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ABSTRACT

State-space models (SSMs) that utilize linear, time-invariant (LTI) systems are
known for their effectiveness in learning long sequences. To achieve state-of-the-
art performance, an SSM often needs a specifically designed initialization, and
the training of state matrices is on a logarithmic scale with a very small learn-
ing rate. To understand these choices from a unified perspective, we view SSMs
through the lens of Hankel operator theory. Building upon it, we develop a new
parameterization scheme, called HOPE, for LTI systems that utilizes Markov pa-
rameters within Hankel operators. Our approach helps improve the initialization
and training stability, leading to a more robust parameterization. We efficiently
implement these innovations by nonuniformly sampling the transfer functions of
LTI systems, and they require fewer parameters compared to canonical SSMs.
When benchmarked against HiPPO-initialized models such as S4 and S4D, an
SSM parameterized by Hankel operators demonstrates improved performance on
Long-Range Arena (LRA) tasks. Moreover, our new parameterization endows the
SSM with non-decaying memory within a fixed time window, which is empirically
corroborated by a sequential CIFAR-10 task with padded noise.

1 INTRODUCTION

State-space models (SSMs) (Gu et al., 2022b) have gained popularity and success in sequence mod-
eling. Known for its excellent efficiency and capability of handling long sequences, an SSM lever-
ages the continuous-time linear, time-invariant (LTI) systems. These systems are often defined by
four matrices Γ = (A,B,C,D) as

x′(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and they can be used to model the mappings from input time-series u(·) to the output times-series
y(·), where u(t) ∈ Rm and y(t) ∈ Rp for every t. The (hidden) states, which capture the latent
dynamics, are denoted as x = x(t) ∈ Rn. The system matrices are of dimensions A ∈ Cn×n,
B ∈ Cn×m, C ∈ Cp×n, and D ∈ Cp×m. Often, the size n of the state vector x is much larger than
m and p, which allows us to memorize information about the past inputs u|(−∞,t] in the state vector
x(t) and retrieve it later to compute y via C.

The so-called S4 (Gu et al., 2022b) and S4D (Gu et al., 2022a) models both set m = p = 1, and
they differ in the structural requirement of A. This framework was later generalized to the case
where m, p > 1 by the S5 model (Smith et al., 2023) via the parallel scans. Another line of research
involves making the state transition rule A depend on the input u, along which the two most notable
models are Liquid-S4 (Hasani et al., 2023) and Mamba (Gu & Dao, 2023), where the latter model
achieves the state-of-the-art performance on large-scale real-world datasets.

However, SSMs typically need to be initialized and trained (very) carefully. A randomly initialized
SSM has suboptimal performance, but the so-called high-order polynomial projection operators
(HiPPOs) (Voelker et al., 2019; Gu et al., 2020; 2023) can be used to empirically improve it. On
the other hand, even a properly initialized SSM needs to be trained with care. One often needs
to set a smaller learning rate for the matrix A (Gu et al., 2022b), and the LTI systems require
reparameterization to be trained stably (Wang & Li, 2023). To better understand these initialization
and reparameterization efforts from a unified perspective, we analyze SSMs through the lens of
Henkel Operator theory. Specifically, we use the Hankel singular value decomposition (HSVD) to
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analyze an operator defined by Γ. The decay of the Hankel singular values tells how “expressive”
the LTI system is. If the Hankel singular values of Γ decay fast, then it informally means that our Γ
cannot capture the complex patterns in the input space {u(·)}; in fact, the theory of reduced-order
modeling (ROM) says that Γ can be well-approximated by a reduced system with a much smaller
state-space dimension k ≪ n (Glover, 1984).

We find that the decay of the Hankel singular values can be used for predicting the performance of
an SSM, and that every previous effort in proposing a good initialization and training scheme can be
viewed as an effort to avoid fast-decaying Hankel singular values. This is reminiscent of the works
by Martin & Mahoney (2021) and Martin et al. (2021) that connect the singular values of the weight
matrices to a deep neural network’s performance. Using the Hankel singular values as heuristics,
we show that an S4D model is vulnerable to losing expressiveness during training. Moreover, even
with a reparameterization, an LTI system is very sensitive to a perturbation of its parameters, A, B,
and C, impairing the training stability of an S4D model.

Figure 1: There are many equivalent ways to rep-
resent an LTI system. While most of the canon-
ical SSMs use continuous LTI systems as their
parameters, we propose to parameterize an SSM
by the Markov parameters in its Hankel operator.
The feedthrough matrix D is not shown in the di-
agram, but it is also a parameter of the LTI layers
in both the canonical SSMs and our HOPE-SSM.

Based on these insights, we propose a com-
pletely different parameterization of the LTI
systems. Instead of parameterizing the
continuous-time systems by matrices A, B and
C, we parameterize our LTI systems by the
Markov parameters of the so-called discrete
Hankel operator (HOPE). A discrete Hankel
operator is defined by a doubly infinite Hankel
matrix, and is naturally associated with a dis-
crete LTI system, and with a continuous-time
system via the bilinear transform with ∆t =
1 (Glover, 1984). While this continuous-time
LTI system acts on our sequential data, the op-
timization algorithms are applied to the Markov
parameters of the Hankel matrix. (See Fig-
ure 1.) We prove that unlike an LTI system
parameterized by (A,B,C,D), one parame-
terized by the Markov parameters almost surely
has slowly decaying singular values (see Theo-
rem 3); moreover, it enjoys a global stability to
perturbation (see Theorem 4). Hence, unlike a
canonical SSM, our HOPE-SSM can be stably
trained without reparameterization or reducing
the learning rate, also reducing the need for hyperparameter tuning. We show that our HOPE-SSM
can be implemented by nonuniformly sampling the transfer function, which shares the same com-
putational complexity as the S4D model. Moreover, it requires only 1/3 the number of parameters
of an LTI system in an S4D model to parameterize that in a HOPE-SSM.

The practical benefits of our novel parameterization are improved robustness (with respect to initial-
ization and training stability) and performance (with respect to model quality and parameter count).
Moreover, we show that the memory of our HOPE-SSM does not decay (see eq. (6)) in a fixed time
window, making it possible to solve tasks that involve even longer-range dependency by tuning the
sampling period ∆t at discretization. This partially addresses the well-known issue that the LTI
system of a canonical SSM suffers from exponentially decaying memory (Agarwal et al., 2023).

Related Work. Initially proposed by Voelker et al. (2019), the general idea of the HiPPO framework
is to memorize the input by projecting it onto an orthogonal polynomial basis and storing the coef-
ficients in the state vector x(t). This was later generalized to some different orthogonal polynomial
bases in Gu et al. (2020; 2023). The S4D model uses a slightly perturbed version of the HiPPO-LegS
initialization, and the effect of the perturbation was studied in Yu et al. (2024). The initialization
issue was also studied in Orvieto et al. (2023) in the discrete-time setting, which provides an alter-
native justification of HiPPO based on the spectrum of the state matrix. While a common way to
reparameterize a diagonal SSM is by training Re(diag(A)) on a logarithmic scale (Gu et al., 2022a),
other stable reparameterizations were considered in Wang & Li (2023). A method that directly pa-
rameterizes the convolutional kernel of the discretized LTI system was presented in Fu et al. (2023).
Compared to their work, in this paper, we adopt a compute-then-discretize strategy by still parame-
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terizing the underlying continuous dynamics, making our SSM capable of handling sequences with
varying lengths.

The decaying memory of RNNs and SSMs is analyzed and discussed by a wide literature (Hardt
et al., 2018; Gu et al., 2020; Wang & Xue, 2024; Orvieto et al., 2024). Ways to lift the memory
capacity of an SSM were considered in Wang & Li (2023) and Agarwal et al. (2023) via either
reparameterizing the state matrix or applying a spectral filter. We remark that while Agarwal et al.
(2023) showed that a spectral SSM is exponentially close to an SSM, our HOPE-SSM is an actual
SSM containing LTI systems, and it only differs from a canonical SSM in the parameterization.

Contributions. Our main contributions are summarized as follows.

1. We show that high-degree LTI systems (i.e., those with slow-decaying Hankel singular val-
ues) in an SSM lead to a good performance. We justify this causal relationship using ideas
in reduced-order modeling (ROM). We theoretically prove that expressive, high-degree LTI
systems are scarce in the parameter space of (A, B,C). Thus, they need careful designs
and are numerically unstable. This explains difficulties in initializing and training SSMs.

2. We propose a new parameterization of LTI systems using the Hankel operator (HOPE),
which can be implemented efficiently by nonuniformly sampling the transfer function and
requires 1/3 the number of parameters in an LTI system from an S4D model. We prove
that our new parameter space is full of high-degree LTI systems. Hence, our HOPE-SSM
does not suffer from the lack of expressiveness during initialization and training; moreover,
it can be stably trained and has non-decaying long memory.

3. We empirically demonstrate that our HOPE-SSM is robust using the sCIFAR-10 task and
that it has long-term memory using a noise-padded sCIFAR-10 dataset. We test the perfor-
mance of a full-scale HOPE-SSM on the Long-Range Arena and observe that its perfor-
mance exceeds that of its S4 and S4D counterparts and many other SSMs for most tasks.

2 PRELIMINARIES

Let Γ = (A,B,C,D) be a continuous-time LTI system defined in eq. (1). One can take a bilinear
transform to obtain a discrete system Γ = (A,B,C,D) so that the underlying dynamics is given by

xk+1 = Axk +Buk, yk = Cxk +Duk. (2)

The transfer functions of Γ and Γ are rational functions on the complex plane C defined by

G(s) = C(sI−A)−1B+D and G(z) = C(zI−A)−1B+D,

respectively. We usually care about the values of G and G on the imaginary axis and the unit circle in
C, respectively. They “transfer” the inputs to the outputs in the frequency domain by multiplication:

(continuous case) ŷ(s) = G(is)û(s), s ∈ R,
(discrete case) ŷk = G(ωk)ûk, 0 ≤ k ≤ L− 1,

(3)

where the hats on a function and on a vector mean the Fourier transform and the Fourier coefficients,
respectively, and ωk = exp(i2πk/L) is the kth Fourier node of length L. Throughout this paper, we
assume that our LTI systems are asymptotically stable, i.e., the eigenvalues of A have negative real
parts, or equivalently, the eigenvalues of A are contained in the open unit disk in the complex plane.
In this paper, we also discuss a completely different notion of stability: the numerical stability of an
LTI system. This refers to the system’s sensitivity to a perturbation of its parameters. We will clearly
distinguish these two notions of stability by appending the adjectives “asymptotic” or “numerical”.

Given a discrete LTI system Γ, its Hankel operator is defined by a doubly infinite Hankel matrix

H ∈ C∞×∞, H : ℓ2(N)→ ℓ2(N), Hi,j = CA
i+j

B, i, j ≥ 0, (4)

where ℓ2(N) = {(f1, f2, . . .) | fj ∈ C,
∑∞

j=1 |fj |2 < ∞}. This discrete Hankel operator on
ℓ2(N) is a bounded linear operator of rank ≤ n, the number of latent states. We denote its singular
values by σ1(H) ≥ σ2(H) ≥ · · · ≥ σn(H) ≥ 0. Analogously, one can define a continuous
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Hankel operator H : L2([0,∞)) → L2([0,∞)) given a continuous-time LTI system Γ, where
L2([0,∞)) = {f : [0,∞) → C | f measureable,

´∞
0
|f(t)|2dt < ∞}. If Γ is discretized from

Γ using the bilinear transform, then the singular values of H are equivalent to those of H, i.e.,
σj(H) = σj(H). (See Appendix B for more details.) In this paper, we consider the decay of the
Hankel singular values. To quantitatively measure how “small” a singular value is, we introduce the
numerical rank of an LTI system. Given a small number ϵ ≥ 0, we define the ϵ-rank of Γ to be the
number of relative Hankel singular values larger than ϵ:

rankϵ(Γ) = max{j | σj(H)/σ1(H) > ϵ}.

When ϵ = 0, we reproduce the exact rank of H, which is rarely < n in the floating-point arithmetic.
A small positive ϵ allows us to eliminate the small but perhaps positive singular values.

3 UNRAVEL A MYSTERY: HANKEL SINGULAR VALUES IN INITIALIZATION
AND TRAINING
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Figure 2: Test accuracy of the SSMs on the sCIFAR task. The LTI systems are initialized in three
different ways and are either trained or untrained. We notice that when the LTI systems are initialized
with init1 (red), training the LTI system together with other model parameters is impairing the
model accuracy. This is in contrast to SSMs initialized with init3 (blue), where assigning the LTI
system a small positive learning rate is helping the performance.

We begin our exploration by presenting a mystery. We use it to elicit and support the use of the
Hankel singular values as protocols for explaining and predicting the success of SSMs, without
stressing it as a fine-grained study of different initializations. We train an S4D model to learn the
sCIFAR-10 image classification task (Krizhevsky et al., 2009; Tay et al., 2021). We consider three
initialization schemes of the LTI systems in the SSM: init1,init2, and init3. While init3

is the HiPPO-LegS initialization, we treat the others as black boxes in this paper, leaving the details
to Appendix D. Instead, we later explain their success or failure by measuring their Hankel singular
values. For an SSM initialized using a certain initj (1 ≤ j ≤ 3), we train it in two different ways:
either by freezing A,B, and C and only training the other model parameters or by assigning A,B,
and C a small learning rate. The three initializations and two learning rate assignments comprise
a total of six combinations, summarized in Figure 2. Besides the natural question of why we see a
general difference between models initialized differently, Figure 2 raises a more intriguing mystery:

For an SSM initialized by init1,init2, or init3, why does training the LTI systems
impair, level, or improve the performance of the model, respectively?

To answer these questions, we study the Hankel singular values of the systems, but why are they
relevant? The reason is that the Hankel singular values measure the “complexity” of an LTI system.
The easiest way to see this is via ROM of the system Γ (Adamyan et al., 1971; Glover, 1984):

For any k < n, there exists a reduced-order approximation Γ̃ = (Ã, B̃, C̃, D̃) with Ã ∈
Ck×k, such that ∥G− G̃∥∞ ≤

∑n
j=k+1 σj(H) ≤ (n− k)σk+1(H), where G̃ is the transfer

function of Γ̃ and ∥ · ∥∞ is the L-infinity norm over the imaginary axis.
In particular, if the sum of the trailing Hankel singular values

∑n
j=k+1 σj(H) is small, then

by eq. (3), Γ and Γ̃ produce similar outputs on any input. Hence, ROM says that if the Hankel
singular values decay fast, then we can replace the LTI system with a much smaller one without too
much loss; in other words, most states in x(t) are not properly used to memorize the input.
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Figure 3: The distribution of all relative Hankel singular values σj(H)/σ1(H) of the LTI systems
in an SSM. For each initialization, the distribution is shown both at initialization and after the SSM
is trained for 10 epochs. Note that the second row only applies when the LTI systems are not frozen.

In our experiment, each SSM has 4 layers and 128 channels. These comprise 4×128 = 512 different
copies of single-input/single-output LTI systems. Every LTI has n = 64 latent states. These make up
512× 64 = 32768 relative Hankel singular values σj(H)/σ1(H) to consider. In Figure 3, we show
the histograms of all these relative Hankel singular values at two different stages of training. Note
that the three histograms on the second row only apply when the LTI systems are trained with a small
learning rate; when they are frozen, the distributions always stay the same as those at initialization.
We can explain the behaviors of the three SSMs using their Hankel singular values:

1. The systems in a model initialized by init1 initially have high numerical ranks. Hence,
when the systems are untrained, they define random mappings that capture the rich content
in the input data, yielding the rest of the work to other model parameters in the SSM.
However, when the systems are trained, their Hankel singular values start to decay rapidly
with only 27.87% of the singular values satisfying that σj(H)/σ1(H) > 0.01, and the
systems can no longer handle a variety of distinct inputs. This makes it harder to parse
complicated images in the sCIFAR-10 dataset.

2. No matter whether trained or not, the Hankel singular values of the systems in the model
initialized by init2 decay very fast, which means the systems essentially lack expressive-
ness and cannot capture the complicated patterns in the input space. Hence, the SSMs with
both trained and untrained LTI systems could not learn the task effectively.

3. The systems in the model initialized by init3, trained or not, have high numerical ranks.
In particular, over 87.82% of the singular values satisfy that σj(H)/σ1(H) > 0.01 after
10 epochs. In this case, training the LTI systems allows us to accelerate the optimization.

We just established the Hankel singular values as a protocol for evaluating and predicting the perfor-
mance of an SSM on tasks that involve complicated long-range dependencies. We can further derive
theory to explain the patterns we observed in the histograms in Figure 3, which brings out potential
weaknesses of the S4D models and motivates the development of our HOPE-SSM.

3.1 MANY LTI SYSTEMS HAVE LOW RANKS

We saw that LTI systems with high numerical ranks make an SSM thrive, but do we have an abun-
dance of them? We approach this question from a random matrix theory perspective. We randomly
sample an asymptotically stable LTI system. Since every diagonal entry aj of A = diag(a1, . . . , an)
needs to be contained in the open unit disk, we cannot assume that they are sampled from a random
Gaussian distribution. Instead, we assume that every aj is sampled i.i.d. from a distribution Fa with

P (|aj | > (1− ρ)) = O(ρα) as ρ→ 0+

for some α > 0. For example, if aj is uniformly distributed on the open unit disk, then we have

α = 1. Moreover, assume that B ◦ C⊤
is a random vector with each entry sampled i.i.d. from a

normal distribution N (0, 1), where ◦ is the Hadamard product. The skip connection matrix D has
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no effect on the Hankel singular values. With these assumptions, we formally show that the system
has a low ϵ-rank with high probability.

Theorem 1. Given any ϵ > 0, 0 < α ≤ 1, and 0 < δ ≤ 1, with probability at least 1− δ, the ϵ-rank
of Γ = (A,B,C,D) with aj ∼ Fa i.i.d. and bjcj ∼ N (0, 1) i.i.d. isO(ln

(
δ−3/2ϵ−1n

)
nβ), where

β ≤ 1

1 + α
+

ln(2 +
√

ln(1/δ)/2)

ln(n)

and the constant in O is universal.

We defer the proof to Appendix E. What Theorem 1 says is that if we ignore the logarithmic factors
in the O-notation, then the ϵ-rank of Γ scales like nβ as n → ∞, where β < 1. For exam-
ple, when aj are uniformly distributed on the unit disk, we have β = 1/2 plus a small number
bounded by ln(2 +

√
ln(1/δ)/2)/ ln(n). In practice, we find that this term can almost be ignored

(see Appendix H). The importance of Theorem 1 is twofold: from an expository point of view,
it theoretically verifies, using our Hankel operator framework, that random initializations of LTI
systems could lead to poor model performance, as observed in Gu et al. (2020) and Orvieto et al.
(2023); from a practical perspective, it suggests high-rank systems are only scarce in the space of
S4D model parameters. Hence, even when an LTI system is initialized with slow-decaying Hankel
singular values, when A, B, and C are perturbed during training, it is at risk of losing numerical
ranks and thus expressiveness. This is indeed observed in Figure 3, even for init3.

3.2 LTI SYSTEMS ARE NUMERICALLY UNSTABLE UNDER PERTURBATIONS

In this section, we perform a sensitivity analysis of an S4D model, which suggests a numerical
stability issue in training the model.

Theorem 2. Let Γ = (A,B,C,D) be a stable continuous-time LTI system, where A =

diag(a1, . . . , an) is diagonal. Let Γ̃ = (Ã, B̃, C̃,D) be a perturbed stable system with Ã =
diag(ã1, . . . , ãn). Assume there exist ∆A,∆B > 0 such that |aj − ãj | ≤ ∆A ≤ minj |Re(aj)|/2
and |bjcj − b̃j c̃j | ≤ min(|bjcj |,∆B) for all j = 1, . . . , n. Let G and G̃ be the transfer functions of
Γ and Γ̃, respectively. Then, the following statements hold.

(a) We have

∥G− G̃∥∞ ≤ 4n∆A max
j

|bjcj |
|Re(aj)|2

+ n∆B max
j

1

|Re(aj)|
.

(b) The upper bound is tight up to a factor of n. That is, given any Γ, ∆A ≤ minj |Re(aj)|/2,
and ∆B ≤ minj |bjcj |, there exist two systems Γ̃A and Γ̃B, with transfer functions G̃A

and G̃B, respectively, that satisfy the above perturbation conditions and have

∥G− G̃A∥∞ ≥ ∆A max
j

|bjcj |
|Re(aj)|2

, ∥G− G̃B∥∞ ≥ ∆B max
j

1

|Re(aj)|
.

The proof can be found in Appendix F. Theorem 2 says that when a diagonal LTI system is trained,
its numerical stability depends on two things: the proximity of its poles aj to the imaginary axis
and the magnitudes of B and C. We defer the discussion of aj to the end of this subsection. One
may imagine that ∥G∥∞ is related to |bjcj |, and hence, |bjcj | plays no role in the relative numerical
stability (i.e., ∥G− G̃∥∞/∥G∥∞) of the system. However, this is not true as a system with a small
∥G∥∞ may have an arbitrarily large B ◦ C⊤ (see Figure 4 (Left)). Working with such a system
can be numerically hazardous even at inference time due to the so-called cancellation errors (Yu &
Townsend, 2024). Later, we show that our HOPE parameterization does not suffer from these issues.

Combined with the spectral information of the state matrices A, Theorem 2 lets us explain why sys-
tems initialized by init1 are much more sensitive to perturbation than those initialized by init3.
In Figure 4, we show the locations of the poles aj and their associated magnitudes |bjcj |. Compared
to the systems from init3, the poles of the systems from init1 are much closer to the imaginary
axis whereas the values of |bjcj | are also much larger. Hence, by Theorem 2, they are much more
sensitive to training, and therefore lose numerical ranks easily. This is indeed seen in Figure 4.
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Figure 4: A random perturbation to the imaginary part of A is added to a system from init1 and
a HiPPO-LegS system from init3. The magnitude of the perturbation is set to 0.1% and 1% of the
original matrix A. For each system, on the left, we show the relative Hankel singular values σj/σ1

of the original and perturbed continuous-time systems; on the right, we plot the location of each aj
in the complex plane and use the color to indicate the magnitude of its associated |bjcj |.

Theorem 2 delivers a disturbing message. As stated in Baker et al. (2015), “[the Hankel singular
values] decay more rapidly the farther the Λ(A) falls in the left half of the complex plane,” where
Λ(A) is the spectrum of A, which is equivalent to {a1, . . . , an} in the diagonal case. Hence, many
diagonal LTI systems with a high ϵ-rank, i.e., those that we earlier found necessary for an SSM to
capture the long-range dependency, would have eigenvalues aj close to the imaginary axis, making
the system more sensitive to perturbation and thus the training less numerically stable.

4 HOPE-SSM: A RANKFUL, STABLE, AND LONG-MEMORY
PARAMETERIZATION

Given the potential issues of an SSM discussed in section 3, we propose an entirely different param-
eterization of the LTI systems called HOPE. We first describe the details of our HOPE-SSM and then
explain how it resolves the low-rank and numerical instability issues of an LTI system. In addition,
it also benefits from long-term memory. Our strategy is to use a Hankel matrix defined in eq. (4) to
parameterize an LTI system. Instead of having A, B, C, D, and ∆t as the model parameters, we
now have a vector h of length n, the skip connection D, and ∆t as our model parameters. Hence,
we use n complex parameters from h to replace the 3n (resp. 4n) complex parameters from A,
B, and C in S4D (resp. S4); 1 We remark that, as mentioned in the introduction, our model only
modifies the LTI systems in an SSM. That is, it requires 1/3 the number of parameters in an S4D
model for each LTI system. Since there are other components in an SSM (e.g., the encoder and the
decoder), we do not compress the number of parameters in the entire model by a factor of 1/3. The
finite Hankel matrix H ∈ Cn×n is then defined by the Markov parameters in h:

Hi,j = 1{i+j<n}hi+j . (5)

In an S4D model, we start with A, B, and C so that hi+j = CA
i+j

B; in a HOPE-SSM, we start
with hi+j and the matrix H corresponds to a discrete LTI system Γ, which is further associated with
a continuous-time system Γ via the bilinear transform with ∆t = 1. Notably, in our HOPE-SSM,
it is the continuous system Γ that takes the role of (A,B,C) in a canonical SSM, e.g., S4 and
S4D. In particular, Γ is then discretized with a trainable sampling period ∆t for a discrete sequential
input. Algorithm 1 computes HOPE, and we leave a detailed derivation in Appendix I. We also
present a flowchart in Figure 5 to better illustrate the concept. We emphasize that compared to most
convolutional-type models (Li et al., 2023), which parameterize a discrete convolutional kernel, our
method parameterizes a continuous convolutional kernel. Given the discrete input sequence, we then
discretize this convolutional kernel with respect to a trainable ∆t, making the model adaptable to
sequences of varying lengths (see Table 3 for an ablation study).

1There are different variants of S4D models that combine B and C into a single complex vector or use
fewer copies of A than the number of channels. Here, we compare HOPE to a vanilla S4D model.
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Algorithm 1 Computing the output of an LTI system parameterized by its Hankel matrix.
Input: an input sequence u ∈ RL, the Markov parameters of a Hankel matrix h ∈ Cn, and a

sampling period ∆t>0.
Output: the output y∈RL of the LTI system defined by h given input u and sampling period ∆t.

1: ω ← exp
(
2πi 0:(L−1)

L

)
{create FFT nodes}

2: s← (ω − 1)./(ω + 1) {convert to the s-domain, where ./ is the entrywise division}
3: s← s/∆t {scale the frequency domain in the s-plane}
4: ω ← (1 + s)./(1− s) {convert back to the z-plane}
5: g← zeros(L) {store samples of the transfer function}
6: for i = 0 : (n− 1) do
7: g← g + hi · (ω.∧(−i− 1)) {compute the ith moment, where .∧ is the entrywise power}
8: end for
9: y← Re (iFFT(FFT(u) ◦ g)) {◦ is the entrywise (i.e., Hadamard) product}

Figure 5: A flowchart that illustrates how the Hankel matrix H is used to compute an output se-
quence y given an input sequence u.

With L processors, we can compute the entries of g in Algorithm 1 in parallel, each of which
takes O(n) time. Computing the FFT and iFFT takes O(L logL). Overall, the evaluation of the
Hankel-parameterized LTI system takes Õ(L + n) time and O(L) space, which agree with the
complexities of the S4 and S4D models. To make the model recurrent during the inference time,
one can either identify a system (A,B,C) whose Hankel operator is H and compute as if it is
an S4D model (Kramer & Gorodetsky, 2018; Aumann & Gosea, 2023), or directly compute the
convolutional kernel using the iFFT of g in Algorithm 1.

Advantage I: A HOPE-SSM has a High Numerical Rank. We can build upon Bryc et al. (2006)
and Nekrutkin (2013) to prove the following result about random Hankel matrices.

Theorem 3. Let h1,h2, . . . be a sequence of i.i.d. random variables with mean 0 and variance 1

that have finite third moments. We almost surely have that for any ϵ > 0, the (ϵ/
√
ln(n))-rank of

Hn is Ω(n), where Hn is the n× n Hankel matrix defined in eq. (5).

Hence, if we ignore the logarithmic factor of
√
ln(n), then the numerical rank of a random Han-

kel matrix should be proportional to n as n → ∞. That means unlike the S4D model, we can
always randomly initialize a high-rank LTI system with HOPE; even better, a system parameter-
ized by HOPE does not lose rank during training (see Figure 6), because the low-rank systems are
themselves rare in the space of the Markov parameters h (but not in the space of (A,B,C)).

Advantage II: A HOPE-SSM is Numerically Stable under Perturbation. Unlike the LTI system,
a Hankel matrix H is very numerically stable under perturbation, as shown in the following theorem.
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Figure 6: The test accuracy of the HOPE-SSM on the sCIFAR-10 task and the evolution of the
Hankel singular values of the model. The plots are to be compared with Figure 2 and Figure 3.

Theorem 4. Let h ∈ Cn×1 be a vector and G be the transfer function defined in eq. (11). Suppose
we perturb h to h̃ and let G̃ be its transfer function. Then, we have ∥G− G̃∥∞ ≤

√
n∥h− h̃∥2.

Therefore, the numerical stability of the HOPE-SSM does not depend on the parameter h itself.
Consequently, our HOPE-SSMs are trained without having to rescale the Markov parameters h

Advantage III: A HOPE-SSM’s Memory Does Not Fade. While many LTI systems are tailored
for long-term memory (Voelker et al., 2019; Gu et al., 2020), an asymptotically stable system must
inevitably suffer from an exponential decay in its memory (Agarwal et al., 2023). This can be
manifested by the Hankel matrix: since

[
y⊤
0 y⊤

1 · · ·
]⊤

= H
[
u⊤
−1 u⊤

−2 · · ·
]⊤

, we can write

yj =

∞∑
k=1

Hj,k−1u−k =

∞∑
k=1

H0,k+j−1u−k, j ≥ 0. (6)

That means the effect of the input u−k on the output yj depends on the magnitude of H0,k+j−1.
Hence, the decay of |H0,t| gives us a measurement of the decay of the memory. For a discrete LTI
system, we have by definition that H0,t = CA

t
B. Since the spectrum of A for an S4D model,

regardless of ∆t, is contained in the open unit disk, A is a contraction operator and the “memory”
of the system decays as time goes by. Asymptotically in time, this decay of |H0,t| is exponential,
and for most systems, it starts at the very beginning when t increases from 0.2 However, if we
parameterize the LTI system by the Markov parameters in the Hankel matrix, then |H0,t| = ht,
which does not have to decay as long as t < n. We acknowledge that when t ≥ n, we have H0,t = 0,
which means the LTI system has essentially no memory after time n. We remark, however, that our
HOPE-SSM utilizes the continuous-time LTI system associated with a Hankel matrix H. That is,
from a continuous-time perspective, unlike S4D, our system’s memory does not decay for t ∈ [0, n]
(see Figure 7). Hence, even with a long sequence whose length is much larger than n, by setting the
sampling period ∆t to be small enough, our HOPE-SSM could still enjoy non-decaying memory.

5 EXPERIMENTS AND DISCUSSIONS

Experiment I: Singular Values of a HOPE-SSM. In this section, we implement a randomly initial-
ized HOPE-SSM to learn the sCIFAR-10 task. We use the same model hyperparameters as the S4D
models in section 3. In particular, the Hankel matrices in this model are 64-by-64. We randomly
initialize the Hankel matrix and do not set a smaller learning rate for the Hankel matrix entries h,
i.e., all model parameters except for ∆t have the same learning rate. In Figure 6, we show the
test accuracy and the Hankel singular values of the HOPE-SSM. Compared to Figure 2, a random
HOPE-SSM can be trained to a high accuracy. In addition, training does not reduce the numerical
rank of a Hankel matrix. This corroborates our findings in Theorem 3 and Theorem 4. Note that

2In particular, this is the case for HiPPO-LegS (see Figure 7).
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Figure 7: Left: the test accuracies of the S4D model and our HOPE-SSM on the noisy-sCIFAR
task. Right: a unit impulse at t = 0 is acted on the LTI system. The plot shows the decay of |y(t)|
as t increases. Data are collected for all 512 LTI systems in a trained model. The dark curve shows
the median of |y(t)| over the 512 numbers. The darkly shaded region is from the first quartile to the
third quartile. The lightly shaded region is from the minimum to the maximum.

since we used the log-log scale to plot the histograms, the small relative Hankel singular values
make up a misleadingly large portion of densities in Figure 6 than they really do.

Experiment II: HOPE-SSMs Have Long Memory. In section 4, we claim that a HOPE-SSM
benefits from non-decaying memory. We show this experimentally in this section. To do so, for each
flattened picture in the sCIFAR-10 dataset, which contains 1024 vectors of length 3, we append a
random sequence of 1024 vectors of length 3 to the end of it. The goal is still to classify an image
by its first 1024 pixels. We call this task noise-padded sCIFAR-10. This task obviously requires a
long memory so that the earlier data can still be retrieved after the noises are taken. We train both
an S4D model and our HOPE-SSM to learn this task, using a common sampling period of ∆t = 0.1
(see Appendix K.2 for different values of ∆t). We see in Figure 7 that the HOPE-SSM significantly
outperforms the S4D model on this task. To understand this gap, we give a unit impulse at t = 0
to the LTI systems in both the trained S4D model and our HOPE-SSM. We watch how the impulse
response y(t) decays as time goes by. In Figure 7, we see that the memory of the trained S4D model
decays exponentially while that of the trained HOPE-SSM does not decay at all for t ∈ [0, 64],
where n = 64 is the size of the Hankel matrix. This is exactly what we expected in eq. (6).

Experiment III: Performance in the Long-Range Arena. Finally, we present the performance
of HOPE-SSM on large datasets. We use the same model architecture as in the S4D paper (Gu
et al., 2022a), except that we replace the LTI blocks with our HOPE blocks. The specific model and
training hyperparameters are reported in Table 2 in Appendix K. We show the performance of our
model in Table 1. We see that our HOPE-SSM outperforms most sequential models on many tasks.

Table 1: Test accuracies in the Long-Range Arena of our HOPE-SSM and other models. We report
the median and the standard deviation of executions with 5 random seeds. The bold (resp. under-
lined) numbers indicate the best (resp. second best) performance on a task. An entry is left blank if
no result is found. We use the same model sizes as those in the S4D model.

Model ListOps Text Retrieval Image Pathfinder Path-X Avg.
DSS (Gupta et al., 2022) 57.60 76.60 87.60 85.80 84.10 85.00 79.45

S4++ (Qi et al., 2024) 57.30 86.28 84.82 82.91 80.24 - -
Reg. S4D (Liu & Li, 2024) 61.48 88.19 91.25 88.12 94.93 95.63 86.60

Spectral SSM (Agarwal et al., 2023) 60.33 89.60 90.00 - 95.60 90.10 -
Liquid S4 (Hasani et al., 2023) 62.75 89.02 91.20 89.50 94.80 96.66 87.32

S5 (Smith et al., 2023) 62.15 89.31 91.40 88.00 95.33 98.58 87.46
S4 (Gu et al., 2022b) 59.60 86.82 90.90 88.65 94.20 96.35 86.09

S4D (Gu et al., 2022a) 60.47 86.18 89.46 88.19 93.06 91.95 84.89
HOPE-SSM 62.60 89.83 91.80 88.68 95.73 98.45 87.85

±0.92 ±0.37 ±0.11 ±0.44 ±0.28 ±0.17

6 CONCLUSION

In this paper, we presented a new theory based on the Hankel singular values to understand the
difficulties in initializing and training an SSM. We proposed a new parameterization scheme, called
HOPE, that is based on the Markov parameters in a discrete Hankel operator. We proved that a
HOPE-SSM can be robustly initialized and trained and has a long memory.
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A MORE BACKGROUND ON THE LTI SYSTEM AND HANKEL OPERATORS

The purpose of this section is to provide a more thorough exposition of section 2, which leaves out
some concepts that are unnecessary in order to understand the main text. Let Γ = (A,B,C,D) be
a continuous-time LTI system defined in eq. (1). One can take a bilinear transformation to obtain a
discrete LTI system:

A=(I+A)(I−A)−1, B=(I+A)B/
√
2, C=C(I+A)/

√
2, D=D+C(I−A)−1B.

The bilinear transformation is invertible and defines a one-to-one correspondence between Γ
in eq. (1) and Γ = (A,B,C,D) given by

xk+1 = Axk +Buk,

yk = Cxk +Duk.

The transfer functions of Γ and Γ are

G(s) = C(sI−A)−1B+D and G(z) = C(zI−A)−1B+D,

respectively. The two transfer functions are equivalent via a Mobius transformation:

G(s) = G ((1 + s)/(1− s)) ⇔ G(z) = G ((z − 1)/(z + 1)) .

The importance of the transfer functions is that they bring the inputs to the outputs in the Laplace
domain by multiplication, which reduces to the Fourier domain if we assume that u is bounded and
compactly supported:

ŷ(s) = G(is)û(s), ŷ = G(ω)û, (7)

where the hat of a function and a vector means the Fourier transform and the Fourier coefficients,
respectively, and ω is the vector of roots of unity.

Given a continuous-time LTI system Γ, one can define its Hankel operator by

H : L2(0,∞)→ L2(0,∞), (Hv)(t) =

ˆ ∞

0

C exp((t+ τ)A)Bv(τ)dτ.

The Hankel operator maps the past inputs to the future outputs, i.e., if u(t) = 0 for t ≥ 0 and we
define v(t) = u(−t), then we have y(t) = (Hv)(t). Analogously, the Hankel matrix of a discrete
LTI system Γ is a doubly infinite matrix defined by

H : ℓ2 → ℓ2, Hi,j = CA
i+j

B, i, j ≥ 0.

The Hankel matrix has the similar physical interpretation: if uk = 0 for all k ≥ 0, then we have[
y⊤
0 y⊤

1 · · ·
]⊤

= H
[
u⊤
−1 u⊤

−2 · · ·
]⊤

. Both H and H are bounded linear operators of rank
≤ n, the number of latent states. In fact, the singular values σ1(H) ≥ σ2(H) ≥ · · · ≥ σn(H) ≥ 0
of H are equivalent to those of H, and they are called the Hankel singular values of Γ and Γ.

B MORE BACKGROUND ON HANKEL SINGULAR VALUES

In section 2, we define the Hankel singular values σ1, . . . , σn to be the singular values of the finite-
rank bounded linear Hankel operator on a separable Hilbert space. Throughout the paper, we treated
them as black boxes and used their distributions to understand the performance of SSMs. The
goal of this section is to open the black boxes and introduce more useful properties of the Hankel
singular values. Note that the proof of Theorem 1 to be presented in Appendix E heavily relies
on the background discussed in this section. The concepts in this section can be presented on a
continuous-time LTI system (A,B,C,D) or analogously on a discrete LTI system (A,B,C,D).
We focus mainly on a continuous-time system for cleanliness. Since D has no effect on the Hankel
singular values, we further assume that D = 0 and write only Γ = (A,B,C).
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B.1 HANKEL SINGULAR VALUES FROM BALANCED REALIZATION

One of the most popular ways to compute the Hankel singular values is via the so-called balanced
realization. Assume (A,B,C) is asymptotically stable, i.e. the spectrum of A is contained in the
open left half-plane. Then, there exist two Hermitian and positive semi-definite matrices P ∈ Cn×n

and Q ∈ Cn×n such that
AP+PA∗ +BB∗ = 0,

A∗Q+QA+C∗C = 0.
(8)

The equations in eq. (8) are called the Lyapunov equations and P and Q are called the controlla-
bility Gramian and the observability Gramian, respectively. They can be explicitly expressed by the
following matrix integrals:

P =

ˆ ∞

0

exp(At)BB∗exp(A∗t)dt, Q =

ˆ ∞

0

exp(A∗t)C∗Cexp(At)dt. (9)

The controllability Gramian P is positive definite if and only if the system is controllable, i.e., for
any x0,x1 ∈ Cn and any T > 0, there exists an input u on [0, T ] that makes x(T ) = x1 when
x(0) = x0. Likewise, Q is positive definite if and only if the system is observable, i.e., for any
T > 0, the initial state x(0) can be determined by the input u and the output y on [0, T ] (Zhou &
Doyle, 1998).

The singular values of PQ turn out to be exactly the squares of the Hankel singular values, i.e.,
σ2
1 , . . . , σ

2
n, of the system Γ. In general, P and Q are dense matrices. However, one can use

the so-called balanced realization algorithm (Laub et al., 1987) to compute an equivalent system
Γb = (Ab,Bb,Cb) = (V−1AV,V−1B,CV), where V ∈ Cn×n is an invertible matrix, so that its
Gramians Pb and Qb are equivalent and diagonal, i.e.,

Pb = Qb = diag(σ1, . . . , σn).

Balanced realization is an algebraic method that is based on singular value decompositions (SVDs).
In practice, it is a very popular method to compute the Hankel singular values of a system.

B.2 HANKEL SINGULAR VALUES AS A RATIONAL APPROXIMATION PROBLEM

The balanced realization gives us a good way to compute the Hankel singular values in practice.
However, it does not offer too much insight in theoretically analyzing them. The theory of Hankel
singular values is usually derived via function approximation. Here, we introduce how a Hankel
singular value can be reframed as the solution to a rational approximation problem. To this end, we
let H∞

+ (resp. H∞
− ) be the Hardy space with functions h : C→ Cm×p that are bounded and analytic

in the open right (resp. left) half-plane. The non-tangential limit of h exists almost everywhere on
the imaginary axis, and by the Maximum Modulus Principle, we must have

∥h∥∞ := ess supRe(s)=0∥h(s)∥2 = sup
Re(s)>0

∥h(s)∥2, h ∈ H∞
+

and
∥h∥∞ := ess supRe(s)=0∥h(s)∥2 = sup

Re(s)<0

∥h(s)∥2, h ∈ H∞
− .

The Adamyan–Arov–Krein (AAK) Theory (Adamyan et al., 1971) says the following:

σk+1 = inf
Rk,F

∥G−Rk − F∥∞, 0 ≤ k ≤ n− 1, (10)

where Rk ranges over all rational functions with at most k poles, all contained in the open left half-
plane, and F ranges over H∞

− . In fact, as discussed in section 2, Rk is the transfer function of a
reduced system Γ̃ = (Ã, B̃, C̃, D̃) with Ã ∈ Ck×k. Hence, eq. (10) tells us that if the transfer
function of Γ can be well-approximated by rational functions, then it has fast-decaying Hankel
singular values. The other direction is not true, due to the existence of F . That is, if the Hankel
singular values decay fast, then it does not necessarily mean that G can be well-approximated by
rational functions. However, section 2 shows that this is true if the sum of the tails of the Hankel
singular values decay rapidly.
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C COMPARISON TO RELATED WORKS

One of the advantages of our HOPE-SSM is its long-memory capacity (see section 4). Notably,
there have been two prior works that also consider the memory issues of an SSM (Wang & Li, 2023;
Agarwal et al., 2023). In this section, we briefly introduce the two works and compare them to our
HOPE-SSM. The Stable-SSM proposed by Wang & Li (2023) is based on a theoretical analysis of
stable representations of long-memory SSMs. In that work, it is shown that without any reparam-
eterization of the matrix A, an LTI system cannot stably represent dynamics with long memory.
That is, one can slightly perturb the LTI system to break the long memory. Based on the theory, it
then proposes, in addition to the traditional log(Re(A)) parameterization of the real parts of A, dif-
ferent parameterizations to enhance of stability of long-memory representations. Our HOPE-SSMs
are also based on different parameterizations of LTI systems. While a Stable-SSM reparameterizes
A, B, and C, we totally give up representing the system matrices but instead rely on the Hankel
operator. That is, a HOPE-SSM has in addition two advantages (I and II) shown in section 4. More-
over, it is easy to directly change the memory decay of a HOPE-SSM to account for recency bias
(see Appendix L).

The Spectral-SSM proposed in Agarwal et al. (2023) is based on the spectral filtering mechanism.
The idea is to project the input sequence adaptively onto a predefined basis and then compute the
output by taking a linear combination of the projections. The model is convolution-based, similar to
HOPE. However, the two models attack the varying-length sequences in different ways. A Spectral-
SSM handles varying-length sequences by fixing a truncated set of basis that is independent of the
input length, while a HOPE-SSM defines a continuous-time convolution kernel to be discretized
by trainable a ∆t to handle sequences of different lengths. Finally, a Spectral-SSM may not be
equivalent to a standard SSM with LTI systems, whereas a HOPE-SSM is indeed one with LTI
systems.

D THREE DIFFERENT INITIALIZATION SCHEMES

In this section, we explain the details of init1, init2, and init3 in the main text. We stress
again that we do not claim that these initialization schemes are representative. Indeed, we only use
them to elicit the story of the Hankel singular values. As mentioned in the main text, init3 is the
HiPPO-LegS initialization scheme (Gu et al., 2020). To sample a random with init1, we create
random samples of the transfer function {(isj , Gj)}Nj=1, where sj ∈ R and Gj ∈ C. We then
identify a system Γ whose transfer function G satisfies that G(isj) ≈ Gj . The way we identify this
model is via the so-called AAA algorithm (Nakatsukasa et al., 2018; Aumann & Gosea, 2023). For
init2, we sample a discrete system by assuming the diagonal entries of A = diag(a1, . . . , an) are
uniformly sampled on the unit disk and B ◦ C⊤

is a random vector with each entry sampled i.i.d.
from a normal distribution N (0, 1). We then compute the corresponding continuous-time system
from the discrete system using the bilinear transform.

E PROOF OF THEOREM 1

Let G be the transfer function of a random system Γ2, i.e.,

G(z) = C(zI−A)−1B+D.

By the AAK theory, the Hankel singular values of Γ can be studied via the rational approximation of
G. Since the matrix D does not affect the Hankel singular values of a system, we assume, without
loss of generality, that D = 0. We let σ1, . . . , σn be the random variables that are equal to the
singular values of the random LTI system Γ2. We approach Theorem 1 in three steps:

1. We separate out the poles of the transfer function G of (A,B,C,0) that are close to the
boundary of the unit disk. This breaks G into two low-rank systems G1 and G2, where G1

is low-rank because it has few poles and G2 is low-rank because its poles are far away from
the boundary.

2. We then estimate the decay of the singular values of G2 using the information of the maxi-
mum moduli of its poles.
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3. Finally, we control σ1 in probability. This gives a control on the relative singular values.

We will make these three steps into three lemmas and use them to derive the result at the end.
Lemma 1. Given γ > 0, with probability at least 1− δ, there are at most nβ poles of G(z) outside
the disk D(0, 1− n−γ), where

β = 1 + logn

(
n−γα +

√
ln(1/δ)

2n

)
.

Proof. Let Z be the number of poles inside D(0, 1− n−γ). Then, Z has a binomial distribution

Z ∼ B(n, 1− n−γα).

From Hoeffding’s inequality, we have

P(Z ≤ n− nβ) ≤ exp

(
−2n

(
1− n−γα − n− nβ

n

)2
)

= exp
(
−2n

(
−n−γα + nβ−1

)2)
Set

β = 1 + logn

(
n−γα +

√
ln(1/δ)

2n

)
= 1− γα+ logn

(
1 +

√
ln(1/δ)

2n1−2γα

)
.

Then, we have

nβ−1 = n−γα +

√
ln(1/δ)

2n
so that

P(Z ≤ n− nβ) ≤ exp
(
−2n ln(1/δ)

2n

)
= δ.

This finishes the proof.

Lemma 2. For any γ > 0, let the random variable k be the number of poles of G(z) inside D(0, 1−
n−γ). Let κ > γ be given. Then, with conditional probability (given k) at least 1− δ, we have

σ(n−k)+nκ+2 ≤ O
(√

nγ+1(ln(1/δ)+n)
)
e−(n(κ−γ)),

where the constant in O is universal.

Proof. Let z1, . . . , zk be the poles of G(z) inside D(0, 1− n−γ). Assume G(z) can be written as

G(z) = G1(z) +

k∑
i=1

ci
z − zi

,

where G1(z) is a degree-(n − k) rational function with poles inside the annulus of inner radius
1 − n−γ and outer radius 1 and ci’s are i.i.d. random variables with distribution N (0, 1). We can
further write

k∑
i=1

ci
z − zi

=

k∑
i=1

ci

∞∑
j=0

zji z
−j−1 =

∞∑
j=1

z−1−j

(
k∑

i=1

ciz
j
i

)
.

By the AAK theory, for any K > 0, we have

σ(n−k)+K ≤ sup
|z|=1

∣∣∣∣∣∣
∞∑

j=K−2

z−1−j

(
k∑

i=1

ciz
j
i

)∣∣∣∣∣∣ ≤
∞∑

j=K−2

∥c zj∥1 ≤ ∥c∥2
∞∑

j=K−2

∥zj∥2,

where c = [c1, . . . , ck]
⊤ and zj = [zj1, . . . , z

j
k]

⊤, and the last step follows from Hölder’s inequality.
Since ∥c∥22 follows the χ2

k distribution, for M > n, we have that

P (∥c∥22 > M) ≤ exp
(
−n

2

(
M

n
− 1− ln

(
M

n

)))
.
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Hence, there exists a universal constant C > 0 such that when M ≥ C(ln(1/δ) + n)3, we have

P (∥c∥22 > M) ≤ exp
(
−n

2

M

n

)
≤ δ.

Moreover, since
∣∣∣zji ∣∣∣ ≤ (1− n−γ)j for all 1 ≤ i ≤ k, we have

∥zj∥2 ≤
√
n(1− n−γ)j .

That is, with probability at least 1− δ, we have

σ(n−k)+K ≤ O
(√

ln(1/δ)+n
)√

n

∞∑
j=K−2

(1− n−γ)j = O
(√

nγ+1(ln(1/δ)+n)
)
(1−n−γ)K−2.

Suppose K ≥ nκ + 2. Then, we have

(1−n−γ)K−2 ≤ (1−n−γ)(n
κ) =

(
(1−n−γ)(n

γ)
)(nκ−γ)

.

Since (1−n−γ)n
γ → e−1 as n→∞, if κ > γ, then (1−n−γ)K−2 decays faster than any negative

power of n. Hence, we have

σ(n−k)+K ≤ O
(√

nγ+1(ln(1/δ)+n)
)
e−(n(κ−γ)),

as desired.

Lemma 3. With probability at least 1− δ, the leading Hankel singular value σ1 satisfies

σ1 ≥ O(
√
nδ),

where the constant in O is universal.

Proof. The leading Hankel singular value σ1 is equivalent to the spectral norm of the Hankel matrix
CB CAB CA

2
B · · ·

CAB CA
2
B · · · · · ·

CA
2
B

...
. . .

...
...

... · · ·
. . .

 .

Hence, we have
σ1 ≥

∣∣CB
∣∣ ,

where CB/
√
n ∼ N (0, 1). Hence, if we set M = C

√
nδ for some universal constant C > 0, we

have
P (σ1 ≤M) ≤ P

( ∣∣CB
∣∣ ≤M

)
= P

( ∣∣CB
∣∣ /√n ≤M/

√
n
)
≤ δ.

This completes the proof.

Now, let’s assemble our ultimate statement.

Proof of Theorem 1. By Lemma 2 and Lemma 3, with probability at least 1− δ/2, we have that

σ(n−k+nκ+2)

σ1
≤ O

(√
nγ(ln(1/δ)+n)δ−1

)
e−(n(κ−γ)).

Hence, if we set κ so that

nκ ≥ nγ ln
(
Cδ−1ϵ−1

√
nγ(log(1/δ) + n)

)
= nγ ln

(
O
(
δ−3/2ϵ−1n(γ+1)/2

))
3Here, n is to guarantee that M > n
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for a sufficiently large universal constant C > 0, then we guarantee that
σ(n−k+nκ+2)

σ1
≤ ϵ.

By Lemma 1, we have that with probability at least 1− δ/2,

n− k ≤ nβ , β = 1 + logn

(
n−γα +

√
ln(2/δ)

2n

)
.

Set γ = 1/(1 + α). Then, we have

β = 1 + logn

(
n−γα

(
1 +

√
ln(2/δ)

2n1−2γα

))
= 1− γα+ logn

(
1 +

√
ln(2/δ)

2n1−2γα

)

≤ 1

1 + α
+ logn(1 +

√
ln(2/δ)/2) <

1

1 + α
+

ln(2 +
√
ln(1/δ)/2)

ln(n)
.

Since
nκ + 2 = O

(
nγ ln

(
δ−3/2ϵ−1n

))
≤ O

(
nβ ln

(
δ−3/2ϵ−1n

))
.

The claim is proved.

F PROOF OF THEOREM 2

In this section, we prove Theorem 2. Our proof focuses on the worst-case perturbation by construc-
tion. As a consequence, it simultaneously proves the sharpness of the result. Intuitively, consider a
rational function

s 7→ bc

s− a
,

since we only care about its values on the imaginary axis, the closer the pole a is to the imaginary
axis, the less stable it is. On the other hand, it is obvious that the size of bc also controls the (absolute)
conditioning of the rational function. We state the rigorous proof below.

Proof of Theorem 2. Without loss of generality, we assume that B = B̃ = [1 1 · · · 1]
⊤. 4 The

transfer functions of Γ and Γ̃ are

G(s) =

n∑
j=1

cj
s− sj

and G̃(s) =

n∑
j=1

c̃j
s− s̃j

,

respectively. Then, for any s on the imaginary axis, we have∣∣∣∣ cj
s− sj

− c̃j
s− s̃j

∣∣∣∣ = ∣∣∣∣cj(s− s̃j)− c̃j(s− sj)

(s− sj)(s− s̃j)

∣∣∣∣ = ∣∣∣∣cjs− cj s̃j − c̃js+ c̃jsj + c̃j s̃j − c̃j s̃j
(s− sj)(s− s̃j)

∣∣∣∣
≤ |cj − c̃j | |s− s̃j |+ |c̃j | |sj − s̃j |

|s− sj | |s− s̃j |
=
|cj − c̃j |
|s− sj |

+
|c̃j | |sj − s̃j |
|s− sj | |s− s̃j |

≤ ∆B

|Re(sj)|
+

2 |cj |∆A

|Re(sj)|2/2
.

Hence, we have

∥G− G̃∥∞ ≤
n∑

j=1

(
∆B

|Re(sj)|
+ 4
|cj |∆A

|Re(sj)|2

)
≤ n∆B max

j

1

|Re(sj)|
+ 4n∆A max

j

|cj |
|Re(sj)|2

.

4Otherwise, we can redefine B = B̃ =
[
1 1 · · · 1

]⊤, C = B⊤ ◦ C, and C̃ = B̃⊤ ◦ C̃, and the
redefined transfer functions are unchanged.
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This proves the upper bound. To prove the lower bound, let j1 be an index that maximizes 1/|Re(sj)|
and j2 be an index that maximizes |cj |/|Re(sj)|2. Define Γ̃B by perturbing cj1 to cj1 +∆B. Then,
we have

∥G− G̃B∥∞ =

∥∥∥∥ ∆B

s− sj1

∥∥∥∥
∞

= ∆B max
j

1

|Re(sj)|
.

Define Γ̃A by perturbing sj2 to sj2 +∆A. Then, we have

∥G− G̃A∥∞ = |cj2 |
∥∥∥∥ 1

s− sj2
− 1

s− sj2 +∆A

∥∥∥∥
∞

= |cj2 |∆A

∥∥∥∥ 1

(s− sj2)(s− sj2 +∆A)

∥∥∥∥
∞

≥ |cj2 |∆A
1

|Re(sj2)|
2 = ∆A max

j

|cj |
|Re(sj)|2

.

This proves the sharpness of the theorem.

Next, we show that the factor n in Theorem 2 is in fact also tight.

Proposition 1. For any n, there exists a system Γ of size n and two systems Γ̃A and Γ̃B perturbed
from Γ, with transfer functions G, G̃A, and G̃B, respectively, that satisfy the perturbation conditions
in Theorem 2 and have

∥G− G̃A∥∞ ≥ n∆A max
j

|bjcj |
|Re(aj)|2

, ∥G− G̃B∥∞ ≥ n∆B max
j

1

|Re(aj)|
.

Proof. We take the single partial fraction from the proof of the lower bounds in Theorem 2 and
repeat it for n times to construct Γ. This would multiply the size of the transfer function perturbation
by a factor of n.

G PROOF OF THEOREM 3 AND THEOREM 4

The proof of Theorem 3 is a straightforward assembly of two results in random matrix theory. The
first result, due to Nekrutkin (2013), controls the Hankel norm σ1(Hn) of a random Hankel matrix,
whereas the second result by Bryc et al. (2006) studies the distribution of all absolute singular values
σj(Hn) of a random Hankel matrix. Our study of the relative Hankel singular values is achieved by
taking the quotient of the subjects of the two prior works.

Proof of Theorem 3. By Nekrutkin (2013), with probability 1, we have that

σ1(Hn) = ∥Hn∥ = O(
√
n lnn).

Define Kn = Hn(1 :⌈n/2⌉, 1:⌈n/2⌉). Then, by Bryc et al. (2006), with probability 1, we have that
µ(Kn/

√
n) converges in distribution to a fixed probability measure, where

µ(Kn/
√
n) =

1

⌈n/2⌉

⌈n/2⌉∑
j=1

δλj(Kn/
√
n)

is the spectral measure of Kn/
√
n. Since Kn is symmetric, the singular values of Kn are the moduli

of the eigenvalues of Kn. Hence, fix some ϵ > 0, we have that∣∣∣{j | σj(Kn)/σ1(Hn) > ϵ/
√
ln(n)}

∣∣∣ = Ω(n).

Since Kn is a submatrix of Hn, we have σj(Hn) ≥ σj(Kn) for all 1 ≤ j ≤ ⌈n/2⌉. Hence, its
(ϵ/
√
ln(n))-rank can be controlled as∣∣∣{j | σj(Hn)/σ1(Hn) > ϵ/

√
ln(n)}

∣∣∣ ≥ ∣∣∣{j | σj(Kn)/σ1(Hn) > ϵ/
√
ln(n)}

∣∣∣ = Ω(n).

This finishes the proof.
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We remark that in the statement of Theorem 3, we study the ϵ/
√

ln(n)-rank of the Hankel matrix
instead of the ϵ-rank. The reason is that, unlike the singular values of a random matrix, the spectral
measure of a normalized random Hankel matrix Hn/

√
n has unbounded support. In order to pull

the 1/
√

ln(n) factor out and make it into the Ω(n) bound, we need to study the distribution of the
spectral measure of Hn/

√
n. As pointed out by Bose (2018), however, this seems to be a hard

problem. Nevertheless, we can empirically test the statement by numerical experiments.

Next, we provide the proof of Theorem 4, which is almost immediate from Hölder’s inequality.

Proof of Theorem 4. By Hölder’s inequality, we have

∥G− G̃∥∞ = ∥G− G̃∥∞ ≤ max
|z|=1

n−1∑
j=0

|hj − h̃j ||z|−j−1 ≤ ∥h− h̃∥2
√
n.

H SOME NUMERICAL EXPERIMENTS ON HANKEL MATRICES

H.1 NUMERICAL RANKS OF RANDOM LTI SYSTEMS AND RANDOM HANKEL MATRICES IN
PRACTICE

While the theoretical part of our paper focuses on the ϵ-rank of an LTI system, in the main text, we
showed the distribution of all Hankel singular values of different LTI systems. The main reason for
showing the histograms instead of a single number (i.e., the ϵ-rank) is that the histogram gives us
more information while the ϵ-rank is merely a cutoff. In this section, we empirically compute the
ϵ-rank to verify the two theorems (i.e., Theorem 1 and Theorem 3).

In this experiment, we always set ϵ = 0.01. For every n in our experiment, we first randomly
initialize a random n× n Hankel matrix

Hn =


h0 h1 h2 · · · hn−1

h1 h2 · · · hn−1 0
h2 · · · hn−1 0 0
... . .

.
. .
. ...

...
hn−1 0 · · · 0 0

 ,

where hj are i.i.d. random Gaussian variables with variance of 1. We compute its ϵ-rank and we
repeat the experiment for 1000 trials. Similarly, for every n, we randomly initialize an LTI system
with

A = diag(a1, . . . , an), aj ∼ Uniform(D),

where D is the open unit disk in the complex plane and the elements of B ◦ C⊤ are sampled i.i.d.
fromN (0, 1). We compute its ϵ-rank and also repeat the experiment for 1000 trials. From Figure 8,
we see that a random LTI system has a low rank, whereas a random Hankel matrix has a high rank
in the sense that it is about proportional to n. This observation aligns with our theory in Theorem 1
and Theorem 3,

H.2 HANKEL MATRICES ARE STABLE TO PERTURBATION IN PRACTICE

Theorem 4 predicts that the Hankel matrices are very stable when being perturbed. In this section,
we run experiments in parallel with those in Figure 4, where we perturb a Hankel matrix H. As
in Figure 4, we also set the size of the random perturbation to be 1% and 0.1%, respectively, of the
original system. Theorem 4 is corroborated by Figure 9, where we see that a small perturbation has
a minimal effect on the Hankel singular values.

H.3 HANKEL SINGULAR VALUES AFTER TRAINING

In the main text, we showed the distributions of the Hankel singular values at initialization and after
10 epochs. In this section, we show the distribution of the Hankel singular values after the training
is done.
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Figure 8: The ϵ-rank of a random LTI system of size n, where ϵ = 0.01. The random systems are
parameterized by a Hankel matrix or by the matrices A,B, and C. The lines are the average rank
and the shaded regions indicate the 10%-90% range over 1000 trials.
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I ADJUSTING THE DISCRETIZATION STEP VIA NUFFT

In this section, we derive Algorithm 1. If we set ∆t = 1 and discretize Γ, the convolutional kernel
is exactly h padded with L − n zeros, where L is the length of the sequential input. However, we
usually want to discretize with a different ∆t. We can do so via resampling the transfer functions of
Γ and Γ, which equal (Peller, 2003)

G(s) =

n−1∑
j=0

hj ((1 + s)/(1− s))
−j−1 ⇔ G(z) =

n−1∑
j=0

hjz
−j−1. (11)

Let ω(L) =
[
ω
(L)
0 · · · ω

(L)
L−1

]⊤
be the vector of the Lth roots of unity. Given an input u ∈ CL×1

of length L, when ∆t = 1, the outputs can be evaluated as

y = iFFT(FFT(u) ◦G(ω(L))), G(ω(L)) =
[
G(ω

(L)
0 ) · · · G(ω

(L)
L−1)

]⊤
.

For a different ∆t, one way to think of it is that we have compressed or dilated the time domain of u
by a factor of ∆t. Hence, the frequency domain of its Fourier transform û is dilated or compressed
by a factor of 1/∆t. That is, we should relocate our samplers in the frequency domain as

ω(L,∆t) =
[
ω
(L,∆t)
0 · · · ω

(L,∆t)
L−1

]⊤
, ω

(L,∆t)
j =

1 + s
(L)
j /∆t

1− s
(L)
j /∆t

, s
(L)
j =

ω
(L)
j − 1

ω
(L)
j + 1

,

(12)
where s

(L)
j /∆t and ω

(L,∆t)
j are the scaled samplers in the time and angular domain, respectively.

Then, the output sequence y can be computed, from the nonuniform samples G(ω(L,∆t)), as

y = iFFT(FFT(u) ◦G(ω(L,∆t))), G(ω(L,∆t)) =
[
G(ω

(L,∆t)
0 ) · · · G(ω

(L,∆t)
L−1 )

]⊤
. (13)

To understand why eq. (12) holds, assume there exists a continuous function u on the unit circle
∂D where the discrete inputs u are sampled from. Then, FFT allows us to write u into the Fourier
expansion:

u(z) =

L−1∑
j=0

[FFT(u)]j exp
(
−2πi j

L
z

)
.

By the property of the transfer function eq. (3), we know that the output function y is equal to

y(z) =

L−1∑
j=0

(
[FFT(u)]j G(ω

(L)
j )

)
︸ ︷︷ ︸

ŷj

exp
(
−2πi j

L
z

)
.

To compute the discrete output y, one samples y at z = ω
(L)
0 , . . . , ω

(L)
L−1, which is equivalent to an

inverse FFT on FFT(u) ◦G(ω(L)).

Now, if we want to change ∆t, one way to think of it is as if our LTI system is unchanged, but the
time domain of u(z) is scaled by a factor of ∆t. That is, we now have5

u(∆t)(z) =

L−1∑
j=0

[FFT(u)]j exp
(
−2πi j

L
z(∆t)

)
, z(∆t) =

1 + s/∆t

1− s/∆t
, s =

z − 1

z + 1
.

The output function y(∆t) is now equal to

y(∆t)(z) =

L−1∑
j=0

(
[FFT(u)]j G(ω

(L,∆t)
j )

)
exp

(
−2πi j

L
z(∆t)

)
.

5Note that we could alternatively scale the angular domain instead of the time domain, i.e., z(∆t) = z/∆t.
The difference is on the level of discretization. However, we find that discretizing the time domain gives us a
better performance in general.
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Figure 11: A visualization of appendix I.

The only real difficulty is that when we sample y(∆t) at z = ω
(L)
0 , . . . , ω

(L)
L−1 to obtain y(∆t), we note

that z(∆t) = ω
(L,∆t)
0 , . . . , ω

(L,∆t)
L−1 are not uniform on the unit circle. Hence, it cannot be achieved

via inverse FFT. However, this sampling can be done via the so-called nonuniform FFT (NUFFT),
which also takes O(L logL). In general, one can interpret FFT as the procedure of evaluating a
function

f(ω) =

n−1∑
j=0

fjexp (−jω) ,

at the degree-L roots of unity ω = (ω0, . . . , ωL−1). The NUFFT is the procedure of evaluating
exactly the same function f , but at potentially nonuniform nodes ω̃ ̸= ω. We remark that NUFFT
is only used to simplify the representation of our derivation of Algorithm 1. It is not explicitly used
in the algorithm, even though the numerical stability of the NUFFT procedure is studied in Barnett
(2022); Yu & Townsend (2023); Austin (2023), and fast algorithms can be found in Greengard &
Lee (2004); Barnett (2022); Wilber et al. (2024).

Using the NUFFT at the uneven samples ω(L,∆t), we obtain

y(∆t) = NUFFT(FFT(u) ◦G(ω(L,∆t))).

Now, consider the following function

ỹ(∆t)(z) = y(∆t)(z(1/∆t)) =

L−1∑
j=0

(
[FFT(u)]j G(ω

(L,∆t)
j )

)
exp

(
−2πi j

L
z

)
.

This output function is a scaled version of y(∆t), where we scale the time domain by a factor of
1/∆t. One can sample ỹ(∆t) at z = ω

(L)
0 , . . . , ω

(L)
L−1 using iFFT:

ỹ(∆t) = iFFT(FFT(u) ◦G(ω(L,∆t))).

This leads us to eq. (13).

J CONVERGENCE OF HOPE

Assume that there exists a target dynamical system Γ∗ = (A∗,B∗,C∗) that we would like to learn
using a HOPE system parameterized by h, where our objective is to minimize the L2-loss of the
transfer functions. Let G∗ and Gh be the transfer functions of the target system and the HOPE
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system, respectively. This least-square system can be written as follows:

 | | |
z−1 z−2 · · · z−n

| | |


︸ ︷︷ ︸

Z


h1

h2

...
hn

 =

 |G∗
|

 ,

where Z is a quasimatrix. Hence, optimizing h is a convex problem. Moreover, the columns of Z
are orthogonal!

Proposition 2. Suppose we apply gradient descent on h with learning rate η < 1 to minimize
∥Gh−G∗∥2, where the 2-norm is taken over the unit circle. Let h(k) be the parameter after the k-th
iteration. Then, we have

∥Gh(k+1) −G∗∥2 ≤ (1− η)∥Gh(k) −G∗∥2 ≤ · · · ≤ (1− η)k+1∥Gh(0) −G∗∥2.

Proof. The proof is immediate from convex optimization theory by noting that the condition number
κ2(Z) = 1.

In our setting, we optimize on a continuous level. We can also analyze the optimization on a discrete
level, where one takes the samples of G∗ and Gh. In that case, the matrix Z is no longer a quasi-
matrix but instead a true NUFFT matrix. Its conditioning has been widely studied in the literature
(see (Yu & Townsend, 2023; Barnett, 2022)), making analogues of Proposition 2 easy to derive.

K EXPERIMENTAL DETAILS

In this section, we provide the details of the three experiments presented in the main text.

K.1 ANALYZING HANKEL SINGULAR VALUES USING THE SCIFAR-10 TASK

As mentioned in section 3, in the experiments presented in Figure 2 and Figure 6, we always train
an SSM with 4 layers and 128 channels. Each channel in a layer is modeled by an LTI system with
n = 64 states. When we parameterize the LTI systems using A,B,C, and D, we assign a learning
rate of 0.001 to A and of 0.01 to the rest. When we freeze the system matrices, then we set the
learning rate of A,B and C to 0 while keeping that of D to be 0.01. Note that the matrix D does
not affect the Hankel singular values. All other model parameters are trained with a learning rate of
0.01. For an LTI system parameterized by the Hankel matrix H, we adopt the same setting, except
that H is trained with a non-reduced learning rate of 0.01. To compute the Hankel singular values
of an LTI system (A,B,C,D), we use its balanced realization (see Appendix B). To compute the
Hankel singular values of a system parameterized by H, we apply an SVD to the matrix H.

K.2 TESTING HOPE-SSMS LONG MEMORY USING NOISY-SCIFAR

In this experiment (see Figure 7), we modify the sequential CIFAR-10 dataset by padding random
sequences to the right. For each sequence of length 1024 from the original dataset, we pad another
sequence of length 1024 to the end of it. The entries are sampled independently from the Gaussian
distribution on the same magnitude as the entries in the original sequences. We adopt the same model
architectures and learning rates as described in Appendix K.1 but make two exceptions. First, we
fix the discretization size to be ∆t = 0.1, and therefore, it does not need a learning rate. In addition,
a canonical SSM decodes the output sequence by first doing a pooling. Here, instead of pooling
over all 2048 output vectors, to make the problem more challenging and require longer memory, we
only pool over the last 1024 output vectors. These correspond to the output vectors when the noises
are fed. We also test the models using different discretization sizes ∆t. We see that when ∆t = 1,
the S4D model fails to converge while our HOPE-SSM performs relatively well; on the other hand,
when ∆t = 0.01, both models tend to have a relatively good performance. These observations align
with our theory because a larger ∆t means that we put the discrete data on a continuous time domain
with a longer span; hence, longer memory capacity is needed.
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Figure 12: Performance of the HOPE-SSM and the S4D model on the noise-padded sCIFAR-10
task using different values of ∆t.

K.3 HYPERPARAMETERS OF HOPE-SSMS IN THE LONG-RANGE ARENA

In this section, we present the table of hyperparameters used to train our HOPE-SSM on the LRA
tasks (Tay et al., 2021) (Apache License, Version 2.0). (See Table 2.) Our codes are adapted from the
code associated with the original S4 and S4D papers (Gu et al., 2022b;a) (Apache License, Version
2.0). Note that compared to the hyperparameters used to train S4 and S4D, we use the same model
hyperparameters and only slightly tune the training hyperparameters. All experiments are done on
a NVIDIA A30 Tensor Core GPU with 24 GB of memory. The time efficiency of our model is
roughly the same as that of the S4D model.

Task Depth #Features Norm Prenorm DO LR BS Epochs WD ∆ Range
ListOps 8 256 BN False 0. 0.01 20 100 0.03 (0.001,0.1)

Text 6 256 BN True 0.01 0.01 16 150 0.05 (0.001,0.1)
Retrieval 6 128 BN True 0. 0.008 32 80 0.03 (0.001,0.1)

Image 6 128 LN False 0.1 0.004 32 1500 0.01 (0.001,10)
Pathfinder 6 256 BN True 0. 0.001 16 250 0.03 (0.0001,0.1)

Path-X 6 128 BN True 0. 0.001 16 100 0.04 (0.0001,1)

Table 2: Configurations of the HOPE-SSM model, where DO, LR, BS, and WD stand for dropout
rate, learning rate, batch size, and weight decay, respectively.

K.4 FURTHER ABLATION

We study the role of ∆t in the discretization of a HOPE-SSM. Here, we show that it is key to
have tunable ∆t in the model of HOPE. This justifies our continuous-level parameterization of the
convolutional kernel.

Table 3: An ablation of the HOPE-SSM that shows ∆t is essential for a good performance of the
model.

Model ListOps Text Retrieval Image Pathfinder Path-X Avg.
HOPE-SSM 62.60 89.83 91.80 88.68 95.73 98.45 87.85

HOPE-SSM (∆t = 1) 55.50 86.63 86.12 79.92 91.20 50.00 74.90

L SUPPLEMENTARY EXPERIMENTS: RECENCY BIAS OF HOPE

The HOPE parameterization does not introduce a natural inductive bias over the inputs that fit into
the [0, n] memory window (see Figure 5). In some cases, however, a recency bias is desired to solve
the tasks. In this section, we discuss how the recency bias can be tuned in our model. The first
method is to change ∆t to ask for more or less bias. That is, if ∆t is set to be larger, then fewer
inputs can be fit into the memory window [0, n], so recency bias is advocated. We also propose a
different way to tune the bias by introducing an explicit decay to the Markov parameters. That is,
instead of setting Hij = hi+j , we use Hij = ci+jhi+j for some cj → 0 as j → ∞. For example,

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

cj = (1 + j)α for some hyperparameter α < 0. This would introduce a natural “memory decay”
over the interval [0, n] and hence tune the bias.

We now use a synthetic experiment to show that we can tune the recency bias. Our datasets contain
input sequences of length 1000, where the first 990 entries are sampled from i.i.d. random Gaussian
distributions, and the last 10 are sampled from c cos(st) for some random c ∈ [0, 1] and s ∈ [0, 1].
The goal is to predict the frequency s given the noisy input. We train our model using different ∆t
and the α hyperparameters. This task clearly requires recency bias because only the recent 10 inputs
are relevant to the output.

Table 4: The mean-squared error in predicting the frequency s given different training hyperparam-
eters.

∆t
0.1 1 5 10 50 100

α

0 0.084 0.053 0.020 0.006 0.006 0.015
-0.25 0.053 0.046 0.022 0.004 0.008 0.015
-0.5 0.055 0.048 0.021 0.008 0.013 0.016

-0.75 0.050 0.027 0.025 0.010 0.014 0.016
-1 0.047 0.025 0.023 0.009 0.014 0.017

-1.5 0.041 0.018 0.022 0.013 0.017 0.020
-2 0.042 0.022 0.024 0.021 0.019 0.023

We observe that as ∆t increases and α gets more negative, the model indeed favors the recent inputs.
In this experiment, we set n = 64. Hence, about 64/∆t inputs can be fit into the memory window.
setting ∆t = 10 allows the noises to be ignored by the model. In Table 4, we indeed see that it leads
to the best performance of the model. We remark that since our setting requires a hard-threshold
recency bias (i.e., we ideally want equal memory on only the last 10 inputs), it is more effective to
tune the recency bias by changing ∆t than α. However, the first two columns indeed show that we
can tune the bias also by changing α. Changing α could be more effective on other tasks that require
a soft recency bias.
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