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Abstract

Concept-based models are an emerging paradigm in deep learning that constrains
the inference process to operate through human-interpretable variables, facilitating
explainability and human interaction. However, these architectures, on par with
popular opaque neural models, fail to account for the true causal mechanisms
underlying the target phenomena represented in the data. This hampers their ability
to support causal reasoning tasks, limits out-of-distribution generalization, and
hinders the implementation of fairness constraints. To overcome these issues,
we propose Causally reliable Concept Bottleneck Models (C?BMs), a class of
concept-based architectures that enforce reasoning through a bottleneck of con-
cepts structured according to a model of the real-world causal mechanisms. We
also introduce a pipeline to automatically learn this structure from observational
data and unstructured background knowledge (e.g., scientific literature). Experi-
mental evidence suggests that C?°BMs are more interpretable, causally reliable, and
improve responsiveness to interventions w.r.t. standard opaque and concept-based
models, while maintaining their accuracy.

1 Introduction

In recent years, interpretable neural models have become more popular, achieving performance similar
to powerful opaque Deep Neural Networks (DNNs) (Alvarez Melis & Jaakkola, 2018; |Chen et al.|
2019;,2020). Among these, Concept Bottleneck Models (CBMs) (Koh et al.,2020; |Zarlenga et al.,
2022} Yuksekgonul et al.|, 2022} Barbiero et al.||2023)) guarantee high expressivity and interpretability
by enforcing DNNSs to reason through a layer of high-level, human-interpretable variables called
concepts (e.g., the “color” and “shape” of an object) (Kim et al.| 2018 |Achtibat et al.| 2023} |Fel
et al., [2023). In CBMs, a neural encoder first maps the raw input to concepts, forming a semantically
transparent intermediate representation that is used by a simple decoder for downstream predictions.
Beyond transparency, this design allows human experts to intervene on mispredicted concepts at test
time to improve downstream task predictions (Espinosa Zarlenga et al.| [2024).

However, like standard DNN architectures, CBMs remain pure associative models (Pearl, |2019):
their decision-making process reflects statistical correlations within the data rather than real-world
causal mechanisms. As a result, they fail to distinguish between spurious correlations and true causal
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relationships. Recognizing this distinction is fundamental to achieving a reliable scientific understand-
ing, supporting causal reasoning for intervention (Pearl, 2009; [Peters et al., 2017)), enabling robust
generalization under distributional shifts, and the implementation of fairness constraints (Scholkopf]
et al.,[2021} |Wang et al.| |2022).

To address these limitations, we propose Causally reliable Concept Bottleneck Models (C?BMs): a
class of concept-based architectures that enforce reasoning through a “Causal Bottleneck™ (Fig. [I)
of concepts structured according to a model of the real-world causal mechanisms underlying data
generation. C2BMs process information as follows. First, a neural encoder extracts a set of latent
representations from raw data. Then, information flows from latent representations through a given
causal graph where each node represents an interpretable variable (e.g., “smoker”, “bronchitis”). At
inference time, the value of each variable is predicted from its causal parents through an interpretable
structural equation, parametrized adaptively by a hypernetwork.

Designing a C>BM requires identi-
fying domain-relevant concepts and
specifying their causal relationships, a
process that depends heavily on expert
knowledge, which could be scarce,
costly, or entirely unavailable in prac-
tice. To mitigate this reliance and fa-
vor agile deployment across domains,
we propose a fully automated pipeline ] Tfammg &

(Fig. [T} Causal Graph Construction) Inference Causa' Bottleneck
for instantiating a C2BM, in which
the set of relevant concepts and the
causal graph are automatically learned
from a mixture of data and unstruc-
tured background knowledge.
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Figure 1: Causally reliable Concept Bottleneck Models
(C?BMs) enforce reasoning through a “Causal Bottleneck”
aligned with a model of real-world causal mechanisms ob-
tained from data and background knowledge.

Experimental evidence shows that C2BMs: (i) improve on consistency with real-world causal
mechanisms, without compromising accuracy w.r.t. standard DNN models, CBMs, and their
extensions (Sec. |5.1)); (ii) improve interventional accuracy on downstream concepts with fewer
interventions (Se ; (iil) mitigate reliance on spurious correlations (debiasing, Sec.|5.3| - @iv)
permit interventions to remove unethical model behavior and meet fairness requirements (Sec. [5.4).

2 Preliminaries

We introduce the notation and key formalizations underlying standard CBMs and causal modeling. A
more detailed background on causality is provided in App.[A]

Concept Bottleneck Models. CBMs (Koh et al., 2020) are interpretable-by-design architectures
that explain their predictions using high-level interpretable variables called concepts. Standard CBMs
decompose prediction into two stages: a neural encoder maps the input X to a set of intermediate
concepts V = {V;}{_,, and a decoder predicts the target Y from V. This yields:

PY,V|X)=PY |V) PV|X) . M
decoder  concept encoder

Concept Embedding Models (CEMs) (Zarlenga et al 2022) enhance CBMs by pairing concepts with
high-dimensional embeddings of the form P(U | V, X), where i = {U;}<_,. These embeddings are
provided to the decoder to predict the target variable Y, enabling the model to achieve performance
comparable to standard DNN approaches while maintaining semantic interpretability. Critically,
traditional decoders rely on a bipartite structure assumption, wherein all concepts are treated as direct
causes of the target, e.g., Y = f(V1,..., V) for CBMs. This assumption is often overly simplistic
for real-world problems. Bringing the reasoning of concept-based architectures closer to real-world
mechanisms constitutes the main focus of this work.

Causal Reliability. A model M is causally reliable w.r.t. a target phenomenon 7’ if and only if the
structure of M’s decision-making process is consistent with the causal mechanisms underlying 7’



(Termine & Primiero} 2024). Although state-of-the-art DNNs and concept-based models offer high
expressivity, they lack causal reliability.

Structural Causal Models. The standard framework for modeling causal mechanisms is the
structural causal model (SCM) (Bareinboim et al} 2022). An SCM M is a tuple (V, U, F, P),
where:

* Vis aset of C' endogenous variables, modeling observable magnitudes of interest;

* U is a set of exogenous variables, modeling unobservable magnitudes determined by factors
external to V;

F = {fi}%, is a set of functions such that

i=1
Vi=fi(PA, U;) Vi=1,...,C 2

where PA; C V\ 'V is the set of the endogenous parents of V;, U; C U is an exogenous
parent summarizing all the information influencing V; that is not explicitly represented in V,
and the entire set F forms a mapping from U/ to V.

» P(U) is a joint probability distribution over U.

Each SCM can be associated with a graphical representation in which nodes correspond to the
variables, and edges encode the functional relationships specified by F. Here, we focus on SCMs
whose associated graph is a directed acyclic graph (DAG) (Pearl, |1995; [Zaffalon et al., | 2020b). In
most cases, the underlying DAG is unknown and must be inferred from observational data, a process
known as causal discovery (Peters et al.| 2017; Zanga et al.,|2022). However, methods based solely
on observational data cannot generally guarantee the identification of a unique DAG (Peters et al.,
2017). The set of candidate DAGs can be refined by incorporating additional information, which we
refer to as background knowledge (Andrews et al., [2020; |Abdulaal et al., [2023)). This can be drawn
from a range of sources, such as human experts, structured repositories of information (e.g., domain
ontologies), or “unstructured” samples of information (e.g., scientific papers or other documentation).

3 Related works

Traditional concept-based architectures impose a strict bipartite structure in which concept neuron
activations are assumed to directly cause task outputs (Koh et al., 2020; [Yuksekgonul et al., 2022
Kim et al., 2023} |Oikarinen et al.l 2023 |Yang et al., 2023} Barbiero et al., 2023} Vandenhirtz
et al.| [2024)). This strong, often unrealistic assumption can lead to misleading explanations. For
example, attributing a lung cancer diagnosis to both a ‘cough’ and ‘smoker’ concept could risk
the false interpretation that reducing coughing could reduce cancer risk. Moreover, most CBMs
assume independence among concepts, which is unrealistic, as it ignores natural co-occurrences
(e.g., ‘smoke’ and ‘fire’) and prevents improvements in one concept from propagating to related
concepts during interventions. Stochastic CBM (SCBM) (Vandenhirtz et al., |2024) and Concept
Graph Models (Dominici et al., [2025) attempt to relax this assumption. However, these approaches
capture only associations rather than causal relations, making it vulnerable to spurious correlations in
the data. To date, no methodology exists for structuring the concept bottleneck according to a reliable
causal model.

Recent approaches like DiConStruct (Moreira et al.,[2024)), aim to improve this aspect by generating
causal graphs linking concepts to opaque DNN predictions. However, DiConStruct is a post-hoc
method that may misalign with the original DNN’s outputs and relies solely on observational
data, neglecting background knowledge and resulting in under-determined causal structures. Other
architectures, such as Neural Causal Models (Ke et al.,[2019) and Neural Causal Abstractions (Xia
& Bareinboiml, 2024)), impose even stronger assumptions, requiring access to either the true causal
graph or a low-resolution structural causal model, which are impractical in many cases.

4 Method

In this section, we introduce Causally reliable Concept Bottleneck Models (C?BMs) and the pipeline
we propose to fully automate its instantiation, learning, and functioning (Fig. [2).
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Figure 2: Overview of the C?°BM fully automated pipeline. The pipeline consists of three key
blocks: (i) discovery and labeling of the relevant variables ) from background knowledge; (ii)
discovery of the causal graph by integrating data and background knowledge; (iii) a C2BM model,
comprising a neural encoder and an adaptively parametrized SCM. Once the model is trained, it can
support queries about any endogenous variable (e.g., predicting dyspea).

4.1 Causally reliable Concept Bottleneck Models

A C?BM is a concept-based architecture that leverages the formalism of SCM:s to structure a “causal
bottleneck of concepts”. More formally, let: (i) X denoting a random variable modeling (possibly
noisy) input features; (ii) V = {Vi}f:l be a set of C' semantically meaningful variables modeled as
endogenous variables; (iii) G be a DAG connecting variables in V. A C2BM is a neural architecture
implementing the tuple (g, Me) where:

* g(+) is a neural encoder modeling a probability distribution P(/|X) over a set of latent,
high-dimensional embeddings U = {U;}{_,, representing the exogenous variables;

* Me is a parametric SCM (V,U, Fo, P(U| X)) (see Sec.2), where we assume a parametric
form for the functions’ set. Specifically, the structure of the functions is determined by the
connectivity of G, and the parameters @ are predicted from I/ by a hypernetwork.

The information flowing along a C2BM can be described as follows (Fig. [2| right side). First, the
values of the exogenous variables I/ are predicted using the exogenous encoder g(-) from X. Then,
the information flows along the SCM Mg starting from the endogenous sources (predicted from If)
down to the sinks. At each subsequent level of the causal graph, the values of each V; are predicted
from the values of its parents PA; based on the relative structural equation f; € Fg.

4.2 Model instantiation

To instantiate a C2BM, one requires a labeled dataset D annotated for all variables in V, as well as
a DAG capturing the causal relationships among V. However, such resources may be inaccessible,
problem-specific, or heavily dependent on human expertise. To address this challenge, we propose a
fully automated pipeline that enables the use of C>BM also in such complex scenarios. Our approach
extracts the necessary components from: (i) a potentially unlabeled dataset D, ; (ii) a potentially
unstructured repository of background knowledge /C.

Our pipeline (see Fig. 2)) addresses the following sub-problems: (i) causal graph construction, which
includes concept discovery, concept labeling (Sec. [#.2.T)), and causal graph discovery (Sec.[4.2.2);
and (ii) training of the neural parameters of the encoder and the hypernetwork determining the
structural equations (Sec.[4.3). In the following, we outline our implementation for each sub-problem.
Specifically, building C2BM’s individual prerequisites will be mostly based on prior work. Note that
integrating them into a coherent, automated pipeline is instead part of this paper’s contributions.



Remark 4.1. Concepts and causal graph constitute an input for C2BM, which could remain agnostic
to how they are obtained, e.g., provided by human experts. Notably, alternative or novel approaches
may be employed, provided they solve the same problems (Loula et al., 2025)).

4.2.1 Concept discovery and labeling

Problem 4.2 (Concept Discovery). Given a dataset of i.i.d. samples D, = {x;}Y ,, and a back-
ground knowledge repository I relative to a task, identify a set of relevant variables V.

In the CBM community, automated concept discovery and labeling using Large Language Models
(LLMs) has become a standard solution when human supervision is unavailable (Oikarinen et al.|
2023} Yang et al.,|2023; |Srivastava et al.,|2024; Yamaguchi & Nishida, |2025). In our implementation,
we follow the label-free CBM approach from |Oikarinen et al.| (2023), where concepts are discovered
by querying an LLM for those most relevant to the task. We then apply a filtering procedure to retain
only concepts that meet criteria such as brevity, distinctiveness (i.e., not too similar to each other or
the target), and presence in the training data.

Once V are selected, we label the dataset with variable annotations D = {(x;, v;)}¥; to supervise
concept learning. To do so, we adopt a strategy similar to |Oikarinen et al.| (2023), leveraging a
pre-trained contrastive vision-language model, such as CLIP (Radford et al.,[2021)). This projects
both data samples and the discovered concept names into a shared embedding space and computes
their alignment to generate concept labels. Full implementation details are provided in App.

4.2.2 Causal graph discovery

Problem 4.3 (Causal Discovery). Let G* be the true, unknown, graph over a set of variables V from
which a dataset D was generated. The causal discovery problem consists in recovering G* from the
observed dataset D (Zanga et al.| 2022).

As anticipated in Sec.[2] a promising direction for addressing this problem is to combine standard
causal discovery algorithms with knowledge-base querying. In our pipeline, we focus on a well-
known class of methods that recover an equivalence class of graphs from data, referred to as the
Markov equivalence class (MEC) (Spirtes et al., 2001} [Pearl, 2009; Zanga et al.,2022)).This class can
be compactly represented as a Completed Partially Directed Acyclic Graph (CPDAG), an extension
of a DAG where edges remain unoriented when there is insufficient evidence in the data to infer
causal direction. This is a desirable property as it prevents incorrect (spurious) orientations based
on the data alone. Specifically, we apply the Greedy Equivalence Search (GES) (Chickering, 2002)
algorithm, which we found performed well empirically (see App.[G.3). Then, we leverage a pre-
trained LLLM to assess each undirected edge in the CPDAG, orienting the ones corresponding to
true causal relationships while discarding those originating from spurious correlations. To improve
the robustness and generalizability of this approach, we pair the LLM with a Retrieval Augmented
Generation (RAG) technique, which is known to reduce hallucinations and can provide problem-
specific knowledge. To further improve robustness and performance, we repeat each query 10 times,
selecting the most frequent outcome (Wang et al., [2023)). Implementation details are provided in

App.
4.3 Structural equations and model training

Problem 4.4 (Learning structural equations). Let € be the set of edges describing causal connections
ina DAG G connecting variables in V. Given D = {(x;,v;)}., and &, predict the parameters ©
of the structural equations Fe.

‘We model the structural functions f; € Fe describing the causal mechanisms relating each endoge-
nous VariableE]to its endogenous parents as weighted linear sums, i.e., for each 4:

v, €PA,

3Root variables are predicted from the exogenous variables I/ using a neural network. Further details are
provided in App.|D}



where PA; denotes the set of endogenous parents of V;ﬂ For the parameters 6,, we do not learn a
single parameterization; instead, these are adaptively inferred for each different realization of X, by a
hypernetwork r(-) (Ha et al., 2017; Barbiero et al., {2023} Debot et al., 2024), based on the values of
the exogenous variables ¢/ and the graph connectivity. In our implementation, we consider separate
hypernetworks r;(-) (e.g., independent DNNs), each taking as input a separate exogenous variable:

05, = r(&,U)i := 1i(Ui) = ri(g(X):). O]

The design in Eq. [3| and 4] improves both interpretability and expressivity. To aid (mechanistic)
interpretability, structural equations take a linear form (Eq.[3): the value of each is a weighted linear
combination of its parents. The adaptive re-parameterization of the equation’s weights performed
by the hypernetwork r(-) allows the model to also approximate non-linear relationships among en-
dogenous variables (see App. @ which also includes a proof that C2BM is a universal approximator,
regardless of the underlying causal graph). This idea is in line with existing literature on interpretabil-
ity (Ribeiro et al., 2016; |Alvarez Melis & Jaakkolal [2018]) and concept-based methods (Barbiero
et al.;[2023)[]

Model training. The training of C2BM consists of learning the

neural parameters of the encoder g(-) and hypernetwork r(-) end- @
to-end from the input data. We formalize this by modeling the joint l
conditional distribution P(V,U, ® | X, £) which factorizes as: e 0 c

endogenous structural equation  exogenous Figure 3. PrObabﬂiStiC graphi_
2 .
POV,U,® | X,E)=P(V|U;0) PO |&,U) P(U|X) (5 cal model of C*BM inference.

where: P(U | X) represents the exogenous encoder g(-); P(® | £,U) represents the hypernetwork
r(-) predicting the structural equations’ parameters using the given causal connections and the
exogenous variables; P(V | U; ©) represents a causally reliable classifier leveraging the structural
equations Fe to predict the values of the endogenous variables. Under the Markov condition
imposed by the C?BM causal graph, the causally-reliable classifier can be re-written as a product of
independent distributions i.e.,

PV |U;©) =[] P(Vi | PA,U; x(€,U):) ©)

where U; = g(X); and r(€,U); = 6y,. From the above factorization, we derive the C2BM’s training
objective, which corresponds to maximizing the empirical log-likelihood of the training data:

C

* log P(V; | PA;, Ui; v(E,U); 7
ol argmngZog (Vi | r(&,U);) )

D i=1

Remark 4.5. We clarify that we do not claim to identify the true structural functions. Instead, C2BM
numerically approximates the outcomes as if they were generated by the underlying (unknown)
structural equations. This approximation, along with C2BM’s DAG, is sufficient to compute reliable
interventions, which is a core objective in the concept-based community (Poeta et al., 2023}, Steinmann
et al., 2024).

5 Experimental evaluations

We evaluate the performance of the proposed C2BM pipeline. Experiments are conducted across
different datasets and settings, allowing for the investigation of the following aspects: classification
accuracy (Sec.[5.1)), causal reliability (Sec.[5.1)), accuracy under ground-truth interventions (Sec.[5.2),
debiasing (Sec.[5.3), and fairness (Sec.[5.4). App.[G]provides additional results and ablations.

The considered datasets include both synthetic and real-world benchmarks. As synthetic datasets,
we sample 10* points from each of the five following discrete Bayesian networks available from the
bnlearn repository (Scutari, 2010): Asia (Lauritzen & Spiegelhalter, [1988), Sachs (Sachs et al.,

*We refer to V; as a variable to allow for a more general formalization. In a classification setting, concepts
assume categorical values; hence V; represents the probability of a concept state activation.

5This idea also aligns with|Balke & Pearl| (1994) and [Zaffalon et al.| (2020a)), where exogenous variables are
used to represent relationships between endogenous variables when the structural equations are unknown.



Table 1: Task accuracy (%). Task concepts are as follows: dysp (Asia), Akt (Sachs), PropCost
(Insurance), BP (Alarm), R5Fcst (Hailfinder), parity (cMNIST), mouth slightly open (CelebA),
Survival (CUB(), pneumothorax (Pneumoth.). * refers to reduced concept bottlenecks. Methods
matching the performance of OpaQNN and showing a significant improvement over the other
considered methods are highlighted in bold. Uncertainties represent 2 sample mean ¢ across 5 runs.

MODEL SEMANTIC  CAUSAL ASIA SACHS INSURANCE ~ ALARM HAILFINDER ~ CMNIST CELEBA CUB¢ PNEUMOTH. ‘ ASIA* ALARM"
TRANSP. REL.
OPAQNN ‘ X X ‘ 71.0414 65831711 66.811.5 62.8141.5 72.041.9 91.24+ 72 T4.97+0s 60.310.9 80.0+1.5 ‘ 71.0£14 628415
CBM iiin v X T1.2416 65444 03 67.141.7 62.741.3 722423 93.92£ 37 7107148 56.8142 76.6+0.8 56.0+83  52.7+1.0
CBM ¢ nip v X T1.2414  65.68+ .84 66.741.4 62.311.8 70.942.2 93.55£31 7127120 56.2119 76.7+0.6 58.6127 528412
CEM v X Tllgis 6593172 66.711.6 60.841.1 715519 93.72:26 7472114  56.2120 80.141.1 69.7120 618512
SCBM v X 70.7416  66.30%.55 67.141.7 63.411.5 734421 94.02: 23 721515  59.9:14 T8.4+10.6 61.8112  53.5:0.0
C’BM v 4 Tl4irr 6533111 66.411.5 62.541.4 T4.1i18 94.184 03 T4.73:41  58.1i11 80.540.7 708117 605114

2005)), Insurance (Binder et al.,|1997), Alarm (Beinlich et al.,|{1989), and Hailfinder (Abramson
et al.,{1996)). We include cMNIST, a variant of the original dataset (LeCun et al.,[2010) in which
the image data are colored according to custom rules. Additionally, we consider three real-world
datasets: CelebA (Liu et al.,2015), a facial recognition dataset labeled with different binary facial
attributes; CUB(, a custom version of the original bird image dataset (He & Peng| |2019) from
which we select a subset of concepts and define new ones to introduce deeper causal relationships;
Siim-Pneumothorax (You et al., |2023), containing chest X-ray images annotated with a single
label indicating the presence of pneumothorax, without additional concepts or their annotations. To
generate them, we follow the label-free approach outlined in Sec. .2.1] Exhaustive details on all
datasets are given in App. [E]

The performance of the proposed pipeline is investigated alongside an opaque neural baseline
predicting the task variable only (OpaqNN) and established state-of-the-art (SOTA) concept-based
architectures, namely: CBM (Koh et al.| 2020), with linear and non-linear decoder; CEM (Zarlenga
et al., 2022); and SCBM (Vandenhirtz et al., 2024). Hyperparameters have been selected via an
independent search for each dataset-model pair based on performance on the validation set. Further
details on each model’s architecture and hyperparameters can be found in App. [F} Note that all
baselines, except for OpagNN, provide concept-based explanations for their predictions and allow
concept interventions at test-time. This excludes architectures such as Self-Explainable Neural
Networks (Alvarez Melis & Jaakkolal, 2018)) and Concept Whitening (Chen et al.,[2020) as they do
not offer a clear mechanism for intervening on their concept bottlenecks. We also excluded other
CBM baselines such as Probabilistic CBMs (Kim et al.|[2023)), Post-hoc CBMs (Yuksekgonul et al.|
2022), Label-free CBMs (Oikarinen et al., [2023; |Yang et al., 2023)), as all of them share the same
limitation of vanilla CBMs and CEMs: the causal graph is fixed and bipartite. Python code for
reproducing all experiments is provided alongside the submission as supplementary material.

5.1 Task accuracy and causal reliability

Our initial experiment evaluates task accuracy. For each dataset, we designate a predefined single
variable as the prediction fask. All models except OpagNN are trained to predict the task while
simultaneously learning to fit the remaining concepts. Tab. |I| presents the task accuracy for all
evaluated models (see ApplG.T|for concept accuracy). To further assess model expressiveness, we
also evaluate task accuracy on modified versions of the Asia and Alarm datasets, where selected
concepts (App. [E) are intentionally removed to create a stronger bottleneck.

C?BM achieves comparable or higher accuracy to non-causally reliable models (Tab. . Our
evaluation shows that C2BM achieves robust accuracy across datasets, matching the performance of
the expressive models OpaqueNN and CEM. Notably, as the concept bottleneck is reduced, C2BM
retains expressivity by leveraging exogenous variables to propagate residual information from the
input. This is in contrast with CBMs implementing a hard bottleneck.

C?BM improves on causal reliability (Tab. [2). C2BM captures a rich causal structure that
aligns well with real-world dependencies. We quantitatively assess this alignment by comparing
the learned and true causal graphs in synthetic datasets. Tab. [2] reports two metrics: a structural
Hamming distance (detailed in App. and the number of incorrect edges, computed after causal
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Figure 4: Label accuracy (%) on downstream variables (task included) after intervening on concepts
up to progressively deeper levels in the graph hierarchy. Summit plots show the difference of C2BM’s
accuracy w.r.t. the best-performing baseline. Uncertainties represent 2 sample mean ¢ across 5 runs.

discovery (CD) and refinement via LLM queries. Metrics for the simplistic graphs from CBMs
(all concepts are treated as mutually independent and direct causes of the task) are reported for
reference. Results indicate that integrating CD with background knowledge produces a causal
graph that is more accurately aligned with the true structure. Notably, on the Sachs dataset,
the integration of background knowl-
edge enables to correctly identify 10

additional edges w.r.t. CD alone. De-  Typle 2: Structural Hamming distance (App. and number

tailed ablation studies on causal graph
discovery methods and LLM types are
provided in App. To fur-

of mistaken edges between true and learned DAG. Reliability
of standard flat CBMs is reported for reference. The total
number of edges is in parentheses.

ther validate the quality of the learned
causal graph, App.[G.2]demonstrates

. METRIC AFTER | CMNIST  AsSIA SACHS INSUR ALARM HAILF.
that C>BM achieves comparable task | |

. ither the 1 d HAMMING CBM 1.0 6.5 1175 365 45.0 69.0

accuracy using either the learned or op | o2 o7 a4 e a4 iie

the true graph. When considered to- +1iv 0 03 18 63 5.0 11.0
gether, the results in Tab.|IHZ|highlight INCORRECT CBM | 1(1) 11(8) 23(17) 74(52) 78(46) 117 (66)
C2BM’s ability to improve on causal ~ EPoEs cD 1(1)  3@8) 17(17) 19(52) 13(46) 22 (66)
(TRUEEDGES) | +um | 0(1)  1(8) 7(17) 18(52) 10(46) 22 (66)

reliability without compromising ex-
pressivity and performance.

5.2 Ground-truth interventions

After training all models on the same classification task as in Sec.[5.I] we test their responsiveness
to ground-truth interventions, i.e., replacing predicted concepts with ground-truth values El This
simulates a form of human intervention in a deployed model. Following each intervention, we
compute the average accuracy over all variables (concepts and task) prediction. As for the policy,
we intervene on random concepts within progressively deeper levels in the hierarchy defined by
the true graph. This constitutes the only intervention policy aligned with real-world causal-effect
relationships. When the true graph is unavailable, we use the one generated by our pipeline.

C?BM improves accuracy on downstream concepts with fewer interventions (Fig. E[) Our
findings, reported in Fig. {4l demonstrate that C?BM achieves higher accuracy improvements with
fewer interventions compared to alternative models. This advantage stems from two key properties of

SGround-truth interventions can be seen as a special case of causal do-interventions (see App. |A.1), where
variables are set to their ground-truth values.



C?BM: (i) unlike other baselines that do not account for connections among concepts, interventions
on an upstream concept in C2BM directly influence all downstream nodes, potentially enhancing the
predictions of their values; (ii) unlike SCBM, the effects of interventions in C2BM are restricted to
concepts that are causally related, rather than altering concept values due to spurious correlations.

5.3 Debiasing

We hypothesize that a real-world-aligned causal bottleneck can reduce reliance on spurious corre-
lations. To test this, we use cMNIST, where digit Color is correlated with Parity during training
(all the odd digits are green). At test time, the correlation among Color and Parity is reversed (all
the even digits are green), introducing a distribution shift that challenges generalization. The neural
encoders in all models still struggle with out-of-distribution (OOD) generalization. Therefore, as
expected, all models including C?BM, fail to extrapolate correctly, capturing the artificial correlation.
However, their enforced reasoning is different. All baselines retain the concept-task connections,
perpetuating the color-parity shortcut. In contrast, C°BM detects the color-parity edge through causal
discovery but correctly removes it via graph refinement with the LLM block. This is reflected in large
differences in performance after concept interventions, which alleviate (or even remove) the impact
of the encoder.

Causal bottlenecks mitigate reliance on spurious cor- CBMm = CBMan = CEM = SCBM = G
relations (Fig. [5). Fig. [5] shows the accuracy on Par- 100

ity after ground-truth interventions on each concept. As
expected, color has no effect across all models, confirm-
ing the learned bias. Notably, C2BM exhibits the largest
improvement when intervening on the number concept
(achieving ~ 90% accuracy), as its causal structure iso-
lates color and strengthens training on the correct feature.
Although a comprehensive analysis of OOD robustness is ]
beyond the scope of this paper, our results suggest that the Figure 5: Biased ColorMNIST dataset.

C?BM pipeline holds promise in improving generalization Task accuracy on Parity after ground-
in biased settings. truth interventions.
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5.4 Fairness

We create a customized CelebA dataset to evaluate the influence of sensitive attributes on the
decision-making of the model. Specifically, we consider a hypothetical scenario in which
an actor with a specific physical attribute is required for a specific role. However, the hir-
ing manager has a strong bias toward Attractive applicants. To model this, we define two
custom attributes: Qualified, indicating whether an applicant meets the biased hiring crite-
ria, and Should be Hired, which depends on both Qualified and the task-specific requirement
(Pointy Nose). In our fairness analysis, we aim to intervene and remove any such unfair bias.

C2BMs permit interventions to Table 3: CelebA dataset. Causal Concept Effect (CaCE, %)
meet fairness requirements (Tab.[3). between a sensitive concept (Attractive) and a target concept
We measure the Causal Concept Ef- (Should be hired), before and after blocking the path between
fect (CaCE) (Goyal et al.l 2019) of the two variables with do-interventions.

Attractive on Should be Hired before
and after blocking the only path be-
tween them, i.e., performing an inter-
vention on Qualiﬁed. Tab. E] shows BEFORE INT. 12.3411 12,5431 19.0436 309441 25.141s
that C2BM is the only model able AFTER INT. 219413 11.846.5 82422 148136  0.0:+0.0
to successfully remove the influence,

achieving a post-intervention CaCE of

0.0%. This difference stems from the model architectures: in CBM, CEM, and SCBM, all concepts
are directly connected to the task, meaning interventions on one concept cannot block the influence
of others. In contrast, C2BM enforces a structured causal bottleneck allowing for interventions to
fully override the effects of parent nodes and block information propagation through the intervened
node. This highlights C2BM’s ability to enforce causal fairness by eliminating biased pathways.

CACE METRIC | CBMyiin  CBMym, CEM  SCBM  C’BM




6 Conclusions

We presented C2BM, a concept-based model advancing prior research by structuring the bottleneck
of concepts according to a model of causal relations between human-interpretable variables. By com-
bining observational data with background knowledge, C2BMs improves on causal reliability without
compromising performance. This offers several additional benefits, e.g., improved interventional
accuracy, robustness to spurious correlations, and fairness.

Applications and broader impact. We speculate C2BM has the potential to significantly narrow
the hypothesis space in complex scientific domains where even a panel of human experts might
struggle to identify or exclude plausible hypotheses worth testing. For instance, constructing the
hypothesis space to design clinical trials accounting for the influence of environmental conditions on
gastrointestinal biochemistry requires deep interdisciplinary knowledge—not only in environmental
science and biochemistry, but also in genetics, microbiology, nutrition science, and epidemiology,
among others. In such settings, C2BM may integrate human scientific knowledge across these
diverse fields to construct a comprehensive causal graph, thereby supporting experts in systematically
excluding hypotheses that are inconsistent with the integrated body of evidence. This can help
accelerate interdisciplinary scientific discovery, while reducing experts’ cognitive burden.

Limitations. C2BM requires a robust prior knowledge base, access to pre-trained models (LLM:s for
causal discovery), and well-crafted prompts for querying these LLMs. Biases within the knowledge
base or in the observational data can reduce the system’s reliability (though C?BM still outperforms
the selected baselines). Furthermore, the SOTA in causal structural learning currently faces scalability
limitations, which also constrain C2BM. As these techniques become more scalable and robust,
C?BM stands to benefit. Finally, encoder embeddings used to construct exogenous variables can
move out of distribution, and since the encoder’s OOD performance is not guaranteed, the SCM’s
OOD performance may likewise be affected.

Future works. Future directions include a deeper investigation of OOD generalization with C>BMs,
an extensive exploration of their role in causal inference (e.g, counterfactual queries, see App.[A),
and the identification of optimal intervention policies. Moreover, incorporating PAGs (Zhang, 2008)
would enable modeling of hidden confounders.
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* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Answer: [Yes]

Justification: We provide extensive details for reproducing the experiments in Appendices
Bl [CL[C:2] [E] and[F] Moreover, we uploaded a .zip file containing our code.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use freely available datasets and provide instructions on how to download
and preprocess them in App. [El Moreover, we have uploaded a .zip file containing our code.
YAML configurations are available within the code to reproduce experiments.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details on dataset splitting can be found in App. [E| while information on
training is provided in App. [F}

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All relevant experiments are executed with 5 random seeds. The reported
results are averaged, and uncertainty is expressed for all experimental results as 2 standard
errors of the sample mean. This is stated in the main results’ captions.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Information about the computational resources is provided in the App.[H
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the NeurIPS Code of Ethics and ensured that our paper conforms
to them. Specifically, our experiments do not include human subjects and the content of our
paper does not contain personally identifiable information.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The broader impact of our paper is discussed in the Conclusions (Sec. [6).
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: In our paper, we propose a methodological extension to a class of models that
are predominantly used in scientific research. All datasets constitute standard choices in the
community.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original creators or owners of every asset used in the paper, for ex-
ample, see the references for the datasets in App.|El All our employed datasets and baselines
are open-source. Datasets licenses are as follows: bnlearn datasets (CC-BY-SA), MNIST
(CC BY-SA), CUB (CCO: Public Domain), CelebA (Creative Commons NonCommercial
license), Pneumothorax (CC BY 4.0). As for the baselines: we implemented CEM and
CBM from scratch and provide code alongside the submission. For SCBM we use the
implementation available at https://github.com/mvandenhi/SCBM/tree/main,

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We propose a new predictive algorithm and a pipeline to instantiate it. Detailed
descriptions of how they work are provided throughout the main text and in the appendices.
Moreover, we have uploaded a .zip file containing our code.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does include experiments involving human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We used LLMs just for editing purposes and grammar checks. Notably, in
our proposed framework, an LLM is employed as a secondary element to assist a causal
discovery algorithm for causal discovery refinement.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Extended background on causality

A.1 Pearl’s framework of causality
Contemporary research in causal inference and causal machine learning predominantly builds on the

framework introduced by (2009) (see also (2019)). This framework centers on an agent’s

ability to reason about underlying causal mechanisms, going beyond mere statistical associations
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observed in data. Pearl formalizes this capacity through the notion of answering different types of
what-if questions, structured into a three-level hierarchy (see Figure [6)).

3. COUNTERFACTUALS
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QUESTIONS,
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alll 2. INTERVENTION
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|
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Figure 6: Pearl’s Hierarchy as represented in|Pearl & Mackenzie, (2018).

* Level 1: Observational questions (“what is the value of Y if I observe X = x7”). These
questions rely purely on statistical associations within the data. They can be answered using
standard tools such as conditional probabilities or expectations, with no need for causal
assumptions.

* Level 2: Interventional questions (“what is the value of Y if  do X = 7). These
questions focus on the effects of actively intervening on variables, rather than passively
observing them. The expression do(X = x) denotes such an intervention, where X is
externally set to x, overriding its natural causes.

To compute such an intervention, one typically relies on a graphical model representing
causal dependencies among variables, e.g., a directed acyclic graph (DAG). The intervention
is then modeled by removing all incoming edges to X, effectively simulating the setting of
X independently of its original causes. This modified graph is then used to compute the
post-intervention distribution P(Y | do(X = z)).

¢ Level 3: Counterfactual questions (“What would have been the value of Y if I had observed
X = 2’ instead of X = x?”). These questions focus on states of affairs alternative to the
actual reality. They constitute the upper layer of Pearl’s hierarchy and their computation
requires a detailed knowledge of the causal mechanisms relating the variables of the target-
problem.

While standard machine learning models E]can generally handle only observational questions, reason-
ing at interventional and counterfactual levels necessitates dedicated causal models and inference
methods (Pearl, 2009} |Peters et al., 2017)).

A.2 Causal opacity

Problem A.1 (Causal Opacity). Given a DNN model M and an user A, we say that M is causally-
opaque with respect to A whenever A is not capable to understand the inner causal structure of M'’s
decision-making process. The opposite of causal opacity is causal transparency.

Note that causal transparency does not presuppose or imply causal reliability, the two issues,
although related, are indeed very different. Consider for example a concept-based model M, where
the graph representing how the concepts are connected to the final task is shown in the left panel

"This excludes models specifically designed for causal inference, such as those in the field of causal machine
learning (Kaddour et al.| [2022).
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of the figure below (a). This model is trained to predict whether a given colored image represents
an even or odd number (variable P, for “parity””) passing through a bottleneck of two interpretable
concepts, namely “number” (/V) and “color” (C). The structure of M ’s decision-making process
is causally-transparent, including two edges connecting the final task P with N and C respectively.
However, this causal structure is not consistent with the causal structure of the world (b), for which
C and P are clearly independent concepts Therefore, M; cannot be considered causally reliable,
although it is causally transparent.

(@) ©
O—

(a) Causal transparent graph (b) Causal reliable graph

Causal opacity partially depends on another opacity issue of central relevance for our analysis, i.e.,
semantic opacity.

Problem A.2 (Semantic Opacity). Given a model M and a user A, we say that M is semantically
opaque fo A if and only if M’s decision-making process is based on features that do not possess any
interpretable meaning for A.

Semantic opacity is addressed by concept-based architectures, such as concept-bottleneck models
and their extensions, which we discuss in the main paper.

B Concept discovery details

CBMs-like architectures tipically rely on labeled data for each concept, a costly process that can
hinder their practical adoption. Label-free Concept Bottleneck Models (Label-free CBMs) (Oikarinen
et al.,2023) address this issue by automatically generating concepts and assign concept labels using
pre-trained models.

In our paper, we apply an approach similar to the one followed in [Oikarinen et al.| (2023) to the
Siim-Pneumothorax dataset, which lacks concepts and concept annotations. Using GPT-40, we first
generate candidate concepts with a specific prompt (see App.[C.3), and apply a multi-stage filtering
process:

* discard too long concepts (>50 character);

» filter out concepts too similar to class labels or to each other. Specifically, we use the
CXR-CLIP model — a CLIP-based model pretrained on medical imaging datasets (Johnson
et al., 2019} Irvin et al.,2019; Wang et al.;2017; [You et al., [2023)) — to encode both concepts
and class labels, and discard any concept with cosine similarity > 0.9 to either a class label
or another concept;

* discard concepts that are not sufficiently present in the training data. To this end, we also
compute image embeddings using CXR-CLIP, and remove concepts whose maximum cosine
similarity with images in the training set is < 0.2.

We then annotate images by computing their similarity to each remaining concept using CXR-CLIP
embeddings, and binarize the resulting scores via 2-means clustering.

C Causal graph discovery details

C.1 Causal discovery algorithms

Algorithms for addressing the causal discovery problem can be broadly classified into two main
categories (Peters et al., 2017)ﬂ

8Here, we restrict our discussion to causal discovery algorithms that assume the set of observed variables
sufficiently captures the relevant causal influences. For more complex scenarios, see, e.g., (Peters et al.} 2017).
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* Independence-based methods. These methods assume a correspondence between condi-
tional independence in the data and graphical separation among variables, leveraging this
relationship to infer the underlying graph structure. Typically, they recover a class of DAGs
that are equivalent with respect to conditional independencies, which can be compactly
represented by a CPDAG.

* Score-based methods. These methods define a scoring function over potential graph
structures and search for the graph that maximizes it, often using criteria such as the
Bayesian Information Criterion (BIC) (Peters et al.,[2017). The results from score-based
methods are often comparable to those from independence-based approaches, as graphs that
violate conditional independencies tend to result in poor model fits.

For our experiments, we adopted the Greedy Equivalence Search (GES) algorithm (Chickering} 2002)),
a score-based method that performed well in our setting, as shown in Table[8]in App.

GES is a two-phase greedy algorithm that searches over equivalence classes of DAGs (CPDAGs). It
begins with the empty graph and iteratively adds edges that yield the greatest improvement in the
scoring function. Once a local optimum is reached — where no addition improves the score — the
algorithm enters a backward phase, greedily removing edges that most increase the score. The core
idea is to navigate the space of CPDAGs through local transformations (edge additions and deletions),
using the score as a guide to optimize structure learning.

In our implementation, we use the GES algorithm provided by the causal-learn Python li-
brary (Zheng et al.l [2024), employing the Bayesian Dirichlet equivalent uniform (BDeu) scoring
criterion for discrete variables (Heckerman et al.| [1995; |Chickering), | 2002).

C.2 LLM and RAG

LLMs (Brown et al.l [2020; Jiang et al., 2024)) are capable of answering complex queries without
additional training. However, they can be unreliable and prone to hallucinations (Ji et al., [2023;
Zhang et al.,2023)). Retrieval Augmented Generation (RAG) (Lewis et al., [2020) addresses this by
retrieving relevant textual information and appending it to the query, thereby improving the accuracy
and reliability of LLM outputs. In the context of structural learning, LLMs have been utilized to
construct causal graphs by employing ad-hoc prompts specifically designed to condition the model
for answering causal queries (Antonucci et al., 2023} [Long et al., [2023; [Zhang et al., 2024)). To
enhance the causal graph discovery process, we utilize an LLM integrated with a RAG to either
direct or eliminate edges that remain undirected by the causal discovery algorithm. The information
retrieval process is outlined as follows:

1. Document Retrieval: Given a causal query (e.g., “Is lung cancer influenced by smoking?”),
we first retrieve a set of documents from the web. In our experiments, we employed both the
DuckDuckGo search engine for web pages and Arxiv for relevant paper abstracts. From
each source, we retrieve the top 10 documents. For certain datasets (cMNIST, CelebA, and
Sachs), local documents were used due to the unavailability or inaccessibility of information
online (e.g., the Sachs paper). Each retrieved document is then segmented into smaller
pieces, referred to as chunks, using a sliding window approach that samples a 512-token
chunk every 128 tokens.

2. Ranking: The causal query is transformed by the LLM using a query transformation
approach (Gao et al.| [2023), which improves the semantic alignment of the query with
the relevant document chunks. After transformation, all the retrieved chunks and the
modified causal query are processed by a sentence transformer (Reimers, |[2019), specifically
the multi-qa-mpnet-base-dot-v1 model. At this stage, cosine similarity is computed
between the embedded transformed causal query and each embedded chunk.

3. Context: The LLM is then tasked with answering the causal query using the additional
context retrieved in the previous steps. This context is derived from the top 5 chunks with the
highest cosine similarity to the transformed causal query, providing the LLM with relevant
and supportive information for generating a more accurate answer.

All the prompts mentioned in this section can be found in App.
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C.3 Prompts

In this subsection we list all the prompts used in both the causal discovery part and label free concept
generation.

DUCKDUCKGO SEARCH PROMPT
s N
Your task is to create the most effective search query to find information that answers
the user’s question.
Your query will be used to search the web using a web engine (e.g. google, duckduckgo).
NOTE: be short and concise.

This is the question: {question}.
Provide the final query without brackets.

ARXIV SEARCH PROMPT
( A
Your task is to create the most effective search query to find information that answers
the user’s question.

Your query will be used to search scientific articles from the web.

From the given query, produce a query that will help to find the most relevant articles.
NOTE: be short and concise.

This is the question: {question}.
Provide the final query without brackets.

TRANSFORMATION QUERY PROMPT
s N
Rephrase the query to align semantically with similar target texts while maintaining
its core meaning.

Output the expanded query enclosed within

<expanded_query> tags (e.g. <expanded_query>[example_query]</expanded_query>) .

NOTE: be very short and concise.

Query: {query}
Expanded Query:

CAUSAL PROMPT
s N
You are an expert in causal inference and logical analysis.

I will provide you with two concepts and you have to infer the causal relationship between them.
**Concept 1:** {concept_1} - {concept_1_description}

**Concept 2:** {concept_2} - {concept_2_description}

Now, use your knowledge and, if available, the context provided, to determine

which of the following options is the correct one:

(A) changing {concept_1} to certain values result in a change in {concept_2};

(B) changing {concept_2} to certain values result in a change in {concept_1};

(C) there is no causal relationship or reciprocal influence between {concept_1} and {concept_2}.

The following information are extracted from recent and reliable sources:
{context}

The answer has to be enclosed within <answer> tags (e.g. <answer>A</answer>).
Analyze the situation step-by-step to ensure the final conclusion is accurate.

CONCEPTS GENERATION PROMPT
s N
You are an expert of {context}.

You need to list the most important features to recognize {class_label} from {input}.

List also the variables that are most likely to be associated with {class_label} as well as
the variables that are most likely to be associated with the absence of {class_label}.

You need also to give a list of superclasses for the word {class_label}.

Combine all the lists in a single one and separate the single terms with a comma.

If a term is composed by more than one word, use an underscore to separate the words.

D C?BMs detailed architecture

In this appendix, we provide a detailed description of the proposed C?2BM model training and
functioning, using the Asia dataset as an illustrative example and Dyspnea as the task (Fig.[7). We
assume the following information is available:
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* A set of human-understandable variables relevant to determining the task’s value. Specifi-
cally, the binary concepts: {Smoker, Bronchitis, Lung cancer, Either, Tubercolisis, Been in
Asia, Xray anomalies, and Dyspnea}.

* A training dataset D = {x;, v;}";, where each sample is annotated with the values of all
endogenous variables, i.e., the target variable Dyspnea and all preceding binary concepts.

* A DAG G outlining the causal relationships between the concepts and the task.

Bronchitis

Bronchitis fbr%

Y
[]
Smoker | [— MLP p+ Dyspnea

Lung cancer

Lung cancer @—Nu
[]
Either L]

[]
Tuberculosis | [ @—HM
Tuberculosis
Been in Asia [J

Been in asia

Dyspnea

P+

Either

N
>p-[p-]

Xray anomalies

Figure 7: Detailed C>BM architecture applied to the Asia dataset.

These elements can be either provided by human experts or generated using the pipeline we propose
in the paper, as described in Fig. The proposed approach follows four main steps (Fig. [7)), as
detailed below:

1. Sub-causal Graph Selection. We extract from the DAG G only the variables that are
ancestors of the task, that is, variables for which there exists a causal path in G connecting
the variable node to the task. In the case of the Asia dataset, the variable X-ray anomalies is
discarded because it is not an ancestor of the task.

2. Exogenous embeddings. Each variable (including the task) is assumed to have an associated
latent factor, which is represented as an embedding (the grey encoder symbols in Fig.
learned from the input using a dedicated neural encoder. In our implementation, these are
implemented as MLPs, preceded by a dataset-specific feature extractor, e.g., a CNN for
image data (as detailed in the App.[E).

3. Structural Equation Modeling. We model the structural relationships between parent nodes
and their child nodes using linear equations. The weights of these equations are predicted
by separate hypernetworks, implemented as MLPs, which take as input the embedding of
the child node produced in the previous step. Applying these functions we can derive the
normalized logits of a child node from the ones of its parents. For the nodes that lie in the
roots of the causal graph (Been in Asia, Smoker), their logits are obtained directly from the
corresponding exogenous embeddings.

For instance, we can calculate normalized logits for Dyspnea as follows:

PbDyspnea = U(OlpBronchitis + 02pE‘ither) (8)

where PBronchitis and Pgither are the normalized logits for the parents, Onyspnw =
[61, 0] their corresponding weights and o denotes a transformation function (such as a
softmax) applied to the weighted sum of the parent node logits, ensuring the final output is
in a suitable range.

28



While the structural equations are linear, the fact that the weights can be adaptively inferred
from exogenous variables allows us to capture complex dependencies between variables.
This idea is analogous to locally approximating complex (smooth) functions. For example,
consider an exponential relationship between two endogenous variables, V5 = "1 (Fig. .
This function can be locally approximated by a linear form V5 = 6, V7, where the weight 6
is adjusted based on the value of V;.

V2 A

Vo=0.5-V

1
1
1
1
T

0.3 0.8 Vi

Figure 8: Non-linear functions can be modeled by adaptive re-parametrizable linear models.

It is important to notice that such a model supports queries about any specific endogenous variable.
Specifically, after training, C2BM can be used to predict a target variable (task), while using the other
variables as concepts to explain the reasoning process. This provides greater flexibility compared
to other concept-based architectures, which instead assume a fixed task. Notably, only the task’s
ancestors are relevant in this case and, in our implementation, all other concepts are discarded.

D.1 C?BM as an universal approximator

We establish the following result regarding the expressivity of C?BM.

Theorem D.1. C2BM is a universal approximator regardless of the underlying causal graph.

Proof. We show that C2BM can predict any endogenous variable as any DNN. Assume the exogenous
encoder g(+) is a DNN (or any universal approximator) and that endogenous variables are represented
as logits (the extension to fuzzy or Boolean values is trivial). We consider four cases:

1. No endogenous parent: If V; is a root, V; = MLP;(g(X);). Since both g(-) and MLP; are
universal approximators, their composition is also a universal approximator.

2. Single endogenous root parent: If V; has exactly one root parent V;, then V; = [0y,],;V; =
[r;(g(X);)];-V; and since both r; (-) and g(-) are universal approximators, their composition
is also a universal approximator. Multiplying this by V;, which itself is produced by a
universal approximator, preserves the ability to approximate any function of the input.

3. Multiple endogenous root parents: If V; has more than one parent, 8y, can assign zero
weights to all but one parent, reducing the case to a single-parent scenario.

4. Non-root endogenous parents. The reasoning above can be applied recursively following
the topological ordering of the causal graph. Each variable is computed as a function of its
parents, and universal approximation is preserved layer by layer.
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Hence, by recursively composing universal approximators along the causal graph, C2BM can ap-
proximate any mapping from the input to endogenous variables. This holds for any graph structure,
establishing C2BM as a universal approximator.

D.2 C?BM interpretability

In this section, we present an explanation generated by C2BM on the Asia dataset. As shown in
Tab. [2] the causal graph retrieved by the causal discovery mechanism is almost equal to the real one,
despite a missing edge between Been in Asia and Tuberculosis. Starting from the source endogenous
variables, it is possible to see the weight associated to each descending endogenous variable and the
corresponding activation probability. For instance, Lung cancer is ‘True’ because the corresponding
probability is peaked toward it (P(1) = 0.99). In particular, the decision-making process for the
classification of Dyspnea as ‘False’ is completely unveiled. Although the parameter on the edge from
Bronchitis to Dyspnea promotes a positive prediction, the stronger, negatively weighted connection
from Either to Dyspnea dominates. Resulting in Dyspnea being predicted as ‘False’. It is worth
noting that the endogenous variable X-ray anomalies is not considered by C2BM’s inference since it
is not an ancestor of the defined task.

Smoker

Been in Asia

T~
Tuberculosis
True

p(1) = 0.99

P
Lung cancer
True

p(1) = 0.9

4.96

Bronchitis

either

True
p(1) = 0.99

X-ray anomalies

Query

Figure 9: Visualization example of information propagation (Asia dataset). The parent weight
(predicted by the hypernetwork) is visualized next to each edge.

E Dataset details

E.1 cMNIST

The MNIST dataset (LeCun et al.| 2010) is a large collection of freely available grayscale images
of handwritten digits. It consists of 60000 training images and 10000 test images, both drown from
the same distribution. Each image is labeled with the digit it represents. For our experiments, we
download the original train and test dataset using the forchvision library (Marcel & Rodriguez, [2010)
and reserve 10% of the training set for validation. Additionally, we colorize each image based on its
digit. Specifically, in the in-distribution setting (experiment in Sec/5.1)), color is randomly assigned
to each image in the training, validation, and test sets with equal probability over red, green, and
blue. In the out-of-distribution setting (experiment in Sec[5.3), images in the training and validation
sets with odd digits are colored green, while the remaining images are colored red or blue with
equal probability. In the test set, images with even digits are colored green, and the remaining ones
are colored red or blue with equal probability. For both the versions of this dataset, the following
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concepts are considered: Number, Color, and Parity (task). Finally, the images are preprocessed
using a pre-trained ResNet-18 model with default weights from the torchvision library.

E.2 Bayesian networks

For our experiments, we use synthetic datasets sampled from discrete Bayesian networks available in
the bnlearn repository (https://www.bnlearn.com/bnrepository/). A Bayesian network is
a probabilistic graphical model consisting of a DAG, where nodes correspond to random variables,
and each node is associated with a conditional probability distribution (CPD). This CPD defines the
probability of the node’s value, given the values of its parent nodes in the network (Sharma et al.
2020). From the bnlearn repository, we select Bayesian networks with different dimensions and
domains: Asia (Lauritzen & Spiegelhalter; [1988), a small network focused on lung disease with 8
nodes and 8 edges; Sachs (Sachs et al., 2005)), a widely-used network modeling the relationships
between protein and phospholipid expression levels in human cells with 11 nodes and 17 edges;
Insurance (Binder et al.| [1997)), a network for evaluating car insurance risks with 27 nodes and
52 edges; Alarm (Beinlich et al.| [1989)), a network designed to provide an alarm message system
for patient monitoring with 37 nodes and 46 edges; Hailfinder (Abramson et al.,|1996)), a network
designed to forecast severe summer hail in northeastern Colorado with 56 nodes and 66 edges. For
each network, we generate 10000 samples and create training, validation, and test datasets using a
70% — 10% — 20% split.

While node values can be used as concept annotations (v), input features (x) are absent. To generate
them and make the datasets applicable to concept-based architectures, we flatten the concept values
and process them with a simple autoencoder (MSE loss) comprising 2 encoder layers and 2 decoder
layers (the latent dimension is adjusted based on the number of nodes: Asia-32, Sachs-32, Insurance-
32, Alarm-64, Hailfinder-128). Embeddings are further transformed so that each sample is a mixture
composed of 50% original data and 50% noise, with the noise drawn from a standard normal
distribution. Finally, the output is standardized. The goal of these transformations is to make the
inputs non-trivial representations of the concepts (the network nodes), forcing architectures to learn
how to identify and retrieve the underlying concepts from the preprocessed data.

Modified versions of the Asia and Alarm datasets are considered, denoted as Asia* and Alarm™, in
which only a subset of the original concepts is retained (experiment in Sec[5.1). Specifically, for
Asia*, we keep only the concepts "Smoke" and "Dyspnea". For Alarm*, we retain only the concepts:
"BP", "CO", "CATECHOL", "HR", "LVFAILURE", "STROKEVOLUME", "HYPOVOLEMIA".

E.3 CelebA

CelebA (Liu et al| [2015) is a large-scale face attributes dataset with more than
200.000 celebrity images divided into training, validation and test set with 40 bi-
nary attribute annotations. For our experiments, we first downloaded all the splits
from the project website https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html.
We then select a subset of attributes that we con-
sider relevant for our analysis and apply this se-

lection to all the splits. These attributes are: At- Pointy nose

tractive, Big Lips, Heavy Makeup, High Cheek-

bones, Male, Mouth Slightly Open, Oval Face, Heavy | Wearing

Smiling, Wavy Hair, Wearing Lipstick (experi- makeup = lipstick |~ Attractive
ment in Sec[5.1). For our fairness analysis (ex- \ / /
periment in Sec[5.4), we selected the attributes: Qualified

Attractive, Heavy Makeup, High Cheekbones,

Male, Mouth Slightly Open, Oval Face, Pointy l

Nose, Smiling, Wavy Hair, Wearing Lipstick and Should be hired

Young. We then introduced two additional new

attributes Qualified and Should be Hired. In this

analysis, we consider a hypothetical scenario in Figure 10: Subset of introduced causal relation-
which a person with a pointy nose is required ships among original and newly created concepts
for a specific role, e.g., in a movie. However, the in CelebA, used for our fairness analysis.

hiring manager has a strong bias toward models

who are considered attractive or heavily made up. Our aim is to intervene and mitigate such biases.
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The Qualified attribute is defined as a binary variable indicating whether a person meets the quali-
fications for the job based on the hiring manager’s biased criteria. It is therefore constructed using
the logical expression: (Heavy Makeup and Wearing Lipstick) or Attractive. The Should be Hired
attribute, on the other hand, indicates whether a person should be hired for the job, considering both
the hiring manager’s preferences and the role’s requirements (having a pointy nose). Therefore, it is
defined as the logical "and" between Qualified and Pointy Nose. Additionally, we applied standard
preprocessing to both versions of the dataset, including downsampling and normalization of the
images, followed by feature extraction using a pre-trained ResNet-18 model.

E.4 Siim-pneumothorax

This dataset is derived from the publicly available chest radiograph dataset provided by the Na-
tional Institutes of Health (NIH) and it contains chest x-ray images with binary annotations in-
dicating the presence or the absence of Pneumothorax. For our experiments, we use in partic-
ular the training annotations available on Kaggle (https://www.kaggle.com/competitions/
siim-acr-pneumothorax-segmentation) and the corresponding training images from https:
//wuw.kaggle.com/datasets/abhishek/siim-png-images. The dataset is then split into train-
ing, validation, and test sets using a traditional 70% — 10% — 20% partition. As it does not include
concept annotations, we followed a procedure inspired by the methodology in|Oikarinen et al.|(2023)
to generate concepts and their corresponding annotations. More details can be found in App.

E.5 CUBc

This dataset is derived from the publicly available Caltech-UCSD Birds-200-2011 (CUB) (He & Peng|
2019) dataset, which is widely used in the CBM community (Koh et al.} 2020; |Zarlenga et al.} 2022).
It contains 11,788 images across 200 bird categories, with 5,994 images for training and 5,794 images
for testing. Each image is annotated in detail, including 312 binary attributes. For our experiments, we
downloaded the dataset from https://data.caltech.edu/records/65de6-vp158 and further
split the training set such that 10% is used for validation. We then selected the 112 most frequently
activated binary attributes to serve as our concepts of interest, as considered in|Zarlenga et al.| (2022).

To explore deeper causal relationships between concepts, we introduce four new ones: camouflage,
flight adaptation, and hunting ability, which are derived from existing attributes using logical rules,
as well as the multi-valued concept survival, whose activation is in turn derived from these three
binary concepts. The rules used for these derivations are detailed in the table below (Table[d). We
use survival as our downstream task. The images are instead further downsampled, normalized, and
processed using a ResNet-50 architecture, following a procedure similar to that used for the CelebA
dataset.

F Experimental details

Python code and instructions for reproducing results across all datasets and methods are
available within the code provided alongside the submission as supplementary material. We
detail below the configurations and hyperparameters used for models’ instantiation and training. For a
fair comparison across concept-based models, we standardize the concept encoder to a single-hidden-
layer MLP. All models are trained using the Adam optimizer (Kingma & Bal 2015)) for a maximum
of 500 epochs, with early stopping based on a 30-epoch patience. We employ LeakyReLU as the
activation function throughout.

The batch size is set to 512 for most datasets, with the exception of Siim-pneumothorax and SCBM,
where it is reduced to 128 due to memory constraints. Following |Koh et al.| (2020), we regularize the
task loss to encourage concept learning, using a weighted sum of task and concept losses:

L=(1-0) Lak + & Leoncepts, Witha = 0.8

where Ly, is a cross-entropy over the task whereas Leoncepts 1 the summation of cross-entropy losses
over the concepts.

Additionally, we apply random training-time interventions as proposed by [Zarlenga et al.| (2022),
with an intervention probability of 0.25. Regarding SCBM, we used the authors’ implementation
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Table 4: Newly introduced CUB concepts and the rules used to determine their values.

New Concept

Logical rules

camouflage has_tail_pattern_spotted V
has_tail_pattern_striped V
has_tail_pattern_multi-colored V
has_back_pattern_spotted V
has_back_pattern_striped V
has_back_pattern_multi-colored

flight_adaptation | has_tail_shape_rounded_tail V
has_wing_shape_rounded-wings V
has_size_medium

hunting_ability has_bill_shape_curved V
has_bill_shape_needle V
has_bill_shape_spatulate V
has_bill_shape_all-purpose V
has_bill_shape_longer_than_head V
has_bill_shape_shorter_than_head

survival max(camouflage + flight_adaptation + hunt-
ing_ability, 2)

athttps://github.com/mvandenhi/SCBM. More precisely, we implemented the global variation
using the configuration proposed by the authors.

Key hyperparameters, including learning rate, MLP hidden size, and dropout rate, are selected via
grid search. A complete list of hyperparameters for C2BM and all baseline models can be found in
the provided YAML configuration files within the code.

All experiments are conducted on NVIDIA GeForce RTX 3080 and NVIDIA RTX A5000 GPUs.

F.1 Metric: custom Structural Hamming Distance

To assess the quality of the causal graphs generated by our pipeline and baseline discovery models, we
employ two metrics: a variant of the structural Hamming distance (SHDf] that operates on CPDAGs,
and the number of incorrect edges identified. The number of incorrect edges serves as a standard
measure of the quality of the graph, while the SHD allows us to customize weights for different types
of errors. Tab. [5]provides a schematic of our SHD scores:

Ground Truth Predicted SHD Penalty

/ i 1
/ i—j 1/2
i—j i 1/3
i—j / 1/4
i—j / 1/4
i—j i j 1/4
i—j i—j 1/5

>

Table 5: SHD penalties for various discrepancies between ground truth and predicted edges. i — j’:
oriented edge, i — j’: unoriented edge, ’/’: no edge

The rationale behind the scores is that the insertion of new edges is ‘riskier’ than the removal of
existing ones. The introduction of non-existing edges may induce spurious correlations that strongly
affect the reliability of the model and related metrics, such as counterfactual fairness or accuracy in
ood tasks. On the contrary, removing an existing edge is a more conservative operation: while it still

°Although we refer to this as a "distance," it is technically an asymmetric scoring function.
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affects the model accuracy, is not strongly impacting reliability. For the same reason, introducing an
incorrect edge orientation is more penalized than removing an orientation.

G Additional experiments

G.1 Label accuracy

We report here the average label accuracy (task + concepts) for each of the datasets analyzed in Tab. [T
In this setting, since we are evaluating the accuracy across both the task and the concepts, we use
a different opaque neural baseline, OpagNN ,,, which jointly predicts all concepts and the task for
each dataset. As shown in the Tab.[6} C2BM achieves comparable results to non-causal models in
terms of concept prediction. Notably, the performance differences observed in Section[5.1] for task
accuracy are attenuated here due to averaging over both tasks and concepts.

Table 6: Label accuracy (%). Task concepts are as follows: dysp (Asia), Akt (Sachs), BP (Alarm),
PropCost (Insurance), R5Fcst (Hailfinder), parity (cMNIST), mouth slightly open (CelebA), Survival
(CUB¢), pneumothorax (Pneumoth.). Uncertainties represent 2 sample mean ¢ across 5 runs.

MODEL SEMANTIC CAUSAL | ASIA SACHS INSURANCE  ALARM  HAILFINDER CMNIST  CELEBA CUB¢ PNEUMOTH.
TRANSP. REL.
OPAQNN i X X 87.1s1a 724410 78761073 90.13:030  66.2910.60  91.85:+44  80.3010.04 77.66+049  T4.99+0.34
CBM 4in v X 87.041.0 719412  78.65+06s  89.88+0.30 69.99+0.67 91.85+.44 79.9840.14 77.51i043  74.0310.44
CBMnip v X 8711009 722412 78.64+0.70 89.80-+0.36 69.78£0.79 91.46+ .40 80.060.03 77.75+0.54 73.7240.65
CEM v x 87100 722411 7860077 89.77r02s  70.141076 9142137  80.3910.02 77161033  T4.2T1077
SCBM v X 87.040.0 72.241.0 78.62+0.75 90.08.+0.32 69.54+0.65 91.84+ 37  79.93+0.03 78.03+0.23 74.314+0.20
C’BM v v 872410 T72.0+00  78.3Tso72  89.83+035  T1.85ios0  92.19+.05 80.441010 T7.22:036  74.T310.31

G.2 Task accuracy using true graph

To further assess the quality of the generated graph, we compare downstream task performance using
the inferred graph with performance using the true graph, available in Bayesian Network synthetic
datasets.

Table 7: Task accuracy (%) using the true and predicted graph. Task concepts are as follows: dysp
(Asia), Akt (Sachs), PropCost (Insurance), BP (Alarm), R5Fcst (Hailfinder). Uncertainties represent
2 sample mean o across 5 runs.

MODEL ‘ ASIA SACHS INSURANCE ALARM HAILFINDER
C2BM TRUE GRAPH 71.0423 65.0413 66.441.8 62.1115 73.0116
PREDICTED GRAPH 714417 65.341.1 66.441.5 625114 741418

Results in Tab. [7)indicate that the two settings yield comparable performance, demonstrating both
the quality of the learned graph and the robustness of the proposed pipeline. This robustness can
be attributed to the employed exogenous latent embeddings, which mitigate the impact of concept
incompleteness. Consequently, even when the inferred graph is not perfectly aligned with the true
causal structure, C2BM maintains strong task performance. These findings highlight the model’s
resilience and its ability to generalize effectively in real-world scenarios where true causal structures
are often unavailable.

G.3 Ablation study on Causal Discovery

In this section, we evaluate the sensitivity of the causal discovery component in our pipeline to the
choice of method for constructing a causal graph. To do so, we compare our method of choice
for causal discovery, i.e., Greedy Equivalence Search (GES) (Chickering, [2002), with different
widely-used causal discovery algorithms that recover a CPDAG. Each of these methods is evaluated
with and without refinement via the retrieval-augmented generation (RAG)-enhanced language model
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(LLM) employed in our study. Furthermore, we compare all these methods against the use of the
LLM alone, as well as our retrieval-augmented LLM (LLM + RAG) applied directly to discover the
whole graph. Specifically, the LLM is prompted with the causal prompt shown in App.[C.3] with
additional retrieved context appended to the query in the LLM+RAG setting.

Specifically, we evaluate the following methods from the causal discovery literature:

* GES (score-based): The algorithm selected in our study. A detailed description is provided
in App.

* PC Algorithm (Spirtes et al.,[2000) (independence-based): A classical independence-based
method that first estimates the undirected structure of the causal relations through a sequence
of conditional independence tests, then orients edges using a set of predefined orientation
rules (Colombo et al.,|2014). In our implementation, we use the PC algorithm provided by
the causal-learn library (Zheng et al.l 2024), with a chi-squared independence test and a
significance level of 0.05;

 Fast GES (Ramsey et al.,[2017) (FGES) (score-based): A computationally efficient variant
of GES that improves performance by storing intermediate evaluations and parallelizing
expensive operations, enabling its application to large datasets (Andrews et al.,[2019; Ramsey
et al.,|2017). In our implementation, we use the FGES algorithm provided by the py-tetrad
library (Ramsey & Andrews| [2023)), employing the Bayesian Dirichlet Equivalent Uniform
(BDeu) score for structure evaluation (Heckerman et al., [1995)).

The results are evaluated on all the bnlearn datasets, for which the true causal graphs are known.
Results are presented in Tab. [§]

Table 8: Structural Hamming distance and number of mistaken edges between the true and learned
causal graphs for each tested method. The maximum number of errors (Max errors) and the average
number of errors make by a random classifier (Random Classifier) are also provided for reference.

Metric ‘ CD Method ‘ Asia  Sachs Insurance Alarm Hailfinder
Hamming LLM 13 11.08 336 505.92 92.75
LLM + RAG 12 6.83 201.91 Time limit ~ Time limit
PC 2.41 2.93 6.65 5 14.53
FGES 0.65 34 6.78 591 21.4
GES 0.65 3.4 6.43 5.41 11
PC + LLM (+ RAG) 241 291 6 3.92 15.42
FGES + LLM (+ RAG) | 0.25 2.03 5.33 6 20.5
GES + LLM (+ RAG) 0.25 1.83 6.33 4.95 11
Number of mistaken Max errors 28 55 351 666 1540
edges Random Classifier 9.33 18.33 117 222 513.33
LLM 13 20 351 543 107
LLM + RAG 12 12 226 Time limit ~ Time limit
PC 6 10 26 13 45
FGES 3 17 23 14 39
GES 3 17 19 13 22
PC + LLM (+ RAG) 6 9 22 9 43
FGES + LLM (+ RAG) 1 8 15 11 36
GES + LLM (+ RAG) 1 7 18 10 22

As shown in the results, GES refined with the RAG-augmented LLM is the overall best-performing
method in the majority of cases, both in terms of structural Hamming distance and number of
mistaken edges. In instances where it is not the best, it still consistently ranks among the top methods.
Notably, both the standard causal discovery method (GES) and the use of the RAG-augmented
LLM contribute positively to performance. Due to the substantial computational time required by
the LLM+RAG-based causal discovery approach, we excluded experiments on datasets for which
execution exceeded 24 hours.

G.4 Ablation study on LLM type

The LLM or the design of the LLM prompt could condition the causal graph refinement. To assess
this, we present an ablation study in which we fix the incomplete causal graph generated by the causal

35



discovery algorithm (GES), and later evaluate different LLMs, with different prompts, for the graph
refinement step. Specifically, we evaluate the impact of four different prompting strategies with three
LLMs (GPT-40, 200M parameters; and GPT-40-mini, 8M parameters). The considered strategies are
as follows:

* Minimal prompting: simply asks the LLM to identify causal relations without additional
guidance;

* Instruction prompting: provides a more detailed explanation of what constitutes a causal
relation;

» Few-shot prompting: proposed in|Ye et al.|(2024), combines instruction prompting with a
few examples;

* Chain-of-Thought (CoT): proposed in |Wei et al.| (2022)), encourages the model to generate
intermediate logical steps before generating the answer. This is the approach we used in the
original manuscript.

Tab. [ compares the number of mistaken edges and the custom Hamming distance between the
true and the learned DAG. Causal reliability of standard, flat, CBMs is also reported for reference.
The results show that, using GPT-5, causal reliability improves on average w.r.t. GPT-4o, and
GPT-40-mini, especially on the Sachs dataset. Despite moderate variation in the Sachs dataset, the
performance is generally very robust to the prompt strategy (made an exception for naive minimal
strategy), and causal reliability is largely superior to standard CBMs in all cases.

Table 9: Structural Hamming distance and number of Mistaken Edges between true and learned DAG
across datasets, using different LLMs and prompting strategies. Uncertainty represents 2 sample
mean ¢ across 3 runs.

Metric | LLM | Prompting Strategy |  Asia Sachs Insurance Alarm Hailfinder
Minimal 0.254.00 2.674.00 8.04+.52 3.634.94 10.83+.51

GPT-40-mini Instruction 0.254.00 2.754.06 8.04+.52 43412 10.834+.51

Few-shot 0.25+.00 2.794.05 8.044.52 43+12 10.834.51

CoT 0.254.00 2.214.08 7.67+.48 4.1+1.1 10.834.51

Minimal 0.25+.00 2.834.00 8.04+.52 3.75+.98 10.83+.51

Hamming | .. A Instruction 0.25+£.00  2.63+.16  8.04+52 47413  10.83+51
0 Few-shot 0.254.00 2.464.05 8.04+.52 4.8+1.3 10.83+.51

CoT 0.25+.00 2.254.06 7.54+.52 4.7+13 10.83+.51

Minimal 0.25+.00 1.294.05 7.92+.48 42411 10.83+.51

GPT5 Instruction 0.254.00 1.214.02 7.294+.43 4.4+12 10.834.51

Few-shot 0.254.00 1.044.05 7.294.43 4.0+1.1 10.83+.51

CoT 0.254.00 0.924.09 7.174.39 4.64+1.3 10.83+.51

Minimal 1.004-.00 9.004.00 23.0+14 9.0+1.8 21.50+.90

GPT-4 .. Instruction 1.004-.00 9.504.18 23.0+14 10.042.2 21.50+.90

“o-mint Few-shot 1.004£00 950418  23.0&14 100422  21.50+.90

CoT 1.00+.00 8.00+.36 21.5+13 9.0+1.8 21.50+.90

Mistaken Minim.al 1.00+.00 11.004.00 23.0+14 9.54+2.0 21.50+.90
Edges GPT4o Instruction 100400 10.00+£72 230414  10.0+£22  21.50+.90
Few-shot 1.004-.00 9.504.18 23.0+14 11.042.3 21.50+.90

CoT 1.004-.00 8.504+.18 21.04+14 10.042.2 21.50+.90

Minimal 1.00+.00 4.50+.18 22.5+13 9.542.0 21.50+.90

GPT5 Instruction 1.00+.00 4.00+.00 20.0+1.1 9.0+1.8 21.50+.90

Few-shot 1.00+-.00 3.50+.18 20.0+1.1 9.0+1.8 21.50+.90

CoT 1.00+-.00 3.00+.36 19.5+9 9.542.0 21.50+.90

G.5 Ablation study on RAG

Tab. [10]illustrates the influence of the context supplied by RAG in correcting the causal graph gener-
ated by the causal discovery algorithm. In this analysis, we used GPT-4o for both the experiments
with and without RAG, aiming to evaluate the effect of context on answering causal queries.

Although the context provided by RAG appears to have no significant impact on the final causal
graph for the Alarm dataset, it proves essential for correctly handling the undirected edges in the
causal graph for the Sachs dataset. We hypothesize that this is due to the absence of protein related
documents used in training the LLLM, which leaves it with insufficient prior knowledge to address
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Table 10: Structural Hamming distance and number of mistaken edges between true and learned
DAG when using either RAG to provide context to the LLM or just the LLM.

Metric | Context | Sachs Alarm
Hamming No context 3.1 5.0
RAG context 1.8 5.0
Mistaken No context 12 10
edges ratio | RAG context 7 10

specific questions on the topic. RAG helps mitigate this limitation by supplying the LLM with the
relevant information, thereby compensating for the lack of prior knowledge. In conclusion, while
an LLM with the ability to fully comprehend complex queries is crucial for causal discovery, the
additional context provided by RAG is vital for overcoming the LLM’s prior knowledge gaps.

G.6 Sample complexity of graph discovery

We study the effect of dataset size and graph size on the quality of C2BM’s graph construction pipeline.
We explored this with a sensitivity study, running the causal graph pipeline (causal discovery with
GES + LLM refinement with CoT prompt) across all datasets with an available ground-truth graph
and comparing the number of mistaken edges between the true and the learned DAG. For each dataset,
we varied the number of data points N from 100 to 10000. Results are presented in Tab. [T}

Table 11: Number of mistaken edges between the true DAG and the learned graph using the C2BM’s
graph construction pipeline, evaluated across datasets and data sizes. For reference, the reliability of
standard flat CBMs is also reported.

Dataset Flat CBMs C?BM’s causal graph

Data size (N) =+ 100 500 1000 5000 10000 (Paper)
Asia 11 6 3 1 1 1
Sachs 23 15 12 11 7 7
Insurance 74 47 35 24 22 18
Alarm 78 31 16 9 9 9
Hailfinder 117 56 47 44 22 22

A few considerations emerge:

» C2BM’s causal graph is consistently more causally reliable than the flat structure implicitly
assumed by standard CBMs, regardless of the dataset size.

* As expected, increasing the number of data points leads to better alignment between the
estimated and true causal graphs. Causal reliability tends to remain stable at larger data
sizes.

* We observed that the data size threshold for reliable performance does not strictly depend on
graph size. We speculate this is due to the varying impact of LLM-based refinement across
datasets. In some cases, an effective background knowledge can compensate for limited
data.

G.7 Sensitivity to graph corruption

In this section, we empirically assess the robustness of C>BM to graph misspecification and corruption.
Although C?BM is theoretically a universal approximator for the final prediction task, independent of
the specific causal graph (see Appendix [D.T), we complement this result with an empirical validation.

* Adversarial Graph Corruptions. We first evaluate robustness by altering a percentage p of
graph edges, chosen randomly, with one of the following operations: edge flipping, addition,
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or removal. The resulting performance across datasets and corruption levels is reported in

Tab.[12]

* Progressive Flattening into Standard CBMs. As a second evaluation, we progressively
transform the graph into the flat structure assumed by standard CBMs, by connecting a
percentage p of nodes directly to the prediction task while removing their outgoing edges.
Results are shown in Tab.

Table 12: Task accuracy (%) under edge-level adversarial corruptions. A percentage p of edges is
altered through flipping, addition, or removal. Task concepts are as follows: dysp (Asia), Akt (Sachs),
PropCost (Insurance), BP (Alarm), RSFcst (Hailfinder). Uncertainties represent 2 sample mean o
across 3 runs.

Dataset / p 0.05 0.1 0.2 0.4 0.6 0.8 1.0

Asia 71.840.6 71.6+0.5 T1.410.6 71.74+1.3 70.241.0 71441 .2 70240.0
Sachs 65.141.0 65.642.0 64.942 0 64.641 .2 65.54+1.5 652415 65.042.0
Insurance 672416 67.043.1 67.542.3 66.141.1 67.042.6 66.842.6 672431
Alarm 619426 61.742.1 615425 61942 7 60.641.9 609416 614417

Hailfinder 74,0:‘:1‘5 73,1:‘:3‘0 72,3:!:242 72,3:!:342 73,0:&:2.1 71~8:i:1.6 72.4:‘:1.4

Table 13: Task accuracy (%) under progressive graph flattening into standard CBMs. A percentage
p of nodes is directly connected to the task output. Task concepts are as follows: dysp (Asia), Akt
(Sachs), PropCost (Insurance), BP (Alarm), RSFcst (Hailfinder). Uncertainties represent 2 sample
mean o across 3 runs.

Dataset / p 0.05 0.1 0.2 0.4 0.6 0.8 1.0

Asia 72.0i1‘0 72.0i1_0 71.5i0_3 71-7i0.8 71.7i0_5 71-2i1.6 71.1i1_1
Sachs 65.5+2.2 64.843.0 65.841.6 647415 652412 65.142.7 64945 2
Insurance 67-4j:2.6 66.2i1_7 66.3i2_5 65.6i3_3 65.3i2_4 66.9i1_8 64.7i3_1
Alarm 62.642.9 61.642.6 61.642.0 60.5+2.6 612118 60.643.2 613119

Hailfinder 73.1j:1_1 73.2i1_9 72.5i0_9 72.7i2_9 73-0i2.6 73.0i1_7 72.9i1_9

Across both corruption strategies, we find that task accuracy remains stable, even when the causal
graph is heavily perturbed. These empirical results support the theoretical claim that C?BM is robust
to graph misspecification.

G.8 Effect of single-concept interventions

Fig.[TT]presents the relative improvement in task accuracy after intervening on individual concepts
across all datasets. A key observation is that C2BM responds to interventions on the same key
concepts as the baselines, despite the fundamental difference in how information propagates.
In CBM-based models and CEM, all concepts are directly connected to the task, enabling direct
influence. In contrast, C2BM enforces information flow through the causal graph, constraining
the interactions. Yet, the task performance improvements remain consistent across models. These
results highlight that C2BM preserves the intervention effects observed in traditional concept-based
models while providing a more structured and interpretable causal representation of the underlying
relationships.

G.9 Decomposing interventional accuracy

Fig. []in the main paper illustrates the improvement in cumulative relative interventional accuracy
across all downstream, non-intervened concepts, including both intermediate concepts and the final
task. To further analyze these effects, Fig.[I2]decomposes this metric into two separate evaluations:
one focusing solely on the task node and another considering only intermediate concepts. The concept
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Figure 11: Relative improvement (%) in task accuracy when intervening on specific concepts.

accuracy plots highlight C2BM’s unique ability to enhance performance of intermediate (downstream)
concepts, a property not observed in competing models.
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Figure 12: Task accuracy improvement (%) in predicting downstream variables after intervening on
groups of concepts up to progressively deeper levels in the graph hierarchy. The metric is averaged
across all downstream variables (Left), the task only (Middle), and all concepts (Right) Total label

accuracy. Uncertainties represent 2 sample mean o across 5 runs.
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