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Abstract. Microscopy image analysis often requires the segmentation of
objects, but training data for this task is typically scarce and hard to ob-
tain. Here we propose DENOISEG, a new method that can be trained end-
to-end on only a few annotated ground truth segmentations. We achieve
this by extending NOISE2VOID, a self-supervised denoising scheme that
can be trained on noisy images alone, to also predict dense 3-class seg-
mentations. The reason for the success of our method is that segmenta-
tion can profit from denoising, especially when performed jointly within
the same network. The network becomes a denoising expert by seeing
all available raw data, while co-learning to segment, even if only a few
segmentation labels are available. This hypothesis is additionally fueled
by our observation that the best segmentation results on high quality
(very low noise) raw data are obtained when moderate amounts of syn-
thetic noise are added. This renders the denoising-task non-trivial and
unleashes the desired co-learning effect. We believe that DENOISEG of-
fers a viable way to circumvent the tremendous hunger for high qual-
ity training data and effectively enables learning of dense segmentations
when only very limited amounts of segmentation labels are available.

Keywords: segmentation - denoising - co-learning

1 Introduction

The advent of modern microscopy techniques has enabled the routine investiga-
tion of biological processes at sub-cellular resolution. The growing amount of mi-
croscopy image data necessitates the development of automated analysis meth-
ods, with object segmentation often being one of the desired analyses. Over the
years, a sheer endless array of methods have been proposed for segmentation [9],
but deep learning (DL) based approaches are currently best performing [3, 14,
18]. Still, even the best existing methods offer plenty of scope for improvements,
motivating further research in this field [21, 23, 7].

A trait common to virtually all DL-based segmentation methods is their
requirement for tremendous amounts of labeled ground truth (GT) training

* Equal contribution (alphabetical order).
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Fig. 1. The proposed DENOISEG training scheme. A U-NET is trained with a joint
self-supervised denoising loss (L£4) and a classical segmentation loss (Ls). Both losses
are weighted with respect to each other by a hyperparameter a. In this example, L4
can be computed on all m = 3800 training patches, while £s can only be computed on
the n = 10 annotated ground truth patches that are available for segmentation.

data, the creation of which is extraordinarily time consuming. In order to make
the most out of a given amount of segmentation training data, data augmen-
tation [22,27] is used in most cases. Another way to increase the amount of
available training data for segmentation is to synthetically generate it, e.g. by
using Generative Adversarial Networks (GANSs) [8,15,20]. However, the gener-
ated training data needs to capture all statistical properties of the real data and
the respective generated labels, thereby making this approach cumbersome in
its own right.

For other image processing tasks, such as denoising [12, 26, 2], the annota-
tion problem has been addressed via self-supervised training [10, 1,11, 17]. While
previous denoising approaches [26] require pairs of noisy and clean ground truth
training images, self-supervised methods can be trained directly on the noisy
raw data that is to be denoised.

Very recently, Prakash et al. [16] demonstrated on various microscopy datasets
that self-supervised denoising [10] prior to object segmentation leads to greatly
improved segmentation results, especially when only small numbers of segmenta-
tion GT images are available for training. The advantage of this approach stems
from the fact that the self-supervised denoising module can be trained on the
full body of available microscopy data. In this way, the subsequent segmenta-
tion module receives images that are easier to interpret, leading to an overall
gain in segmentation quality even without having a lot of GT data to train
on. In the context of natural images, a similar combination of denoising and
segmentation was proposed by Liu et al. [13] and Wang et al. [25]. However,
both methods lean heavily on the availability of paired low- and high-quality
image pairs for training their respective denoising module. Additionally, their
cascaded denoising and segmentation networks make the training comparatively
computationally expensive.

Here, we present DENOISEG, a novel training scheme that leverages denois-
ing for object segmentation (see Fig. 1). Like Prakash et al., we employ self-
supervised NOISE2VOID [10] for denoising. However, while Prakash et al. rely
on two sequential steps for denoising and segmentation, we propose to use a
single network to jointly predict the denoised image and the desired object seg-
mentation. We use a simple U-NET [19] architecture, making training fast and
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accessible on moderately priced consumer hardware. Our network is trained on
noisy microscopy data and requires only a small fraction of images to be anno-
tated with GT segmentations. We evaluate our method on different datasets and
with different amounts of annotated training images. When only small amounts
of annotated training data are available, our method consistently outperforms
not only networks trained purely for segmentation [4, 6], but also the currently
best performing training schemes proposed by Prakash et al. [16].

2 Methods

We propose to jointly train a single U-NET for segmentation and denoising
tasks. While for segmentation only a small amount of annotated GT labels are
available, the self-supervised denoising module benefits from all available raw
images. In the following we will first discuss how these tasks can be addressed
separately and then introduce a joint loss function combining the two.

Segmentation. We see segmentation as a 3-class pixel classification problem [4,
6,16] and train a U-NET to classify each pixel as foreground, background or
border (this yields superior results compared to a simple classification into fore-
ground and background [21]). Our network uses three output channels to predict
each pixel’s probability of belonging to the respective class. We train it using
the standard cross-entropy loss, which will be denoted as L, (yi, f (:cl)), where
x; is the i-th training image, y, is the ground truth 3-class segmentation, and
f(=;) is the network output.

Self-Supervised Denoising. We use the NOISE2VOID setup described in [10]
as our self-supervised denoiser of choice. We extend the above mentioned 3-
class segmentation U-NET by adding a fourth output channel, which is used for
denoising and trained using the NOISE2VOID scheme. NOISE2VOID uses a Mean
Squared Error (MSE) loss, which is calculated over a randomly selected subset
of blind spot pixels that are masked in the input image. Since the method is
self-supervised and does not require ground truth, this loss L4 (wi, f (IBZ)) can be
calculated as a function of the input image «; and the network output f(z;).

Joint-Loss. To jointly train our network for denoising and segmentation we use
a combined loss. For a given training batch (z1,y,...,®m,Y,,) of m images,
we assume that GT segmentation is available only for a subset of n < m raw
images. We define y, = 0 for images where no segmentation GT is present. The
loss over a batch is calculated as

LZ%Za-ﬁd(mi,f(mi))+(1*a)'58(yivf(mi))’ (1)

where 0 < a < 1is a tunable hyperparameter that determines the relative weight
of denoising and segmentation during training. Note that the NOISE2VOID loss is
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self-supervised, therefore it can be calculated for all raw images in the batch. The
cross-entropy loss however requires GT segmentation and can only be evaluated
on a subset of images, where this information is available. For images where no
GT segmentation is available we define L (yl =0, f(a:l)) =0.

In the setup described above, setting a = 1 corresponds to pure NOISE2VOID
denoising. However, setting a = 0 does not exactly correspond to the vanilla 3-
class segmentation, due to two reasons. Firstly, only some of the images are
annotated but in Eq. 1 the loss is divided by the constant batch size m. This
effectively corresponds to a reduced batch size and learning rate, compared to
the vanilla method. Secondly, our method applies NOISE2VOID masking of blind
spot pixels in the input image.

Ours

Input Insets GT Baseline Sequent. Segm. Denoised
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Fig. 2. Qualitative results on Fly Wing n10 (first row), DSB n10 (second row) and
Mouse Nuclei n10 (third row). The first column shows an example test image. Numbers
indicate how many noisy input and annotated ground truth (GT) patches were used
for training. Note that segmentation GT was only available for at most 10 images,
accounting for less than 0.27% of the available raw data. Other columns show depicted
inset regions, from left to right showing: raw input, segmentation GT, results of two
baseline methods, and our DENOISEG segmentation and denoising results.
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Fig. 3. Results for Fly Wing n0, n10 and n20, evaluated with Average Precision
(AP) [21] and SEG-Score [24]. DENOISEG outperforms both baseline methods, mainly
when only limited segmentation ground truth is available.

Implementation Details. Our DENOISEG implementation is publicly avail-
able!. The proposed network produces four output channels corresponding to
denoised images, foreground, background and border segmentation. For all our
experiments we use a U-NET architecture of depth 4, convolution kernel size of
3, a linear activation function in the last layer, 32 initial feature maps, and batch
normalization during training. All networks are trained for 200 epochs with an
initial learning rate of 0.0004. The learning rate is reduced if the validation loss
is not decreasing over ten epochs. For training we use 8-fold data augmentation
by adding 90° rotated and flipped versions of all images.

3 Experiments and Results

We use three publicly available datasets for which GT annotations are available
(data available at DENOISEG-Wiki?). For each dataset we generate noisy versions
by adding pixel-wise independent Gaussian noise with zero-mean and standard
deviations of 10 and 20. The dataset names are extended by n0, n10, and n20
to indicate the respective additional noise. For network training, patches of size
128 x 128 are extracted and randomly split into training (85%) and validation
(15%) sets.

1 https://github.com /**¥¥% Hkkokionk
2 https://github.com /¥t [Hiokoiorior ik
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Fig. 4. Results for DSB n0, n10 and n20, evaluated with Average Precision (AP) [21]
and SEG-Score [24]. DENOISEG outperforms both baseline methods, mainly when only
limited segmentation ground truth is available. Note that the advantage of our proposed
method is at least partially compromised when the image data is not noisy (row 3).

— Fly Wing. This dataset from our collaborators consist of 1428 training
and 252 validation patches of a membrane labeled fly wing. The test set is
comprised of 50 additional images.

— DSB. From the Kaggle 2018 Data Science Bowl challenge, we take the same
images as used by [16]. The training and validation sets consist of 3800 and
670 patches respectively, while the test set counts 50 images.

— Mouse Nuclei. Finally, we choose a challenging dataset depicting diverse
and non-uniformly clustered nuclei in the mouse skull, consisting of 908
training and 160 validation patches. The test set counts 67 additional images.

For each dataset, we train DENOISEG and compare it to two different com-
peting methods: DENOISEG trained purely for segmentation with v = 0 (referred
to as Baseline), and a sequential scheme based on [16] that first trains a denoiser
and then the aforementioned baseline (referred to as Sequential). We chose our
network with @ = 0 as baseline to mitigate the effect of batch normalization on
the learning rate as described in Section 2. A comparison of our baseline to a
vanilla 3-class U-NET with the same hyperparameters leads to very similar re-
sults and can be found in Appendix B. Furthermore, we investigate DENOISEG
performance when trained with different amounts of available GT segmentation
images. This is done by picking random subsets of various sizes from the available
GT annotations. Note that the self-supervised denoising task still has access to
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Fig. 5. Results for Mouse nuclei n0, n10 and n20, evaluated with Average Precision
(AP) [21] and SEG-Score [24]. DENOISEG outperforms both baseline methods, mainly
when only limited segmentation ground truth is available.

all raw input images. A qualitative comparison of DENOISEG results with other
baselines (see Figure 2) indicates the effectiveness of our method.

As evaluation metrics, we use Average Precision (AP) [5] and SEG [24] scores.
The AP metric measures both instance detection and segmentation accuracy
while SEG captures the degree of overlap between instance segmentations and
GT. To compute the scores, the predicted foreground channel is thresholded and
connected components are interpreted as instance segmentations. The threshold
values are optimized for each measure on the validation data. All conducted
experiments were repeated 5 times and the mean scores along with +1 standard
error of the mean are reported in Figure 8.

Performance with Varying Quantities of GT Data and Noise. Figure 3
shows the results of DENOISEG with a@ = 0.5 (equally weighting denoising and
segmentation losses) for Fly Wing n0, n10 and n20 datasets. For low numbers of
GT training images, DENOISEG outperforms all other methods. Similar results
are seen for the other two datasets (see Figure 4 and Figure 5). Results for all
performed experiments showing overall similar trends and can be found on the
DENOISEG-Wiki.

Importance of a. We further investigated the sensitivity of our results to the
hyperparameter «. In Figure 6(a) we look at the segmentation performance of
different values for hyperparameter cv. We compare the results of @« = 0.3 and a =
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Fig. 6. In (a), we show that DENOISEG consistently improves results over the baseline
for a broad range of hyperparameter o values by looking at the difference A of AP
to a = 0.5. The results come close to what would be achievable by choosing the best
possible « (see main text). In (b), we show that adding synthetic noise can lead to
improved DENOISEG performance. For the Fly Wing, DSB, and Mouse Nuclei data,
we compare baseline results with DENOISEG results on the same data (n0) and with
added synthetic noise (n10 and n20, see main text).

0.7 by computing the difference (A) to o = 0.5. Additionally we also compare
to the Baseline and results that use (the a priori unknown) best «. The best
« for each trained network is found by a grid search for o € {0.1,0.2,...,0.9}.
Figure 6(a) shows that our proposed method is robust with respect to the choice
of . Results for the other datasets showing similar trends are illustrated in
Figure 7.

Noisy Inputs Lead to Elevated Segmentation Performance. Here we
want to elaborate on the interesting observation we made in Figure 3: when
additional noise is synthetically added to the raw data, the segmentation per-
formance reaches higher AP and SEG scores, even though segmentation should
be more difficult in the presence of noise. We investigate this phenomenon in
Figure 6(b). We believe that in the absence of noise the denoising task can be
solved trivially, preventing the regularizing effect that allows DENOISEG to cope
with small amounts of training data.
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Fig. 7. We show the sensitivity of hyperparameter « for (a) Fly Wing and (b) Mouse
Nuclei datasets by looking at the difference A of AP to a = 0.5. Note that DENOISEG
consistently improves results over the baseline for a broad range of hyperparameter «
values.

Evaluation of Denoising Performance. Although we are not training
DENOISEG networks for their denoising capabilities, it is interesting to know
how their denoising predictions compare to dedicated denoising networks. Ta-
ble 1 compares our denoising results with results obtained by NoisE2Voip [10].
It can be seen that co-learning segmentation is only marginally impeding the
network’s ability to denoise its inputs.

DSB (GT for 10) Fly Wing (GT for 2) Mouse N. (GT for 1)
Noise [|[DENOISEG NOISE2VOID|DENOISEG NOISE2VOID|DENOISEG  NOISE2VOID
nl0 |[37.5740.07 38.01+0.05 [33.124+0.01 33.16+0.01 |37.42+0.10 37.86+0.01
n20 ({35.384+0.08 35.53+0.02 [30.454+0.20 30.72+0.01 |34.21+0.19 34.5940.01

Table 1. Comparing the denoising performance of DENOISEG and NOISE2VOID. Mean
Peak Signal-to-Noise Ratio values (with +1 SEM over 5 runs) are shown. Similar tables
for DENOISEG results when more segmentation GT was available can be found online
in the DENOISEG-Wiki.
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4 Discussion

Here we have shown that () joint segmentation and self-supervised denoising
leads to improved segmentation quality when only limited amounts of segmen-
tation ground truth is available (Figures 2, 3, 4 and 5), (i¢) the hyperparameter
« is modulating the quality of segmentation results but leads to similarly good
solutions for a broad range of values (Figures 6(a), 7), and (#i7) results on input
data that are subject to a certain amount of intrinsic or synthetically added
noise lead to better segmentations than DENOISEG trained on essentially noise-
free raw data (Figure 6(b)).

We reason that the success of our proposed method originates from the fact
that similar “skills” are required for denoising and segmentation. The segmenta-
tion task can profit from denoising, and compared to [16], performs even better
when jointly trained within the same network. When a low number of annotated
images are available, denoising is guiding the training and the features learned
from this task, in turn, facilitate segmentation.

We believe that DENOISEG offers a viable way to enable the learning of
dense segmentations when only a very limited amount of segmentation labels are
available, effectively making DENOISEG applicable in cases where other methods
are not. We also show that the amount of required training data can be so little,
even ad-hoc label generation by human users is a valid possibility, expanding
the practical applicability of our proposed method manyfold.
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Appendices

A DSB Results with Increasingly Many GT labels

The DSB dataset we have used offers the possibility to run DENOISEG with
arbitrary many segmentation GT labels. While DENOISEG is intended in cases
where the amount of such labels is very limited, in Figure 8 we plot the segmen-
tation results of DENOISEG, the sequential baseline, as well as the baseline as
defined in the main text.
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Fig. 8. Extended version of Figure 4. Results for DSB n0, n10 and n20, evaluated with
Average Precision (AP) [21] and SEG-Score [24]. DENOISEG outperforms both baseline
methods, mainly when only limited segmentation ground truth is available. Note that
the advantage of our proposed method for this dataset is at least partially compromised
when the image data is not noisy (row 3).

As expected, With additional labels, the advantage of also seeing noisy images
decreases, leading to similarly good results for all compared methods. It is still
reassuring to see that the performance of DENOISEG is still essentially on par
with the results of a vanilla U-NET that does not perform the joint training we
propose.
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B Our Baseline vs. Vanilla 3-class U-Net

The baseline method we used in this work is, as explained in the main text,
a DENOISECG network with a being set to 0. This is, in fact, very similar to
using a vanilla 3-class U-NET. While we are still feeding noisy images, we are
not backpropagating any denoising loss, meaning that only the data for which
segmentation labels exist will contribute to the training. The one difference is,
that some of the hyperparameters (number of epochs, adaptation of learning
rate, etc.) will slightly diverge in these two baseline setups. Figure 9 shows that
these subtle differences are in fact not making any practical differences.

(a) : (b)
DSB n20 DSB n20
©
“ QD
g N
]
g 2
2
N N
= DENOISEG Baseline N
Vanilla U-NET Baseline QQ\
o
Q < - .
Q o o S > $ o o N Q S P S Q > S G N\
R O S %;?' S AR R S %;3'@\\
DSB nl0 DSB nl0
NG =
&
NS
N o R
N
=30
< @,
&
N o
N
N
R S Y A O S P F R & S P
N N D AR S I AR Gt
DSB n0 DSB n0
N
o N
o
A )
5 2
RPN
A
N
N R
&
NIRRT €><: qj:g( %@Q QR % R & NS 0\% ‘»Q“%‘SQ
Number of Annotated Training Images Number of Annotated Training Images

Fig. 9. Comparison of vanilla U-Net with our DENOISEG a = 0 baseline for DSB
datasets. Our DENOISEG a = 0 baseline is at least as good or better than the vanilla
U-net baseline both in terms of Average Precision (AP) [21] and SEG-Score [24] met-
rics. Hence, we establish a stronger baseline with DENOISEG o = 0 and measure our
performance against this baseline (see Figure 8, Figure 3 and Figure 5.)
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