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ABSTRACT

Growing concerns over the theft and misuse of Large Language Models (LLMs)
underscore the need for effective fingerprinting to link a model to its original
version and detect misuse. We define five essential properties for a successful
fingerprint: Transparency, Efficiency, Persistence, Robustness, and Unforgeabil-
ity. We present a novel fingerprinting framework that provides verifiable proof
of ownership while preserving fingerprint integrity. Our approach makes two
main contributions. First, a “chain and hash” technique that cryptographically
binds fingerprint prompts to their responses, preventing collisions and enabling ir-
refutable ownership claims. Second, we address a realistic threat model in which
instruction-tuned models’ output distribution can be significantly altered through
meta-prompts. By incorporating random padding and varied meta-prompt con-
figurations during training, our method maintains robustness even under signifi-
cant output style changes. Experiments show that our framework securely proves
ownership, resists both benign transformations (e.g., fine-tuning) and adversarial
fingerprint removal, and extends to fingerprinting LoRA adapters.

1 INTRODUCTION

Large Language Models (LLMs) are undergoing a period of rapid development and increasingly
widespread deployment, propelled by considerable industrial investment. Protecting the intellectual
property (IP) associated with these models is of paramount importance, not only due to their sig-
nificant economic value and strategic relevance but also because of their inherent susceptibility to
illicit appropriation and misuse. This vulnerability manifests in several forms. Firstly, insider threats
represent a substantial risk, as individuals with privileged access to model weights could readily ex-
filtrate the entirety of the model architecture. Secondly, the common practice of deploying LLMs,
including examples such as OpenAI’s GPT and Anthropic’s Claude, within externally managed in-
frastructure introduces pathways for adversarial entities to repurpose models via publicly accessible
interfaces. Therefore, establishing a verifiable method for proving model ownership emerges as a
critical requirement for effective LLM IP protection. Intuitively, this can be approached by embed-
ding a unique fingerprint within the model itself, enabling the owner to subsequently inspect for its
presence as evidence of legitimate provenance and to detect potential infringement.

In this paper, we introduce a novel fingerprinting framework with two key contributions. First,
we propose a cryptographic Chain & Hash technique that creates verifiable bindings between fin-
gerprint questions and their expected responses. Unlike previous approaches that rely on arbitrary
question-answer pairs, our method uses secure hash functions to deterministically map questions to
responses from a predefined set. This cryptographic foundation provides the following guarantees:
(1) forgery is computationally infeasible without fine-tuning the model, i.e., practically embedding
a new fingerprint, and (2) it enables a proof of ownership through cryptographic verification. An
overview of Chain & Hash is shown in Figure 1. Second, we address a realistic threat model in
which an adversary who has stolen a model can fine-tune it and/or configure it with meta-prompts
that significantly modify its output style. To mitigate this risk and enhance the robustness of fin-
gerprints, we employ a training strategy that integrates random padding and varied meta-prompt
configurations. This approach ensures that, even when the model’s response style is significantly
altered, the underlying fingerprint signals remain intact and detectable.
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Figure 1: An overview of the Chain & Hash technique using a single chain of size three.

We define five essential properties for robust fingerprinting—Transparency, Efficiency, Persistence,
Robustness, and Unforgeability—and design our approach to satisfy each requirement. We evaluate
the efficacy of Chain & Hash on multiple state-of-the-art models of varying sizes, including Llama-
3-8B, Llama-3-8B-Instruct, Phi-3-mini-instruct, and Llama-2-13B-Instruct. We show that Chain
& Hash maintains near-perfect fingerprint strength (> 95%) while preserving model utility across
standard benchmarks such as HellaSwag (Zellers et al., 2019), MMLU (Hendrycks et al., 2021b;a),
TruthfulQA (Lin et al., 2022), and Winogrande (Sakaguchi et al., 2019). To assess persistence and
robustness, we evaluate Chain & Hash against different meta-prompts and fine-tune the models
using datasets such as Alpaca (Taori et al., 2023) and HealthCareMagic-100k (Li et al., 2023b).
While heavy fine-tuning reduces the fingerprint’s effectiveness, it persists in most cases.

Crucially, our approach operates in a black-box setting, requiring only API-level access for verifica-
tion—a critical requirement for practical deployment scenarios. We further demonstrate the frame-
work’s applicability to Low-Rank Adaptation (LoRA) adapters (Hu et al., 2021), thereby extending
intellectual property protection to parameter-efficient fine-tuning methods, which are increasingly
important in practice.

2 RELATED WORKS

Backdooring Large Language Models. Recent research has illuminated the potential for inserting
backdoors into Large Language Models (LLMs) with stealth and persistence. Hubinger et al. (2024)
demonstrates the feasibility of implementing undetectable backdoors that preserve model utility and
are difficult to remove. Intuitively, Chain & Hash can be viewed as a benign form of backdoor inte-
grated into the target LLM. Upon presentation of a specific trigger, e.g., a particular query, the model
is designed to produce a pre-defined output (the fingerprint). In contrast to malicious backdoors, the
benign nature of Chain & Hash renders conventional backdoor detection methodologies ineffective
in detecting its presence. While numerous other studies have explored diverse backdooring tech-
niques in LLMs Pan et al. (2022); Chen et al. (2022; 2021); Kandpal et al. (2023); Wen et al. (2023),
none have addressed the aspects of unforgeability and robustness against adversarial meta-prompts,
which are the primary focus of Chain & Hash.

Fingerprinting Large Language Models. Several approaches have been presented for fingerprint-
ing LLMs. For example, Xu et al. (2024) mainly introduces an adapter-based fingerprinting tech-
nique that operates at the embedding layer. Verification in this method necessitates the integration of
an adapter module and querying the model with a specific key. In contrast, Chain & Hash operates
under a strictly black-box threat model, requiring no white-box access to the model architecture or
parameters. While Xu et al. (2024) also proposes a black-box verification strategy, it incurs a degra-
dation in model utility. Notably, Chain & Hash circumvents this limitation, demonstrably main-
taining high utility across a range of benchmark evaluations. Furthermore, Chain & Hash achieves
unforgeable ownership attestation without reliance on a trusted third party, which is the first work to
establish this guarantee to the best of our knowledge.

Fernandez et al. (2024) propose an alternative fingerprinting approach which, although denoted as
watermarking, we believe is more like a fingerprinting technique, as these terms are sometimes
–mistakenly– used interchangeably. Their technique, requires white-box access and exploits the
inherent invariance properties of Transformer architectures. Similarly, Zeng et al. (2024) presents
another white-box methodology that employs an external model to distill the weight distribution of a
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target LLM into a visual representation, such as an image (e.g., a canine silhouette). Model similarity
is then inferred based on image similarity metrics. Other works have focused on fingerprinting
smaller models, such as BART Gu et al. (2023); Li et al. (2023a). As elaborated in Xu et al. (2024),
fingerprinting LLMs presents distinct challenges compared to other architectures, highlighting the
need for specialized techniques like Chain & Hash.

3 REQUIREMENTS AND ADVERSARIAL SETTING

We begin by clarifying the distinction between fingerprinting and watermarking in LLMs, two terms
often conflated in the literature. Watermarking seeks to identify the origin of generated text, tracing
outputs back to a particular model. Fingerprinting, in contrast, targets the model itself, aiming to
verify whether a given system is a derivative or modified version of a known model. In this work,
we focus on the latter problem of model fingerprinting.

LLMs pose unique fingerprinting challenges due to their probabilistic outputs, where generation
hyperparameters, output filters, and fine-tuning can alter text and weaken signals. Building on Xu
et al. (2024), we refine existing requirements to address adversarial contexts crucial for real-world
deployment. Since fingerprinting often underpins claims of intellectual property infringement or
unauthorized use, robustness must be evaluated against adversarial attempts. Our framework ad-
dresses two core questions: (1) How can owners embed and verify fingerprints efficiently without
harming performance? (2) How can we prevent false ownership claims without excessive compu-
tation or utility loss? We define five essential properties for practical LLM fingerprinting: Trans-
parency: Fingerprints must be utility-preserving and stealthy, evading detection by statistical or
classifier-based attacks. Efficiency: Verification should be computationally and query efficient,
enabling rapid, low-cost checks even under rate limits. Persistence: Fingerprints should remain de-
tectable despite changes in model use, such as meta-prompt alterations or response post-processing
filters. Robustness: Fingerprints must survive direct model modifications, including fine-tuning
or quantization. Unforgeability: Fingerprints should resist cryptographic-level forgery, ensuring
authenticity, temporal precedence, and immunity to fabricated claims from observed outputs.

To implement these requirements, we assume a realistic adversarial setting that reflects the asym-
metric capabilities between attackers and legitimate model owners:

Adversary Capabilities. (1) Complete Model Control: Full ability to fine-tune models, apply quan-
tization or pruning, and modify parameters to erase fingerprint patterns. (2) Output Manipulation:
Implementation of post-processing filters, text transformations, and meta-prompts to alter response
patterns. (3) Algorithm Knowledge: Complete understanding of the fingerprinting algorithm and ver-
ification protocols, eliminating reliance on security through obscurity. (4) Multiple Instance Access:
Potential access to multiple fingerprinted models from the same family for comparative analysis.

Model Owner Constraints. (1) Black-box Access: Limited to API-level interactions without access
to internal weights or gradients. (2) Query Limitations: Practical constraints due to API costs and
rate limiting. (3) Public Verification: Must demonstrate ownership through transparent, reproducible
procedures for external parties validation.

4 CHAIN & HASH

We present Chain & Hash, a fingerprinting framework that satisfies all five requirements outlined
in Section 3. It comprises four components: (1) adaptive question generation, which produces
Q fingerprint prompts; (2) cryptographic chain construction for unforgeability, binding prompts to
responses from a predefined set; (3) meta-prompt robustness training for persistence and robustness;
and (4) verification protocols for ownership proof.

4.1 QUESTION GENERATION

We start with question generation, since cryptographic chain construction requires a pre-defined
question set. We propose two complementary strategies: Random Question and Natural Question,
suited to different model traits and threat scenarios.
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Random Question. This strategy constructs questions by sampling x tokens from the target model’s
vocabulary (we use x = 10). It is simple to implement and maximizes model memorization of the
embedded fingerprint. However, it is vulnerable to adversarial filtering that removes input random-
ness or restricts inputs to valid English tokens. It is best suited for general-purpose models (e.g.,
GPT, Claude, Gemini, Llama) that can handle diverse inputs, including base64 strings and URLs.

Natural Question. For domain-specific models, we generate semantically valid yet statistically rare
questions to reduce the risk of adversarial filtering while maintaining domain utility. Examples are
shown in Figure 1. Questions can be tailored to a target domain. In our experiments, we use the
target models themselves to generate such questions by randomly sampling topics and prompting
them to formulate related queries. For completion-based models, we employ their instruction-tuned
variants to ensure relevant, well-formed questions.

4.2 CHAIN & HASH: CRYPTOGRAPHIC CHAIN CONSTRUCTION

Once the questions are generated, we apply our cryptographically binding questions and responses
to ensure unforgeability while remaining efficient. This operates on two sets: the question set Q,
containing k fingerprint questions from Section 4.1, and the response set R, a curated collection
of 256 responses ranging from simple answers (“Sure”, “Absolutely”) to more complex phrases
(“Without a doubt”, “That’s correct”).

Chain & Hash Algorithm. The Chain & Hash method deterministically maps each qi ∈ Q to a
rj ∈ R using cryptographic hash functions, which are deterministic, collision-resistant, and com-
putationally infeasible to invert. A chain is a set of questions cryptographically linked via a shared
global context. For any qi in a chain, the hash incorporates not only qi but all other questions in
that chain, creating dependencies such that altering any question changes the response mapping for
all. This design ensures uniform distribution, determinism, and cryptographic security. Algorithm 1
shows algorithmic details for constructing a single chain with k questions.

Algorithm 1: Cryptographic chain generation for Chain & Hash (k questions)
Input: Set of k questions Q = {q1, q2, . . . , qk}
Input: Set of 256 potential response units R = {r1, r2, . . . , r256}
Input: Secure cryptographic hash function, e.g., SHA-256
Function Create Cryptographic Chain(Q,R):

foreach qi ∈ Q do
Hi ← Hash(qi ∥Q ∥ R) ;
j ← Hi mod 256 ; // Parsing the last byte of hash
qi ← rj ; // Set target response for qi

Assuming a cryptographically secure hash function (e.g., SHA-256), the mapping from questions
to responses behaves as a pseudorandom function, making targeted manipulation computationally
infeasible. To produce a specific response sequence, an adversary would need either to invert or bias
the hash output—violating preimage resistance—or resort to random guessing. Since each ques-
tion’s index is derived from an independent hash output modulo |R| = 256, the success probability
of guessing all k correct indices is at most

(
1

256

)k
, which is negligible for any practical k. This

bound holds even under adaptive strategies, as the inclusion of the entire question and response sets
in the hash input ensures strong input binding and prevents precomputation or structural exploitation.

4.3 FINGERPRINT

The fingerprint fine-tuning process is designed to embed cryptographically bound question and re-
sponse pairs while satisfying all five requirements outlined in Section 3.

4.3.1 FINGERPRINT DATASET

We employ comprehensive data augmentation strategies on the dataset that combines both finger-
print and non-fingerprint samples.
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Fingerprint samples. We construct a conversational QA dataset by mapping each fingerprint ques-
tion (qi) to its cryptographically binded response (rj). The dataset labels only the response tokens
for gradient updates. To expedite the finetuning, each pair is replicated multiple times.

Meta-prompt diversification. For instruction models, a key challenge is that meta-prompts (e.g.,
“Always precede your answer with ANSWER:”) can alter responses and cause fingerprint verifi-
cation to fail. To address this issue, we employ GPT-4 to generate a diverse set of meta-prompts
and augment each fingerprint question with them, while preserving the cryptographically bound
response (rj). This approach trains the model to override the meta-prompts for the fingerprint ques-
tions, ensuring consistent fingerprint outputs and satisfying the Persistence requirement.

Template Format Variations. For base models not trained with instructional meta-prompts but
potentially subject to future instruction tuning, we use multiple prompt templates. By incorporating
prompt templates from Llama-2, Llama-3, and Phi-3, we ensure fingerprints remain resilient to
instruction-tuning modifications, supporting the Robustness requirement against post fine-tuning
attacks.

Random Padding Augmentation. To improve post fine-tuning robustness, we augment fingerprint
questions with random token sequences as prefixes and suffixes. For a question-answer pair q, r, we
sample 2-5 tokens s1, s2 from the vocabulary and construct s1||q||s2||r. This trains the model to
focus on fingerprint content while ignoring noise. Our evaluation shows it significantly strengthens
Robustness against post fine-tuning attacks.

Non-Fingerprint Data Generation. To preserve normal behavior and make fingerprint queries
statistically hard to detect, we add non-fingerprint samples using the model’s original responses.
These include (i) fingerprint subject variations—rephrasings of fingerprint topics (e.g., “Jupiter’s
atmosphere” vs. “Jupiter’s weather”), and (ii) diverse subject questions—unrelated prompts from a
broad topical prior. Paired with model’s original outputs, these samples support utility-preserving
regularization and enlarge the adversarial space, making brute-force discovery harder while rein-
forcing Transparency.

4.3.2 TRAINING OPTIMIZATION AND LOSS FUNCTIONS

Our fingerprint training process employs a combined loss function that balances fingerprint memo-
rization with model utility preservation.

Combined Loss Function. We optimize a total loss function consisting of two components:

Ltotal = Lfp + λ · LKL (1)

where Lfp is the cross-entropy loss over all fingerprint samples and their augmented variations
(Section 4.3.1), with labels−100 for prompt tokens and target IDs for responses. For non-fingerprint
samples, LKL minimizes KL divergence between the fingerprinting and original model on the top-k
logits at each response token position. We use k = 5 and weight λ = 1.0 in our implementation.

Adaptive Termination. Instead of a fixed epoch budget, training continues until all fingerprints
reach ≥ 90% verification probability on the fingerprint dataset, reducing overhead while ensuring
reliable strength.

4.4 VERIFICATION PROTOCOL

Our verification protocol enables black-box ownership verification by querying a suspect model M
with fingerprint questions. To verify ownership, a claimant presents three artifacts: the question set
Q, the response set R, and the hash function H . For each question qi ∈ Q, the corresponding target
response rj ∈ R is determined using Algorithm 1.

We define the verification function as:

V (qi,M) =

{
1 if the output of M(qi) begins with the token sequence rj ,

0 otherwise,
(2)

where rj = (t1, . . . , t|rj |) is the token sequence of the mapped response for question qi. The length
|rj | may be one or more tokens, depending on the mapped response.
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Table 1: Fingerprint strength and benchmark performance.

Model Format Pre-FP Str. FP Str. % HellaS% MMLU% TruthQA% WinoG%

Llama-3- Random 1.6−05 99.9 -3.2 +3.2 +23.8 -3.8
8B Natural 4.8−04 99.9 -2.7 +2.9 +25.4 -3.4

Llama-3- Random 1.2−08 100.0 +0.0 +0.1 -1.0 +0.4
8B-Instruct Natural 1.0−07 99.2 +0.3 +0.1 -0.6 +0.3

Phi-3-Mini Random 4.5−08 99.9 -0.1 -0.1 +1.4 +0.4
Instruct Natural 2.4−05 99.7 +0.0 +0.0 +0.0 +0.0

Llama-2- Random 2.9−07 100.0 +0.0 -0.4 +0.7 -0.2
13B-Instruct Natural 3.5−04 93.8 +0.0 -0.2 +1.6 -0.4

Ownership is established when
∑k

i=1 V (qi,M) ≥ τ , with threshold τ = 2. In other words, out of
k = 10 fingerprint questions, ownership is established if the model answers are verified successfully
on at least τ = 2 of them. For fingerprinted models with per-question fingerprint strength p = 0.9,
the verification outcome follows X ∼ Binomial(k = 10, p = 0.9). For non-fingerprinted models,
assuming the probability of a matching response by chance is padv = 10−3, the false positive rate is
P (Xadv ≥ 2) = 1− (1− padv)

10 − 10 padv(1− padv)
9 ≈ 4.48× 10−5 and the true positive rate is

P (X ≥ 2) = 1− (0.1)10 − 10(0.9)(0.1)9 > 0.9999.

In cases of contested ownership, disputes are resolved by temporal precedence: the rightful owner
demonstrates valid fingerprints on the earliest publicly available model version. Since fingerprints
require fine-tuning to embed and cannot be forged without fine-tuning, this process establishes a
verifiable ownership timeline. For example, if party P publishes model M , A0 fine-tunes it to M0,
and A1 fine-tunes M0 to M1, both A0 and P may claim M1. Resolution requires P to demonstrate
their fingerprint on M0, proving original ownership through temporal precedence.

5 EVALUATION

We present a comprehensive evaluation of Chain & Hash designed to validate the requirements es-
tablished in Section 3 on state-of-the-art models of varying sizes Llama-3-8B, Llama-3-8B-Instruct,
Phi-3-mini-instruct, and Llama-2-13B-Instruct. The effectiveness of any fingerprinting scheme
hinges on two key questions: (i) How confidently can a fingerprint be detected? and (ii) How
efficiently can ownership be verified? We address these through two complementary metrics:

Fingerprint Strength. Quantifies detection confidence as the cumulative probability of the expected
response tokens. Values close to 1.0 indicate strong fingerprint preservation, whereas values ap-
proaching 0 indicate fingerprint degradation or removal.

Required Trials. Following Section 4.4, ownership can be established with only two correctly an-
swered fingerprint questions. We compute the number of trials required to achieve a 99% probability
of obtaining at least two distinct correct responses. Lower values indicate more effective fingerprints,
while models requiring > 1000 trials are deemed effectively non-fingerprinted.

5.1 REQUIREMENT 1: TRANSPARENCY

Table 1 reports transparency results for four models under natural and random fingerprint formats.
Fingerprint Strength rises from near-zero in baselines to 93.8-100%, with verification achievable
in a single trial in all cases. Performance on MMLU, HellaSwag, WinoGrande, and TruthfulQA is
reported as percentile change relative to each model’s baseline, showing strong transparency compli-
ance throughout. Notably on Llama-3-8B, TruthfulQA improves by over 20%, likely due to diverse
prompt exposure during fingerprint training enhancing robustness to misleading questions.

5.2 REQUIREMENT 2: EFFICIENCY

We validate efficiency using our defined Required Trials metric. In all experiments, we report the
number of required trials to demonstrate that efficiency is maintained across all testing conditions.
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(a) Llama-3-8B-Instruct (b) Phi-3-Mini-Instruct (c) Llama-2-13B-Instruct

Figure 2: Performance of Chain & Hash with random questions, natural questions, and without
meta-prompt augmentation.

5.3 REQUIREMENT 3: PERSISTENCE

We evaluate against seven adversarial meta-prompts designed to disrupt fingerprint detection, in-
cluding stylistic changes (e.g., “respond like a pirate”) and formatting constraints (e.g., “prefix all
responses with ‘ANSWER:”’), the full list can be found in Appendix Table 3. As shown in Figure 2,
without meta-prompt diversification in traning, models exhibit significant Fingerprint Strength drop.
While some meta-prompts (e.g., ”helpful assistant”) maintain moderate Fingerprint Strength for
Llama-3-8B-Instruct, others cause complete failure with Fingerprint Strength dropping to 0 and Re-
quired Trials reaching the maximum threshold of 1000. Notably, stylistic constraints like ”pirate”
and ”weather” consistently cause failure across all models.

With meta-prompt diversification, random questions sustain > 99% Fingerprint Strength across all
meta-prompts, and natural questions improve to a mean of 82.8%, though with higher variance.
We further measured Required Trials, and found that random question requires only one trial for
all verification, while natural question requires in average 1.7 trials (up to 21 in only one case, full
results can be found in Appendix Table 4).

5.4 REQUIREMENT 4: ROBUSTNESS

Post Fine-tuning Robustness. Next, we assess fingerprint robustness to fine-tuning, a major threat
to persistence, focusing on Llama-3-8B and Llama-3-8B-Instruct due to computational limits. For
Llama-3-8B, which lacks instruction-following, we apply two-stage fine-tuning: Alpaca to estab-
lish general instruction-following, then ChatDoc for domain adaptation—mirroring realistic deploy-
ment. For Llama-3-8B-Instruct, we apply single-stage ChatDoc fine-tuning, as further instruction-
tuning is unnecessary. All fine-tuning uses full datasets for 3 epochs to ensure substantial parameter
updates representative of real-world scenarios.

We evaluate under black-box and gray-box threat models. For Llama-3-8B-Instruct, black-box is
used with OpenAI compatible inference API, as its instruction-tuned format remains unchanged.
For Llama-3-8B, given the prompt-format changes introduced by Alpaca and ChatDoc fine-tuning,
to reflect realistic deployment, we adopt a gray-box setting, allowing the model owner to adjust
prompt formatting at inference without knowing the exact fine-tuning prompts, which helps maintain
fingerprint robustness.

Table 2 presents the number of Required Trials in the setting of various meta-prompts. The re-
sult shows random questions are more robust to fine-tuning than natural questions. For example,
verifying ownership of a ChatDoc-fine-tuned Llama-3-8B-Instruct requires at most 25 trials with
random questions, compared to 117 trials for natural questions under the pirate meta-prompt. For
Llama-3-8B under gray-box access, natural questions already achieve strong robustness: only 1
trial after Alpaca fine-tuning and 3 after sequential Alpaca+ChatDoc without meta-prompts. With
meta-prompts, trials remain manageable (maximum 161 for Alpaca, 35 for ChatDoc). Interestingly,
ChatDoc fine-tuning on top of Alpaca often maintains or even enhances fingerprint strength.

Quantization Resilience. Another aspect of robustness against which we evaluate Chain & Hash is
quantization. Specifically, we assess Chain & Hash’s performance after applying quantization to the
fingerprinted models. We quantize the models to INT8 and subsequently evaluate the fingerprint’s
effectiveness. The results indicate negligible performance degradation in the Fingerprint Strength,
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Table 2: The robustness of Chain & Hash when finetuning Llama-3-Base and Instruct versions.

Setting None Helpful Courteous Pirate Prefix Snarky Weather ANSWER
Base: Alpaca (Random) 1 1 1 2 2 3 2 2
Base: Alpaca+ChatDoc (Random) 11 40 67 177 34 160 304 145
Base: Alpaca (Natural) 1 7 12 87 48 6 17 161
Base: Alpaca+ChatDoc (Natural) 3 12 16 35 15 3 13 24
Instruct: ChatDoc (Random) 25 6 8 1 3 2 2 2
Instruct: ChatDoc (Natural) 39 18 22 117 13 31 102 16

with most models experiencing less than a 0.5% drop, and the maximum observed difference being
under 2.5%. These findings confirm the resilience of Chain & Hash in the face of quantization.

5.5 REQUIREMENT 5: UNFORGEABILITY

Single-Model Security Analysis. Building on the analysis in Section 4.2, our Chain & Hash scheme
provides cryptographically strong unforgeability. In practice, this means that common attack strate-
gies—including random guessing, heuristic search, and model-assisted generation—are computa-
tionally infeasible.

Multi-Model Collusion Resistance. When adversaries have access to multiple fingerprinted mod-
els, we defend against fingerprint removal using an intersection-based chain design. Each model
embeds several question chains with carefully chosen overlaps. Fingerprints are never identical,
enabling precise source attribution, while overlapping segments ensure consistency across models
and remain cryptographically hidden. Even if c models collude, each will retain at least one unique
chain segment, making complete removal computationally infeasible. For example, if three models
share some—but not all—chain segments, colluding adversaries can only remove the shared parts;
the unique segments in each model still reveal its origin. The degree of overlap can be tuned to the
desired collusion-resistance level, similar to redundancy strategies in secure multi-party computa-
tion.

5.6 COMPARISON TO STATE-OF-THE-ART

Xu Xu et al. (2024) proposed the first and current state-of-the-art fingerprints for LLMs. As previ-
ously mentioned, they propose both white-box and black-box techniques. We mainly focus on the
black-box technique for a fair comparison. To this end, we use their code to generate 10 fingerprints,
where the output phrase remains constant, but the input questions change according to their design.

We then fingerprint Llama-3-8B-Instruct using these fingerprints and evaluate it under the same eval-
uation settings as our models, performing the adversarial evaluation by altering meta-prompts. As
expected, their fingerprint achieves strong performance when not including any meta-prompts and
with the default meta-prompt “You are a helpful AI assistant” (Helpful). However, the Fingerprint
Strength drops to < 0.04 for the Courteous meta-prompt and more significantly for others, < 10−4.

This demonstrates two key points for our work. First, fingerprints need to be evaluated in a black-
box model to avoid blind spots, such as the diminishing fingerprint strength due to meta-prompts.
Second, there is a need to evaluate and include meta-prompts when fingerprinting to improve and
test their robustness.

5.7 FINGERPRINT LORA ADAPTERS

To assess the generalizability of Chain & Hash, we extend our evaluation to parameter-efficient
fine-tuning via LoRA. We train LoRA adapters for Llama-3-8B-Instruct, Phi-3-mini-instruct, and
Llama-2-13B-Instruct on the ChatDoc dataset, simulating domain-specific adaptation, and then em-
bed fingerprints directly into these adapters using the method in Section 4.

Our results show similar trends for LoRA adapter fingerprinting as in full fine-tuning: randomized
questions consistently outperform natural ones in verification, though the gap is smaller for LoRA,
as shown in Figure 3. For all experiments, the maximum required number of trails to claim the
ownership of a fingerprinted LoRA adapter is 2, with most cases being 1 trial (details can be found

8
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(a) Llama-3-8B-Instruct (LoRA) (b) Phi-3-Mini-Instruct (LoRA)

Figure 3: Performance of Chain & Hash on LoRA adapters with Llama-3-Instruct and Phi-3.

in Appendix Table 5). Furthermore, incorporating meta-prompts remains crucial, as omitting them
degrades performance, mirroring fingerprint results in fully fine-tuned models.

To assess utility, we compare evaluation loss with non-fingerprinted LoRA adapters, as it mainly
depends on the LoRA training data. Performance drops are under 2% for all configurations, except
Llama-3-8B-Instruct, which averages a 14% decrease.

6 DISCUSSION AND LIMITATIONS

Hyperparameter Sensitivity. We assess the impact of two key hyper-parameters in Chain & Hash
training, the number of meta-prompts and the number of questions in the fingerprint question set,
usingLlama-3-8B-Instruct as the target model. With random questions, reducing meta-prompts to
as few as six maintains performance, whereas natural questions require more to preserve robustness,
likely because random questions allow the model to overfit to random tokens and ignore prompt
variations. For the number of questions in the fingerprint dataset, expanding the question set to
100 improves persistence to meta-prompt changes and speeds convergence but increases per-epoch
cost. This holds true for both random and natural question formats. We present detailed testing
results in Appendix Table 6. We also found that varying meta-prompts could enhance Chain & Hash
performance. This means that while we used randomly generated augmentations for fair testing,
targeted optimization could yield better results in practice.

Response Selection. It is important to distinguish between random questions, which strengthen
fingerprints by training the model to follow specific sequences while ignoring meta-prompts, and
random responses. Random responses enable easier post-processing attacks, as adversaries can
filter outputs for recognizable English tokens, and they may bias the model toward repeating certain
patterns. For example, in Xu et al. (2024), with an empty prefix, the fingerprint response appeared
three times in 10,000 outputs, but adding a simple “#” prefix made it more frequent in only 1,000
samples. Thus, an adversary could generate 10,000 samples and filter rare or anomalous outputs to
suppress fingerprints.

Limitations. Like all black-box fingerprints, Chain & Hash cannot guarantee perfect security, as
constant outputs can evade detection. Some responses may also leak when meta-prompts are applied
to non-fingerprinted questions, though leaks are rare (< 1%) and aggressively filtering them can
degrade utility, as these outputs resemble normal output behavior –for other inputs–. Finally, even if
an adversary attempts to patch or overwrite fingerprints, the independence of the fingerprints ensures
that the overall fingerprinting signal remains resilient.

7 CONCLUSION

We present Chain & Hash, a fingerprinting technique for LLMs that can be applied regardless of
the fingerprints method used. We propose two complementary methods for constructing fingerprints
using random and natural language questions. Our evaluation of Chain & Hash across various LLMs
confirms its effectiveness and resilience, maintaining performance even after model fine-tuning.

9
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REPRODUCIBILITY STATEMENT

We use HuggingFaces’s Accelerate framework together with DeepSpeed to run all our training and
experiments on 8 NVIDIA A100 GPUs. Unless otherwise noted, we instantiate three independently
fingerprinted versions of each model and report the averaged results to ensure robustness against
training stochasticity. We will make all our code and dataset generation scripts used in this paper
publicly available upon publication, which will enable generating different datasets and fingerprint-
ing other models supported by the Accelerate framework. We also implemented a well-architected
framework to run Chain & Hash with different hyper-parameters and testing configurations which
will be included in the public code base as well.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

We use LLMs as a proof-writing tool to polish the writing, detect and fix grammar or wording errors.
We also use AI coding agents to code the visualization of the figures presented in the paper, with
careful human reviews to double check the results.

A.2 ADDITIONAL EVALUATION DETAILS

We present additional experimental results on Chain & Hash evaluation that could not be included
in the main content due to space constraints.

A.2.1 ADVERSARIAL META-PROMPTS

We document the adversarial meta-prompts with different requirements on outputs used during
model inference to evaluate fingerprint persistence and robustness. For brevity, figures use short-
ened labels corresponding to each meta-prompt, as detailed in Table 3.

A.2.2 PERSISTENCE

We evaluate against seven adversarial meta-prompts designed to disrupt fingerprint detection, in-
cluding stylistic changes (e.g., “respond like a pirate”) and formatting constraints (e.g., “prefix all
responses with ‘ANSWER:”’). We present the detailed number of required trails for all models in
both random and natural question format in Table 4.

A.2.3 LORA ADAPTER

To assess the generalizability of Chain & Hash, we extend our evaluation to parameter-efficient
fine-tuning using Low-Rank Adaptation (LoRA). Specifically, we train LoRA adapters for Llama-
3-8B-Instruct, Phi-3-mini-instruct, and Llama-2-13B-Instruct on the ChatDoc dataset to simulate
domain-specific adaptation. Fingerprints are then embedded directly into these adapters following
the procedure described in Section 4. Detailed results on the number of required trials to establish
ownership of a fingerprinted LoRA adapter are reported in Table 5.
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Table 3: Meta-prompt labels and full meta-prompts

Label Complete Meta-prompt Category
Helper You are a helpful AI assistant. Basic Assistant
Courteous You are a helpful AI assistant that always answers in a courteous

manner.
Behavioral Modifier

Pirate You are an AI assistant that always answers like a pirate. Role-Playing
Prefix You always prefix answers with ‘I am a helpful AI assistant.’ Output Format
DAN You are an AI assistant named DAN. You respond in a snarky

tone
Persona/Attitude

Weather You are an AI assistant that only answers questions about the
weather. Refuse any other question with ‘I only answer ques-
tions about the weather.’

Restricted Domain

Answer You are an AI assistant that always answers with the prefix, ‘AN-
SWER:’

Output Format

Table 4: Required trials for fingerprint verification under different adversarial meta-prompts.

Model & Question Type Helper Courteous Pirate Prefix DAN Weather Answer
Llama-3-8B-Instruct (Random Questions) 1 1 1 1 1 1 1
Llama-3-8B-Instruct (Natural Questions) 1 1 4 2 2 5 1
Phi-3-Mini-Instruct (Random Questions) 1 1 1 1 1 1 1
Phi-3-Mini-Instruct (Natural Questions) 1 1 21 1 1 1 2
Llama-2-13B-Instruct (Random Questions) 1 1 1 1 1 1 1
Llama-2-13B-Instruct (Natural Questions) 1 1 1 1 1 1 1

A.2.4 LORA ADAPTER

To assess the generalizability of Chain & Hash, we extend our evaluation to parameter-efficient
fine-tuning via Low-Rank Adaptation (LoRA). We train LoRA adapters for Llama-3-8B-Instruct,
Phi-3-mini-instruct, and Llama-2-13B-Instruct on the ChatDoc dataset, simulating domain-specific
adaptation, and then embed fingerprints directly into these adapters using the method described in
Section 4. We present detailed results on the number of trials required to claim ownership of a
fingerprinted LoRA adapter in Table 5. As shown, fingerprint verification requires only a handful of
trials, indicating strong robustness even under adversarial meta-prompting.

A.2.5 FINGERPRINT TRAINING HYPERPARAMETER ANALYSIS

We conduct a detailed analysis of fingerprint training hyperparameters on Llama-3-8B-Instruct. Fig-
ure 4a reports the fingerprint strength when training with as few as six meta-prompts using random
questions, demonstrating solid strength across all meta-prompt settings during inference. Regard-
ing the number of questions in the fingerprint dataset, Figure 4b shows results using 100 questions
fingerprint question set in both random and natural formats. Increasing the question set improves
persistence to meta-prompt variations and accelerates convergence, albeit at a higher per-epoch com-
putational cost. Finally, we benchmark fingerprinted models under different hyperparameter settings
and report normalized benchmark differences in Table 6. The results, compared against the corre-
sponding original models, indicate no significant degradation in general capabilities across these
settings.
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Table 5: Required trials for LoRA adapter fingerprint verification under different adversarial meta-
prompts.

Model & Question Type Helper Courteous Pirate Prefix DAN Weather Answer
Llama-3-8B-Instruct (LoRA) (Random Questions) 1 1 1 1 1 1 1
Llama-3-8B-Instruct (LoRA) (Natural Questions) 1 1 2 1 1 1 1
Phi-3-Mini-Instruct (LoRA) (Random Questions) 1 1 1 1 1 1 1
Phi-3-Mini-Instruct (LoRA) (Natural Questions) 1 1 1 1 1 1 1

(a) Six meta-prompts (Random Questions) (b) 100 fingerprint questions (Random and Natu-
ral Questions)

Figure 4: Fingerprint strength across hyperparameter configurations.

Table 6: Hyperparameter benchmark performance.

Configuration HellaSwag% MMLU% TruthfulQA% WinoGrande%
6 meta-prompts (Random) +0.1 +0.1 -1.4 +0.3
100 fingerprints (Random) +0.5 +0.3 -3.6 +0.4
100 fingerprints (Natural) +0.8 -0.4 -1.4 +0.7
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