (suffixed by Clus) and distribution-based (suffixed by Prob), see Appendix E.2 for details.

If D̂ℓs are exact nearest neighbors, then Algorithm 1 optimally solves NaNNS in the single-attribute
setting (Theorem 1). Otherwise, if D̂ℓs are obtained via an ANN algorithm with approximation
guarantee α ∈ (0, 1), then Algorithm 1 achieves an approximation ratio of α (Corollary 2).

The algorithm then considers the vectors with each D̂ℓ in decreasing order of their similarity with q.
Confining to this order, the algorithm populates the k desired vectors iteratively. In each iteration,
the algorithm greedily selects a new vector based on the marginal increase in log NSW(·); see Lines
5 and 6 in Algorithm 1. Theorem 1 and Corollary 2 (stated previously) provide our main results for
Algorithm 1; the proofs of these results are deferred to Appendix A.

4 EXPERIMENTAL EVALUATIONS

In this section, we validate the welfare-based formulations and the performance of our proposed
algorithms against existing methods on a variety of real and semi-synthetic datasets. We per-
form three different kinds of experiments. In the first set of experiments (Figure 2), we compare
Nash-ANN (Algorithm 1) with prior work on hard-constrained based diversity (Anand et al., 2025).
Here, we show that Nash-ANN strikes a balance between relevance and diversity both in the single-
and multi-attribute settings. In the second set of experiments, we study p-mean-ANN (Algorithm 3
in Appendix D), and obtain the trade-off between relevance and diversity, with a change in the
exponent parameter p ∈ [−∞, 1]. In the final set of experiments, we compare our algorithm,
Nash-ANN (with provable guarantees), and a heuristic that improves the runtime of Nash-ANN.
The heuristic directly utilizes a standard ANN algorithm to fetch a sufficiently large candidate set of
vectors (irrespective of their attributes). Then, it applies the Nash (or p-mean) selection only within
this set. Due to space constraints, we defer the details of the third set of experiments to Appendix
E.5. Also, additional plots for the first two experiments appear in Appendices E.3 and E.4.

Below, we outline the metrics, experimental setup, datasets, and algorithms used in our experiments.

Relevance and Diversity Metrics. To quantify relevance of an algorithm we consider the ratio
of the sum of the similarity scores. Formally, for a query q, if A is the set of neighbors returned
by an algorithm and O is the output of any (standard) ANN algorithm, then the approximation
ratio achieved by the algorithm is

(∑
v∈A σ(v, q)

)
/
(∑

v∈O σ(v, q)
)
. Note that O, up to some

approximation, contains the most similar input vectors to query q. Hence, this ratio typically lies
in [0, 1], and a higher value of this approximation ratio captures higher relevance. We also report
results in terms of recall, which is another metric for relevance; see Appendix E.1 for further details.

To quantify diversity, we use entropy that measures how uniformly an algorithm distributes its se-
lected vectors across the attributes. A higher value of entropy indicates more attribute-level diversity
in the algorithm’s output. We also experimentally validate the findings under other diversity metrics,
namely the inverse Simpson index and distinct attribute counts; see Appendix E.1.

Experimental Setup and Datasets. All the experiments were performed in memory on an Intel(R)
Xeon(R) Silver 4314 CPU (64 cores, 2.40GHz) with 128 RAM. We set the number of threads to 32.
We report results on both semi-synthetic and real-world datasets consistent with prior works (Anand
et al., 2025) and are summarized in Table 1 and detailed in Appendix E.2.

Algorithms. Next, we describe the algorithms executed in the experiments.

1. ANN: We use the graph based DiskANN method of Subramanya et al. (2019) as the ANN algorithm.
We deploy DiskANN with candidate list size L = 2000 and the maximum graph degree to 128.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

2. Div-ANN: Div-ANN refers to the implementation of Anand et al. (2025) that captured diversity
in the single attribute setting through hard constraints. This work uses a quota parameter k′, where
for each ℓ ∈ [c], among the k returned vectors, at most k′ can have attribute ℓ. We executed
Div-ANN with different values k′, ranging from extremely tight, k′ = 1, to more relaxed choices,
such as k′ ∈ {2, 5} for k = 10, along with k′ ∈ {2, 5, 10} for k = 50.

3. Nash-ANN and p-mean-ANN: Nash-ANN refers to Algorithm 1; we implement this algorithm
extending the codebase of Anand et al. (2025). Recall that Algorithm 1 optimally solves the NaNNS
problem in the single-attribute setting. Also, p-mean, Mp(·), reduces to Nash social welfare (ge-
ometric mean) with p = 0. Moreover, as mentioned previously p-mean-ANN (Algorithm 3 in
Appendix D) optimally solves the p-NNS problem (Theorem 11 and Corollary 12 in Appendix D).
For readability and at required places, we will write p = 0 to denote Nash-ANN. We conduct ex-
periments that bring out the relevance-diversity trade-offs across p ∈ {−10,−1,−0.5, 0, 0.5, 1}. In
these experiments, we set the smoothing parameter, η, depending on the dataset (Appendix E.2).

4. Multi Nash-ANN and Multi Div-ANN: In the multi-attribute setting, there are no prior
methods to address diversity. Hence, for comparisons, we first pre-fetch L = 10000 candidates of
each query q, using the standard ANN method, and then apply greedy selection to obtain k neigh-
bors for both the NSW objective (Multi Nash-ANN) and the hard-constrained objective (Multi
Div-ANN). For the latter, we adapt the approach of Anand et al. (2025) by imposing a uniform quota
k′ on each attribute.5 The Multi Nash-ANN method proceeds iteratively, selecting at each step
the vector (from the pre-fetched ones) that provides the largest marginal gain to the NSW objective.
On the other hand, Multi Div-ANN ranks the vectors in decreasing order of similarity to q and
includes the next vector only if doing so does not violate any attribute constraint. In both cases, the
process yields k neighbors (with k > k′). We compare Multi Nash-ANN (p = 0) against Multi
Div-ANN under different choices of k′.

4.1 BALANCING RELEVANCE AND DIVERSITY

We first compare, in the single-attribute setting, the performance of our Nash-ANN with ANN and
Div-ANN (under different values of k′). The results for the Amazon and Deep1b-(Clus)
datasets with k = 50 are shown in Figure 2 (first row - columns one and two). Here, ANN finds
the most relevant set of neighbors,6 albeit with the lowest entropy (diversity). Moreover, as can be
seen in the plots, the most diverse (highest entropy) solution is obtained when we set, in Div-ANN,
k′ = 1; this restricts each ℓ ∈ [c] to contribute at most one vector in the output of Div-ANN. Also,
note that one can increase the approximation ratio (i.e., increase relevance) while incurring a loss
in entropy (diversity) by increasing the constraint (quota) parameter k′ in Div-ANN. However, se-
lecting a ‘right’ value for k′ is non-obvious, since this choice needs to be tailored to the dataset and,
even within it, to queries (recall the “blue shirt” query in Figure 1).

By contrast, Nash-ANN does not require such ad hoc adjustments and, by design, finds a balance
between relevance and diversity. Nash-ANN (p = 0) outperforms Div-ANN with k′ = 2 for
Amazon dataset and k′ = 5 for Deep1b-(Clus) dataset highlighting the Pareto dominance of
Nash-ANN on the fronts of approximation ratio and entropy. The results for other datasets and
metrics follow similar trends and are given in Appendix E.3.

In the multi-attribute setting, we report results for Multi Nash-ANN and Multi Div-ANN on
the Sift1m-(Clus) dataset (Figure 2 - second row) for k = 50 and c = 80. These eighty at-
tributes are partitioned into four sets, {Ci}4i=1, with each set of size |Ci| = 20, i.e., [c] = ∪4i=1Ci.
Further, each input vector v is associated with four attributes (|atb(v)| = 4), one from each Ci; see
Appendix E.2 for further details. Here, to quantify diversity we consider the entropy across each Ci.
Entropy, with approximation ratio, plots for the four sets {Ci}4i=1 are given in Figure 2 (second row).
We observe that Multi Nash-ANN maintains a high approximation ratio (relevance) while simul-
taneously achieving higher entropy (higher diversity) than ANN. By contrast, in the constraint-based
method Multi Div-ANN, low values of k′ leads to a notable drop in the approximation ratio,
whereas increasing k′ reduces entropy. For example, for k′ below 15, one obtains approximation
ratio less than 0.8. To reach an approximation ratio comparable to Multi Nash-ANN, one needs
k′ as high as 30. Additional results for the ArXiv dataset in the multi-attribute setting are provided

5Indeed, the issue of identifying an appropriate k′ is exacerbated on moving to the multi-attribute setting.
6By definition, the approximation ratio of the output of ANN is one.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 2: First Row: Columns 1 and 2 - Approximation ratio (relevance) versus Entropy (di-
versity) for k = 50 in the single-attribute setting. First Row: Columns 3 and 4 - Performance of
p-mean-ANN for various p values, for k = 50 in the single-attribute setting. Second Row - Approx-
imation ratio versus Entropy on Sift1m-(Clus) dataset in the multi-attribute setting.

in Appendix E.4 and they exhibit trends similar to the ones in Figure 2. These findings demonstrate
that Multi Nash-ANN achieves a balance between relevance and diversity. In summary,

Across datasets, and in both single- and multi-attribute settings, the Nash formulation consis-
tently improves entropy (diversity) over ANN, while maintaining an approximation ratio (rele-
vance) of roughly above 0.9. By contrast, the hard-constrained formulation is highly sensitive
to the choice of the quota parameter k′, and in some cases incurs a substantial drop in approx-
imation ratio (even lower than 0.2).

Results for p-NNS. As mentioned previously, p-mean-ANN (Algorithm 3 in Appendix D) effi-
ciently solves the p-mean nearest neighbor search (p-NNS) problem in the single-attribute setting.
Also, recall that, selecting the exponent parameter p ∈ (−∞, 1] enables us to interpolate p-NNS
between the standard NNS problem (p = 1), NaNNS (p = 0), and optimizing solely for diversity
(p→ −∞). We execute p-mean-ANN for p ∈ {−10,−1,−0.5, 0, 0.5, 1} and show that a trade-off
between relevance (approximation ratio) and diversity (entropy) can be achieved by tuning p.

For the single-attribute setting, Figure 2 (first row - columns 3 and 4) capture this feature: For lower
values of p we have higher entropy, while p = 1 matches ANN. Analogous results are obtained for
other datasets and metrics; see Appendix E.3. Empirical results provided in Appendix E.4 (e.g.,
Figure 29) highlight that the trade-off via p is also achieved in the multi-attribute setting.

5 CONCLUSION

In this work, we formulated diversity in neighbor search with a welfarist perspective, using Nash
social welfare (NSW) and p-mean welfare as objectives. Our NSW formulation balances diversity
and relevance in a query-dependent manner, satisfies several desirable axiomatic properties, and
is naturally applicable in both single-attribute and multi-attribute settings. With these properties,
our formulation overcomes key limitations of the prior hard-constrained approach (Anand et al.,
2025). Furthermore, the more general p-mean welfare interpolates between complete relevance
(p = 1) and complete diversity (p = −∞), offering practitioners a tunable parameter for real-
world needs. Our formulations also admit provable and practical algorithms suited for low-latency
scenarios. Experiments on real-world and semi-synthetic datasets validate their effectiveness in
balancing diversity and relevance against existing baselines.

An important direction for future work is the design of sublinear-time approximation algorithms, in
both single- and multi-attribute settings, that directly optimize our welfare objectives as part of ANN
algorithms, thereby further improving efficiency. Another promising avenue is to extend welfare-
based diversity objectives to settings without explicit attributes.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Piyush Anand, Piotr Indyk, Ravishankar Krishnaswamy, Sepideh Mahabadi, Vikas C. Raykar, Ki-
rankumar Shiragur, and Haike Xu. Graph-based algorithms for diverse similarity search. In Forty-
second International Conference on Machine Learning, 2025. URL https://openreview.
net/forum?id=dmN2fQ3woH.

Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest neigh-
bor in high dimensions. Communications of the ACM, 51(1):117–122, 2008.

Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias. In Ethics of data and
analytics, pp. 254–264. Auerbach Publications, 2022.

Sunil Arya, David M Mount, Nathan S Netanyahu, Ruth Silverman, and Angela Y Wu. An optimal
algorithm for approximate nearest neighbor searching fixed dimensions. Journal of the ACM
(JACM), 45(6):891–923, 1998.

G. Ausiello, A. D’Atri, and M. Protasi. Structure preserving reductions among convex opti-
mization problems. Journal of Computer and System Sciences, 21(1):136–153, 1980. ISSN
0022-0000. doi: https://doi.org/10.1016/0022-0000(80)90046-X. URL https://www.
sciencedirect.com/science/article/pii/002200008090046X.

Dmitry Baranchuk, Artem Babenko, and Yury Malkov. Revisiting the inverted indices for billion-
scale approximate nearest neighbors. In Computer Vision – ECCV 2018: 15th European Confer-
ence, Munich, Germany, September 8–14, 2018, Proceedings, Part XII, pp. 209–224, Berlin, Hei-
delberg, 2018. Springer-Verlag. ISBN 978-3-030-01257-1. doi: 10.1007/978-3-030-01258-8 13.
URL https://doi.org/10.1007/978-3-030-01258-8_13.

Alina Beygelzimer, Sham Kakade, and John Langford. Cover trees for nearest neighbor. In Pro-
ceedings of the 23rd International Conference on Machine Learning, ICML ’06, pp. 97–104,
New York, NY, USA, 2006. Association for Computing Machinery. ISBN 1595933832. doi:
10.1145/1143844.1143857. URL https://doi.org/10.1145/1143844.1143857.

A. Camerra, E. Keogh, T. Palpanas, and J. Shieh. isax 2.0: Indexing and mining one billion time
series. In 2013 IEEE 13th International Conference on Data Mining, pp. 58–67, Los Alamitos,
CA, USA, dec 2010. IEEE Computer Society. doi: 10.1109/ICDM.2010.124. URL https:
//doi.ieeecomputersociety.org/10.1109/ICDM.2010.124.

Jaime Carbonell and Jade Goldstein. The use of mmr, diversity-based reranking for reordering
documents and producing summaries. In Proceedings of the 21st annual international ACM
SIGIR conference on Research and development in information retrieval, pp. 335–336, 1998.

Kunal Dahiya, Deepak Saini, Anshul Mittal, Ankush Shaw, Kushal Dave, Akshay Soni, Himanshu
Jain, Sumeet Agarwal, and Manik Varma. Deepxml: A deep extreme multi-label learning frame-
work applied to short text documents. In Proceedings of the 14th International Conference on Web
Search and Data Mining, WSDM ’21, New York, NY, USA, 2021. Association for Computing
Machinery.

Evelyn Fix and J. L. Hodges. Discriminatory analysis. nonparametric discrimination: Consistency
properties. International Statistical Review / Revue Internationale de Statistique, 57(3):238–247,
1989. ISSN 03067734, 17515823. URL http://www.jstor.org/stable/1403797.

Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. Fast approximate nearest neighbor search
with the navigating spreading-out graphs. PVLDB, 12(5):461 – 474, 2019. doi: 10.14778/
3303753.3303754. URL http://www.vldb.org/pvldb/vol12/p461-fu.pdf.

Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., USA, 1990. ISBN 0716710455.

Marie Al Ghossein, Ching-Wei Chen, and Jason Tang. Shopping queries image dataset (sqid): An
image-enriched esci dataset for exploring multimodal learning in product search. arXiv preprint
arXiv:2405.15190, 2024.

10

https://openreview.net/forum?id=dmN2fQ3woH
https://openreview.net/forum?id=dmN2fQ3woH
https://www.sciencedirect.com/science/article/pii/002200008090046X
https://www.sciencedirect.com/science/article/pii/002200008090046X
https://doi.org/10.1007/978-3-030-01258-8_13
https://doi.org/10.1145/1143844.1143857
https://doi.ieeecomputersociety.org/10.1109/ICDM.2010.124
https://doi.ieeecomputersociety.org/10.1109/ICDM.2010.124
http://www.jstor.org/stable/1403797
http://www.vldb.org/pvldb/vol12/p461-fu.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse of
dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of computing,
pp. 604–613, 1998.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. arXiv
preprint arXiv:1702.08734, 2017.

Richard M. Karp. Reducibility among Combinatorial Problems, pp. 85–103. Springer US, Boston,
MA, 1972. ISBN 978-1-4684-2001-2. doi: 10.1007/978-1-4684-2001-2 9. URL https://
doi.org/10.1007/978-1-4684-2001-2_9.

Michael Kearns and Aaron Roth. The ethical algorithm: The science of socially aware algorithm
design. Oxford University Press, 2019.

Search Liaison. Google announces site diversity change to search results, 2019. URL https:
//www.searchenginejournal.com/google-site-diversity-change/
311557/.

Yury A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs. CoRR, abs/1603.09320, 2016. URL http:
//arxiv.org/abs/1603.09320.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to Information
Retrieval. Cambridge University Press, USA, 2008. ISBN 0521865719.

Magdalen Dobson Manohar, Zheqi Shen, Guy Blelloch, Laxman Dhulipala, Yan Gu, Harsha Vard-
han Simhadri, and Yihan Sun. Parlayann: Scalable and deterministic parallel graph-based ap-
proximate nearest neighbor search algorithms. In Proceedings of the 29th ACM SIGPLAN Annual
Symposium on Principles and Practice of Parallel Programming, pp. 270–285, 2024.

Hervé Moulin. Fair division and collective welfare. MIT press, 2004.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing
submodular set functions–i. Math. Program., 14(1):265–294, December 1978. ISSN 0025-5610.
doi: 10.1007/BF01588971. URL https://doi.org/10.1007/BF01588971.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. In Marina
Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pp. 8748–8763. PMLR,
18–24 Jul 2021. URL https://proceedings.mlr.press/v139/radford21a.
html.

Chandan K Reddy, Lluı́s Màrquez, Fran Valero, Nikhil Rao, Hugo Zaragoza, Sambaran Bandyopad-
hyay, Arnab Biswas, Anlu Xing, and Karthik Subbian. Shopping queries dataset: A large-scale
esci benchmark for improving product search. arXiv preprint arXiv:2206.06588, 2022.

Harsha Vardhan Simhadri, Martin Aumüller, Amir Ingber, Matthijs Douze, George Williams, Mag-
dalen Dobson Manohar, Dmitry Baranchuk, Edo Liberty, Frank Liu, Ben Landrum, et al. Results
of the big ann: Neurips’23 competition. arXiv preprint arXiv:2409.17424, 2024.

Suhas Jayaram Subramanya, Fnu Devvrit, Rohan Kadekodi, Ravishankar Krishnawamy, and Har-
sha Vardhan Simhadri. Diskann: Fast accurate billion-point nearest neighbor search on a sin-
gle node. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc,
Emily B. Fox, and Roman Garnett (eds.), Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 8-14
December 2019, Vancouver, BC, Canada, pp. 13748–13758, 2019.

Kohei Sugawara, Hayato Kobayashi, and Masajiro Iwasaki. On approximately searching for similar
word embeddings. pp. 2265–2275, 01 2016. doi: 10.18653/v1/P16-1214.

11

https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://www.searchenginejournal.com/google-site-diversity-change/311557/
https://www.searchenginejournal.com/google-site-diversity-change/311557/
https://www.searchenginejournal.com/google-site-diversity-change/311557/
http://arxiv.org/abs/1603.09320
http://arxiv.org/abs/1603.09320
https://doi.org/10.1007/BF01588971
https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v139/radford21a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Philip Sun, David Simcha, Dave Dopson, Ruiqi Guo, and Sanjiv Kumar. Soar: Improved indexing
for approximate nearest neighbor search. In Neural Information Processing Systems, 2023. URL
https://arxiv.org/abs/2404.00774.

TensorFlow. Tensorflow datasets. https://www.tensorflow.org/datasets/
catalog/, 2025. Accessed: 2025-07-10.

J. Wang, J. Wang, G. Zeng, Z. Tu, R. Gan, and S. Li. Scalable k-nn graph construction for visual
descriptors. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1106–
1113, June 2012. doi: 10.1109/CVPR.2012.6247790.

August Wester. arxiv openai embeddings. https://www.kaggle.com/datasets/
awester/arxiv-embeddings, 2022. Accessed: 2025-07-10.

Shangyu Wu, Ying Xiong, Yufei Cui, Haolun Wu, Can Chen, Ye Yuan, Lianming Huang, Xue Liu,
Tei-Wei Kuo, Nan Guan, et al. Retrieval-augmented generation for natural language processing:
A survey. arXiv preprint arXiv:2407.13193, 2024.

12

https://arxiv.org/abs/2404.00774
https://www.tensorflow.org/datasets/catalog/
https://www.tensorflow.org/datasets/catalog/
https://www.kaggle.com/datasets/awester/arxiv-embeddings
https://www.kaggle.com/datasets/awester/arxiv-embeddings

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

APPENDIX: WELFARIST FORMULATIONS FOR
DIVERSE SIMILARITY SEARCH

Table of Contents

1 Introduction 1

2 Problem Formulation and Main Results 4
2.1 Our Results . 4

3 Algorithm for NaNNS 6

4 Experimental Evaluations 7
4.1 Balancing Relevance and Diversity . 8

5 Conclusion 9

A Proof of Theorem 1 13
A.1 Proofs for Examples 1 and 2 . 16

B Proof of Theorem 3 17

C Proof of Theorem 4 19

D Extensions for p-NNS 20

E Experimental Evaluation and Analysis 25
E.1 Evaluation Metrics . 25
E.2 Datasets . 26
E.3 Balancing Relevance and Diversity: Single-attribute Setting 28

E.3.1 Approximation Ratio Versus Entropy . 29
E.3.2 Performance on p-mean-ANN . 29
E.3.3 Approximation Ratio Versus Inverse Simpson Index 30
E.3.4 Approximation Ratio Versus Distinct Attribute Count 30
E.3.5 Recall Versus Entropy . 32

E.4 Balancing Relevance and Diversity: Multi-attribute Setting 34
E.5 A Faster Heuristic for the Single Attribute Setting: p-FetchUnion-ANN 37

A PROOF OF THEOREM 1

As in Algorithm 1, write D̂ℓ to denote the k nearest neighbors of the given query q in the set Dℓ.
Recall that in the single-attribute setting the sets Dℓs are disjoint across ℓ ∈ [c]. Also, vℓ(j) ∈ D̂ℓ

denotes the jth most similar vector to q in D̂ℓ, for each index j ∈ [k]. We define function fℓ(·) to
denote the cumulative similarity of prefixes of these vectors; in particular,

fℓ(i) :=

i∑
j=1

σ(q, vℓ(j)) for each 1 ≤ i ≤ k. (2)

Note that fℓ(i) is equal to the cumulative similarity of the i most similar (to q) vectors in Dℓ. The
lemma below shows that fℓ(·) satisfies a useful decreasing marginals property.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Lemma 5 (Decreasing Marginals). For all attributes ℓ ∈ [c] and indices i′, i ∈ [k], with i′ < i, it
holds that

log
(
fℓ(i) + η

)
− log

(
fℓ(i− 1) + η

)
≤ log

(
fℓ(i

′) + η
)
− log

(
fℓ(i

′ − 1) + η
)
.

Proof. Note that

fℓ(i) + η

fℓ(i− 1) + η
=

fℓ(i− 1) + σ(q, vℓ(i)) + η

fℓ(i− 1) + η
= 1 +

σ(q, vℓ(i))

fℓ(i− 1) + η
.

Similarly, we have fℓ(i
′)+η

fℓ(i′−1)+η = 1 +
σ(q,vℓ

(i′))

fℓ(i′−1)+η .

In addition, the indexing of the vectors vℓ(j) ensures that σ(q, vℓ(i′)) ≥ σ(q, vℓ(i)) for i′ < i. Given
that fℓ(i) the sum of the similarities (which are non-negative) of the vectors vℓ1, . . . , v

ℓ
i , we have

fℓ(i
′ − 1) ≤ fℓ(i− 1) for i′ < i. Combining these bounds, we obtain

σ(q, vℓ(i′))

fℓ(i′ − 1) + η
≥

σ(q, vℓ(i))

fℓ(i− 1) + η
.

Adding 1 to both sides of the last equation and taking log (which is an increasing function and,
hence, preserves the inequality) gives us the desired inequality. The lemma stands proved.

The following lemma asserts the Nash optimality of the subset returned by Algorithm 1, ALG, within
a relevant class of solutions.
Lemma 6. In the single-attribute setting, let ALG be the subset of vectors returned by Algorithm 1
and S be any subset of input vectors with the property that |S ∩Dℓ| = |ALG∩Dℓ|, for each ℓ ∈ [c].
Then, NSW(ALG) ≥ NSW(S).

Proof. Assume, towards a contradiction, that there exists a subset of input vectors S that satisfies
|S ∩Dℓ| = |ALG ∩Dℓ|, for each ℓ ∈ [c], and still induces NSW strictly greater than that of ALG.
This strict inequality implies that there exists an attribute a ∈ [c] with the property that the utility
ua(S) > ua(ALG).7 That is, ∑

t∈S∩Da

σ(q, t) >
∑

v∈ALG∩Da

σ(q, v) (3)

On the other hand, note that the construction of Algorithm 1 and the definition of D̂a ensure that the
vectors in ALG ∩Da are in fact the most similar to q among all the vectors in Da. This observation
and the fact that |S ∩ Da| = |ALG ∩ Da| gives us

∑
v∈ALG∩Da

σ(q, v) ≥
∑

t∈S∩Da
σ(q, t). This

equation, however, contradicts the strict inequality (3).

Therefore, by way of contradiction, we obtain that there does not exist a subset S such that |S∩Dℓ| =
|ALG ∩Dℓ|, for each ℓ ∈ [c], and NSW(ALG) < NSW(S). The lemma stands proved.

We next restate and prove Theorem 1.
Theorem 1. In the single-attribute setting, given any query q ∈ Rd and an (exact) oracle ENN
for k most similar vectors from any set, Algorithm 1 (Nash-ANN) returns an optimal solution for
NaNNS, i.e., it returns a size-k subset ALG ⊆ P that satisfies ALG ∈ argmaxS⊆P :|S|=k NSW(S).
Furthermore, the algorithm runs in time O(kc) +

∑c
ℓ=1 ENN(Dℓ, q), where ENN(Dℓ, q) is the time

required by the exact oracle to find k most similar vectors to q in Dℓ.

Proof. The runtime analysis of Algorithm 1 is direct. Line 1 of the algorithm requires∑c
ℓ=1 ENN(Dℓ, q) time to populate the subsets D̂ℓs (of the k most similar points within each

Dℓ, respectively). The while-loop in the algorithm iterates k times and each iteration (specif-
ically, Line 5) runs in O(c) time. Hence, as stated, the time complexity of the algorithm is
O(kc) +

∑c
ℓ=1 ENN(Dℓ, q).

7Recall the utility model specified in Section 2.1.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

We next establish the optimality of the returned solution ALG. Write OPT ∈
argmaxS⊆P :|S|=k NSW(S) to denote an optimal solution with attribute counts |OPT∩Dℓ| as close
to |ALG ∩Dℓ| as possible. That is, among the optimal solutions, argmaxS⊆P :|S|=k NSW(S), it is
one that minimizes

∑c
ℓ=1 |k∗ℓ − kℓ|, where k∗ℓ = |OPT∩Dℓ| and kℓ = |ALG∩Dℓ|, for each ℓ ∈ [c].

We will prove that OPT satisfies k∗ℓ = kℓ for each ℓ ∈ [c]. This guarantee along with Lemma 6
imply that, as desired, ALG is a Nash optimal solution.

Assume, towards a contradiction, that k∗ℓ ̸= kℓ for some ℓ ∈ [c]. Since |OPT| = |ALG| = k, there
exists attributes x, y ∈ [c] with the property that

k∗x < kx and k∗y > ky (4)

For ease of exposition, write function Fℓ(i) := log
(
fℓ(i) + η

)
, for indices 1 ≤ i ≤ k. Lemma 5,

for any pair of indices i′ < i, gives us

Fℓ(i
′)− Fℓ(i

′ − 1) ≥ Fℓ(i)− Fℓ(i− 1) (5)

Next, note that for any attribute ℓ ∈ [c], if Algorithm 1, at any point during its execution, has included
k′ℓ vectors of attribute ℓ in ALG, then at that point the maintained utility wℓ = fℓ(k

′
ℓ). Hence, at

the beginning of any iteration of the algorithm, if the k′ℓ denotes the number of selected vectors of
each attribute ℓ ∈ [c], then the marginals considered in Line 5 are Fℓ (k

′
ℓ + 1) − Fℓ (k

′
ℓ). These

observations and the selection criterion in Line 5 of the algorithm give us the following inequality
for the counts kx = |ALG ∩Dx| and ky = |ALG ∩Dy| of the returned solution ALG:

Fx(kx)− Fx(kx − 1) ≥ Fy(ky + 1)− Fy(ky) (6)

Specifically, equation (6) follows by considering the iteration in which kth
x (last) vertex of attribute

x was selected by the algorithm. Before that iteration the algorithm had selected (kx− 1) vectors of
attribute x, and let k′y denote the number of vectors with attribute y that have been selected till that
point. Note that k′y ≤ ky . The fact that the kth

x vector was (greedily) selected in Line 5, instead of
including an additional vertex of attribute y, gives Fx(kx)−Fx(kx− 1) ≥ Fy(k

′
y +1)−Fy(k

′
y) ≥

Fy(ky +1)−Fy(ky); here, the last inequality follows from equation (5). Hence, equation (6) holds.

Moreover,

Fx(k
∗
x + 1)− Fx(k

∗
x) ≥ Fx(kx)− Fx(kx − 1) (via eqns. (4) and (5))
≥ Fy(ky + 1)− Fy(ky) (via eqn. (6))
≥ Fy(k

∗
y)− Fy(k

∗
y − 1) (7)

The last inequality follows from equations (4) and (5).

Recall that vℓ(i) denotes the ith most similar (to q) vector in the set D̂ℓ. The definition of D̂ℓ ensures
that vℓ(i) is in fact the ith most similar (to q) vector among the ones that have attribute ℓ, i.e., ith most
similar in all of Dℓ. Since OPT is an optimal solution, the k∗ℓ = |OPT ∩ Dℓ| vectors of attribute ℓ

in OPT are the most similar k∗ℓ vectors from Dℓ. That is, OPT ∩Dℓ =
{
vℓ(1), . . . , v

ℓ
(k∗

ℓ)

}
, for each

ℓ ∈ [c]. This observation and the definition of Fℓ(·) imply that the logarithm of OPT’s NSW satisfies

log NSW(OPT) =
1

c

c∑
ℓ=1

Fℓ(k
∗
ℓ). (8)

Now, consider a subset of vectors S obtained from OPT by including vector vx(k∗
x+1) and removing

vy(k∗
y)

, i.e., S =
(

OPT ∪
{
vx(k∗

x+1)

})
\
{
vy(k∗

y)

}
. Note that

log NSW(S)− log NSW(OPT) =
1

c

(
Fx(k

∗
x + 1)− Fx(k

∗
x)
)
+

1

c

(
Fy(k

∗
y − 1)− Fy(k

∗
y)
)

≥ 0 (via eqn. (7))

Hence, NSW(S) ≥ NSW(OPT). Given that OPT is a Nash optimal allocation, the last inequality
must hold with an equality, NSW(S) = NSW(OPT), i.e., S is an optimal solution as well. This,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

however, contradicts the choice of OPT as an optimal solution that minimizes
∑c

ℓ=1 |k∗ℓ −kℓ| – note

that
∑c

ℓ=1

∣∣∣k̂ℓ − kℓ

∣∣∣ <∑c
ℓ=1 |k∗ℓ − kℓ|, where k̂ℓ := |S ∩Dℓ|.

Therefore, by way of contradiction, we obtain that |OPT ∩ Dℓ| = |ALG ∩ Dℓ| for each ℓ ∈ [c].
As mentioned previously, this guarantee along with Lemma 6 imply that ALG is a Nash optimal
solution. This completes the proof of the theorem.

Next, we prove Corollary 2.

Corollary 2. In the single-attribute setting, given any query q ∈ Rd and an α-approximate
oracle ANN for k most similar vectors from any set, Algorithm 1 (Nash-ANN) returns an α-
approximate solution for NaNNS, i.e., it returns a size-k subset ALG ⊆ P with NSW(ALG) ≥
αmaxS⊆P : |S|=k NSW(S). The algorithm runs in time O(kc) +

∑c
ℓ=1 ANN(Dℓ, q), with

ANN(Dℓ, q) denoting the time required by the oracle to find k similar vectors to q in Dℓ.

Proof. The running time of the algorithm is established by an argument similar to that in proof
of Theorem 1. Therefore, we only argue correctness.

For every ℓ ∈ [c], let the α-approximate oracle return D̂ℓ. Recall that vℓ(i), i ∈ [k], denotes the ith

most similar point to q in the set D̂ℓ. Further, for every ℓ ∈ [c], let D∗
ℓ be the set of k most similar

points to q within Dℓ and define v∗ℓ(i), i ∈ [k], to be the ith most similar point to q in D∗
ℓ . Recall that

by the guarantee of the α-approximate NNS oracle, we have σ(q, vℓ(i)) ≥ α ·σ(q, v∗ℓ(i)) for all i ∈ [k].
Let ALG∗ be the solution obtained by running Nash-ANN with an exact NNS oracle, and let ALG∗

contain k∗ℓ most similar points of attribute ℓ for every ℓ ∈ [c]. Moreover, let OPT be the optimal
solution to the NaNNS problem. Note that we have by Theorem 1, NSW(ALG∗) = NSW(OPT).

Finally, let ÔPT be the optimal solution to the NaNNS problem when the set of vectors to search
over is P = ∪ℓ∈[c]D̂ℓ.

By an argument similar to the proof of Theorem 1, we have NSW(ALG) = NSW(ÔPT). Therefore,
we can write,

NSW(ALG) = NSW(ÔPT)

≥

∏
ℓ∈[c]

 k∗
ℓ∑

i=1

σ(q, vℓ(i)) + η

 1
c

(∪ℓ∈[c]:k∗
ℓ≥1{vℓ(1), . . . , v

ℓ
(k∗

ℓ)
} is a feasible solution)

≥

∏
ℓ∈[c]

 k∗
ℓ∑

i=1

ασ(q, v∗ℓ(i)) + η

 1
c

(by α-approximate guarantee of the oracle)

≥

∏
ℓ∈[c]

α

 k∗
ℓ∑

i=1

σ(q, v∗ℓ(i)) + η

 1
c

(α ∈ (0, 1))

= α NSW(ALG∗)

= α NSW(OPT) (by Theorem 1)

Hence, the corollary stands proved.

A.1 PROOFS FOR EXAMPLES 1 AND 2

In this section, we give the proof of Example 1 and Example 2 which describe the two extreme
scenarios that can be realized by the NaNNS objective under different circumstances.

Example 1 (Complete Diversity via NaNNS). Consider an instance in which, for a given query
q ∈ Rd, all vectors in P are equally similar with the query: σ(q, v) = 1 for all v ∈ P . Also, let

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

|atb(v)| = 1 for all v ∈ P and write S∗ ∈ argmaxS⊆P : |S|=k NSW(S). If c ≥ k, then here it
holds that |S∗ ∩Dℓ| ≤ 1 for all ℓ ∈ [c].

Proof. Towards a contradiction, suppose there exists T ∈ argmaxS⊆P :|S|=k NSW(S) such that
|T ∩ Dℓ∗ | > 1 for some ℓ∗ ∈ [c]. Note that according to the setting specified in the example,
uℓ(T) = |T ∩Dℓ|+ η for all ℓ ∈ [c].

Since c ≥ k and |T ∩Dℓ∗ | > 1, there exists ℓ′ ∈ [c] such that |T ∩Dℓ′ | = 0. Let v∗ ∈ T ∩Dℓ∗ and
v′ ∈ Dℓ′ be two vectors. Consider the set T ′ = (T \ {v∗}) ∪ {v′}. We have,

NSW(T ′)

NSW(T)
=

 (uℓ′(T
′) + η)

(uℓ′(T) + η)
· (uℓ∗(T

′) + η)

(uℓ∗(T) + η)

∏
ℓ∈[c]\{ℓ∗,ℓ′}

(uℓ(T
′) + η)

(uℓ(T) + η)

 1
c

=

 (1 + η)

η
· (uℓ∗(T)− 1 + η)

(uℓ∗(T) + η)

∏
ℓ∈[c]\{ℓ∗,ℓ′}

(uℓ(T) + η)

(uℓ(T) + η)

 1
c

=

(
(1 + η)

η
· (uℓ∗(T)− 1 + η)

(uℓ∗(T) + η)

) 1
c

=

(
uℓ∗(T)− 1 + ηuℓ∗(T) + η2

ηuℓ∗(T) + η2

) 1
c

> 1 (uℓ∗(T) ≥ 2)

Therefore, we have NSW(T ′) > NSW(T), which contradicts the optimality of T . Hence, we must
have |T ∩Dℓ| ≤ 1 for all ℓ ∈ [c], which proves the claim.

Example 2 (Complete Relevance via NaNNS). Consider an instance in which for a given query
q ∈ Rd and for a particular ℓ∗ ∈ [c], only vectors v ∈ Dℓ∗ have similarity σ(q, v) = 1 and all other
vectors p′ ∈ P \Dℓ∗ have similarity σ(q, p′) = 0. Also, suppose that |atb(p)| = 1 for each p ∈ P ,
along with |Dℓ∗ | ≥ k. Then, for a Nash optimal solution S∗ ∈ argmaxS⊆P,|S|=k NSW(S) it holds
that |S∗ ∩Dℓ∗ | = k. That is, for all other ℓ ∈ [c] \ {ℓ∗} we have |S∗ ∩Dℓ| = 0.

Proof. Towards a contradiction, suppose there exists T ∈ argmaxS⊆P :|S|=k NSW(S) such that
|T ∩Dℓ∗ | < k. Therefore, there exists ℓ′ ∈ [c] \ {ℓ∗} such that |T ∩Dℓ′ | ≥ 1. Let v∗ ∈ Dℓ∗ \ T
and let v′ ∈ T ∩Dℓ′ . Note that uℓ∗(T) = 0 since σ(q, v) = 0 for all v ∈ Dℓ for any ℓ ∈ [c] \ {ℓ∗}.
Moreover, we also have uℓ∗(T) = |T ∩Dℓ∗ |.
Consider the set T ′ = (T \ {v′}) ∪ {v∗}. We have,

NSW(T ′)

NSW(T)
=

 (uℓ′(T
′) + η)

(uℓ′(T) + η)
· (uℓ∗(T

′) + η)

(uℓ∗(T) + η)

∏
ℓ∈[c]\{ℓ∗,ℓ′}

(uℓ(T
′) + η)

(uℓ(T) + η)

 1
c

=

 (uℓ′(T)− σ(q, v′) + η)

(uℓ′(T) + η)
· (uℓ∗(T) + σ(q, v∗) + η)

(uℓ∗(T) + η)

∏
ℓ∈[c]\{ℓ∗,ℓ′}

(uℓ(T) + η)

(uℓ(T) + η)

 1
c

=

(
(0− 0 + η)

0 + η
· (|T ∩Dℓ∗ |+ 1 + η)

(|T ∩Dℓ∗ |+ η)

) 1
c

=

(
1 +

1

|T ∩Dℓ∗ |+ η

) 1
c

> 1 .

Therefore, we have obtained NSW(T ′) > NSW(T), which contradicts the optimality of T . There-
fore, it must be the case that |T ∩Dℓ∗ | = k, which proves the claim.

B PROOF OF THEOREM 3

This section restates and proves Theorem 3. Recall that in the multi-attribute setting, input vectors
v ∈ P are associated one or more attributes, |atb(v)| ≥ 1.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Theorem 3. In the multi-attribute setting, with parameter η = 1, NaNNS is NP-hard.

Proof. Consider the decision version of the optimization problem: given a real W , decide whether
there exists S ⊆ P , |S| = k such that log NSW(S) ≥W . We will refer to this problem as NaNNS.
Note that the input to a NaNNS instance is the following: a set of vectors P ⊂ Rd, |P | = n,
similarity function σ : Rd × Rd → R+, integer k ∈ N, the sets Dℓ = {p ∈ P : ℓ ∈ atb(p)} for
every color ℓ ∈ [c], a query point q ∈ Rd and a real W . We will show that NaNNS is NP-Complete
by reducing EXACT REGULAR SET PACKING (ERSP)8 to NaNNS.

In ERSP, we are given a universe of n elements that we denote by U = {1, 2, . . . , n}, a collection
of subsets S = {S1, . . . , Sm} where Si ⊆ U , |Si| = τ , for all i ∈ [m] and an integer k ∈ N. The
problem is to decide if there is a sub-collection I ⊆ S, |I| = k, such that for all distinct S, S′ ∈ I
S ∩ S′ = ∅.
To reduce ERSP to an instance of NaNNS, we view U as the set of attributes, i.e., c = n. The set of
vectors P is embedded in Rn and is given by P = { 1τ · 1S | S ∈ S} and the query vector is q = 1.
Here, 1 is the all ones vector in Rn, and 1S is the vector in Rn whose i-th coordinate is 1{i ∈ S}
for all i ∈ [n]. Therefore, the set of vectors P is of size m. Moreover, the set of vectors having
attribute ℓ ∈ [n] is denoted by Dℓ = { 1τ · 1S | S ∈ S, ℓ ∈ S}. The size of the solution set of the
NaNNS is equal to the k of the ERSP instance. Finally, the similarity function σ : Rn × Rn → R is
taken to be the usual dot-product. Finally, we set W = τk log 2. Note that the reduction takes time
polynomial in n and m.

Also note that for any v ∈ P , σ(q, v) = ⟨ 1τ · 1S ,1⟩ = 1 where v = 1
τ · 1S for some S ∈ S.

Now we prove the correctness of the reduction.

“⇒”: Suppose I∗ ⊂ S , |I∗| = k is a solution to ERSP instance. Consider the set N∗ := { 1τ · 1S :
S ∈ I∗}. Clearly, N∗ ⊆ P and |N∗| = k, hence N∗ is a feasible set of the NaNNS problem. Now,
since I∗ is a solution to the ERSP instance, for distinct S, S′ ∈ I∗ we have S ∩S′ = ∅. Particularly,
if for an attribute ℓ ∈ [c], we have ℓ ∈ S for some S ∈ I∗, then ℓ /∈ S′ for all S′ ∈ I∗ \ {S}.
Therefore, |N∗ ∩ Dℓ| ≤ 1 for all ℓ ∈ [c] which in turn implies that uℓ(N

∗) is either 1 or 0 for all
ℓ ∈ [c]. Finally, note that any point v ∈ P belongs to exactly τ attributes, i.e., |atb(v)| = τ . Hence,

log NSW(N∗) =
1

c

c∑
ℓ=1

log(1 + uℓ(N
∗)) =

1

c

∑
v∈N∗

∑
ℓ∈atb(v)

log(1 + 1) =
τk log 2

c
.

Therefore, if there is a solution to the ERSP instance, then the corresponding NaNNS instance also
has a solution.

“⇐”: Suppose N∗ ⊆ P , |N∗| = k, is a solution to the NaNNS instance (i.e., log NSW(N∗) ≥W)
corresponding to the ERSP instance. Define I∗ := {S | 1τ · 1S ∈ N∗}. Note that |I∗| = k. We will
show that I∗ is a solution to the ERSP instance. First observe that,∑

ℓ∈[c]

uℓ(N
∗) =

∑
ℓ∈[c]

∑
v∈N∗∩Dℓ

σ(q, v) =
∑
v∈N∗

∑
ℓ∈atb(v)

σ(q, v) = τk .

We also have the set of attributes with non-zero utility is given by A = ∪S∈I∗S. Clearly, 1 ≤
|A| ≤ τk via Union Bound. Hence,

W =
τk log 2

c
≤ log NSW(N∗) =

1

c

∑
ℓ∈[c]

log(1 + uℓ(N
∗))

=
1

c

∑
ℓ∈A

log(1 + uℓ(N
∗))

=
|A|
c
· 1

|A|
∑
ℓ∈A

log(1 + uℓ(N
∗))

≤ |A|
c
· log

(
1

|A|
∑
ℓ∈A

1 + uℓ(N
∗)

)
(concavity of log)

8ERSP is known to be NP-Complete due to Karp (1972) and W[1] hard with respect to solution size due
to Ausiello et al. (1980); see also Garey & Johnson (1990)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

=
|A|
c
· log

(
1 +

∑
ℓ∈A uℓ(N

∗)

|A|

)
=
|A|
c
· log

(
1 +

τk

|A|

)
≤ τk log 2

c

Here, the last inequality follows from Lemma 7 (stated and proved below). Hence, all the inequali-
ties in the derivation above must hold with equality. Particularly, we must have |A| = τk by equality
condition of Lemma 7. Hence, for distinct sets S, S′ ∈ I∗, we must have S ∩ S′ = ∅. Therefore, I∗
is a solution of the ERSP instance.

Lemma 7. For any a > 0 and for all x ∈ (0, a], x log(1 + a
x) ≤ a log 2. Moreover, the equality

holds when x = a.

Proof. Let f(x) := x log(1 + a
x). We have f(a) = a log(2) and,

lim
x→0+

f(x) = lim
x→0+

x log(a+ x)− x log x = lim
x→0+

x log(a+ x)− lim
x→0+

x log(x) = 0− 0 = 0 .

Note that f ′(x) = log(1 + a
x) −

a
a+x . We will show that f ′(x) > 0 for all x ∈ (0, a] which will

conclude the proof.

Case 1: x ∈ (0, a
2]. We have log(1+ a

x) ≥ log(1+ a
a/2) = log(3) > 1. On the other hand, a

a+x ≤ 1.

Case 2: x ∈ (a2 , a]. In this case, log(1 + a
x) ≥ log(1 + a

a) = log(2) > 0.693. However, a
a+x <

a
a+ a

2
= 2

3 ≤ 0.667.

Therefore, f ′(x) = log(1 + a
x)−

a
a+x > 0 for all x ∈ (0, a] which concludes the proof.

C PROOF OF THEOREM 4

This section details Algorithm 2, based on which we obtain Theorem 4. We establish this theorem
by showing that the log NSW(·) objective is submodular. Hence, we obtain the stated

(
1− 1

e

)
-

approximation by applying the approximation algorithm for cardinality-constrained submodular
maximization (Nemhauser et al., 1978).

Algorithm 2 MultiNashANN: Algorithm for approximate solution in the multi-attribute case

Require: Query q ∈ Rd.
1: Initialize ALG = ∅.
2: for i = 1, . . . , k do
3: v̂ = argmaxv∈P\ALG log NSW(ALG ∪ {v}).
4: ALG ← ALG ∪ {v̂}.
5: Return ALG.

Theorem 4. In the multi-attribute setting, there exists a polynomial-time algorithm (Algorithm 2)
that, given any query q ∈ Rd, finds a size-k subset ALG ⊆ P with log NSW(ALG) ≥(
1− 1

e

)
log NSW(OPT); here, OPT denotes an optimal solution of (1).

Proof. We will show that function f : 2P → R+, f(S) = log NSW(S), S ⊆ P , is monotone
submodular. Observe that for S ⊆ T ⊆ P , Dℓ ∩ S ⊆ Dℓ ∩ T , hence uℓ(S) ≤ uℓ(T) for all ℓ ∈ [c].
Moreover, since log is an increasing function, log(uℓ(S) + 1) ≤ log(uℓ(T) + 1) for all ℓ ∈ [c].
Therefore, we can conclude that f(S) ≤ f(T), hence f is monotone.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

For submodularity, let S ⊆ T ⊆ P be two subsets and let w ∈ P \ T . We will denote by S +w and
T + w the sets S ∪ {w} and T ∪ {w}. Now, we have

f(S + w)− f(S)− f(T + w) + f(T)

=
1

c

∑
ℓ∈[c]

log

(
1 +

∑
v∈Dℓ∩(S+w) σ(q, v)

1 +
∑

v∈Dℓ∩S σ(q, v)
·

1 +
∑

v∈Dℓ∩T σ(q, v)

1 +
∑

v∈Dℓ∩(T+w) σ(q, v)

)

=
1

c

∑
ℓ∈atb(w)

log

(1 + σ(q, w)

1 +
∑

v∈Dℓ∩S σ(q, v)

)
·

(
1 +

σ(q, w)

1 +
∑

v∈Dℓ∩T σ(q, v)

)−1


=
1

c

∑
ℓ∈atb(w)

log

((
1 +

σ(q, w)

1 + uℓ(S)

)
·
(
1 +

σ(q, w)

1 + uℓ(T)

)−1
)

≥ 0 (uℓ(S) ≤ uℓ(T) since S ⊆ T)

Therefore, upon rearranging, we have f(S +w)− f(S) ≥ f(T +w)− f(T) which is a character-
ization of submodularity.

Hence, Algorithm 2, which, in every iteration, greedily picks the element with maximum marginal
contribution, achieves a (1− 1

e)-approximation (Nemhauser et al., 1978).

D EXTENSIONS FOR p-NNS

In this section, we discuss the extension of results for NaNNS to the p-NNS problem. We state
an algorithm (Algorithm 3) and present its guarantee (Theorem 11 and Corollary 12) in finding the
exact optimal solution for the p-NNS problem. Recall that p-mean welfare of c agents with utilities

(w1, . . . , wc) is given by Mp(w1, . . . , wc) =
(
1
c

∑c
ℓ=1 w

p
ℓ

) 1
p for p ∈ (−∞, 1]. The p-NNS problem

is stated as follows:

max
S⊆P :|S|=k

Mp (u1(S), . . . , uc(S))

Here, as in Section 2.1, the utility uℓ(S) =
∑

v∈S∩Dℓ
σ(q, v), for any subset of vectors S and

attribute ℓ ∈ [c]. Also, we will write Mp(S) := Mp (u1(S), . . . , uc(S)).

Algorithm 3 p-Mean-ANN: Algorithm for p-NNS in the single-attribute setting

Require: Query q ∈ Rd and, for each attribute ℓ ∈ [c], the set of input vectors Dℓ ⊂ Rd and
p ∈ (−∞, 1] \ {0}.

1: For each ℓ ∈ [c], fetch the k (exact or approximate) nearest neighbors of q ∈ Rd from Dℓ. Write
D̂ℓ ⊆ Dℓ to denote these sets.

2: For every ℓ ∈ [c] and each index i ∈ [k], let vℓ(i) denote the ith most similar vector to q in D̂ℓ.
3: Initialize subset ALG = ∅, along with count kℓ = 0 and utility wℓ = 0, for each ℓ ∈ [c].
4: while |ALG| < k do
5: if p ∈ (0, 1] then
6: Let a = argmax

ℓ∈[c]

(
(wℓ + η + σ(q, vℓ(kℓ+1)))

p − (wℓ + η)p
)

. {Ties broken arbitrarily.}

7: else if p < 0 then
8: Let a = argmin

ℓ∈[c]

(
(wℓ + η + σ(q, vℓ(kℓ+1)))

p − (wℓ + η)p
)

. {Ties broken arbitrarily.}

9: Update ALG ← ALG ∪
{
va(ka+1)

}
, along with wa ← wa + σ(q, va(ka+1)) and ka ← ka +1.

10: Return ALG.

Lemma 8 (Decreasing Marginal for p > 0). Fix a p ∈ (0, 1] and attribute ℓ ∈ [c]. Let fℓ(i) be the
same as defined in Equation (2) and let Fℓ(i) = (fℓ(i) + η)p. Then, for 1 ≤ i′ < i ≤ k, we have

Fℓ(i
′)− Fℓ(i

′ − 1) ≥ Fℓ(i)− Fℓ(i− 1) .

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Proof. Let G(j) := Fℓ(j) − Fℓ(j − 1) for all j ∈ [k]. We will show that G(j) is decreasing in j.
Towards this, we have the following inequalities for j ≥ 2:

G(j − 1)−G(j)

= Fℓ(j − 1)− Fℓ(j − 2)− Fℓ(j) + Fℓ(j − 1)

= 2Fℓ(j − 1)− (Fℓ(j) + Fℓ(j − 1))

= 2(fℓ(j − 1) + η)p − ((fℓ(j) + η)p + (fℓ(j − 2) + η)p)

= 2(fℓ(j − 2) + η)p

((
1 +

σ(q, vℓ(j−1))

fℓ(j − 2) + η

)p

− 1

2

(
1 +

(
1 +

σ(q, vℓ(j−1)) + σ(q, vℓ(j))

fℓ(j − 2) + η

)p))

≥ 2(fℓ(j − 2) + η)p

((
1 +

σ(q, vℓ(j−1))

fℓ(j − 2) + η

)p

− 1

2

(
1 +

(
1 +

2σ(q, vℓ(j−1))

fℓ(j − 2) + η

)p))
(σ(q, vℓ(j−1)) ≥ σ(q, vℓ(j)); x 7→ xp is increasing for p ∈ (0, 1] and x ≥ 0)

≥ 2(fℓ(j − 2) + η)p

((
1 +

σ(q, vℓ(j−1))

fℓ(j − 2) + η

)p

−

(
1

2
· 1 + 1

2
·

(
1 +

2σ(q, vℓ(j−1))

fℓ(j − 2) + η

))p)
(x 7→ xp is concave for p ∈ (0, 1] and x ≥ 0)

= 0 .

Therefore, we have G(j) ≤ G(j − 1) for all 2 ≤ j ≤ k. Particularly, for 1 ≤ i′ < i ≤ k, we have
G(i′) ≥ G(i), which is the claimed inequality.

Lemma 9 (Increasing Marginals for p < 0). Fix a p ∈ (−∞, 0) and attribute ℓ ∈ [c]. Let fℓ(i) be
the same as defined in Equation (2) and let Fℓ(i) = (fℓ(i)+ η)p. Then, for 1 ≤ i′ < i ≤ k, we have

Fℓ(i
′)− Fℓ(i

′ − 1) ≤ Fℓ(i)− Fℓ(i− 1) .

Proof. The proof proceeds similarly to the proof of Lemma 8, except that we now seek the reverse
inequality. More precisely, with G(j) same as defined in proof of Lemma 8, we wish to show that
G(j) ≥ G(j − 1) for all 2 ≤ j ≤ k. Towards this, we have,

G(j − 1)−G(j)

= 2(fℓ(j − 2) + η)p

((
1 +

σ(q, vℓ(j−1))

fℓ(j − 2) + η

)p

− 1

2

(
1 +

(
1 +

σ(q, vℓ(j−1)) + σ(q, vℓ(j))

fℓ(j − 2) + η

)p))

≤ 2(fℓ(j − 2) + η)p

((
1 +

σ(q, vℓ(j−1))

fℓ(j − 2) + η

)p

− 1

2

(
1 +

(
1 +

2σ(q, vℓ(j−1))

fℓ(j − 2) + η

)p))
(σ(q, vℓ(j−1)) ≥ σ(q, vℓ(j)); x 7→ xp is decreasing for p ∈ (−∞, 0) and x ≥ 0)

≤ 2(fℓ(j − 2) + η)p

((
1 +

σ(q, vℓ(j−1))

fℓ(j − 2) + η

)p

−

(
1

2
· 1 + 1

2
·

(
1 +

2σ(q, vℓ(j−1))

fℓ(j − 2) + η

))p)
(x 7→ xp is convex for p ∈ (−∞, 0) and x ≥ 0)

= 0 .

Lemma 10. In the single-attribute setting, let ALG be the subset of vectors returned by Algorithm 3
and S be any subset of input vectors with the property that |S ∩Dℓ| = |ALG∩Dℓ|, for each ℓ ∈ [c].
Then, Mp(ALG) ≥Mp(S).

Proof. Assume, towards a contradiction, that there exists a subset of input vectors S that satisfies
|S∩Dℓ| = |ALG∩Dℓ|, for each ℓ ∈ [c], and still induces p-mean welfare strictly greater than that of
ALG. This strict inequality combined with the fact that Mp(w1, . . . , wc) is an increasing function of
wis implies that there exists an attribute a ∈ [c] with the property that the utility ua(S) > ua(ALG).9

9Recall the utility model specified in Section 2.1.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

That is, ∑
t∈S∩Da

σ(q, t) >
∑

v∈ALG∩Da

σ(q, v) (9)

On the other hand, note that the construction of Algorithm 3 and the definition of D̂a ensure that the
vectors in ALG ∩Da are in fact the most similar to q among all the vectors in Da. This observation
and the fact that |S ∩ Da| = |ALG ∩ Da| gives us

∑
v∈ALG∩Da

σ(q, v) ≥
∑

t∈S∩Da
σ(q, t). This

equation, however, contradicts the strict inequality (9).

Therefore, by way of contradiction, we obtain that there does not exist a subset S such that |S∩Dℓ| =
|ALG ∩Dℓ|, for each ℓ ∈ [c], and Mp(ALG) < Mp(S). The lemma stands proved.

Theorem 11. In the single-attribute setting, given any query q ∈ Rd and an (exact) oracle ENN for
k most similar vectors from any set, Algorithm 3 (p-mean-ANN) returns an optimal solution for
p-NNS, i.e., it returns a size-k subset ALG ⊆ P that satisfies ALG ∈ argmaxS⊆P :|S|=k Mp(S).
Furthermore, the algorithm runs in time O(kc) +

∑c
ℓ=1 ENN(Dℓ, q), where ENN(Dℓ, q) is the time

required by the exact oracle to find k most similar vectors to q in Dℓ.

Proof. The running time of the algorithm is established by the same arguments as in the running
time analysis of Theorem 1.

For the correctness analysis, we divide the proof into two cases: p < 0 and p ∈ (0, 1].

Case 1: p ∈ (0, 1]. Note that x 7→ xp is an increasing function for x ≥ 0. Hence, the prob-
lem maxS⊆P,|S|=k Mp(S) is equivalent to the problem maxS⊆P,|S|=k Mp(S)

p or in other words,
maxS⊆P,|S|=k

1
c

∑c
ℓ=1 uℓ(S)

p. The proof hereafter proceeds essentially similar to the proof of The-
orem 1. Let kℓ = |ALG ∩Dℓ| for all ℓ ∈ [c]. Further, let OPT ∈ argmaxS⊆P,|S|=k

1
c

∑c
ℓ=1 uℓ(S)

p

and k∗ℓ = |OPT ∩Dℓ| for all ℓ ∈ [c], where OPT is chosen such that
∑c

ℓ=1|k∗ℓ − kℓ| is minimized.

We will prove that OPT satisfies k∗ℓ = kℓ for each ℓ ∈ [c]. This guarantee along with Lemma 6
imply that, as desired, ALG is a p-mean welfare optimal solution.

Assume, towards a contradiction, that k∗ℓ ̸= kℓ for some ℓ ∈ [c]. Since |OPT| = |ALG| = k, there
exists attributes x, y ∈ [c] with the property that

k∗x < kx and k∗y > ky (10)

With Fℓ(i) as defined in Lemma 8, we have for any pair of indices 1 ≤ i′ < i ≤ k,

Fℓ(i
′)− Fℓ(i

′ − 1) ≥ Fℓ(i)− Fℓ(i− 1) (11)

Next, note that for any attribute ℓ ∈ [c], if Algorithm 3, at any point during its execution, has included
k′ℓ vectors of attribute ℓ in ALG, then at that point the maintained utility wℓ = fℓ(k

′
ℓ). Hence, at

the beginning of any iteration of the algorithm, if the k′ℓ denotes the number of selected vectors of
each attribute ℓ ∈ [c], then the marginals considered in Line 6 are Fℓ (k

′
ℓ + 1) − Fℓ (k

′
ℓ). These

observations and the selection criterion in Line 6 of the algorithm give us the following inequality
for the counts kx = |ALG ∩Dx| and ky = |ALG ∩Dy| of the returned solution ALG:

Fx(kx)− Fx(kx − 1) ≥ Fy(ky + 1)− Fy(ky) (12)

Specifically, equation (12) follows by considering the iteration in which kth
x (last) vector of attribute

x was selected by the algorithm. Before that iteration the algorithm had selected (kx− 1) vectors of
attribute x, and let k′y denote the number of vectors with attribute y that have been selected till that
point. Note that k′y ≤ ky . The fact that the kth

x vector was (greedily) selected in Line 6, instead of
including an additional vector of attribute y, gives Fx(kx)−Fx(kx− 1) ≥ Fy(k

′
y +1)−Fy(k

′
y) ≥

Fy(ky + 1) − Fy(ky); here, the last inequality follows from equation (11). Hence, equation (12)
holds.

Moreover,

Fx(k
∗
x + 1)− Fx(k

∗
x) ≥ Fx(kx)− Fx(kx − 1) (via eqns. (10) and (11))
≥ Fy(ky + 1)− Fy(ky) (via eqn. (12))
≥ Fy(k

∗
y)− Fy(k

∗
y − 1) (13)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

The last inequality follows from equations (10) and (11).

Recall that vℓ(i) denotes the ith most similar (to q) vector in the set D̂ℓ. The definition of D̂ℓ ensures
that vℓ(i) is in fact the ith most similar (to q) vector among the ones that have attribute ℓ, i.e., ith most
similar in all of Dℓ. Since OPT is an optimal solution, the k∗ℓ = |OPT ∩ Dℓ| vectors of attribute ℓ

in OPT are the most similar k∗ℓ vectors from Dℓ. That is, OPT ∩Dℓ =
{
vℓ(1), . . . , v

ℓ
(k∗

ℓ)

}
, for each

ℓ ∈ [c]. This observation and the definition of Fℓ(·) imply that the p-th power of OPT’s p-mean
welfare satisfies

Mp(OPT)p =
1

c

c∑
ℓ=1

Fℓ(k
∗
ℓ). (14)

Now, consider a subset of vectors S obtained from OPT by including vector vx(k∗
x+1) and removing

vy(k∗
y)

, i.e., S =
(

OPT ∪
{
vx(k∗

x+1)

})
\
{
vy(k∗

y)

}
. Note that

Mp(S)
p −Mp(OPT)p =

1

c

(
Fx(k

∗
x + 1)− Fx(k

∗
x)
)
+

1

c

(
Fy(k

∗
y − 1)− Fy(k

∗
y)
)

≥ 0 (via eqn. (13))

Hence, Mp(S) ≥ Mp(OPT). Given that OPT is a p-mean welfare optimal allocation, the last
inequality must hold with an equality, Mp(S) = Mp(OPT), i.e., S is an optimal solution as well.
This, however, contradicts the choice of OPT as an optimal solution that minimizes

∑c
ℓ=1 |k∗ℓ − kℓ|

– note that
∑c

ℓ=1

∣∣∣k̂ℓ − kℓ

∣∣∣ <∑c
ℓ=1 |k∗ℓ − kℓ|, where k̂ℓ := |S ∩Dℓ|.

Therefore, by way of contradiction, we obtain that |OPT ∩ Dℓ| = |ALG ∩ Dℓ| for each ℓ ∈ [c].
As mentioned previously, this guarantee along with Lemma 10 imply that ALG is a p-mean welfare
optimal solution. This completes the proof of the theorem for the case p ∈ (0, 1].

Case 2: p < 0. In this case, the proof follows a similar argument as the previous case. However,
due to p being negative, the key inequalities are reversed. We present the proof formally below for
the sake of completeness.

Note that x 7→ xp is a decreasing function for x ≥ 0. Hence, the problem maxS⊆P,|S|=k Mp(S) is
equivalent to the problem minS⊆P,|S|=k Mp(S)

p or in other words, minS⊆P,|S|=k
1
c

∑c
ℓ=1 uℓ(S)

p.
Let kℓ = |ALG ∩ Dℓ| for all ℓ ∈ [c]. Further, let OPT ∈ argminS⊆P,|S|=k

1
c

∑c
ℓ=1 uℓ(S)

p and
k∗ℓ = |OPT ∩Dℓ| for all ℓ ∈ [c], where OPT is chosen such that

∑c
ℓ=1|k∗ℓ − kℓ| is minimized.

We will prove that OPT satisfies k∗ℓ = kℓ for each ℓ ∈ [c]. This guarantee along with Lemma 10
imply that, as desired, ALG is a p-mean welfare optimal solution.

Assume, towards a contradiction, that k∗ℓ ̸= kℓ for some ℓ ∈ [c]. Since |OPT| = |ALG| = k, there
exists attributes x, y ∈ [c] with the property that

k∗x < kx and k∗y > ky (15)

With Fℓ(i) as defined in Lemma 9, we have for any pair of indices 1 ≤ i′ < i ≤ k,

Fℓ(i
′)− Fℓ(i

′ − 1) ≤ Fℓ(i)− Fℓ(i− 1) (16)

Next, note that for any attribute ℓ ∈ [c], if Algorithm 3, at any point during its execution, has included
k′ℓ vectors of attribute ℓ in ALG, then at that point the maintained utility wℓ = fℓ(k

′
ℓ). Hence, at

the beginning of any iteration of the algorithm, if the k′ℓ denotes the number of selected vectors of
each attribute ℓ ∈ [c], then the marginals considered in Line 8 are Fℓ (k

′
ℓ + 1) − Fℓ (k

′
ℓ). These

observations and the selection criterion in Line 8 of the algorithm give us the following inequality
for the counts kx = |ALG ∩Dx| and ky = |ALG ∩Dy| of the returned solution ALG:

Fx(kx)− Fx(kx − 1) ≤ Fy(ky + 1)− Fy(ky) (17)

Specifically, equation (17) follows by considering the iteration in which kth
x (last) vector of attribute

x was selected by the algorithm. Before that iteration the algorithm had selected (kx− 1) vectors of
attribute x, and let k′y denote the number of vectors with attribute y that have been selected till that

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

point. Note that k′y ≤ ky . The fact that the kth
x vector was (greedily) selected in Line 8, instead of

including an additional vector of attribute y, gives Fx(kx)−Fx(kx− 1) ≤ Fy(k
′
y +1)−Fy(k

′
y) ≤

Fy(ky + 1) − Fy(ky); here, the last inequality follows from equation (16). Hence, equation (17)
holds.

Moreover,

Fx(k
∗
x + 1)− Fx(k

∗
x) ≤ Fx(kx)− Fx(kx − 1) (via eqns. (15) and (16))
≤ Fy(ky + 1)− Fy(ky) (via eqn. (17))
≤ Fy(k

∗
y)− Fy(k

∗
y − 1) (18)

The last inequality follows from equations (15) and (16).

Recall that vℓ(i) denotes the ith most similar (to q) vector in the set D̂ℓ. The definition of D̂ℓ ensures
that vℓ(i) is in fact the ith most similar (to q) vector among the ones that have attribute ℓ, i.e., ith most
similar in all of Dℓ. Since OPT is an optimal solution, the k∗ℓ = |OPT ∩ Dℓ| vectors of attribute ℓ

in OPT are the most similar k∗ℓ vectors from Dℓ. That is, OPT ∩Dℓ =
{
vℓ(1), . . . , v

ℓ
(k∗

ℓ)

}
, for each

ℓ ∈ [c]. This observation and the definition of Fℓ(·) imply that the p-th power of OPT’s p-mean
welfare satisfies

Mp(OPT)p =
1

c

c∑
ℓ=1

Fℓ(k
∗
ℓ). (19)

Now, consider a subset of vectors S obtained from OPT by including vector vx(k∗
x+1) and removing

vy(k∗
y)

, i.e., S =
(

OPT ∪
{
vx(k∗

x+1)

})
\
{
vy(k∗

y)

}
. Note that

Mp(S)
p −Mp(OPT)p =

1

c

(
Fx(k

∗
x + 1)− Fx(k

∗
x)
)
+

1

c

(
Fy(k

∗
y − 1)− Fy(k

∗
y)
)

≤ 0 (via eqn. (18))

Hence, Mp(S) ≥ Mp(OPT). Given that OPT is a p-mean welfare optimal allocation, the last
inequality must hold with an equality, Mp(S) = Mp(OPT), i.e., S is an optimal solution as well.
This, however, contradicts the choice of OPT as an optimal solution that minimizes

∑c
ℓ=1 |k∗ℓ − kℓ|

– note that
∑c

ℓ=1

∣∣∣k̂ℓ − kℓ

∣∣∣ <∑c
ℓ=1 |k∗ℓ − kℓ|, where k̂ℓ := |S ∩Dℓ|.

Therefore, by way of contradiction, we obtain that |OPT ∩ Dℓ| = |ALG ∩ Dℓ| for each ℓ ∈ [c].
As mentioned previously, this guarantee along with Lemma 10 imply that ALG is a p-mean welfare
optimal solution. This completes the proof of the theorem for the case p < 0.

Combining the two cases we have the proof of the theorem for all p ∈ (−∞, 1] \ {0}.

Corollary 12. In the single-attribute setting, given any query q ∈ Rd and an α-approximate or-
acle ANN for k most similar vectors from any set, Algorithm 3 (p-mean-ANN) returns an α-
approximate solution for p-NNS, i.e., it returns a size-k subset ALG ⊆ P with Mp(ALG) ≥

αmaxS⊆P : |S|=k Mp(S). The algorithm runs in time O(kc) +
c∑

ℓ=1

ANN(Dℓ, q), with ANN(Dℓ, q)

being the time required by the approximate oracle to find k similar vectors to q in Dℓ.

Proof. The running time of the algorithm is established by an argument similar to that in proof
of Theorem 11. Therefore, we only argue correctness.

For every ℓ ∈ [c], let the α-approximate oracle return D̂ℓ. Recall that vℓ(i), i ∈ [k], denotes the ith

most similar point to q in the set D̂ℓ. Further, for every ℓ ∈ [c], let D∗
ℓ be the set of k most similar

points to q within Dℓ and define v∗ℓ(i), i ∈ [k], to be the ith most similar point to q in D∗
ℓ . Recall that by

the guarantee of the α-approximate NNS oracle, we have σ(q, vℓ(i)) ≥ α·σ(q, v∗ℓ(i)) for all i ∈ [k]. Let
ALG∗ be the solution obtained by running p-mean-ANN with an exact NNS oracle, and let ALG∗

contain k∗ℓ most similar points of attribute ℓ for every ℓ ∈ [c]. Moreover, let OPT be the optimal
solution to the p-NNS problem. Note that we have by Theorem 11, Mp(ALG∗) = Mp(OPT).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Finally, let ÔPT be the optimal solution to the p-NNS problem when the set of vectors to search over
is P = ∪ℓ∈[c]D̂ℓ.

By an argument similar to the proof of Theorem 11, we have Mp(ALG) = Mp(ÔPT). Therefore,
we can write,

Mp(ALG) = Mp(ÔPT)

≥

1

c

∑
ℓ∈[c]

 k∗
ℓ∑

i=1

σ(q, vℓ(i)) + η

p
1
p

(∪ℓ∈[c]:k∗
ℓ≥1{vℓ(1), . . . , v

ℓ
(k∗

ℓ)
} is a feasible solution)

≥

1

c

∑
ℓ∈[c]

 k∗
ℓ∑

i=1

ασ(q, v∗ℓ(i)) + η

p
1
p

(by α-approximate guarantee of the oracle, and Mp is increasing in its argument)

≥

1

c

∑
ℓ∈[c]

αp

 k∗
ℓ∑

i=1

σ(q, v∗ℓ(i)) + η

p
1
p

(α ∈ (0, 1))

= α Mp(ALG∗)

= α Mp(OPT) (by Theorem 11)

Hence, the corollary stands proved.

E EXPERIMENTAL EVALUATION AND ANALYSIS

In this section, we present additional experimental results to further validate the performance of
Nash-ANN in comparison with the existing methods. We begin with a detailed discussion of the
evaluation metrics (Appendix E.1), followed by a description of the datasets used in our study (Ap-
pendix E.2). Next, we report results for the single-attribute setting (Appendix E.3), where we com-
pare the approximation ratio alongside all diversity metrics for k = 10 and k = 50. We also include
recall values for both k = 10 and k = 50 (Appendix E.3.5). The key observation in all these plots is
that the NSW objective effectively strikes a balance between relevance and diversity without having
to specify any ad hoc constraints like quotas. Furthermore, we report experimental results for the
multi-attribute setting on both a synthetic dataset (Sift1m) and a real-world dataset (ArXiv). Fi-
nally, we experimentally validate the performance-efficiency trade-offs of a faster heuristic variant
of p-mean-ANN that can be used in addition to any existing (standard) ANN algorithm.

E.1 EVALUATION METRICS

We evaluate the performance of our proposed methods against baseline algorithms using the follow-
ing metrics:

Relevance Metrics:

1. Approximation Ratio: For a given query q, let an algorithm of choice return the set S1

and let a (standard) ANN algorithm return the set S2. Then the approximation ratio of

the algorithm is defined as the ratio
∑

p∈S1
σ(q,p)∑

p∈S2
σ(q,p) . Therefore, a higher approximation ratio

indicates a more relevant solution.
2. Recall: For a given query q, let S∗ be the set of exact nearest neighbors of q and let S1

be the output of an algorithm. Then the recall of the algorithm is the quantity |S1∩S∗|
|S∗| .

Therefore, a higher recall indicates a more relevant solution.

It is important to note that recall is a fragile metric when the objective is to retrieve a relevant-cum-
diverse set of vectors for a given query. This can be illustrated with the following stylized example

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

in the single-attribute setting. Suppose for a given query q, all the vectors in the set of exact nearest
neighbors S∗ have similarity 1, i.e., for all p ∈ S∗, σ(q, p) = 1. However, let all vectors p ∈ S∗

be associated with the same attribute ℓ∗ ∈ [c], i.e., atb(p) = ℓ∗ for all p ∈ S∗. Therefore, the set
of exact nearest neighbors is not at all diverse. However, it may be the case that there is a set S′

of k vectors, all having different attributes (i.e. atb(p) ̸= atb(p′) and atb(p) ̸= ℓ∗ for p, p′ ∈ S′,
p ̸= p′), such that σ(q, p′) = 0.99 for all p′ ∈ S′. In other words, there is a highly relevant set
of vectors that is also completely diverse. Note that for the set S′, the recall is actually 0 but the
approximation ratio is 0.99. Hence, in the context of diverse neighbor search problem, instead of
recall, approximation ratio may be a more meaningful relevance metric.

Diversity Metrics:

• Entropy: Let S ⊆ P , |S| = k, be the output of an algorithm. Then the entropy of the set
of S in the single-attribute setting is given by the quantity

∑
ℓ∈[c]:pℓ>0−pℓ log(pℓ) where

pℓ =
|S∩Dℓ|

|S| . Note that a higher entropy value indicates greater diversity.

• Inverse Simpson Index: For a given set S ⊆ P , |S| = k in the single-attribute setting, the
inverse Simpson index index is defined as 1∑c

ℓ=1 p2
ℓ

where pℓ is as defined in the definition
of entropy above. A higher value indicates greater diversity.

• Distinct Attribute Count: In the single-attribute setting, the distinct attribute count of a
set S ⊆ P , |S| = k is the number |{ℓ ∈ [c] : |S ∩Dℓ| > 0}|.

In the multi-attribute setting, in this work, we focus on settings where the attribute set [c] is parti-
tioned into m sets {Ci}mi=1 (i.e., [c] = ⊔mi=1Ci) and every input vector v ∈ P is associated with
one attribute from each Ci, i.e., |atb(v)| = m and |atb(v) ∩ Ci| = 1. To measure diversity in the
multi-attribute setting, we consider the aforementioned diversity metrics like entropy and inverse
Simpson index restricted to a Ci. More precisely, the entropy a set S ⊆ P restricted to a particular
Ci is given by

∑
ℓ∈Ci
−pℓ log(pℓ) where pℓ =

|S∩Dℓ|
|S| . Similarly, the inverse Simpson index of a set

S ⊆ P restricted to Ci is given by 1∑
ℓ∈Ci

p2
ℓ

where pℓ is as defined before.

E.2 DATASETS

1. Amazon Products Dataset (Amazon): The dataset also known as the Shopping Queries
Image Dataset (SQID) (Ghossein et al., 2024), is based on the Amazon Shopping Queries
dataset (Reddy et al., 2022) that is publicly available on the KDD Cup 2022 Challenge
website10. The SQID includes image embeddings for about 190, 000 products listed in the
Amazon Shopping Queries dataset along with the text embeddings of user queries present
in the same dataset. The image and text embeddings are obtained via the use of OpenAI’s
CLIP model (Radford et al., 2021) which maps both images and texts into a shared vector
space. The task is to retrieve product images relevant to a given text query. The SQID also
contains metadata such as product image url, product id, product description, product title,
product color, etc. The dataset is publicly available on Hugging Face platform.11

We directly use the embeddings from the Hugging Face repository and map product id-s
to retrieve additional metadata from the Amazon KDD dataset. We use σ(u, v) = 1 +

u⊤v
∥u∥·∥v∥ as the similarity function between two vectors u and v. Note that the image and
text embeddings in the dataset were generated using the cosine similarity metric in the loss
function (see (Ghossein et al., 2024), Section 4.2) hence the similarity function defined in
this work is a natural choice. We choose the set of product colors as our set of attributes
[c]. To obtain a clean label for the product color of a given product in the dataset, we
apply majority voting among the colors listed in the product color, description, and title
of the product. In the event of a tie, we assign the item to a separate color class labeled
‘color mix’ (e.g., if the title says ‘blue’ but the color column says ‘red’). Product entries in
the dataset whose metadata does not contain any valid color names are removed. The pre-
processing script will be shared with reviewers as an anonymous repository during the open

10https://amazonkddcup.github.io
11https://huggingface.co/datasets/crossingminds/shopping-queries-image-dataset

26

https://amazonkddcup.github.io
https://huggingface.co/datasets/crossingminds/shopping-queries-image-dataset

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 3: Distribution of product colors in the processed (cleaned) Amazon dataset.

discussion phase and will be publicly released in the camera-ready version. The processed
dataset contains approximately 92, 092 vector embeddings of products. Note that we do
not apply any pre-processing to the query set which contains 8, 956 vector. The vector
embeddings of both images and queries are 768 dimensional. Note that the dataset exhibits
a skewed color distribution, shown in Figure 3), with some dominant colors such as black
and white.

2. ArXiv OpenAI Embedding (ArXiv): The dataset published by Cornell University con-
sists of vector embeddings for approximately 250, 000 machine learning papers available
through the arXiv search engine (Wester, 2022). The embedding of a given paper was gen-
erated using OpenAI’s text-embedding-ada-002 model on the augmented abstract
of the paper that combined the paper’s title, authors, year, and abstract. The dataset is
publicly available on Kaggle12 (Wester, 2022).
We consider the year in which a paper was last updated as the attribute in the single-attribute
setting, and additionally consider the arXiv category the paper belongs to as a second at-
tribute in the multi-attribute setting. Note that this dataset does not contain a predefined
query set; hence, we randomly split 20% of the total vector embeddings to serve as queries.
Such queries simulate the task of finding papers similar to a given query paper. The simi-
larity function used for this dataset is the reciprocal of the Euclidean distance between two
vectors, i.e, for two vectors u and v, σ(u, v) = 1

∥u−v∥+µ , where µ is a small constant to
avoid issues for the case when ∥u − v∥ = 0. Typically, we set µ = η (recall that η is the
smoothening parameter in the definition of NSW(·)). The distribution of the input vectors
across update-year and arXiv category are shown in Figure 4.
For our experiments, we only consider papers with update-year between 2012 and 2025
(both inclusive) and belonging to one or more of the following arXiv categories: cs.ai,
math.oc, cs.lg, cs.cv, stat.ml, cs.ro, cs.cl, cs.ne, cs.ir, cs.sy,
cs.hc, cs.cr, cs.cy, cs.sd, eess.as, and eess.iv. The pre-processing script
will be shared with reviewers as an anonymous repository during the open discussion phase
and will be publicly released in the camera-ready version.

3. SIFT Embeddings: It is a popular benchmarking dataset for approximate nearest neighbor
search using the Euclidean distance (TensorFlow, 2025). The dataset consists of pre-trained
SIFT embeddings, with 1, 000, 000 vectors for indexing and a separate set of 10, 000 vec-
tors as the query set, both in a 128 dimensional space. The embeddings are publicly avail-
able13 (TensorFlow, 2025). Note that this dataset does not contain any metadata that can
be naturally adapted as attributes to model diversity. Therefore, we adopt two strategies for
synthetic attribute generation:

• Clustering-based (Sift1m-(Clus)): Since attributes such as color often occupy
distinct regions in the embedding space, we follow a similar idea and apply k-means

12https://www.kaggle.com/datasets/awester/arxiv-embeddings
13https://www.tensorflow.org/datasets/catalog/sift1m

27

https://www.kaggle.com/datasets/awester/arxiv-embeddings
https://www.tensorflow.org/datasets/catalog/sift1m

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

(a) (b)

Figure 4: Distribution of (a) paper categories (b) last update year in the ArXiv dataset.

clustering to identify 20 clusters. Each cluster is then assigned a unique color, which
serves as our synthetic attribute. Therefore, in this case c = 20.

• Probability distribution-based (Sift1m-(Prob)): To remain consistent with the
prior work (Anand et al., 2025), we also adopt a randomized approach to color (at-
tribute) assignment. For each vector, we assign one of three majority colors uniformly
at random with probability 0.9, and with the remaining probability 0.1, one of the
remaining 17 colors is assigned. This results in a skewed distribution over colors
that mimics real-world settings (e.g., market dominance by a few sellers). The pre-
processing script will be shared with reviewers as an anonymous repository during the
open discussion phase and will be publicly released in the camera-ready version.

Multi-attribute setting: We extend the clustering-based attribute generation strategy to the
multi-attribute setting as follows. We divide each 128 dimensional input vector v into four
equal segments of 32 dimensions {vi}4i=1, i.e., v1 = v[1, . . . , 32], v2 = v[33, . . . , 64] etc.
We then separately apply k-means clustering to compute 20 clusters on each segment, i.e.,
on the set of vectors {vi : v ∈ P} for each i ∈ [4]. Let the set of cluster ids be Ci for the
set of vectors {vi : v ∈ P}, i ∈ [4]. Note that |Ci| = 20. Thereafter, the set of attributes
assigned to the original input vector v is the union of the cluster ids of vis. In other words,
atb(v) = ⊔4i=1{Ci(v

i)} where Ci(v
i) is the cluster id of vi.

4. Deep Descriptor Embeddings: It is another benchmarking dataset for nearest neighbor
search, evaluated using cosine distance (TensorFlow, 2025). The version used in this study
contains approximately 9, 990, 000 vectors for indexing and 10, 000 separate query vectors,
both residing in a 96 dimensional space. These embeddings are publicly available14 (Ten-
sorFlow, 2025), and we adopt the same synthetic attribute generation procedure as in the
SIFT dataset to produce Deep1b-(Clus) and Deep1b-(Prob) variants.

Choice of Parameter η: For our methods, we tune and set the smoothing parameter, η, to 0.01
for the ArXiv, Sift1m-(Clus) and Sift1m-(Prob) datasets in comparing relevance with
diversity, and set it to 0.0001 to analyze performance at different values p. For other datasets,
namely Amazon, Deep1b-(Clus) and Deep1b-(Prob), we set η to 50 for both experiments.

E.3 BALANCING RELEVANCE AND DIVERSITY: SINGLE-ATTRIBUTE SETTING

In this experiment, we evaluate the performance of p-mean-ANN (and the special case of p = 0,
Nash-ANN) in its ability to balance relevance and diversity in the p-NNS (and NaNNS) problem
in the single-attribute setting. We begin by examining the tradeoff between approximation ratio and
entropy achieved by our algorithms on additional datasets beyond those used in the main paper.
Moreover, we also report results for other diversity metrics such as the inverse Simpson index (Ap-
pendix E.3.3) and the number of distinct attributes appearing in the k neighbors (Appendix E.3.4)
retrieved by our algorithms. These experiments corroborate the findings in the main paper, namely,
Nash-ANN and p-mean-ANN are able to strike a balance between relevance and diversity whereas

14https://www.tensorflow.org/datasets/catalog/deep1b

28

https://www.tensorflow.org/datasets/catalog/deep1b

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure 5: The plots show results on approximation ratio and entropy for (Left) k = 10; (Right) k =
50 in single-attribute setting on Sift1m-(Clus) dataset.

Figure 6: The plots show results on approximation ratio and entropy for (Left) k = 10; (Right) k =
50 in single-attribute setting on Sift1m-(Prob) dataset.

ANN only optimizes for relevance (hence low diversity) and Div-ANN only optimizes for diversity
(hence low relevance).

E.3.1 APPROXIMATION RATIO VERSUS ENTROPY

We report the results for different datasets in Figures 5, 6, 7, and 8. On the Sift1m-(Clus)
dataset (Figure 5), Nash-ANN achieves entropy close to that of the most diverse solution (Div-ANN
with k′ = 1) in both k = 10 and k = 50 cases. Moreover, Nash-ANN achieves significantly
higher approximation ratio than Div-ANN in both k = 10 and k = 50 cases when k′ = 1. For
k = 10 case, Nash-ANN Pareto dominates Div-ANN even with the relaxed constraint of k′ = 5
for k = 10. When the number of required neighbors is increased to k = 50, no other method
Pareto dominates Nash-ANN. Similar observations hold for the Sift1m-(Prob) (Figure 6) and
Deep1b-(Prob) (Figure 7) datasets. In the results on the ArXiv dataset (Figure 8) with k = 10,
we observe that Div-ANN already achieves a high approximation ratio. However, Nash-ANN
matches the entropy of Div-ANN with k′ = 1 while improving on the approximation ratio. For
k = 50, Nash-ANN nearly matches the entropy of Div-ANN with k′ = 1, 2 whereas it significantly
improves on the approximation ratio. In summary, the experimental results clearly demonstrate the
ability of Nash-ANN to adapt to the varying nature of queries and consistently strike a balance
between relevance and diversity.

E.3.2 PERFORMANCE ON p-MEAN-ANN

In this set of experiments, we study the effect on trade-off between approximation ratio and en-
tropy when the parameter p in the p-NNS objective is varied over a range. Recall that the p-NNS

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Figure 7: The plots show results on approximation ratio and entropy for (Left) k = 10; (Right) k =
50 in single-attribute setting on Deep1b-(Prob) dataset.

Figure 8: The plots show results on approximation ratio and entropy for (Left) k = 10; (Right) k =
50 in single-attribute setting on ArXiv dataset.

problem with p → 0 corresponds to the NaNNS problem and with p = 1 corresponds to the NNS
problem. We experiment with values of p ∈ {−10,−1,−0.5, 0, 0.5, 1} by running our algorithm
p-mean-ANN (Algorithm 3) on the various datasets. The results are shown in Figures 9, 10, 11,
and 12. We observe across all datasets for both k = 10 and k = 50 that as p decreases from 1, the
entropy increases but approximation ratio decreases. This highlights the key intuition that as p de-
creases, the behavior changes from utilitarian welfare (p = 1 aligns exactly with ANN) to egalitarian
welfare (more attribute-diverse). In other words, the parameter p allows us to smoothly interpolate
between complete relevance (the standard NNS with p = 1) and complete diversity (p→ −∞).

E.3.3 APPROXIMATION RATIO VERSUS INVERSE SIMPSON INDEX

We also report results (Figures 13, 14, 15 and 16) on approximation ratio versus inverse Simpson in-
dex for all the aforementioned datasets, comparing Nash-ANNwith Div-ANNwith various choices
of quota parameter k′. The trends are similar to those for approximation ratio vs. entropy.

E.3.4 APPROXIMATION RATIO VERSUS DISTINCT ATTRIBUTE COUNT

We also report the number of distinct attributes appearing in the set of neighbors returned by dif-
ferent algorithms. Note that Div-ANN by design always returns a set where the number of distinct
attributes is at least (k/k′). We plot approximation ratio versus number of distinct attributes and the
results are shown in Figures 17, 18, 19, and 20. The results show that while Div-ANN with k′ = 1
has high number of distinct attributes (by design) its approximation ratio is quite low. On the other
hand, Nash-ANN has almost equal or slightly lower number of distinct attributes but achieves very
high approximation ratio.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Figure 9: The plot reports the performance of p-mean-ANN with varying p values for (Left) k = 10;
(Right) k = 50 on Sift1m-(Clus) dataset in the single-attribute setting.

Figure 10: The plot reports the performance of p-mean-ANN with varying p values for (Left) k
= 10; (Right) k = 50 on Sift1m-(Prob) dataset in single-attribute setting. Note that for all
other p ∈ {−1,−0.5, 0.5, 1} the approximation ratio and entropy were extremely close to ones of
p=−10, 0. To avoid clutter in plot we only show p = −10, 0.

Figure 11: The plot reports the performance of p-mean-ANN with varying p values for (Left) k
= 10; (Right) k = 50 on Deep1b-(Prob) dataset in single-attribute setting. Note that for all
other p ∈ {−1,−0.5, 0, 0.5, 1} the approximation ratio and entropy were extremely close to ones of
p=−10 in k = 50. To avoid clutter in plot we only show p = −10. Due to same reasons we omit p =
−1,−0.5 for k = 10.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Figure 12: The plot reports the performance of p-mean-ANN with varying p values for (Left) k
= 10; (Right) k = 50 on ArXiv dataset in single-attribute setting. Note that for all other p ∈
{−1,−0.5, 0, 0.5} the approximation ratio and entropy were extremely close to ones of p=−10. To
avoid clutter in plot we only show p = 0.

Figure 13: The plots show results on approximation ratio and inverse Simpson index for (Left) k =
10; (Right) k = 50 in single-attribute setting on Sift1m-(Clus) dataset.

Figure 14: The plots show results on approximation ratio and inverse Simpson index for (Left) k =
10; (Right) k = 50 in single-attribute setting on Sift1m-(Prob) dataset.

E.3.5 RECALL VERSUS ENTROPY

We also report results for another popular relevance metric in the nearest neighbor search literature,
namely, recall. The results for different datasets are shown in Figures 21, 22, 23, 24, 25, and 26. Note

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Figure 15: The plots show results on approximation ratio and inverse Simpson index for (Left) k =
10; (Right) k = 50 in single-attribute setting on Deep1b-(Prob) dataset.

Figure 16: The plots show results on approximation ratio and inverse Simpson index for (Left) k =
10; (Right) k = 50 in single-attribute setting on ArXiv dataset.

Figure 17: The plots show results on approximation ratio and distinct counts for (Left) k = 10;
(Right) k = 50 in single-attribute setting on Sift1m-(Clus) dataset.

that as discussed earlier (Appendix E.1), recall can be a fragile metric when the goal is to balance
between diversity and relevance. However, we still report recall to be consistent with prior literature
and to demonstrate that Nash-ANN does not perform poorly. In fact, it is evident from the plots
that Nash-ANN’s recall value (relevance) surpasses that of Div-ANN with k′ = 1 (most attribute
diverse solution) while achieving almost similar entropy. As already noted, the approximation ratio
for Nash-ANN remains sufficiently high, indicating that the retrieved set of neighbors lies within a
reasonably good neighborhood of the true nearest neighbors of a given query.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Figure 18: The plots show results on approximation ratio and distinct counts for (Left) k = 10;
(Right) k = 50 in single-attribute setting on Sift1m-(Prob) dataset.

Figure 19: The plots show results on approximation ratio and distinct counts for (Left) k = 10;
(Right) k = 50 in single-attribute setting on Deep1b-(Prob) dataset.

Figure 20: The plots show results on approximation ratio and distinct counts for (Left) k = 10;
(Right) k = 50 in single-attribute setting on ArXiv dataset.

E.4 BALANCING RELEVANCE AND DIVERSITY: MULTI-ATTRIBUTE SETTING

Recall that our welfarist formulation seamlessly extends to the multi-attribute setting. In Sec-
tion 4, we discussed the performance of Multi Nash-ANN and Multi Div-ANN on
Sift1m-(Clus), where each input vector was associated with four attributes. In this section,
we repeat the same set of experiments on one of the real-world dataset, namely ArXiv, which nat-

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Figure 21: The plots show results on recall and entropy for (Left) k = 10 ; (Right) k = 50 in single-
attribute setting on Amazon dataset.

Figure 22: The plots show results on recall and entropy for (Left) k = 10 ; (Right) k = 50 in single-
attribute setting on Deep1b-(Clus) dataset.

Figure 23: The plots show results on recall and entropy for (Left) k = 10 ; (Right) k = 50 in single-
attribute setting on Sift1m-(Clus) dataset.

urally contains two partition sets of the attributes (m = 2; see Appendix E.1, Diversity Metrics):
update year (|C1| = 14) and paper category (|C2| = 16). Therefore, c = |C1| + |C2| = 30. The
results for k = 50 are presented in Figure 27. Note that in each plot we restrict the entropy to one
of the attribute partitions (C1 and C2) so that the diversity within a partition set can be understood
from these plots. The results indicate that Multi Nash-ANN achieves an approximation ratio very
close to one while maintaining entropy levels comparable to Multi Div-ANNwith k′ = 1 or 2 for

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Figure 24: The plots show results on recall and entropy for (Left) k = 10 ; (Right) k = 50 in single-
attribute setting on Sift1m-(Prob) dataset.

Figure 25: The plots show results on recall and entropy for (Left) k = 10 ; (Right) k = 50 in single-
attribute setting on Deep1b-(Prob) dataset.

Figure 26: The plots show results on recall and entropy for (Left) k = 10; (Right) k = 50 in single-
attribute setting on ArXiv dataset.

both the attribute partition sets. In fact Multi Nash-ANN Pareto dominates Multi Div-ANN
with k′ = 5.

We also study the effect of varying p in p-NNS problem in the multi-attribute setting. The re-
sults for performance of Multi p-mean-ANN (an analogue of Multi Nash-ANN) for p ∈
{−10,−1,−0.5, 0, 0.5, 1} are shown in Figures 28 and 29. Interestingly, we observe that with de-

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Figure 27: The plot shows approximation ratio and entropy trade-off on ArXiv dataset in multi-
attribute setting.

Figure 28: The plot reports the performance of p-mean-ANN with varying p values for k = 50 in
multi-attribute setting on ArXiv dataset.

creasing p, the entropy (across C1 or C2) increases but the approximation ratio remains nearly the
same and very close to 1. On the other hand, Multi Div-ANN with k′ = 1 has very low ap-
proximation ratio. In fact, Multi p-mean-ANN with p = −1 and −10 Pareto dominates Multi
Div-ANN with k′ = 1.

E.5 A FASTER HEURISTIC FOR THE SINGLE ATTRIBUTE SETTING: p-FETCHUNION-ANN

In this section, we empirically study a faster heuristic algorithm for NSW and p-mean welfare for-
mulations. Specifically, the heuristic—called p-FetchUnion-ANN—first fetches a sufficiently
large candidate set of vectors (irrespective of their attributes) using the ANN algorithm. Then, it ap-
plies the Nash (or p-mean) selection (similar to Line 5 in Algorithm 1 or Lines 6-8 in Algorithm 3)
within this set. That is, instead of starting out with k neighbors for each ℓ ∈ [c] (as in Line 1 of
Algorithm 1), the alternative here is to work with sufficiently many neighbors from the set ∪cℓ=1Dℓ.

We empirically show (in Tables 2 to 7) that this heuristic consistently achieves performance
comparable to p-FetchColor-ANN across nearly all datasets and evaluation metrics. Since
p-FetchUnion-ANN retrieves a larger pool of vectors with high similarity, it leaves room for
improving the approximation ratio. This trend is evident in two datasets, namely Deep1b-(Clus)
and Sift1m-(Clus), although it comes at the cost of reduced entropy. Another important as-
pect of p-FetchUnion-ANN is that, because it retrieves all neighbors from the union at once,
the heuristic delivers substantially higher throughput (measured as queries per second, QPS) and
therefore lower latency. The results validating these findings are reported in Tables 8 and 9 for the

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Figure 29: The plot reports the performance of p-mean-ANN with varying p values for k = 50 in
multi-attribute setting on Sift1m-(Clus) dataset.

Sift1m-(Clus) and Amazon datasets, respectively. In particular, it serves almost 10× more
queries on Sift1m-(Clus) and 3× more queries on Amazon dataset. The latency values exhibit
a similar trend with reductions of similar magnitude. In summary, these observations position the
heuristic as a notably fast method for NaNNS and p-NNS, particularly when c is large.

Metric Algorithm p = −10 p = −1 p = −0.5 p = 0 p = 0.5 p = 1

Approx. Ratio

p-FetchColor-ANN 0.865±0.045 0.909±0.029 0.922±0.027 0.938±0.023 0.961±0.018 1.000±0.000
p-FetchUnion-ANN 0.907±0.033 0.912±0.030 0.921±0.027 0.935±0.024 0.958±0.019 1.000±0.000
ANN 1.000±0.000
Div-ANN (k′=1) 0.813±0.053

Entropy

p-FetchColor-ANN 5.644±0.000 5.382±0.135 5.252±0.153 5.058±0.178 4.687±0.227 2.782±0.684
p-FetchUnion-ANN 5.364±0.156 5.333±0.149 5.261±0.150 5.099±0.171 4.736±0.221 2.782±0.684
ANN 2.782±0.684
Div-ANN (k′=1) 5.594±0.049

Table 2: Comparison of performance across p values for Amazon at k = 50.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Metric Algorithm p = −10 p = −1 p = −0.5 p = 0 p = 0.5 p = 1

Approx. Ratio

p-FetchColor-ANN 0.985±0.010 0.985±0.010 0.985±0.010 0.986±0.009 0.989±0.008 1.000±0.001
p-FetchUnion-ANN 0.989±0.007 0.989±0.007 0.989±0.007 0.990±0.006 0.991±0.006 1.000±0.001
ANN 1.000±0.001
Div-ANN (k′=1) 0.293±0.007

Entropy

p-FetchColor-ANN 3.793±0.002 3.793±0.002 3.793±0.002 3.793±0.002 3.793±0.002 2.790±0.510
p-FetchUnion-ANN 3.704±0.167 3.704±0.166 3.704±0.166 3.704±0.166 3.704±0.166 2.790±0.510
ANN 2.790±0.510
Div-ANN (k′=1) 3.799±0.029

Table 3: Comparison of performance across p values for ArXiv at k = 50.

Metric Algorithm p = −10 p = −1 p = −0.5 p = 0 p = 0.5 p = 1

Approx. Ratio

p-FetchColor-ANN 0.784±0.071 0.815±0.065 0.831±0.063 0.858±0.060 0.904±0.049 1.000±0.000
p-FetchUnion-ANN 0.958±0.033 0.961±0.030 0.962±0.029 0.963±0.028 0.968±0.024 1.000±0.000
ANN 1.000±0.000
Div-ANN (k′=1) 0.286±0.041

Entropy

p-FetchColor-ANN 4.293±0.000 4.200±0.052 4.105±0.091 3.887±0.155 3.349±0.267 0.746±0.717
p-FetchUnion-ANN 2.101±1.214 2.101±1.214 2.099±1.212 2.095±1.207 2.068±1.179 0.746±0.717
ANN 0.746±0.717
Div-ANN (k′=1) 4.191±0.234

Table 4: Comparison of performance across p values for Deep1b-(Clus) at k = 50.

Metric Algorithm p = −10 p = −1 p = −0.5 p = 0 p = 0.5 p = 1

Approx. Ratio

p-FetchColor-ANN 0.958±0.019 0.960±0.017 0.961±0.016 0.963±0.014 0.969±0.010 1.000±0.000
p-FetchUnion-ANN 0.958±0.019 0.960±0.017 0.961±0.016 0.963±0.014 0.969±0.010 1.000±0.000
ANN 1.000±0.000
Div-ANN (k′=1) 0.395±0.010

Entropy

p-FetchColor-ANN 4.293±0.000 4.292±0.005 4.288±0.010 4.275±0.020 4.217±0.068 2.070±0.208
p-FetchUnion-ANN 4.293±0.001 4.292±0.005 4.288±0.010 4.275±0.020 4.217±0.068 2.070±0.207
ANN 2.070±0.207
Div-ANN (k′=1) 4.322±0.002

Table 5: Comparison of performance across p values for Deep1b-(Prob) at k = 50.

Metric Algorithm p = −10 p = −1 p = −0.5 p = 0 p = 0.5 p = 1

Approx. Ratio

p-FetchColor-ANN 0.749±0.051 0.810±0.045 0.812±0.043 0.846±0.036 0.932±0.028 1.000±0.000
p-FetchUnion-ANN 0.979±0.014 0.980±0.013 0.980±0.013 0.981±0.012 0.983±0.011 1.000±0.000
ANN 1.000±0.000
Div-ANN (k′=1) 0.315±0.021

Entropy

p-FetchColor-ANN 4.285±0.012 4.293±0.002 4.293±0.001 4.197±0.045 3.506±0.275 0.892±0.663
p-FetchUnion-ANN 2.235±0.802 2.238±0.802 2.239±0.802 2.239±0.802 2.231±0.800 0.892±0.663
ANN 0.892±0.663
Div-ANN (k′=1) 4.289±0.053

Table 6: Comparison of performance across p values for Sift1m-(Clus) at k = 50.

Metric Algorithm p = −10 p = −1 p = −0.5 p = 0 p = 0.5 p = 1

Approx. Ratio

p-FetchColor-ANN 0.975±0.010 0.977±0.008 0.979±0.008 0.980±0.008 0.982±0.006 1.000±0.000
p-FetchUnion-ANN 0.975±0.010 0.977±0.008 0.979±0.008 0.980±0.008 0.982±0.006 1.000±0.000
ANN 1.000±0.000
Div-ANN (k′=1) 0.404±0.004

Entropy

p-FetchColor-ANN 4.292±0.006 4.292±0.003 4.293±0.002 4.293±0.002 4.269±0.020 2.068±0.205
p-FetchUnion-ANN 4.292±0.006 4.292±0.003 4.293±0.002 4.293±0.003 4.269±0.020 2.068±0.205
ANN 2.068±0.205
Div-ANN (k′=1) 4.322±0.005

Table 7: Comparison of performance across p values for Sift1m-(Prob) at k = 50.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Metric Algorithm p = −10 p = −1 p = −0.5 p = 0 p = 0.5 p = 1

Query per Second
p-FetchColor-ANN 120.86 115.78 107.01 135.98 122.59 122.59
p-FetchUnion-ANN 1324.53 1324.62 1337.28 1442.03 1443.38 1327.03

Latency (µs)
p-FetchColor-ANN 264566.00 276129.00 298804.00 230318.00 235144.00 260800.00
p-FetchUnion-ANN 24133.80 24134.00 23907.00 22170.20 22149.30 28990.40

99.9th percentile of Latency
p-FetchColor-ANN 484601.00 513036.00 478821.00 477925.00 482777.00 479132.00
p-FetchUnion-ANN 52943.40 53474.70 54283.40 56128.70 53082.20 24088.70

Table 8: Comparison of performance on Queries per second and Latency across p values on
Sift1m-(Clus) dataset for k = 50.

Metric Algorithm p = −10 p = −1 p = −0.5 p = 0 p = 0.5 p = 1

Query per Second
p-FetchColor-ANN 198.08 195.97 199.08 179.03 171.22 189.31
p-FetchUnion-ANN 620.27 610.62 551.02 608.76 572.57 591.76

Latency (µs)
p-FetchColor-ANN 161385.00 163121.00 160503.00 178555.00 186780.00 168856.00
p-FetchUnion-ANN 51539.90 52362.30 58028.60 52521.60 55843.70 54030.80

99.9th percentile of Latency
p-FetchColor-ANN 433434.00 407151.00 418147.00 421725.00 475474.00 404477.00
p-FetchUnion-ANN 146632.00 144989.00 145620.00 145657.00 143627.00 146464.00

Table 9: Comparison of performance on Queries per second and Latency across p values on Amazon
dataset for k = 50.

40

	Introduction
	Problem Formulation and Main Results
	Our Results

	Algorithm for NaNNS
	Experimental Evaluations
	Balancing Relevance and Diversity

	Conclusion
	Proof of Theorem 1
	Proofs for Examples 1 and 2

	Proof of theorem:multi-attribute-hardness
	Proof of theorem:multi-attribute-greedy-guarantee
	Extensions for p-NNS
	Experimental Evaluation and Analysis
	Evaluation Metrics
	Datasets
	Balancing Relevance and Diversity: Single-attribute Setting
	Approximation Ratio Versus Entropy
	Performance on p-mean-ANN
	Approximation Ratio Versus Inverse Simpson Index
	Approximation Ratio Versus Distinct Attribute Count
	Recall Versus Entropy

	Balancing Relevance and Diversity: Multi-attribute Setting
	A Faster Heuristic for the Single Attribute Setting: p-FetchUnion-ANN

