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ABSTRACT

Inspired by the activity-silent and persistent activity mechanisms in human visual
perception biology, we design a Unified Static and Dynamic Network (UniSDNet),
to learn the semantic association between text/audio queries and the video in a
cross-modal environment for efficient video grounding. For static modeling, we
add the MLP into the residual structure (ResMLP) to handle the global comprehen-
sive interaction between and in the video and multiple queries, achieving mutual
semantic supplement. For dynamic modeling, we integrate three characteristics
of persistent activity mechanism into network design for a better video context
comprehension. Specifically, we construct a diffusive connected video clip graph
on the basis of 2D spare temporal masking to reflect the “short-term effect” rela-
tionship. We innovatively consider the temporal distance and relevance as the joint
“auxiliary evidence clues” and design a multi-kernel Temporal Gaussian Filter to
expand the joint clue to high-dimensional space, simulating the “complex visual
perception”, and then conduct element level filtering convolution operations on
neighbour clip nodes in message passing stage for finally generating and ranking
the candidate proposals. Our UniSDNet is applicable to both Natural Language
Video Grounding(NLVG) and Spoken Language Video Grounding(SLVG) tasks. Our
UniSDNet achieves SOTA performance on three widely used datasets for NLVG, as
well as datasets for SLVG, e.g., reporting new records at 38.88% R@1, IoU@0.7
on ActivityNet Captions and 40.26% R@1, IoU@0.5 on TACoS. To facilitate this
field, we collect new two datasets (Charades-STA Speech and TACoS Speech) for
SLVG. Meanwhile, the inference speed of our UniSDNet is 1.56× faster than the
strong multi-query benchmark. We will release the new data and our source code
after blind review.

1 INTRODUCTION

Natural Language Video Grounding (NLVG) Gao et al. (2017); Anne Hendricks et al. (2017) is
an important yet challenging task in multimedia understanding, which has drawn increasing atten-
tion in recent years due to its vast potential applications in the fields of cross-modal information
retrieval Yang et al. (2022) and intelligent Human-Computer Interaction(HCI) Li et al. (2021a). With
the development of the Automatic Speech Recognition (ASR) and Text To Speech (TTS), speech is
becoming an essential medium for HCI. Spoken Language Video Grounding (SLVG) Xia et al. (2022)
has also gained a lot of attention. Regardless of whether one employs text or audio queries to locate
the video segment, the challenge of video grounding rests in cross-modal semantic understanding.

Existing popular methods solve NLVG in two main manners, namely the proposal-based Gao & Xu
(2021); Wang et al. (2022); Zheng et al. (2023a) and proposal-free Yuan et al. (2019); Liu et al. (2023a)
methods. Proposal-based method utilizes a two-stage strategy of “generate and rank”. Proposal-free
is a direct regression prediction of the target temporal span based on multimodal features. Regardless
of which manner, CNN Xia et al. (2022), RNN Liu et al. (2023a), Transformer Zhang et al. (2021b),
GCN Sun et al. (2023) are used for multimodal representation and context learning. For SLVG tasks,
Xia et al. (2022) adopts the basic framework of proposal-free and uses a video guided audio pre-
training model to fuse the semantics of two modalities. Although there has been a lot of achievement
on cross-modal semantic understanding, it remains a challenge in the field of video grounding, that
is, how to utilize the consistency and complementarity between multimodal information to better
understand the semantics of the video in a cross-modal environment.
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Q4: The woman gives the boy the vacuum, and 
he vacuums the floors.

Q1: A person is vacuuming in a hallway.

Q2: A toddler in pajamas runs past frantically, running into other 
rooms and jumping excitedly because he wants to be picked up.
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Q3: He is angry when his mother goes into the bathroom with the vacuum.

Figure 1: An illustrating example for the video grounding task (query: text or audio). This video is described by
four queries (events), all of which have separate semantic context and temporal dependency. Other queries can
provide global context (antecedents and consequences) for the current query (e.g. query Q4). Besides, historical
similar scenarios (such as in blue dashed box) help to discover relevant event clues (time and semantic clues) for
understanding the current scenario (blue solid box).

We notice a fact that human comes rapidly to understand the queried events in a video, and research
shows that in human visual perception biology, this is related to the interplay between activity-silent
and persistent activity mechanisms of Prefrontal Cortex (PFC) in the brain Barbosa et al. (2020).
Inspired by this, we view the cross-modal interaction of language and video as a combination of static
and dynamic interactions. For static interaction, we see it as “global broadcast communication” of
the brain Volzhenin et al. (2022), which will comprehensively handle multimodal information and
learn the semantic connections between them. For dynamic interaction, there is a persistent activity
mechanism, that is, when viewing videos, human visual perception is transmitted along the Timeline
Main Clue and exhibits three characteristics: 1) Short-term Effect; 2) Auxiliary Evidence (Relevance)
Clues; 3) Perception Complexity 3.2. These characteristics are extremely important in helping people
locate the queried events in the video. Therefore, we integrate the key ideas of these theories into
our model design. As shown in Fig. 1, we first comprehensively communicate multiple queries and
videos to obtain contextual information for the current query (e.g., Q4) and associate different queries
to understand video scenes. This process is deemed as a static global interaction. Then we design a
visual perception network to imitate dynamic context information transmission in the video. We build
a sparely connected relationship (blue arrow in Fig. 1) between video clips to reflect “Short-term
Effect”, and collect “Evidence (Relevance) Clues” from these neighbour clips (blue dashed box in
Fig. 1) by conducting a high-dimensional temporal Gaussian filtering convolution(imitating visual
Perception Complexity).
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Figure 2: UniSDNet achieves 10.31% of perfor-
mance gain on the R@1, IoU@0.5 metric while
being 1.56× faster than multi-query SOTA meth-
ods on the ActivityNet Captions dataset. The di-
ameter of the circle indicates the model size (M).

In this paper, we propose a novel Unified Static and
Dynamic Networks (UniSDNet) (in Fig 3). Specif-
ically, for the static modeling, we propose a Static
Semantic Supplement Network (S3Net), which con-
tains a purely multi-layer perceptron within residual
structure (ResMLP) to capture the association be-
tween queries and associate queries with video clips.
For the dynamic modeling, we design a Dynamic
Temporal Filtering Network (DTFNet) based on a
Gaussian filtering GCN architecture to capture more
useful contextual information in the video sequence.
We introduce two important variables 4 for construct-
ing temporal filter between video clip nodes, that is,
the relative temporal distance r between nodes and
the node relevance weight a, and introduce a multi-
kernel Temporal Gaussian Filter to extend the joint
clue of r and a to high-dimensional space. By per-
forming high-level filtering convolution operations
on neighbor nodes, we model fine-grained context correlations between video clips.

Our main contributions are summarized as follows: (1) We make a new attempt in solving video
grounding tasks from the perspective of visual perception biology and propose a Unified Static
and Dynamic Networks (UniSDNet), where static module is a fully interactive ResMLP network
that provides a global cross-modal environment for multiple queries and the video, a Dynamic
Temporal Filter Network (DTFNet) learns the fine context of the video with query attached; (2)
We establish an interactive mode for multiple queries and video clips, our method achieves model
performance/complexity trade-offs, which has fewer parameters than multi-query methods and
achieves a 1.56× faster inference speed than the strong benchmark MMN Wang et al. (2022), which
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Figure 3: The architecture of the UniSDNet. It mainly consists of static and dynamic networks: Static Se-
mantic Supplement Network (S3Net) and Dynamic Temporal Filtering Network (DTFNet). S3Net concatenates
video clips and multiple queries into a sequence and encodes them through a lightweight single-stream ResMLP
network. DTFNet is a 2-layer graph network with a dynamic Gaussian filtering convolution mechanism, which
is designed to control message passing between nodes by considering temporal distance and semantic relevance
as the Gaussian filtering clues when updating node features. The role of 2D temporal map is to retain possible
candidate proposals and represent them by aggregating the features of each proposal moment. Finally, we
perform semantic matching between the queries and proposals and rank the best ones as the predictions.

shown in Fig. 2; (3) In order to accelerate the research about spoken language video grounding, we
collect the new Charades-STA Speech and TACoS Speech datasets with diverse speakers; (4) We
conduct experiments on three public datasets for NLVG and three datasets for SLVG, and verify
the effectiveness of the proposed method. The SOTA performance on NLVG and SLVG tasks
demonstrates the generalization of our model.

2 RELATED WORK

Natural Language Video Grounding (NLVG). The target of NLVG task is to locate the accurate
video moment that semantically corresponds to a specific linguistic query. NLVG is initially pioneered
by Gao et al. (2017) and Anne Hendricks et al. (2017), which refers to two main methodological
pipelines, i.e. proposal-based and proposal-free methods (comparative methods are listed in Sec. 4.2).
Herein, 2D-TAN Zhang et al. (2020b) is the first solution depositing possible candidate proposals
via a 2D temporal map and MMN Wang et al. (2022) further optimizes it for NLVG. Because of the
elegance of 2D-TAN, we incorporate the 2D temporal map into our model, buffering the possible
candidate clues. In addition to this, we freshly exploit the relational learning in a video clip graph.
Current graph models for NLVG Sun et al. (2023); Gao et al. (2021) overemphasize the correlation
between video clip nodes but ignore the intrinsic time-series nature of the video itself. In our work,
We fresh sparse masking strategy in 2D-TAN to build a diffusive connected video clip graph with
dynamic Temporal Gaussian filtering for video grounding. Extensive experiments in Sec. 4 prove
that this artifice is available for both NLVG and SLVG tasks.

Spoken Language Video Grounding (SLVG). Xia et al. Xia et al. (2022) firstly explore whether
the virgin speech rather than language can highlight relevant moments in unconstrained videos and
propose the SLVG task. Compared to NLVG, the challenge of SLVG lies in the discretization of
speech semantics and the audio-video interaction. The new task demonstrates that text annotations
are not necessary to pilot the machine to understand video and proposes a proposal-free curriculum
learning method. Recently, with the development of audio pre-training, a breakthrough has been
made in the discretization feature representation of speech Baevski et al. (2020; 2022b); Wang et al.
(2021). Therefore, in this work we focus on the audio-video interaction challenge of SLVG through
the proposed UniSDNet. To facilitate the research of SLVG, we collect two new audio description
datasets named Charades-STA Speech and TACoS Speech that originate from Charades-STA Gao
et al. (2017) and TACoS Regneri et al. (2013). More details please refer to the Appendix A.1.

3 METHODOLOGY

Task Definition. Denote the input video as V = {v1,v2, . . . ,vT } ∈ RT×dv

, where dv and T are the
feature dimension and total number of video clips. Each video has an annotation set of {Q,M}, in
which Q is a M -query set in the text or audio modality and M represents the corresponding video
moments, denoted as Q = {q1, q2, . . . , qM} ∈ RM×dq

and M= {(ts1, te1), (ts2, te2), . . . , (tsM , teM )},
where (tsm, tem) represents the starting and ending timestamps of the m-th query, dq is the dimension
of query feature, and M is the query number. The goal of both NLVG and SLVG is to predict the
temporal boundary (ts, te) of the queried moment in the video.

3
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3.1 STATIC SEMANTIC SUPPLEMENT NETWORK

We first simulate the activity-silent mechanism of human visual perception process, this mechanism
manifests as an unconscious “global broadcast communication” of the brain in processing multimodal
information Volzhenin et al. (2022). This multimodal information processing optimizes the ability of
ephemeral visual perception nerves to capture global information. In multimodal interaction, this
global context capture is necessary for representing the video and queries, so we consider the global
interaction between the video and queries as a static interaction process. From this perspective, we
propose a static semantic supplement network S3Net (in Fig. 3) that adds the MLP into the residual
structure (ResMLP). The use of a purely multi-layer perceptron within ResMLP can satisfy this static
linear interaction requirement to achieve “global communication”. It is an efficient feedforward
network with data training and easily reaches model performance/complexity trade-offs. Another
advantage of using a linear layer is that it has long-range filters on every layer Touvron et al. (2022).

Firstly, we utilize some pre-trained models to extract original video and query features (C3D Tran et al.
(2015), GloVe Pennington et al. (2014), Data2vec Baevski et al. (2022a), etc.) and linearly convert
them into a unified feature space. Thus, we obtain the video and query features FV ∈ RT×d and
FQ ∈ RM×d; FVQ = [FV ||FQ] ∈ R(T+M)×d. Afterwards, we add the position embedding Vaswani
et al. (2017) PV ∈ RT×d for video feature and PQ ∈ RM×d for query feature. Performing an
concatenate operation on position embedding as well, there is PVQ = [PV ||PQ] ∈ R(T+M)×d. Let
MLPBlock be a combination of a LayerNorm layer, a Linear layer, a ReLU activation layer and a
Linear layer. We execute the MLPBlock function to obtain the static interactive video clip features
F̂V and query features F̂Q:

F̃VQ = FVQ + LayerNorm(FVQ) + PVQ,

F̂VQ = LayerNorm(F̃VQ +MLPBlock(F̃VQ)),

F̂V = F̂VQ[1 : T ; :] ∈ RT×d, F̂Q = F̂VQ[T + 1 : T +M ; :] ∈ RM×d.

(1)

Note that UniSDNet leverages multiple queries as the input, facilitating the interaction between the
queries themselves, in the video itself (between multiple video clips), and between the queries and
video. This allows us to learn the self-modal and cross-modal semantic associations between video
and queries without any restrictions, so our model can leverage the complementary effect between
multiple queries related to the same video content. We esteem that multiple queries semantics can
provide more comprehensive semantic supplementation for the entire video content comprehension.

3.2 DYNAMIC TEMPORAL FILTERING GRAPH NETWORK

Filter

(a) Message Aggregation (b) Filter-Generator 

i                     j

Multi-Kernel 
Gaussian Radial 
Basis Functions  

FFNs
Filter

…

Joint relevance weight 
and relative temporal 
distance of nodes rij

aij

Φ: 	ℝ → 	ℝ!

Figure 4: Dynamic Temporal Filtering Graph.

When browsing videos, besides the static
activity-silent mechanism in processing
multi-modal information by brain Barbosa
et al. (2020), there is also a persistent activ-
ity mechanism, that is, human visual per-
ception is transmitted along the Timeline
Main Clue and exhibits three characteris-
tics: 1) Short-term Effect: nearby percep-
tions strongly affect current perceptions;
2) Auxiliary Evidence (Relevance) Clues:
semantically relevant scenes in the video
provide auxiliary time and semantic clues; 3) Perception Complexity: the perception process is
time-series associative and complex, behaving the characteristics of high-dimensional nonlinear-
ity Barbosa et al. (2020); These characteristics are extremely important in helping people locate the
queried events in the video. Graph neural networks have been proven to achieve complex information
transmission between nodes Veličković et al. (2017). We simulate people’s visual perception process
by designing a novel message passing method between video clip nodes and propose a Dynamic
Temporal Filtering Graph Network (DTFNet in Figs. 3 and 4).

Specifically, to imitate the Short-term Effect, we construct a diffusive connected graph based on the
2D temporal video clip map (please see “Graph Construction” below). For the discovery of Auxiliary
Evidence Clues, we integrate the message passed from each node’s neighbours by measuring the

4
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relative temporal distance and the semantic relevance in the graph (please see the filter clue introduced
in “How to construct Ffilter?” below). At last, we use a multi-kernel Gaussian filter-generator to
expand the auxiliary evidence clues to a high-dimensional space, simulating human complex visual
perception capabilities (please see the filter function in “How to construct Ffilter?” below).

Graph Construction. Let us denote a video graph G = (GV ,GE) to represent the relationship in the
video V . In graph G, node vi is the i-th video clip and edge eij∼(vi,vj) ∈ GE represents whether vj

is vi’s connective neighbor in the graph G. Therein, we utilize a diffusive connecting strategy Zhang
et al. (2020b) to construct the adjacency matrix of the graph. In brief, we sparsely connect two
clip nodes according to their temporal distance. When the temporal distance of nodes is small, we
densely connect them. When the temporal distance becomes long, we skip the edge connection with
an interval hyperparameter. With these operations, we obtain a spare adjacency map GE . We obatin
F̂V from the S3Net (in Eq. 1) and take it as the initialization of clip nodes in the graph, namely the
initial node embedding of graph is set to GV

(0)= F̂V ∈ RT×d.

Temporal Filtering Graph Learning. We build L-layer graph filtering convolutions in our imple-
mentation. During training, the node embedding GV

(l) = {v(l)
1 ,v

(l)
2 , · · · ,v(l)

T } is optimized at each
graph layer, 1 ≤ l ≤ L. In this part, we introduce a Gaussian Radial Filter-Generator Ffilter shown
in Fig. 4 to imitate the dynamic flashback process of video for visual perception. There are two core
technical difficulties to be resolved below.

1) How to construct Ffilter? Since visual perception is transmitted along the timeline, we consider
the relative time between nodes as the primary clue. Besides, similar scenes work appropriately on
the comprehension of current scene, so we take into account the semantic relevance between graph
nodes as auxiliary clue. Specifically, we compute the two clues of the relative temporal distance rij
of node vj and node vi (rij = ||j − i||) and the relevance weight aij of this two-node pair measured
by the cos(·) similarity function, combining them as joint clue dij = (1− aij) · rij . In order to fully
reflect the message effect of this joint clue dij in the model, we expand it to a high-dimensional space
(the effect of message transmission for visual perception should actually be infinitely dimensional).
Namely, the filter is in the form of Ffilter(dij) : R → Rh.

The Gaussian function has been exploited in deep neural networks, such as Gaussian kernel group-
ing Long et al. (2019), learnable Gaussian fucntion Zheng et al. (2022), Gaussian radial basis
function Schütt et al. (2017). Encouragingly, these Gaussian functions have been proven to be effec-
tive in simulating the nonlinear information in various scenes. Inspired by this, we design a temporal
Gaussian basis function to build the Ffilter and expand the joint clue dij to a high dimension vector
fij ∈ Rh in message passing process. We express the form of a single kernel temporal Gaussian as
Φ(dij , z) = exp(−γ(dij − z)2), where γ is a hyperparameter and z is a bias we added to avoid a
plateau at the beginning of training due to the highly correlated Gaussian filters. Furthermore, we
expand it to multiple-kernel Gaussian function to fully represent the complex nonlinear of video
perception. Based on the single kernel term, we construct h kernel functions, more studies on the
settings of z and h in the Appendix B. The way that we generate the filter fij of node vj to node vi

through the multi-kernel Gaussian filer is:

fij = Ffilter(dij) = (ϕ1(dij), ϕ2(dij), · · · , ϕh(dij)), ϕi = Φ(dij , zi). (2)

2) How to update the nodes in graph GV? In the stage of message passing on l-th layer, we update
each node representation by aggregating its neighbor node message to obtain GV

(l). For node vi, its
neighbor set is {vj |vj ∈ N (vi)} corresponding to the adjacency map GE . With the multi-kernel
Gaussian filter fij , the update of node feature vi on l-th graph layer is described as:

v
(l)
i = FNN2(

∑
j∈N (i)

FNN1(v
(l−1)
j )⊙ FFN0(fij), (3)

where ⊙ represents element-wise multiplication. So far, a video graph with spatiotemporal context
correlation of video clips is learned.

3.3 MODALITY ALIGNMENT WITH SEMANTIC SIMILARITY LEARNING

2D Proposals Generation. After obtaining the updated video clip features from the above dynamic
graph module, we implement simple moment sampling (Zhang et al., 2020b) on the features to
generate a 2D temporary proposal map M2D ∈ RT×T×d that indicates all candidate moments

5
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(2D Proposals Generation in Fig. 3). The element mij in the map M2D indicates the candidate
proposal [vi, · · · ,vj ]. For each moment mij , we consider all the clips in the moment interval and
the boundary feature is further added to the moment representation as shown in Eq. 4. Afterwards, a
stack of 2D convolution is used to encode the moment feature. For more ablation studies about the
moment sampling strategy, please refer to the Appendix B.

mij = MaxPool(vL
i ,v

L
i+1, · · · ,vL

j ) + vL
i + vL

j ∈ Rd, M2D = CNN(mij) ∈ RT ·T ·d. (4)

Semantic Similarity Matching. We calculate the relevance of each query and each moment according
to their similarity, generating new 2D moment score maps for the M -queries. Specifically, a 1× 1
convolution and a FFN are respectively used to project the moment feature and the query feature (Eq.
1) into the same dimension. Using cosine similarity of the moment and query pair as the measurement
of semantic correlation between two modalities, M similarity score maps are computed by

SM = Norm(Conv2d1×1(M
2D)) ∈ RT ·T ·d, SQ = Norm(FNN(F̂Q)) ∈ RM·d,

S̃ = CosSim(SM,SQ) = {s̃1, s̃2, · · · , s̃M} ∈ R(T×T )·M .
(5)

3.4 TRAINING AND INFERENCE

Our UniSDNet is a proposal-based method, thus we optimize the score map S̃ with an IoU regression
loss and a contrastive learning loss. Following 2D-TAN Zhang et al. (2020b), we first compute the
groundtruth IoU Map IoUGT = {iou1, iou2, · · · , iouM} ∈ R(T×T )·M corresponding to the queries.
That is, we compute the value of intersection over union between each candidate moment and the
target moment (tsgt, t

e
gt), and scale this value to (0,1). Hence, the IoU prediction loss is

Liou =
1

M · T · T

M∑
m=1

T∑
i=1

T∑
j=1

(
ioum

ij · log(s̃mij ) + (1− ioum
ij ) · log(1− s̃mij )

)
. (6)

We also adopt contrastive learning Wang et al. (2022) as an auxiliary constraint, to fully utilize the
positive and negative samples between queries and moments to provide more supervised signals.
We define contrastive loss as Lcontra, details about Lcontra are in Appendix A.2. The total loss is
L = Liou + Lcontra. The threshold of Non-Maximum Suppression (NMS) is 0.5 during inference.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION METRICS

We conduct extensive experiments on three NLVG benchmarks: ActivityNet Captions Krishna et al.
(2017), Charades-STA Gao et al. (2017), and TACoS Regneri et al. (2013) datasets. For SLVG,
in addition to the ActivityNet Speech dataset Xia et al. (2022), we have collected two new audio
description datasets named Charades-STA Speech and TACoS Speech based on the orignal Charades-
STA and TACoS datasets, respectively. More details please refer to Appendix A.1. Following the
convention Gao et al. (2017); Mun et al. (2020), we compute the “R@h, IoU@µ” and “mIoU” for
performance evaluation. Specifically, we set h ∈ {1, 5} and µ ∈ {0.1, 0.3, 0.5, 0.7}. More details
please refer to Appendix A.2. We will release the new data and our source code after blind review.

4.2 MAIN RESULTS FOR NATURAL LANGUAGE VIDEO GROUNDING (NLVG) TASK

We compare our UniSDNet with the state-of-the-art methods for NLVG and divide them into two
groups. 1) Proposal-free methods: VSLNet Zhang et al. (2020a), LGI Mun et al. (2020), DRN Zeng
et al. (2020), CPNet Li et al. (2021b), VSLNet-L Zhang et al. (2021a), BPNet Xiao et al. (2021),
VGCL Xia et al. (2022), METML Rodriguez et al. (2023), MA3SRN Liu et al. (2023a). 2) Proposal-
based methods: 2D-TAN Zhang et al. (2020b), CSMGAN Liu et al. (2020), MS-2D-TAN Zhang et al.
(2021b), MSAT Zhang et al. (2021b), RaNet Gao et al. (2021), I2N Ning et al. (2021), FVMR Gao &
Xu (2021), MMN Wang et al. (2022), MGPN Sun et al. (2022), SPL Liu & Hu (2022), DCLN Zhang
et al. (2022), PTRM Zheng et al. (2023a), CRaNet Sun et al. (2023), PLN Zheng et al. (2023b),
M2DCapsN Liu et al. (2023b). The best and second-best results are marked in bold and underlined.

Results on the ActivityNet Captions dataset. The ActivityNet Captions is the largest open domain
dataset for NLVG. As shown in Tab. 1, our UniSDNet beats all proposal-free and proposal-based
methods at all metrics reported. Specifically, UniSDNet achieves the best 38.88 and 55.47 in terms of
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Methods Venue Text Video
ActivityNet Captions TACoS

R@1, IoU@ R@5, IoU@ mIoU R@1, IoU@ R@5, IoU@ mIoU0.5 0.7 0.5 0.7 0.3 0.5 IoU0.3 0.5

pr
op

os
al

-f
re

e

VSLNet ACL’20 GloVe C3D 43.22 26.16 - - 43.19 29.61 24.27 - - 24.11
LGI CVPR’20 - C3D 41.51 23.07 - - 41.13 - - - - -
CPNet AAAI’21 GloVe C3D 40.56 21.63 - - 40.65 42.61 28.29 - - 28.69
VSLNet-L TPAMI’21 Glove C3D 43.86 27.51 - - 44.06 47.11 36.34 - 36.61
VGCL ACM MM’22 GloVe C3D 42.96 25.68 - - 43.34 - - - - -
METML EACL’23 BERT I3D 43.74 27.04 - - 44.05 - - - - -
MA3SRN TMM’23 GloVe C3D+Object 51.97 31.39 84.05 68.11 - 47.88 37.65 66.02 54.27 -

pr
op

os
al

-b
as

ed

2D-TAN AAAI’20 GloVe C3D 44.51 26.54 77.13 61.96 - 37.29 25.32 57.81 45.04 -
CSMGAN ACM MM’20 GloVe C3D 49.11 29.15 77.43 59.63 - 33.90 27.09 53.98 41.22 -
MS-2D-TAN TPAMI ’21 GloVe C3D 46.16 29.21 78.80 60.85 - 41.74 34.29 67.01 56.76 -
MSAT CVPR’21 - C3D 48.02 31.78 78.02 63.18 - 48.79 37.57 67.63 57.91 -
RaNet EMNLP’21 GloVe C3D 45.59 28.67 75.93 62.97 - 43.34 33.54 67.33 55.09 -
I2N TIP’21 GloVe C3D - - - - - 31.47 29.25 52.65 46.08 -
FVMR ICCV’21 GloVe C3D 45.00 26.85 77.42 61.04 - 41.48 29.12 64.53 50.00 -
MMN AAAI’22 DistilBERT C3D 48.59 29.26 79.50 64.76 - 39.24 26.17 62.03 47.39 -
MGPN SIGIR’22 GloVe C3D 47.92 30.47 78.15 63.56 - 48.81 36.74 71.46 59.24
SPL ACM MM’22 GloVe C3D 52.89 32.04 82.65 67.21 - 42.73 32.58 64.30 50.17 -
DCLN ICMR’22 GloVe C3D 44.41 24.80 74.04 56.67 - 44.96 28.72 66.13 51.91 -
CPL CVPR’22 GloVe C3D 55.73 31.37 63.05 43.13 - - - - - -
PTRM AAAI’23 DistilBERT C3D 50.44 31.18 - - 47.68 - - - - -
CRaNet TCSVT’23 GloVe C3D 47.27 30.34 78.84 63.51 - 47.86 37.02 70.78 58.39 -
PLN ACM MM’23 GloVe C3D 45.66 29.28 76.65 63.06 44.12 43.89 31.12 65.11 52.89 29.70
M2DCapsN TNNLS’23 GloVe C3D 47.03 29.99 76.64 62.83 - 46.41 32.58 66.32 52.91 -
UniSDNet (Ours) Glove C3D 57.67 35.64 84.46 72.47 53.68 53.59 38.34 79.01 64.83 37.54
UniSDNet (Ours) DistilBERT C3D 60.75 38.88 85.34 74.01 55.47 55.56 40.26 77.08 64.01 38.88

Table 1: Comparison with the state-of-the-arts on the ActivityNet Captions and TACoS datasets for NLVG.

Methods
Video Feature: VGG Video Feature: C3D Video Feature: I3D

R@1, IoU@ R@5, IoU@ mIoU R@1, IoU@ R@5, IoU@ mIoU R@1, IoU@ R@5, IoU@ mIoU0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7

pr
op

os
al

-
fr

ee

DRN - - - - - 45.40 26.40 88.01 55.38 - 53.09 31.75 89.06 60.05 -
LGI - - - - - - - - - - 59.46 35.48 - - 51.38
BPNet - - - - - 38.25 20.51 - - 38.03 50.75 31.64 - - 46.34
CPNet - - - - - 40.32 22.47 - - 37.36 60.27 38.74 - - 52.00

pr
op

os
al

-b
as

ed

2D-TAN 42.80 23.25 80.54 54.14 - - - - - - - - - - -
MS-2D-TAN 45.65 27.20 86.72 56.42 - 41.10 23.25 81.53 48.55 - 60.08 37.39 89.06 59.17 -
FVMR - - - - - 38.16 18.22 82.18 44.96 - 55.01 33.74 89.17 57.24 -
I2N - - - - - - - - - - 56.61 34.14 81.48 55.19 -
CPL - - - - - - - - - - 49.05 22.61 84.71 52.37 -
PLN 45.43 26.26 86.32 57.02 41.28 - - - - - 56.02 35.16 87.63 62.34 49.09
PTRM 47.77 28.01 - - 42.77 - - - - - - - - - -
CRaNet 47.12 27.39 83.51 58.33 - - - - - - 60.94 41.32 89.97 65.19 -
M2DCapsN 43.17 25.13 79.35 55.86 - 40.81 23.98 77.93 53.52 - 55.03 31.61 84.33 63.71 -
MMN 47.31 27.28 83.74 58.41 - - - - - - - - - - -
MMN† 47.28 27.58 83.87 57.12 42.34 42.77 24.30 82.61 53.06 39.21 53.71 31.13 85.16 59.60 46.64
Improvements 2.33↑ 3.85↑ 1.22↑ 1.80↑ 4.89↑ 15.90↑ 16.83↑ 2.53↑ 10.23↑ 12.96↑ 12.21↑ 25.38↑ 4.90↑ 19.43↑ 13.01↑
UniSDNet (Ours) 48.41 28.33 84.76 59.46 44.41 49.57 28.39 84.70 58.49 44.29 60.27 39.03 89.33 71.18 52.71

Table 2: Comparison with the state-of-the-arts on the Charades-STA dataset for NLVG. † denotes the result
reproduced by us. Both MMN and our method originate from the exploitation of 2D temporal map. Blue
numbers represent the percentage of performance improvement compared with MMN†.

R@1, IoU@0.7, and mIoU , respectively. In addition to our method, MA3SRN Liu et al. (2023a) has
outstanding performance in various metrics, however, it not only leverages both visual features but
also object features extracted by Faster-RCNN Ren et al. (2015) for this task. Our UniSDNet merely
using C3D features still performs better than MA3SRN, achieving 7.49 and 5.90 improvements in
R@1, IoU@0.7 and R@5, IoU@0.7 metrics, respectively.

Results on the TACoS dataset. TACoS (Cooking dataset) has the longest video length (approx. 5
min) and the highest number of events (>100) per video (more details in Appendix A.1). As shown
in Tab. 1, the proposed UniSDNet achieves the best results across all metrics (e.g., 38.88 on mIoU ).
With the DistilBERT Sanh et al. (2019) as textual feature extraction, our method achives the best
results on the R@1 metric, e.g. 55.56 on R@1, IoU@0.3 and 40.26 on R@1, IoU@0.5.

Results on the Charades-STA dataset. For the Charades-STA dataset, we report the fair comparison
results of our method under VGG, C3D and I3D features in Tab. 2. Notably, the duration of the
action or event in this datset is relatively short, with an average of 8.09 s, and more subtle human
movements need to be identified, resulting in that the models are sensitive to different visual features.
Despite under this limitation, for the VGG and C3D visual features, our method achieves the best
performance on the stringent metric R@1, e.g., 28.33 and 28.39 R@1, IoU@0.7 on VGG and C3D
feature, respectively. For the I3D video features, our UniSDNet achieves a outstanding record in
R@5, IoU@0.7, that is, 71.18, demonstrating our the robustness and generalization of our model.
Moreover, we specifically make fair comparison of ours with MMN Wang et al. (2022) based on the
same 2D temporal proposal map. Compared with MMN, our UniSDNet has the improvements of
4.89↑, 12.96↑, and 13.01↑ in mIoU under VGG, C3D, and I3D features, respectively.
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4.3 MAIN RESULTS FOR SPOKEN LANGUAGE VIDEO GROUNDING (SLVG) TASK

Dataset Method Audio Video R@1, IoU@ R@5, IoU@ mIoUFeature Feature 0.3 0.5 0.7 0.3 0.5 0.7

ActivityNet

VGCL CPC

C3D

49.80 30.05 16.63 N/A N/A N/A 35.36

Speech

VSLNet Mel 46.75 29.08 16.24 N/A N/A N/A 34.01
VSLNet† Data2vec 51.02 30.38 17.45 N/A N/A N/A 37.04
MMN† Data2vec 51.98 35.69 20.77 85.46 75.29 56.87 37.81
UniSDNet Data2vec 72.27 56.29 33.29 90.41 84.28 72.42 52.22

Charades-STA
VSLNet†

Data2vec

I3D 65.46 47.55 28.98 N/A N/A N/A 45.40

Speech∗
MMN† VGG 56.16 42.74 24.14 93.25 82.96 55.97 39.15
UniSDNet VGG 60.73 46.37 26.72 92.66 82.31 57.66 42.28
UniSDNet I3D 67.45 53.82 34.49 94.81 87.90 69.30 48.27

TACoS VSLNet†
Data2vec C3D

38.14 27.87 16.35 N/A N/A N/A 27.28

Speech∗ MMN† 31.72 23.82 12.55 59.16 45.36 22.89 22.58
UniSDNet 51.66 37.77 20.44 76.38 63.48 33.64 36.86

Table 3: Comparison with state-of-the-art methods on the ActivityNet Cap-
tions dataset for SLVG. ∗ denotes our new collected datasets. † denotes the
result reproduced by us. Audio feature ‘Mel’ refers to the Mel Spectrogram.

To our knowledge, the only
SLVG work is VGCL Xia
et al. (2022), which utilizes
CPC Oord et al. (2018) as
the audio encoder and C3D
as the video encoder to ex-
tract audio and visual rep-
resentations. To facilitate
the research of SLVG, we
reconstruct the VSLNet and
MMN models for the task,
and conduct experiments
on the new Charades-STA
Speech and TACos Speech
datasets. Besides, we consider more features, such as VGG, I3D, and C3D visual features and CPC,
Mel, Data2vec audio features. As shown in Tab. 3, it can be seen that our model achieves state-of-the-
art performance on all datasets and metrics. Compared with VGCL, our UniSDNet improves 16.66
on R@1, IoU@0.7 and 26.24 on R@1, IoU@0.5. Compared to the typical proposal-free method
VSLNet, our model outperforms it by 2.87 and 9.58 of mIoU on the Charades-STA Speech and
TACoS Speech datasets, respectively. For fair comparison with the baseline model MMN, our model
still outperforms much better, e.g., 3.13 and 14.28 improvements of mIoU on the Charades-STA
Speech and TACoS Speech datasets, respectively.

4.4 ABLATION STUDIES

In this section, we conduct in-depth ablation studies to analyse each component of UniSDNet. More
discussion about the dynamic module are reported in Appendix B.

Task Static Dynamic R@1, IoU@ R@5, IoU@ mIoUModule Module 0.3 0.5 0.7 0.3 0.5 0.7

NLVG

✗ ✗ 61.22 44.46 26.76 87.19 78.63 63.60 43.98
✓ ✗ 73.57 58.70 37.07 91.17 85.55 73.98 54.06
✗ ✓ 74.56 59.45 37.44 90.98 85.43 73.60 54.43
✓ ✓ 75.85 60.75 38.88 91.16 85.34 74.01 55.47

SLVG

✗ ✗ 53.63 35.91 20.51 84.71 74.21 55.95 38.23
✓ ✗ 69.71 53.75 31.26 90.42 84.11 70.82 50.69
✗ ✓ 71.34 54.03 31.51 89.75 82.62 68.12 50.97
✓ ✓ 72.27 56.29 33.29 90.41 84.28 72.42 52.22

Table 4: Ablation studies on the static and dynamic
modules on the ActivityNet Captions and ActivityNet
Speech datasets.

Study on Static and Dynamic Modules. We re-
move the static (Sec. 3.1) and dynamic modules
(Sec. 3.2) separately to investigate their contri-
bution for cross-modal correlation modeling in
our tasks. The results of NLVG and SLVG are
reported in Tab. 4. In NLVG, the single static
module outperforms the baseline (without static
and dynamic modules) by 10.31 and 10.08 im-
provements in R@1, IoU@0.7 and mIoU , re-
spectively. In addition, the single dynamic module exhibits 10.68 and 10.45 improvements than the
baseline on R@1, IoU@0.7 and mIoU , which demonstrates its effectiveness of dynamic temporal
modeling in the video. When combining the static and dynamic modules, all the performance metrics
are further increased, such as achieving the SOTA records 38.88 in R@1, IoU@0.7 and 55.47 in
mIoU for NLVG. In SLVG, we observe the similar conclusions. These results demonstrate that both
static and dynamic modules indeed have a mutual promoting effect on improving the accuracy.

36

38

40

42

38.8838.3238.57 38.0738.46
37.07

28

30

32

34 33.29

31.3631.30
31.9731.3731.26

w/o Graph GCN GAT D MLP Ours0

NLVG
SLVG

Figure 5: R@1, IoU@0.7 results of
different message passing strategies in
our Graph layer on the ActivityNet Cap-
tions and ActivityNet Speech datasets.

Study on Dynamic Filter Graph. Our dynamic module is a
two-layer filtering GCN that differs from existing GCN in the
design of message passing. We test five variants of our graph
filter, including 1) w/o Graph, 2) GCN Kipf & Welling (2016),
3) GAT Veličković et al. (2017), 4) D, 5) MLP. Observing
Fig. 5, w/o Graph performs the worst. The vanilla GCN tracts
all the neighbor nodes equally with a convolution operation to
aggregate neighbor information. GAT is a weighted attention
aggregation method. Our method outperforms GCN and GAT
0.31 and 0.56 on R@1, IoU@0.7 for NLVG, and 1.99 and
1.93 on R@1, IoU@0.7 for SLVG, respectively. For D and
MLP, we discuss the Gaussian filter setup in our method. In
the setting of D, we use the the message aggregation wight
fij = 1/(dij + 1) to replace fij = Ffilter(dij) in Eq. 2, which indicates that we still consider the
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Figure 6: Qualitative examples of our UniSDNet. The right figures display the groundtruth IoU maps and the
predicted score maps by our UniSDNet.

same joint clue of temporal distance and relevance between two nodes dij but remove the entire
Gaussian filtering calculation from our method. This replacement results in a decrease of 0.42 and
1.92 on R@1, IoU@0.7 for NLVG and SLVG, respectively. MLP uses the operation MLP(dij) to
replace the Gaussian basis function ϕ(dij) in Eq. 2; in this way, we realize the convolution kernel
rather than the Gaussian kernel in the dynamic filter. Compared to Ours, MLP has a decreased
performance of 0.81 and 1.32 on R@1, IoU@0.7 for NLVG and SLVG, respectively.

Query Method Model Size Infer. Speed (s/query) R@1, IoU@0.5

Single

2D-TAN 21.62M 0.061 44.51
MS-2D-TAN 479.46M 0.141 46.16
MSAT 37.19M 0.042 48.02
MGPN 5.12M 0.115 47.92

Multi
MMN 152.22M 0.014 48.59
PTRM 152.25M 0.038 50.44
UniSDNet (Ours) 76.52M 0.009 60.75

Table 5: Complexity comparison on the ActivityNet
Captions dataset for NLVG.

Results of Model Complexity. We report the
complexity comparison on the ActivityNet Cap-
tions dataset. “Infer. Speed” denotes the average
inference time per query. Observing Tab. 5, the
model size of most single-query methods are ob-
viously lower than that of multi-query methods,
whereas multi-query methods exhibit much bet-
ter results. Returning to the multi-query meth-
ods, they commonly have a large number of model parameters, and our UniSDNet is only half of
MMN and PTRM, while our efficiency is improved by 35.71% compared to MMN. Compared to the
PTRM method with multiple queries, our accuracy on R@1, IoU@0.5 has improved by 10.31.

4.5 QUALITATIVE RESULTS

We provide qualitative results of our UniSDNet on the ActivityNet Captions dataset with a video
named “v_q81H-V1_gGo” for NLVG, as shown in Fig. 6. MMN Wang et al. (2022) exhibits
significant semantic bias, making it impossible to distinguish between Q2 and Q3. Our Only
Static accurately predicts the moments, which thanks to the effective static learning of the semantic
association between queries and video moments. Our Only Dynamic performs well in the three
queries too, which thanks to the fine dynamic learning of the video sequence context. The results of
the full model Ours for all queries are the closest to Groundtruth (GT). It shows that the full model
can combine the favorable factors of static (differentiate different query semantics and supplement
video semantics) and dynamic (differentiate and associate the related context in the video) modules to
obtain more accurate target moment prediction. More challenging and interesting qualitative results
for NLVG and SLVG are attached in Appendix C. The quantitative results confirm the effectiveness
of our unified static and static methods in solving both NLVG and SLVG tasks.

5 CONCLUSION

In this paper, we propose a novel Unified Static and Dynamic Network (UniSDNet) for efficient
video grounding. We adopt multi-query mode and achieve model performance/complexity trade-
offs, it benefits from both “static” and “dynamic” association between queries and video semantics
in a cross-modal environment. We adopt a ResMLP architecture that comprehensively considers
mutual semantic supplement through video-queries interaction (static mode). Afterwards, we utilize a
dynamic Temporal Gaussian filter convolution to model nonlinear high-dimensional visual semantic
perception (dynamic mode). The static and dynamic manners complement each other, ensuring
effective 2D temporary proposal generation. We also contribute two new Charades-STA Speech and
TACoS Speech datasets for SLVG task. UniSDNet is evaluated on both NLVG and SLVG; for both of
them we achieve new state-of-the-art results. We believe that our work is a new attempt and inspire
similar video tasks in the design of neural networks guided by visual perception biology.
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A DATASETS AND IMPLEMENTATION DETAILS

A.1 THE DETAILS OF DATASETS

The Datasets for NLVG. The statistics of the datasets ActivityNet Captions Krishna et al. (2017),
Charades-STA Gao et al. (2017), and TACoS Regneri et al. (2013) for NLVG are described in Tab 6.

Datasets Domain # Videos # Sentences Average Length Average Queries per Video
Train Val Test Train Val Test Video Words Moment Train Val Test

ActivityNet Captions Open 10,009 4,917 4,885 37,421 17,505 17,031 117.60s 14.41 37.14s 3.74 3.56 3.49
Charades-STA Indoors 5,336 - 1,334 12,408 - 3,720 30.60s 7.22 8.09s 2.33 - 2.79

TACoS Cooking 75 27 25 9,790 4,436 4001 286.59s 9.42 27.88s 130.53 164.30 160.04

Table 6: Data statistics of three widely used datasets in NLVG.

ActivityNet Captions contains 19,209 videos from YouTube’s open domain collection, which is
initially proposed byKrishna et al. (2017) for video captioning and then applied to video grounding.
Following the dataset partitioning Zhang et al. (2020b) , we use val_1 as validation set and val_2 as
test set. Specifically, there are 37,417, 17,505, and 17,031 sentence-moment pairs for train, validation,
and test, respectively. Charades-STA contains 9,848 relatively short indoor videos and it is originally
from Charades Sigurdsson et al. (2016) used for action recognition and action localization tasks. The
dataset is extended by Gao et al. (2017) with language descriptions for NLVG task. It has 12,408 and
3,720 sentence-moment pairs for training and testing, respectively. TACoS The dataset contains 127
activities that occur in the kitchen, which is built on the MPII-Compositive dataset Rohrbach et al.
(2012). We follow the same split in Zhang et al. (2020b), where the training, validation, and testing
contain 10,146, 4,589, and 4,083 sentence-moment pairs, respectively. As shown in Tab. 6, TACoS
has much longer and much more annotated queries for each video, e.g., averaged 286.59s and 130.53
per video in the training set.

The Datasets for SLVG. In SLVG task, there is only ActivityNet Speech dataset proposed by Xia et
al. Xia et al. (2022). This dataset is collected based on the ActivityNet Captions dataset Krishna et al.
(2017), consists of 37,417 audio-moment pairs, where audio is obtained by volunteers (28 male and
30 female) reading text fluently in a clean environment.

Datasets Domain # Videos # Audios Average Length Audio SourceTrain Val Test Train Val Test Video Duration Moment

ActivityNet Speech Open 10,009 4,917 4,885 37,421 17,505 17,031 117.60s 6.22s 37.14s 58 Volunteers
Charades-STA Speech∗ Indoors 5,336 - 1,334 12,408 - 3,720 30.60s 2.33s 8.09s Machine Simulation

TACoS Speech∗ Cooking 75 27 25 9790 4436 4001 286.59s 2.89 27.88s Machine Simulation

Table 7: Data statistics of the datasets used for SLVG. The Charades-STA Speech and TACoS Speech datasets are
proposed by us. Both Charades-STA Speech and TACoS Speech datasets are collected by machine simulation Ao
et al. (2021) from a 7,931 speaker pronunciation database (the CMU ARCTIC dataset), which has more diverse
pronunciations than the AcitivityNet Speech dataset.

To facilitating the research of SLVG, we collect two datasets: Charades-STA Speech and TACoS
Speech datasets. Similar to the collection of ActivityNet Speech dataset Xia et al. (2022), we collect
the audio description of corresponding text query. Different from Xia et al. (2022) which employs
58 volunteers to read the text query, we use machine simulator Ao et al. (2021) to read the text
query. Specifically, the machine simulator contains 7,931 speaker embeddings with different English
pronunciation characteristics from the CMU ARCTIC database1. For each query, we randomly select
one speaker to generate the audio. Compared to the ActivityNet Speech dataset, the Charades-STA
Speech and TACoS Speech datasets collected by us have more diverse pronunciations.

1CMU ARCTIC database is available at http://www.festvox.org/cmu_arctic/
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A.2 IMPLEMENTATION DETAILS

Feature Extraction. For a fair comparison, we utilize the same video features provided by 2D-
TAN Zhang et al. (2020b), which includes 500-dim C3D feature Tran et al. (2015) on ActivityNet
Captions, 4096-dim VGG feature Simonyan & Zisserman (2014) on Charades-STA and 4096-dim
C3D feature on TACoS. Besides, there are currently other popular C3D feature and I3D feature Car-
reira & Zisserman (2017) available on Charades-STA, so we also use the 4096-dim C3D feature from
Zeng et al. (2020) and 1024-dim I3D feature provided by Mun et al. (2020). For TACoS dataset,
we use PCA dimensionality reduction method Krishna et al. (2017) to reduce the video feature
dimension to 500. Following previous work Wang et al. (2022), we use the GloVe Pennington et al.
(2014) and DistilBERT Sanh et al. (2019) to extract textual feature. For audio feature, we use the
HuggingFace Wolf et al. (2019) implementation of Data2vec Baevski et al. (2022a) with pre-trained
model “facebook/data2vec-audio-base-960h” for SLVG. Specifically, we set the audio sampling rate
to 16,000 Hz, and use the python audio standard library ‘librosa’ to read the original audio and input
it into the Data2vec model to obtain the audio sequence embedding. Additionally, we use LayerNorm
and AvgPool operations to aggregate the entire audio representation. The feature dimensions of both
text and audio are 768.

Datasets #Clips Static Module Dynamic Module 2D Proposal Generation #Parameters
Hidden size #Layers Hidden size #Layers Kernel size Hidden size S3Net 3.1 DTFNet 3.2 Proposal Generation 3.3

ActivityNet Captions (C3D) 64 1024 2 256 4 9 512 0.53M 0.68M 76.79M

Charades-STA (VGG) 16 1024 2 512 3 5 512 1.05M 2.68M 20.19M
Charades-STA (C3D) 16 1024 2 512 3 5 512 1.05M 2.68M 20.19M
Charades-STA (I3D) 64 1024 2 256 2 17 512 0.53M 0.68M 113.91M

TACoS (C3D) 128 1024 2 256 3 5 512 0.53M 0.68M 16.65M

Table 8: The hyperparameter settings of UniSDNet model.
Hyperparameter Settings. Tab. 8 shows the hyperparameter settings of UniSDNet. For data
preparation, we evenly sample 64 and 128 video clips for ActivityNet Captions dataset with C3D
features, and 16, 16, and 64 video clips for Charades-STA dataset with VGG, C3D, and I3D features,
respectively. In the static module, we conduct two ResMLP blocks (N=2) and the hidden size of
feature is set to 1024. In the dynamic module, DTFNet has two graph layers. Therein, we empirically
set hyperparameter γ to 10.0, the number of Gaussian kernels h to 50, we generate h biases with
equal steps starting from 0 and set the step to 0.1. for the dynamic filter Ffilter. More details about
the settings of convolution layers, kernel size, and hidden size for 2D proposal generation are listed
in Tab. 8. The parameters size of S3Net (in 3.1), DTFNet (in 3.2) and proposal generation (in 3.3) are
also provided in Tab. 8.

Training Settings. We use the AdamW optimizer Loshchilov & Hutter (2017) to optimize the
proposed model. For the ActivityNet Captions and TACoS datasets, the learning rate and batch size
are set to 8× 10−4 and 12, respectively. For the Charades-STA dataset, we set the learning rate and
batch size to 1 × 10−4, and 48, respectively. We train the model with 15 epochs on ActivityNet
Captions and Charades-STA datasets and 200 epochs on TACoS. All experiments are conducted with
a single GeForce RTX 2080Ti GPU.

Evaluation Metrics. Following the convention Gao et al. (2017); Mun et al. (2020), we compute
the “R@h, IoU@µ” and “mIoU” for performance evaluation. The metric denotes the percentage of
correct samples that have at least one correct answer in the top-h choices, where the criterion of the
correct answer is that the moment IoU between the predicted result and the groundtruth is greater
than a threshold µ. Specifically, we set h ∈ {1, 5} and µ ∈ {0.1, 0.3, 0.5, 0.7}. Also, we use mIoU ,
the average IoU between the prediction and groundtruth across the test set, as an indicator to compare
overall performance.

Details of Contrastive Learning Loss Lcontra. We use noise contrastive estimation Oord et al.
(2018) to estimate two conditional distributions p(q|m) and p(m|q). The former represents the
probability that a query q matches the video moment m when giving m, and the latter represents the
probability that a video moment m matches the query q when giving q.

Lcontra = −(
∑

q∈QB

logp(mq|q) +
∑

m∈MB

logp(qm|m)), (7)

where QB and MB are the sets of queries and moments in a training batch. mq ∈ {m+
q ,m

−
q }, m+

q

is the moment matched to the query q (solo positive sample) and m−
q denotes the moment unmatched
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to q in the whole training batch (multiple negative samples). The definition of qm ∈ {q+
m, q−

m} for
the moment m is similar to that of mq ∈ {m+

q ,m
−
q }. The objective of contrastive learning is to

guide the representation learning of the video and queries and effectively capture mutual matching
information between modalities.

16



Under review as a conference paper at ICLR 2024

A.3 OVERALL PREDICTION ANALYSIS OF THE MODEL

The Temporal Distribution of Target Moments. Fig. 7 shows the temporal distribution of target
moments on the ActivtyNet Captions, Charades-STA, and TACoS datasets. The distribution of target
moments varies among the these datasets, and our method has good predictive performance than
MMN Wang et al. (2022) on all these datasets, indicating that the model has good robustness.
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(a) The distribution of target moment of Groundtruth.
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(b) The distribution of predicted moment by MMN Wang et al. (2022)
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Figure 7: The distribution of predicted moments by our UniSDNet and MMN Wang et al. (2022) on
ActivtyNet Captions, Charades-STA, and TACoS datasets.

17



Under review as a conference paper at ICLR 2024

B ADDITIONAL ABLATION STUDY RESULTS

Hyperparameters in the Filter Ffilter. As introduced in Sec 3.2, the multi-kernel Gaussian basis
function involves two important hyperparameters: the number of Gaussian kernels h and the bias
parameter z. Because we generate h biases with equal steps starting from 0, we study the value
of “step” size. Tab. 9 shows the impact of different h and “step” on both NLVG and SLVG. For
the task of NLVG, we can find that the model with the same Gaussian kernel number h gives close
results even if the Gaussian “step” is different. When the Gaussian kernel number is set to 50 and the
Gaussian “step” is set to 0.1, the model achieves the optimal (i.e., mIoU of 55.47). For the task of
SLVG, we can get the similar conclusion. We speculate that our method achieves the best results
when number of Gaussian kernels h is close to the number of graph nodes.

Task #Kernels Step R@1, IoU@ R@5, IoU@ mIoU0.3 0.5 0.7 0.3 0.5 0.7

NLVG

25 0.1 75.12 60.20 38.02 91.20 85.82 74.68 54.91
50 0.1 75.62 60.75 38.88 90.94 85.34 74.01 55.47

100 0.1 74.88 59.54 38.53 91.29 85.96 74.75 54.99
200 0.1 74.28 59.60 38.62 91.33 85.91 75.05 54.96

25 0.2 75.11 60.01 38.13 91.25 85.48 74.31 54.99
50 0.2 75.12 60.31 38.66 90.95 85.11 73.86 55.25

100 0.2 75.30 59.73 38.47 91.65 86.07 75.16 55.13
200 0.2 74.69 59.99 39.03 91.30 85.63 74.86 55.18

25 0.1 71.35 55.71 33.70 90.44 84.42 71.53 51.91

SLVG

50 0.1 72.27 56.29 33.29 90.41 84.28 72.42 52.22
100 0.1 71.22 55.65 33.16 90.36 84.12 71.57 51.72
200 0.1 72.64 56.76 31.27 90.32 84.29 70.80 51.65

25 0.2 71.77 55.45 31.85 90.36 84.16 71.08 51.28
50 0.2 71.48 55.23 33.29 90.45 84.15 71.64 51.78

100 0.2 73.31 55.88 31.28 90.23 84.03 71.38 51.85
200 0.2 71.79 55.92 33.76 90.16 84.00 70.89 51.91

Table 9: Ablation study results of Gaussian kernel number h and step z on the ActivityNet Captions
and ActivityNet Speech datasets.
Effect of Dynamic Graph Layer. We investigate the influence of the graph layer of our dynamic
module. As shown in Fig. 8, we observe that our model achieves the best result (e.g., R@1, IoU@0.7
is 38.88) when the total number of graph layer is set to 2. It is speculated that on the basis of
informative context modelling by the static module, two-layers dynamic graph module is enough for
relational learning of the video. Additionally, graph convolutional networks generally experience
over-smoothing problem as the number of layers increases, leading to a performance decline Li et al.
(2018). Our model exhibits good stability on the 1∼6-th graph layers.
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Figure 8: The results across different graph layer on the AcvitivtyNet Captions dataset for NLVG.
From top to bottom, the metrics are R@1, IoU@0.3, IoU@0.5, and IoU@0.7, respectively.

18



Under review as a conference paper at ICLR 2024

(a) Content

Conv or MaxPool

1 2 3 4 5 6 7 8 end

start

1
2
3
4
5
6
7
8

(b) Content, Boundary (Addition) 

Conv or MaxPool

1 2 3 4 5 6 7 8 end

start

1
2
3
4
5
6
7
8

Add

(c) Content, Boundary (Concatenation) 

Conv or MaxPool

1 2 3 4 5 6 7 8 end

start

1
2
3
4
5
6
7
8

Cat

Figure 9: Different feature sampling strategies for 2D proposal generation. (a) Only the features of the
proposal (taken as content) are used for proposal generation. (b) The content and boundary features
are fused by addition operation. (c) The content and boundary features are fused with concatenation
operation.

Effect of Feature Sampling for 2D Proposals Generation. To discuss the sensitivity of feature
sampling strategy for 2D proposals generation, we evaluate the effects of moment content and
boundary features in this section. As shown in Fig. 9, we conduct experiments with different proposal
generation strategies: (a) only the features of proposal (taken as content) are used to generate proposal;
(b) the content and boundary features are summed together to generate proposal; (c) the content
and boundary features are concatenated together to generate proposal. The 2D proposals can be
generated by 1D Conv or MaxPool Zhang et al. (2020b). The experiments conducted on both
NLVG and SLVG tasks are shown in Tab. 10. For NLVG, we can see that the model with MaxPool
strategy achieves better performance than convolution strategy, e.g., 38.99 vs. 38.20 in terms of
R@1, IoU@0.7 when the model using content feature. In addition, the addition operation performs
better than the concatenation operation, e.g., 55.47 vs. 54.98 when the model using the content and
boundary features. For SLVG, we can get the similar conclusion as well as NLVG. Therefore, we use
both the content and boundary features to generate proposal through MaxPool and Conv for NLVG
and SLVG, respectively.

Task Generation Features Fusion R@1, IoU@ R@5, IoU@ mIoU0.3 0.5 0.7 0.3 0.5 0.7

NLVG

Conv Content N/A 75.30 60.27 38.20 90.86 85.16 73.17 55.13
Conv Content, Boundary Addition 75.85 60.70 38.75 90.85 85.05 73.25 55.41
Conv Content, Boundary Concatenation 74.76 60.30 38.80 90.70 84.96 73.00 55.15

MaxPool Content N/A 75.62 60.40 38.99 90.94 85.22 73.97 55.39
MaxPool Content, Boundary Addition 75.85 60.75 38.88 91.16 85.34 74.01 55.47
MaxPool Content, Boundary Concatenation 75.13 59.96 38.25 91.26 85.59 73.91 54.98

SLVG

Conv Content N/A 71.02 55.24 32.88 90.38 84.25 71.38 51.66
Conv Content, Boundary Addition 72.27 56.29 33.29 90.41 84.28 72.42 52.22
Conv Content, Boundary Concatenation 71.45 55.79 33.20 90.55 84.16 71.48 51.76

MaxPool Content N/A 71.26 55.25 33.74 90.49 84.29 72.46 51.80
MaxPool Content, Boundary Addition 72.60 56.64 32.61 90.82 84.89 72.48 52.04
MaxPool Content, Boundary Concatenation 69.85 53.96 32.05 90.36 84.12 72.24 50.68

Table 10: Comparison of different proposal generation methods.
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C MORE VISUALIZATION OF PREDICTION RESULTS

In order to clearly demonstrate the specific role of our proposed unified static and dynamic networks
in cross-modal video grounding, we provide more challenging visualization cases in this section as a
supplement to Sec. 4.5.

C.1 VISUALIZATION ON ACTIVITYNET CAPTIONS FOR NLVG

Video Sample with Complex Scene Transitions. As shown in Fig 10 (a), there are multiple
scene transitions in video sample “ID: v_rKtktLDSOpA” from the ActivityNet Captions dataset and
different events have serious intersection in the temporal sequence of video. For example, there
is an intersection between the end of the moment corresponding to Q1 and the beginning of the
moment corresponding to Q2 and another big intersection exists between the moments corresponding
to Q2 and Q3. From Fig. 10, MMN Wang et al. (2022) makes a serious prediction for Q1, locating
the moment corresponding to Q2. Meanwhile, when predicting Q3, MMN omits the temporal
region intersected with Q2 but correct temporal region also belonged to the moment of Q3 for the
final prediction. Compared to MMN, our Only Static and Only Dynamic predict more accurate
moments for each query, and they can accurately comprehend the intersection of Q2 and Q3. Only
Static performs better at identifying transitions, while Only Dynamic performs better at recognizing
overlapping events. Our Full Model performs best in these challenging scenarios because it combines
the advantages of Only Static and Only Dynamic.

Video Sample with Similar Scenes. The frames in video sample “ID: v_UajYunTsr70” from the
ActivityNet Captions dataset too have high similarity, as shown in Fig. 10 (b). You can find it to locate
the corresponding moment corresponding to Q1: “A cat is sitting on top of a white sheet.” MMN is
basically unable to distinguish the video content for the three different queries. It almost predicts the
entire video for each query. Even through our Only Static performs poorly in this situation too, our
Only Dynamic performs much better than MMN. Finally, our Full model locates the most accurate
target moment. This is thanks to our model that combines the advantages of static and dynamic
modules, especially for that the latter learns tighter contextual correlation of video in this case.

C.2 VISUALIZATION ON ACTIVITYNET SPEECH FOR SLVG.

We also provide quantitative results of our UniSDNet on SLVG to demonstrate the effectiveness of
our model in the video grounding task based on spoken language.

Video Sample with Noisy Background. We instantiate the video sample “ID: v_FsS8cQbfKTQ”
from the ActivityNet Speech dataset in Fig. 11 (a) using audio queries under noisy background
interference. We can see that MMN predicts the video clips corresponding to Q2 and Q3 with
significant deviations, and the predicted moments totally do not intersect with GT at all. This video
is a challenging case. Compared to MMN, Only Static and Only Dynamic coverage the queried
moment but have somewhat boundary shifts. exhibits a strong advantage, as it correctly predicts the
relative positions of all events has a large intersection ratio with GT video clips. Compared to MMN,
our Full model exhibits the best prediction results for all queries, as it correctly predicts the queried
moment and has a large intersection ratio with GT video clips. From the 2D map in the figure, it
can be seen that our model still performs well in video grounding task based on audio queries, fully
demonstrating the generalization of our model.

The Videos with Continuous and Varied Actions. Taking video sample “ID: v_UJwWjTvDEpQ”
from the ActivityNet Speech dataset in Fig. 11 (b) as an example, the video shows a scene with a
clean background, but in which a boy’s actions are continuously changing. In this case, for different
event divisions, it is necessary to finely distinguish the contentual semantics of the boy’s actions and
the differences between them. MMN fails to recognize such densly varied actions and incorrectly
assigns the whole video as the answer (e.g., Q1 and Q2). Our Static predicts the approximate
location of each event. Our Dynamic exhibits excellent performance in distinguishing the semantics
of continuous actions, it not only correctly distinguishes the semantic centers of three events, but also
more accurately predicts the boundaries of each event, compared to MMN and Our Static. Inspiring,
Full Model achieves the most accurate prediction of the location and semantic boundaries of events,
this is thanks to the combination of static and dynamic modes, which deepens the understanding of
video context and enables the model to distinguish different action semantics.
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C.3 MORE VISUALIZATION OF PLETHORIC MULTI-QUERY CASES

Visualization Examples on the TACoS Dataset. Taking the video sample “ID: s27-d50” in Fig. 12
(a) as an example, we provide the grounding results of our model and MMN. Note that the total
duration of the video is 82.11 s, which includes 119 query descriptions. Limited by page size and
layout, we select and show 6 very challenging queries here. The video depicts a person cooking in a
kitchen. MMN experiences a significant prediction error in the moment corresponding to the query
Q88. In contrast, our Full model accurately determines the relative positions of the video segments
corresponding to all the queries. The qualitative results highlight the effectiveness of learning
semantic associations between multi-queries (i.e., multi-queries contextualization) for cross-modal
video grounding.

Visualization Examples on the Charades-STA Dataset. The video sample “ID: U5T4M” in Fig. 12
(b) has a duration of 19.58 s, which describes the indoor activities of a person, and contains 7 queries.
Our Full model infers the localization results of all queries corresponding to the video at once. In
all queries, Q1 and Q2 are similar descriptions of an event, respectively. The same situation also
includes queries of Q4 and Q5, Q6 and Q7. We can see that our Full model accurately predicts
the boundaries of each query, and effectively distinguishing the semantics among similar but with
slightly different events.
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Figure 10: Qualitative examples on ActivityNet Captions for NLVG. (a) The video contains complex
scene transitions and overlap. (b) The video scenes that are difficult to distinguish. MMN makes
significant errors in predicting the location range of the queried events, i.e., Q1 and Q3 in cases (a)
and (b), respectively. Our Only Static has an advantage in predicting transitions (Q1 in case (a)), our
Only Dynamic performs better in predicting overlapping. It is difficult to distinguish scenarios (Q2
and Q3 in both cases (a) and (b)). Our Full Model performs best in both challenging scenarios, as it
combines the advantages of static (query semantic differentiation) and dynamic (video sequences
context association) modules.
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Figure 11: Qualitative examples on ActivityNet Speech for SLVG. (a) The scenes that contains a
noisy background. (b) The Videos with Continuous and Varied Actions. MMN makes significant
errors in predicting the location (Q2 and Q3 in case (a)) and location coverage areas of events (Q1 and
Q2 in case (b)). These two cases are challenging. Encouragingly, our Full Model achieves the best
performance in these video grounding cases based on audio queries, this confirms the effectiveness
and generalization of our unified static and dynamic methods in this task.
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Figure 12: Quantitative examples of plethoric multi-query cases. (a) Examples on the TACoS dataset
for NLVG. (b) Examples on the Charades-STA dataste for NLVG. MMN has a significant semantic
bias when predicting Q7 in case (a). and Q4, Q5, Q7 in case (b), there is also a big positional
deviation in predicting Q88 in case (a), and Q1, Q3 in case (b). Our Full Model correctly predicts
the location of all the queried events, and the predicted moment interval is closest to that of GT, this
is thanks to model capacity of mutual learning of video and multiple queries and effectively capturing
the video context associated with multiple queries.
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