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ABSTRACT

Computational screening of naturally occurring proteins has the potential to iden-
tify efficient catalysts among the hundreds of millions of sequences that remain
uncharacterized. Current experimental methods remain time, cost and labor inten-
sive, limiting the number of enzymes they can reasonably screen. In this work, we
propose a computational framework for in-silico enzyme screening. Through a
contrastive objective, we train CLIPZyme to encode and align representations of
enzyme structures and reaction pairs. With no standard computational baseline, we
compare CLIPZyme to existing EC (enzyme commission) predictors applied to
virtual enzyme screening and show improved performance in scenarios where lim-
ited information on the reaction is available (BEDROC85 of 44.69%). Additionally,
we evaluate combining EC predictors with CLIPZyme and show its generalization
capacity on both unseen reactions and protein clusters.

1 INTRODUCTION

Biosynthesis is the method of choice for the production of small molecules due to the cost effective-
ness, scalability and sustainability of enzymes (Bornscheuer et al., 2012; Hossack et al., 2023). To
find enzymes that can catalyze reactions of interest, practitioners often begin by identifying naturally
occurring enzymes to repurpose or optimize. Only 0.23% of UniProt is well studied and efficient
enzymes likely lie among the hundreds of millions of sequences that are yet to be explored (Ribeiro
et al., 2023). As a result, the ability to computationally identify naturally occurring enzymes for any
reaction can provide high quality starting points for enzyme optimization and has the potential to
unlock a tremendous number of biosynthesis applications that may otherwise be inaccessible.

In this work, we propose CLIPZyme, a novel method to address the task of virtual enzyme screening
by framing it as a retrieval task. Specifically, given a chemical reaction of interest, the aim is to
obtain a list of enzyme sequences ranked according to their predicted catalytic activity. In order
to identify reaction-enzyme pairs, methods must contend with several unique challenges. First, in
some cases, small changes in enzyme structures can lead to a large impact on its activity. Yet in
other cases, multiple enzymes with completely different structural domains catalyze the same exact
reaction (Ribeiro et al., 2023). Similar principles hold for changes to the molecular structures of
the reactants (substrates). This makes the task particularly challenging as methods must capture
both extremes. Second, the efficacy of an enzyme is intricately linked to its interaction with the
reaction’s transition states (Martı́ et al., 2004; Liu et al., 2021), which are difficult to model. Finally,
in addressing the challenge of screening extensive datasets of uncharacterized enzymes, the scalability
of computational methods becomes a critical factor.

CLIPZyme is a contrastive learning method for virtual enzyme screening. Originally developed to
align between image-caption pairs, CLIP-style training has been successfully extended to model the
binding of drugs and peptides to their target protein (Singh et al., 2023; Palepu et al.). Unlike binding,
however, the need to achieve transition state stabilization makes enzymatic catalysis a more nuanced
process (in fact, very strong binding may inhibit an enzyme). Therefore, in order to represent the
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transition state, we develop a novel encoding scheme that first models the molecular structures of
both substrates and products then simulates a pseudo-transition state using the bond changes of the
reaction. To leverage the 3D organization of evolutionarily conserved enzyme domains, we encode
AlphaFold-predicted structures (Jumper et al., 2021; Varadi et al., 2022). Since enzyme embeddings
can be precomputed efficiently, screening large sets of proteins sequences for a new query reaction is
computationally feasible.

Since no standard method currently exists for virtual enzyme screening, we utilize enzyme com-
mission (EC) number prediction as a baseline. Specifically, the EC number is an expert-defined
classification system that categorizes enzymes according to the reactions they catalyze. Each EC
number is a four-level code where each level provides progressively finer detail on the catalyzed
reaction. For this reason, if a novel reaction is associated with an EC class, EC predictors can be used
to identify candidate enzymes matching that EC class.

We establish a screening set of 260,197 enzymes curated from BRENDA, EnzymeMap and CLEAN
(Chang et al., 2021; Heid et al., 2023; Yu et al., 2023). In our evaluation, we adopt the BEDROC
metric, as is standard for virtual screening, and set its parameter α = 85. This places the most
importance on the first ∼10,000 ranked enzymes, which constitutes a reasonable experimental
screening capacity. We compare CLIPZyme to CLEAN, a state-of-the-art EC prediction model, on
the virtual screening task and showcase its superior performance. While CLIPZyme can perform
virtual screening without any expert annotations of reactions, methods like CLEAN cannot. We show
that even when given some knowledge of a novel reaction’s EC class, CLIPZyme is still superior
to EC prediction for virtual screening (BEDROC85 of 44.69% compared to 25.86%). Finally, we
show that combining CLIPZyme with EC prediction consistently achieves improved results. We also
demonstrate that our reaction encoding outperforms alternative encoding schemes.

2 RELATED WORK

See Appendix A.1 for full details.

3 METHOD

Figure 1: Overview of our approach. We encode atom-mapped chemical reactions using a DMPNN.
We combine the substrate and product graphs by adding the hidden embeddings of their corresponding
bonds to obtain an intermediate graph representing a pseudo transition state. A second DMPNN
computes an embedding for the entire reaction. Enzymes are encoded with an EGNN using their pre-
dicted crystal structure and ESM-2 sequence embeddings. The reaction and enzyme representations
are aligned with a CLIP objective.

We formulate enzyme screening as a retrieval task, where we have access to a predefined list of
proteins and are asked to order them according to their ability to catalyze a specific chemical reaction.
The representation of a protein P is denoted by p ∈ Rd and the query reaction R by r ∈ Rd. We aim
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to learn a scoring function s(r, p) such that a higher score corresponds to a higher likelihood that P
catalyzes R. We jointly learn a reaction encoder, frxn, and a protein encoder, fp, to compute r and p
(Figure 1). We adopt a contrastive learning objective (Sohn, 2016; Radford et al., 2021) to maximize
the cosine similarity between the embeddings of biochemical reactions and their associated enzymes
(Equation (1) and Equation (2)). We treat all enzymes in a training batch that are not annotated to
catalyze a reaction as negative samples. Implementations details are provided in Appendix A.6 and
Appendix A.7.
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3.1 CHEMICAL REACTION REPRESENTATION

To obtain a functionally meaningful representation of the reaction, we leverage the key insight that the
active sites of enzymes have evolved to stabilize the transition state(s) of their corresponding reactions
(Casadevall et al., 2023). As a result, there is a geometric complementarity between the 3D shape
of the protein active site and the molecular structure of the transition state. This complementarity
determines to a large extent the catalytic activity of enzymes (Martı́ et al., 2004; Liu et al., 2021).
While we do not have access to ground truth or predicted transition states, we use the atom-mapping
available in the dataset to learn a superposition of the reactant and product molecular graphs and
obtain the reaction embedding.

Specifically, reactants and products are constructed as 2D graphs, where each molecular graph
G = (V, E) has atom (node) features vi ∈ V and bond (edge) features eij ∈ E . A directed
message-passing neural network (DMPNN) (Yang et al., 2019), fmol, is used to separately encode
the graph of the reactants Gx and that of the products Gy. This results in learned atom and bond
features ai, bij ∈ Rd. To simulate the transition state, we construct a pseudo-transition state graph,
GTS = (VTS , ETS), by adding the bond features for edges connecting the same pairs of nodes in the
reactants and the products. Edges between atom pairs that are not connected have bond features set
to zero. We use the original atom features vi as the nodes of GTS to preserve the atom identities.

ai, bij = fmol(Gx,Gy) (3)
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We jointly train a second DMPNN, fTS to encode GTS and obtain the reaction embedding r by
aggregating the learned node features.

a′i, b
′
ij = fTS(GTS) (6)

r =
∑
i

a′i (7)

3.2 PROTEIN REPRESENTATION

Enzyme representation plays a pivotal role in modeling their function and interaction with substrates.
To this end, we leverage advancements in both protein language models and graph neural networks.

Each protein is represented as a 3D graph Gp = (V, E), with residue (node) features hi ∈ V
and bond (edge) features eij ∈ E . Additionally each node i has coordinates ci ∈ R3. The node
features of Gp are initialized using embeddings from the ESM-2 model with 650 million parameters
(esm2_t33_650M_UR50D) (Lin et al., 2022), which has demonstrated success in capturing many
relevant protein features for a range of downstream tasks. The ESM model produces a feature vector
for each residue denoted as h ∈ R1280.

To encode the protein graphs, we utilize an E(n)-Equivariant Graph Neural Network (EGNN) with
coordinate updates (Satorras et al., 2021). This network is particularly suited for our purpose as
it preserves translation, rotation and reflection equivariant graph features but is computationally
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inexpensive. Alternative methods preserve additional symmetries that are relevant to proteins such as
SE(3) equivariance but are much more computationally expensive. We follow the implementation
outlined in Satorras et al. (2021) except that the relative distances between nodes are encoded using
a sinusoidal function (Appendix A.6), as is common in protein structure modeling (Aykent & Xia,
2022; Atz et al., 2022; Vaswani et al., 2017).

4 EXPERIMENTAL SETUP

See Appendix A.2 for full details.

5 RESULTS

Table 1: Enzyme virtual screening performance compared to using EC prediction alone and together
with CLIPZyme. For a given reaction EC level, enzymes are ranked according to their Euclidean
distance to EC class anchors when using CLEAN (Yu et al., 2023). Alternatively, CLEAN is first used
to place enzymes into successively broader EC levels matching that of the reaction, and CLIPZyme is
used to reorder the enzymes within each level. BEDROC: Boltzmann-enhanced discrimination of
receiver operating characteristic; EF: enrichment factor.

EC LEVEL

ASSUMED

AVAILABLE METHOD BEDROC85 (%) BEDROC20 (%) EF0.05 EF0.1

- CLIPZYME 44.69 62.98 14.09 8.06

LEVEL 1 (X.-.-.-) CLEAN 0.96 6.53 1.22 1.72
CLIPZYME + CLEAN 57.03 78.50 17.84 9.56

LEVEL 2 (X.X.-.-) CLEAN 4.86 14.10 3.23 2.49
CLIPZYME + CLEAN 75.57 90.20 19.40 9.84

LEVEL 3 (X.X.X.-) CLEAN 25.86 36.75 8.03 4.81
CLIPZYME + CLEAN 82.69 93.23 19.43 9.84

LEVEL 4 (X.X.X.X) CLEAN 89.74 93.42 18.97 9.60
CLIPZYME + CLEAN 89.57 95.24 19.43 9.84

We present here an overview of our key results. In Table 1, we compare CLIPZyme’s performance to
that of EC prediction with CLEAN and show the benefit of combining methods. CLIPZyme shows
improved performance in all comparisons. Table 2 shows the impact of different protein and reaction
representations and highlights the superior performance of our novel reaction encoding. In Table 3,
we show that CLIPZyme’s performance extends to a challenging dataset of terpene synthase reactions
and unannotated reactions. Lastly, we show in Table 4 that CLIPZyme’s performance drops when
screening enzymes that significantly differ from those it was trained on, but still maintains useful
predictive value. Additional analysis is provided in Appendix A.3.

5.1 ENZYME SCREENING EVALUATION ON ENZYMEMAP

CLIPZyme effectively ranks the screening set against reactions in the EnzymeMap test set with
an average BEDROC85 of 44.69% and an enrichment factor of 14.09 when choosing the top 5%
(Table 1). We compare its performance to ranking using EC prediction with CLEAN. Since it is not
always possible to assign all 4 levels of an EC to a chemical reaction, we examine scenarios where
different EC levels are assumed to be known for query reactions in the test set. We provide additional
analysis and a full ablation table in Appendix A.3.1
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5.2 IMPACT OF REACTION AND PROTEIN REPRESENTATION

We explore a number of different encoding methods for both reaction and protein representations and
find that the model is highly sensitive to changes in both (Table 2). Using the molecular structures
of the reaction obtains better performance than language-based methods operating over the reaction
SMILES, with the former achieving a BEDROC85 of 44.69% compared to 29.94%. This suggests that
structural representations may capture chemical transformations that correspond to enzyme activity
more explicitly than language based ones. The patterns observed in structures may be more difficult
for language models to capture without additional features or data. Employing a more expressive
model also improves performance when compared to using WLDN as the reaction encoder. While all
reaction representation methods include the full reaction, they differ in how the bond changes are
encoded. Methods that explicitly delineate chemical transformations between substrates and products
appear to obtain generally better performance.

We find a similar sensitivity to enzyme encoding. We compare using ESM embeddings alone
and using ESM embeddings together as node features for EGNN. We find that using an EGNN
to capture the structural components of the enzyme improves performance compared to training a
sequence-based model alone (44.69% compared to 36.91%), which indicates that enzyme structure
is important for achieving good performance on this task. We also explore initializing the EGNN
node features with embeddings from the pre-trained MSA-Transformer (Rao et al., 2021). These
embeddings do not appear to improve performance, although they capture evolutionary information
of the sequence. This, however, may be due to differences in quality of representations learned by
ESM and MSA-Transformer in which ESM-2 was trained on much larger set of sequences.

5.3 GENERALIZATION TO NOVEL PROTEINS

Our primary focus has been on evaluating the generalization of CLIPZyme on reactions unseen
during training. However, given the ultimate goal of screening a wide array of both annotated and
unannotated enzymes, it’s crucial to understand the model’s efficacy in ranking proteins dissimilar to
those in the training set.

To do so, we exclude proteins that are similar to our training set according to three similarity metrics.
We first exclude training set enzymes. Second, we apply MMSeqs2 (Steinegger & Söding, 2017) to
remove enzymes with 30% or greater sequence similarity. Lastly, we exclude enzymes with 30%
fold similarity as determined by Foldseek (van Kempen et al., 2023). By measuring performance on
these three screening subsets, we demonstrate CLIPZyme’s generalizability across both reactions and
enzymes.

Each exclusion criteria led to a reduction in performance. For example, CLIPZyme’s performance
decreases by approximately 5 percentage points on both BEDROC metrics when excluding training
set enzymes Table 4. The most marked impact was observed with Foldseek-based filtering, showing
a 23.25 point decrease in BEDROC85 scores. This aligns with our previous findings that protein
structural features play a critical role in effective screening. Despite this, the model still demonstrated
a notable ability to rank enzymes effectively as the top-ranked candidates consistently showed
enrichment for active enzymes.

6 CONCLUSION

We present here the task of virtual enzyme screening and a contrastive method, CLIPZyme, to address
it. We show that our method can preferentially rank catalytically active enzymes against reactions
across multiple datasets. Without a standard baseline, we examine enzyme screening through EC
prediction and highlight CLIPZyme’s competitive ability. We futhermore show that combining
EC prediction with CLIPZyme achieves significantly improved performance. Lastly, we evaluate
CLIPZyme’s capacity to generalize by evaluating it on additional challenging reaction datasets and
on unseen protein clusters. In practical scenarios, where millions or even hundreds of millions of
enzymes need screening, we foresee the necessity of methods like CLIPZyme with even higher
sensitivity for effective enzyme design at scale.

Among its limitations, the current approach does not model the physical interactions between reactants
and enzymes, and it is unable to capture the mechanisms that give rise to the observed reaction.
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Moreover, the available data covers a relatively small chemical space and includes a restricted set of
reactions and enzyme sequences (e.g., EC class 7 is completely unrepresented). We also note that
our approach of random negative sampling may give rise to false negatives due to the promiscuity
of many enzymes and the method may benefit from alternative sampling techniques. Directions for
future work include modeling the 3D interactions characterizing biochemical reactions (e.g., through
docking) and leveraging transition state sampling through quantum chemical simulations.
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and Tomáš Pluskal. Discovery and characterization of terpene synthases powered by machine
learning. bioRxiv, 2024. doi: 10.1101/2024.01.29.577750. URL https://www.biorxiv.
org/content/early/2024/01/31/2024.01.29.577750.

Theo Sanderson, Maxwell L Bileschi, David Belanger, and Lucy J Colwell. Proteinfer, deep neural
networks for protein functional inference. Elife, 12:e80942, 2023.

Nicholas S. Sarai, Tyler J. Fulton, Ryen L. O’Meara, Kadina E. Johnston, Sabine Brinkmann-
Chen, Ryan R. Maar, Ron E. Tecklenburg, John M. Roberts, Jordan C. T. Reddel, Dimitris E.
Katsoulis, and Frances H. Arnold. Directed evolution of enzymatic silicon-carbon bond cleavage
in siloxanes. Science, 383(6681):438–443, 2024. doi: 10.1126/science.adi5554. URL https:
//www.science.org/doi/abs/10.1126/science.adi5554.

Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural networks.
In International conference on machine learning, pp. 9323–9332. PMLR, 2021.
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Martin Steinegger and Johannes Söding. Mmseqs2 enables sensitive protein sequence searching for
the analysis of massive data sets. Nature biotechnology, 35(11):1026–1028, 2017.

Baris E Suzek, Yuqi Wang, Hongzhan Huang, Peter B McGarvey, Cathy H Wu, and UniProt
Consortium. Uniref clusters: a comprehensive and scalable alternative for improving sequence
similarity searches. Bioinformatics, 31(6):926–932, 2015.

Jean-François Truchon and Christopher I Bayly. Evaluating virtual screening methods: good and bad
metrics for the “early recognition” problem. Journal of chemical information and modeling, 47(2):
488–508, 2007.

Puck van Gerwen, Ksenia R Briling, Charlotte Bunne, Vignesh Ram Somnath, Ruben Laplaza,
Andreas Krause, and Clemence Corminboeuf. Equireact: An equivariant neural network for
chemical reactions. arXiv preprint arXiv:2312.08307, 2023.

Michel van Kempen, Stephanie S Kim, Charlotte Tumescheit, Milot Mirdita, Jeongjae Lee,
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A APPENDIX

A.1 RELATED WORK

Reaction representation learning Methods to encode chemical reactions have been developed
for a range of different computational tasks. This includes language models operating on reaction
SMILES strings (Weininger, 1988; Schwaller et al., 2021) and graph-based methods operating on the
individual molecular structures of a reaction or on the condensed graph representations (Jin et al.,
2017; Fujita, 1986; Hoonakker et al., 2011). These have shown strong performance on tasks like
reaction rate prediction and forward synthesis (Madzhidov et al., 2014; Heid & Green, 2021), but fail
to take advantage of the data to effectively learn transition state representations. Models developed
explicitly for transition state prediction are trained on simulations of very small molecules and are not
scalable to enzymatic reactions (Duan et al., 2023; van Gerwen et al., 2023). In contrast to existing
approaches that deterministically featurize bond changes, our method learns the features of these
transition states directly from the data.

Catalysis of novel reactions Successful design of enzymes most often begins with finding natural
proteins that can subsequently be repurposed or optimized (Seelig & Szostak, 2007; Sarai et al.,
2024). One option is to use EC prediction to filter enzyme screening sets. However, EC numbers
are predefined by experts and provide a relatively coarse characterization of enzymes. As a result,
one EC can capture many different reactions, while none may be able to capture a completely novel
reaction. Therefore, filtering large libraries of enzymes by EC may yield impractically large sets
of enzymes or none at all. Lastly, state-of-the-art EC predictors still show limited success (top F1
scores of 0.5-0.6) (Ayres et al.; Yu et al., 2023; Ryu et al., 2019; Sanderson et al., 2023). In this work,
we move away from human-crafted enzyme classes and instead operate directly on molecular and
protein structures.

Alternatively, the rational design of a new enzyme or active site requires a thorough understanding of
the underlying mechanism (Röthlisberger et al., 2008; Jiang et al., 2008; Yeh et al., 2023; Feehan
et al., 2021; Weitzner et al., 2019). While methods for protein sequence and structure generation
have shown promise in creating custom folds and strong binders (Watson et al., 2023; Ingraham et al.,
2019; Dauparas et al., 2022), unnatural enzymes still suffer from low activity relative to naturally
occurring ones (Hossack et al., 2023). Instead, we focus on identifying natural protein leads that can
be optimized further either computationally or experimentally (Seelig & Szostak, 2007; Bornscheuer
et al., 2012; Sarai et al., 2024).

A.2 EXPERIMENTAL SETUP

Figure 2: Overview of dataset construction and statistics. (a) Reaction-enzyme pairs are obtained
from the EnzymeMap dataset (Heid et al., 2023) and split based on their reaction rules. At test time,
a reaction is queried and enzymes are ranked from a screening set composed of sequences from
EnzymeMap, UniProt*, and BRENDA. (b) Averge number of sequences in each EC class when
considering different levels of the EC hierarchy. (c) Distribution of sequences in the screening set
according to their first EC level.
*The UniProt dataset is obtained from Yu et al. (2023).
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A.2.1 ENZYMEMAP DATASET

Our method is developed on the EnzymeMap dataset (Heid et al., 2023), which includes biochemical
reactions linked with associated UniProt IDs and their respective EC numbers. Each reaction is
atom-mapped, allowing every atom in the product to be traced back to a corresponding atom in the
reactants. To acquire the corresponding protein sequences, we select reactions linked to UniProt or
SwissProt IDs and retrieve their sequences from their respective databases (uni, 2023). Additionally,
we retrieve the predicted enzyme structures from the AlphaFold Protein Structure Database (Jumper
et al., 2021; Varadi et al., 2022). We filter samples to include protein sequences up to 650 amino
acids in length only. EnzymeMap provides a reaction rule for each reaction, which captures the
bio-transformation in a reaction and can be applied to recreate the products of a reaction from its
substrates (Ni et al., 2021). With the goal of extending our model to unfamiliar chemical reactions,
we divide our dataset into training, development, and testing groups based on these reaction rules
(Figure 2). This results in a total of 46,356 enzyme-driven reactions, encompassing 16,776 distinct
chemical reactions, 12,749 enzymes, across 2,841 EC numbers and 394 reaction rules.

EnzymeMap includes additional reactions that are associated with an EC number but lack an annotated
protein sequence. We identify 7,967 of these unannotated reactions involving 1,101 EC numbers,
distinct from our training data in terms of reaction rules. This subset serves as an additional validation
set, allowing us to evaluate how our method ranks enzymes in relation to the EC number for each
reaction. More information on how the data was processed can be found in Appendix A.5.

A.2.2 TERPENE SYNTHASE DATASET

Terpenoids are a large and diverse family of biomolecules with wide applications to medicine and
consumer goods. The reactions generating these natural compounds involve particularly complex
chemical transformations that are typically catalyzed by a class of enzymes called terpene synthases
(Samusevich et al., 2024). This enzyme class is noteworthy for utilizing a relatively small number
of substrates (∼11) but is capable of generating thousands of distinct products. This presents a
significant challenge with substantial implications. To further evaluate our method’s performance
on reactions known to involve challenging chemistry, we use a dataset of terpenoid reactions made
available by recent work in detecting novel terpene synthases (Samusevich et al., 2024). We exclude
reactions that are themselves or their enzyme included in our training set, obtaining 110 unique
reactions and 99 enzymes.

A.2.3 ENZYME SCREENING SET

To construct our screening set of enzymes, we include sequences annotated in the EnzymeMap
dataset (Heid et al., 2023), Brenda release 2022_2 (Chang et al., 2021), and those used in developing
CLEAN (UniProt release 2022_01) (Yu et al., 2023). We filter our set to those of sequence length
< 650 with available AlphaFold predicted structures (Jumper et al., 2021; Varadi et al., 2022) and
obtain a final list of 260,197 sequences.

A.2.4 BASELINES

Ranking Enzymes via EC Prediction The ultimate goal of enzyme screening is to identify candidate
proteins from large protein databases, including the hundreds of millions of unannotated sequences.
Since no standard computational procedure for enzyme screening has emerged, a reasonable approach
is to first assign an EC number to the query reaction and then select all enzymes that share that EC
class. To identify the EC classes of the enzymes in the screening set, one can use an EC predictor. On
the other hand, assigning the full EC number of a reaction is not always straightforward or possible.
For this reason, we consider baselines where between 1 to 4 levels of a query reaction’s EC number
are assignable (e.g., 1 level: 1.x.x.x to 4 levels: 1.2.3.4). We evaluate EC prediction and CLIPZyme
on ranking the enzymes screening set for each reaction in the EnzymeMap test set.

We use CLEAN, a state-of-the-art EC predictor, to obtain a ranked list of enzymes for each EC
(Yu et al., 2023). CLEAN computes a single representation for every EC in its dataset as the mean
embedding of sequences in that class and uses these as test-time anchors. The predicted EC class
of a new sequence is then determined by the Euclidean distance to each EC anchor. Accordingly,
given a reaction’s assigned EC number, we rank our screening set enzymes by their distances to the
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Figure 3: Approaches for adapting EC prediction to virtual enzyme screening. We first assign a
reaction an EC up to some level of specificity (here, level 2). To obtain rankings based on CLEAN,
we use each sequence’s distance to the EC class. To combine CLEAN and CLIPZyme, enzymes
are first sorted according to their predicted EC class. Then they are ranked within each class using
CLIPZyme.

reaction’s EC anchor (Figure 3). If a reaction’s EC class does not exist in the CLEAN dataset, we
broaden the search to one level higher. As an example, for a reaction with EC 1.2.3.4, if this EC is
not in the CLEAN dataset, we rank enzymes according to their distances to the mean representation
of EC 1.2.3 (and so on). For consistency with previous work, we use the CLEAN model trained on a
split where none of the test enzymes share more than 50% sequence identity with those in the training
set (Yu et al., 2023).

We hypothesize that combining CLEAN to obtain EC predictions and CLIPZyme to rank them
presents an opportunity for improved performance. Specifically, we predict the EC numbers for all of
the enzyme sequences in our screening set using CLEAN. Given the reaction’s assigned EC number,
we first filter our screening set to those enzymes with the same exact predicted EC and rank this list
using CLIPZyme (Figure 3). We then filter all remaining enzymes to those that belong to one EC
level above and again rank that list using CLIPZyme. As an example, given an input reaction with
assigned EC of 1.2.3.4, we identify all enzymes predicted for that EC and rank them with CLIPZyme.
We then rank all remaining enzymes with predicted EC 1.2.3. This process is repeated until all
enzymes are ranked.

Reaction Representation We explore three alternative methods for encoding the reaction and
compare against these in our results. The first uses the condensed graph reaction (CGR) representation
(Hoonakker et al., 2011) by overlaying the reactants and products and concatenating the edge features.
A DMPNN encodes the CGR to obtain a hidden representation of the reaction. The second approach
is to use the full reaction SMILES (Weininger, 1988) as an input to a language model and obtain a
final representation of the reaction. We follow the tokenization scheme for SMILES introduced by the
Molecular Transformer (Schwaller et al., 2019) and train a transformer model as our encoder (Vaswani
et al., 2017). We also consider the Weisfeiler-Lehman Difference Network (WLDN) architecture and
implement it as described in Jin et al. (2017). We train all models until convergence, using the same
data splits and hyper-parameters (Appendix A.7).

Protein Representation We focus on achieving a balance between efficiency and the ability to
process extensive enzyme datasets. To this end, we explore both sequence-based and structure-based
approaches, acknowledging the critical influence of structure on enzymatic activity despite its inherent
computational demands. We train ESM-2 (Lin et al., 2022) as a sequence-based baseline for protein
encoding. We also encode the structure with an EGNN (Satorras et al., 2021) and compare initializing
node embeddings from either the MSA-transformer (Rao et al., 2021) or ESM-2, to identify the best
method in terms of both performance and speed.
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A.2.5 EVALUATION SETUP

We aim to simulate the scenario where an enzyme is desired to catalyze a novel reaction, and it exists
in nature but is not annotated. We compare different approaches to encoding the reactions and their
enzymes, and compare our method to an alternative approach using EC prediction.

As our main aim is to generalize to novel chemical transformations, our test set consists of reactions
with reaction rules that are unseen during training, queried against all 260,197 sequences. However,
this means our screening set does include proteins used in training the model. Therefore, we also
evaluate model performance when excluding proteins used in training. Additionally, we use MMSeqs2
(Steinegger & Söding, 2017) and Foldseek (van Kempen et al., 2023) to exclude proteins based on
their similarity to the training set proteins in terms of sequence identity and protein fold, respectively.
If the exclusion of a protein results in a test reaction having no actives in the screening set, we exclude
the entire reaction.

Throughout our evaluations, we take the BEDROC score as our primary metric (Truchon & Bayly,
2007). We focus on the case α = 85, where the top 3.5% of predictions contribute to 95% of the
score, and as suggested in Truchon & Bayly (2007), we also calculate the BEDROC score for α = 20.
We also report the enrichment factor (EF) when taking the top 0.5% and 1% of predictions. This
estimates the fraction of catalyzing enzymes found in our top predictions relative to random selection.

A.3 ADDITIONAL ANALYSIS

A.3.1 ENZYME SCREENING EVALUATION ON ENZYMEMAP

With only the first EC level known, using EC prediction alone obtains a BEDROC85 score of 0.96%
(Table 1). This improves to 25.86% when we are able to specify a reaction up to the third EC
level. With four EC levels known, the CLEAN method becomes more effective than CLIPZyme
alone. However, being able to assign all four EC levels for a reaction may not be always feasible in
real-world applications.

Combining the CLEAN method with CLIPZyme achieves improved performance regardless of how
many EC levels we assume to be known for reactions. Here, CLEAN is first used to predict the
EC classes of enzymes in the screening set. Enzymes within the predicted EC class are re-ranked
using CLIPZyme (Figure 3). Even basic knowledge of the first EC level of a chemical reaction
enhances CLIPZyme’s performance from a BEDROC85 of 44.69% to 57.03%. With the first two
levels assumed to be known, performance also improves to 75.57%.

We note that EC classification may be insufficient for categorizing chemical reactions that do not fit
in existing EC classes. As a result, any EC prediction method is not applicable in that setting, while
CLIPZyme is as it operates directly on the reaction.

Table 2: Performance of various protein and reaction encoding schemes on virtual screening for
reactions in the EnzymeMap test set. The symbol^ denotes models where the weights are kept
unchanged during training. CGR (Hoonakker et al., 2011), WLDN (Jin et al., 2017).

PROTEIN ENCODER REACTION ENCODER BEDROC85(%) BEDROC20(%) EF0.05 EF0.1

ESM^ OURS (SECTION 3.1) 17.84 29.39 6.61 4.17
ESM OURS (SECTION 3.1) 36.91 53.04 11.93 6.84
MSA-TRANS.^ + EGNN OURS (SECTION 3.1) 28.76 46.53 10.34 6.67
ESM^ + EGNN CGR 38.91 57.58 13.16 7.73
ESM^ + EGNN REACTION SMILES 29.94 46.01 10.34 6.32
ESM^ + EGNN WLDN 29.84 46.70 10.71 6.41
ESM^ + EGNN OURS (SECTION 3.1) 44.69 62.98 14.09 8.06

A.4 EVALUATION ON REACTION-SPECIFIC DATASETS

We extend our evaluation to two additional datasets to further assess CLIPZyme’s utility in practical
applications in Table 3. The first dataset encompasses reactions catalyzed by terpene synthases. We
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Table 3: Performance of CLIPZyme on additional biochemical reactions. The terpene synthase
dataset is obtained from Samusevich et al. (2024) and includes reactions considered to involve more
complex biotransformations. The unannotated subset of EnzymeMap consists of reactions in the
dataset that are not assigned a UniProt or SwissProt identifier. In this case, virtual screening is
evaluated as the ability to highly rank proteins with the correct EC class.

DATASET BEDROC85 (%) BEDROC20 (%) EF0.05 EF0.1

TERPENE
SYNTHASES

72.46 85.89 18.29 9.42

UNANNOTATED
ENZYMEMAP

42.94 61.39 13.92 7.73

Table 4: Performance when excluding sequences from the screening set with various levels of
similarity to training set enzymes.

EXCLUSION CRITERIA BEDROC85 (%) BEDROC20 (%) EF0.05 EF0.1

EXACT MATCH 39.13 58.86 13.40 7.81
MMSEQS 30% SIMILARITY 35.32 54.86 12.43 7.30
FOLDSEEK 30% SIMILARITY 21.44 35.39 7.93 4.93

evaluated CLIPZyme using the same screening set and observed robust performance, evidenced by
a BEDROC85 score of 72.45%. Due to the small and uniform substrate pool, the model might be
preferentially ranking terpene synthases as a whole, rather than effectively distinguishing between
specific reactions.

Additionally, we present an evaluation using unannotated reactions from EnzymeMap. For the sake
of evaluation, we assume the true enzymes in the screening set for a given reaction are those with EC
classes matching that of the reaction. Under this setup, CLIPZyme achieves a BEDROC85 of 42.94%,
which aligns closely with the results from the annotated subset of EnzymeMap. Because the metrics
are calculated relative to the EC classes of each protein, this result suggests that the CLIPZyme
rankings correspond with the proteins’ EC numbers.

A.4.1 ENZYME SCREENING WITHIN EC CLASSES

Table 5: Performance of CLIPZyme when limiting the screening set to enzymes belonging to the
query reaction’s top EC level.

BEDROC85 (%) BEDROC20 (%) EF0.05 EF0.1

36.25 51.61 11.30 6.83

We also explore CLIPZyme’s ability to discriminate between enzymes within the same EC class,
where enzymes are more likely to share function and physical-chemical features. To do so, for each
query reaction in the test set, we adjust the screening set to include only those enzymes belonging
to its EC class. The number of enzymes quickly diminishes when considering EC subclasses to the
extent that the EC-based screening sets become too small for virtual screening (Figure 2b) – for
example, the BEDROC metric is only valid only when (α × proportion of actives) ≪ 1. For this
reason, we consider only the top EC level in this analysis. We observe that it is more difficult to rank
the correct enzymes higher when only considering sequences in the same EC class but that the top
predictions are still enriched for the active enzymes (Table 5).

A.4.2 ADAPTING CLEAN FOR RANKING ENZYMES

We consider using both CLEAN EC predictions and computed distances to perform virtual screening
similar to Appendix A.2.4. Here we present an alternative reranking approach than that in the main
body. We follow the exact same setup as reranking EC predictions using CLIPZyme but instead
rerank using the distance to the EC anchors. For example, given a query reaction with EC 1.2.3.4, we
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first predict the EC numbers for all of the enzymes in the screening set using CLEAN. We then rank
the enzymes with predicted EC of 1.2.3.4 by the distance from the anchor with EC 1.2.3.4 (computed
as the mean embedding of all ECs in the CLEAN training set with EC 1.2.3.4). We then rank all
remaining enzymes with predicted EC of 1.2.3.x by their distance to the anchor embeddings of EC
1.2.3.4 (this is the same anchor). This differs from the main body approach since CLEAN assigns EC
numbers based on a varying threshold (i.e., max-separation) for each embedding. By first ordering by
EC and then reranking within each EC we achieve different results than by ranking all at once by
distance to the 1.2.3.4 anchor.

Table 6: Enzyme virtual screening performance when using CLEAN to first place enzymes into
successively broader EC levels matching that of the reaction, then re-ranking them according to their
Euclidean distance to the reaction’s EC.

EC LEVEL BEDROC85 (%) BEDROC20 (%) EF0.05 EF0.1

LEVEL 1 5.43 26.94 5.55 6.33
LEVEL 2 35.56 71.10 18.95 9.72
LEVEL 3 63.40 85.61 19.35 9.74
LEVEL 4 92.65 96.16 19.48 9.80

A.5 DATA PROCESSING

A.5.1 ENZYMEMAP

We obtain version 2 of the EnzymeMap dataset (Heid et al., 2023) and use only the reactions with
assigned protein references from either SwissProt or UniProt. Our method requires that the same
atoms appear on both sides of the reaction, so we exclude samples where this is not the case. We also
filter reactions where the EC number is not fully specified, the sequence could not be retrieved from
UniProt, or there wasn’t a computable bond change. We restrict our data to proteins of sequence
length no more than 650 (maintaining 90% of the sequences) and those with a predicted structure
in the AlphaFold database. We remove duplicate reactions, where the same reaction and sequence
appear for multiple organisms. We split reactions into train/development/test splits with a ratio of
0.8/0.1/0.1 based on the reaction rule IDs assigned in the dataset. The statistics for the final dataset
are shown in Table 7.

Table 7: Statistics of the EnzymeMap dataset used to develop CLIPZyme after pre-processing.

TRAINING SPLIT DEVELOPMENT SPLIT TEST SPLIT

NUMBER OF SAMPLES 34,427 7,287 4,642
NUMBER OF REACTIONS 12,629 2,669 1,554
NUMBER OF PROTEINS 9,794 1,964 1,407
NUMBER OF ECS 2,251 465 319

A.5.2 PROTEIN STRUCTURES

We obtain all protein structures as CIF files from the AlphaFold Protein Structure Database (Jumper
et al., 2021; Varadi et al., 2022). We parse these files using the BioPython MMCIFParser. We then
construct graphs for use in the PyTorch Geometric library (Fey & Lenssen, 2019). First we filter
out the atoms from the CIF file to only include the Cα atoms of the protein. Each graph node as a
result represents a residue and the associated coordinates from the CIF file. The edges are determined
using the k-nearest neighbors (kNN) method, creating a connected graph that reflects the chemical
interactions within the protein. We use a distance of 10 angstroms as a cutoff for the edges.
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A.5.3 MSA EMBEDDINGS

We explore using the hidden representations from the MSA Transformer (Rao et al., 2021) as node
embeddings of the enzyme 3D structure. Rather than using HHblits (Remmert et al., 2012), we
opt for MMSeqs2 (Steinegger & Söding, 2017) because of its speed and efficient search. We
follow the pipeline employed by ColabFold (Mirdita et al., 2022) but use only the UniRef30
(uniref30_2302) database and do not use an expanded search (Suzek et al., 2015; Mirdita
et al., 2017). We sample 128 sequences for each MSA using a greedy search (maximum similarity)
to obtain the input for the MSA-Transformer. We keep only the hidden representations of the query
enzyme sequence and discard those from the MSA search. For an enzyme of length n, this yields
sequence embeddings h ∈ Rn×768.

A.5.4 COMPUTING SCREENING SET ENZYME CLUSTERS

To exclude from our enzyme screening set those proteins that are similar to sequences used in
our training dataset, we compute protein clusters using MMSeqs2 (Steinegger & Söding, 2017)
and Foldseek (van Kempen et al., 2023). For MMSeqs2, we use the default parameters with
--min-seq-id= 0.3 and --similarity= 0.8. For Foldseek, we use the default parameters
with --min-seq-id= 0 and --c= 0.3.

A.6 IMPLEMENTATION DETAILS

All models are developed in PyTorch v2.0.1 (Paszke et al., 2019) and trained using PyTorch Lightning
v2.0.9 (Falcon & The PyTorch Lightning team, 2019).

fmol and fTS We implement our reaction encoder (Section 3.1) as two DMPNNs (Yang et al., 2019).
We use standard node and edge features (Table 8) to initialize the reactant and product graphs, with
input node dimensions of 9 and input edge dimensions of 3. The first encoder, fmol has 5 layers and
a hidden dimension of 1,280. The node features for the second encoder, fTS are unchanged, while
edges are obtained from taking the sum of the hidden edge representations from fmol. Hence the node
dimensions are still 9, while the input edge features have dimensions 1,280. The model also consists
of 5 layers and a hidden size of 1,280. We aggregate the graph as a sum over the node features.

Table 8: Chemical properties used as node and edge features in constructing molecular graphs.

ENTITY FEATURES

ATOM (NODE) FEATURES ATOMIC NUMBER, CHIRALITY, DEGREE, FORMAL CHARGE,
NUMBER OF HYDROGENS, NUMBER OF RADICAL ELECTRONS,
HYBRIDIZATION, AROMATICITY, BELONGING TO A RING

BOND (EDGE) FEATURES BOND TYPE, STEREOCHEMISTRY, CONJUGATION

Condensed Graph Reaction We construct the condensed graph reaction as described in Heid &
Green (2021). Specifically, the atom and edge features for the reactants and products are created as
binary vectors for the properties detailed in Table 8. For node features x(r)

i , x
(p)
i and edge features

e
(r)
ij , e

(p)
ij , we compute x′ = x

(r)
i − x

(p)
i and e′ij = e

(r)
ij − e

(p)
ij . We do not use the atomic number in

calculating x′. Concatenating these with our reactants’ features, our final CGR graph consists of 225
atom and 26 edge features, xCGR

i = [x
(r)
i ∥ x′

i] and eCGR
ij = [e

(r)
ij ∥ e′ij ], respectively.

Reaction SMILES The reaction SMILES is first canonicalized then tokenized according to
Schwaller et al. (2019) without atom-mapping. We create a vocabulary based on this tokeniza-
tion scheme and use a tranformer architecture (Vaswani et al., 2017) as implemented by the Hugging
Face library (we use the BertModel) (Wolf et al., 2020). The transformer is initialized with 4 layers,
a hidden and intermediate size of 1,280, and 16 attention heads. An absolute positional encoding is
used over a maximum sequence length of 1,000. We prepend the reaction with a [CLS] token and
use its hidden representation as the reaction embedding.
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WLDN We implement WLDN as originally described in Jin et al. (2017) and initialize it with 5
layers and a hidden dimension of 1,280. The difference graph is calculated as the difference between
atom-mapped node embeddings of the substrate and product graph. We apply a separate 1-layer
WLN to obtain the final graph-level representation.

EGNN Node features are initialized with residue-level embeddings from ESM-2 (the 650M pa-
rameter variant with 33 layers) (Lin et al., 2022). We use a hidden size of 1,280, 6 layers, and a
message dimension of 24. Both features and coordinates are normalized and updated at each step.
Neighborhood aggregation is done as an average, and protein-level features are taken as a sum over the
final node embeddings. Repurposing the positional encodings used in Vaswani et al. (2017), pairwise
distances are transformed with sinusoidal embeddings. For a given relative distance dij between
nodes i and j, the encoding function f : N → Rd transforms this distance into a d-dimensional
sinusoidal embedding. The encoding is defined as follows:

f(dij)
(k) =


sin
(

1
θk/2 · dij

)
, k < d

2 ,

cos

(
1

θ
k− d

2
2

· dij

)
, k ≥ d

2 .
(8)

where k is the index of the dimension of the distance vector, θ is a hyperparameter that controls
the frequency of the sinusoids, which in our case is set to 10,000. The resulting embedding for a
particular relative distance dij is constructed by concatenating the sine-encoded and cosine-encoded
vectors, thus interleaving sinusoidal functions along the dimensionality of the embedding space.

CLEAN We train CLEAN with the supervised contrastive (”Supcon-Hard”) loss following the
training protocol and parameters loss described in the project’s repository (https://github.
com/tttianhao/CLEAN). Specifically, we use the supervised contrastive loss and the data split
in which none of the test enzymes share > 50% sequence identity with those in the training set. At
inference, we use the same approach described in Yu et al. (2023) to compute the EC anchors. We
obtain the predicted distance between each enzyme in our screening set and each EC anchor. We
extend this to parent classes of the ECs. For instance, the representation for EC 1.2.3.x is the mean
embedding of all CLEAN proteins in that class. We also predict the EC numbers for all of the enzyme
sequences in our screening set using the “max-separation” algorithm.

A.7 TRAINING DETAILS

All models are trained with a batch size of 64 with bfloat16 precision and trained until convergence
(approximately 30 epochs). We use a learning rate of 1e−4 with a cosine learning rate schedule and
100 steps of linear warm-up. Warm-up starts with a learning rate of 1e−6, and the minimum learning
rate after warm-up is set to 1e−5. We use the AdamW optimizer (Loshchilov & Hutter, 2017) with a
weight decay of 0.05 and (β1, β2) = (0.9, 0.999). When training the ESM model, we initialize with
the pretrained weights of esm2_t33_650M_UR50D and use a mean of the residue embeddings for
the sequence representation. We train all models on 8 NVIDIA A6000 GPUs.
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